
Proceedings of the 2012 Workshop on Biomedical Natural Language Processing (BioNLP 2012), pages 47–55,
Montréal, Canada, June 8, 2012. c©2012 Association for Computational Linguistics

Alignment-HMM-based Extraction of Abbreviations from Biomedical Text

Dana Movshovitz-Attias
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA
dma@cs.cmu.edu

William W. Cohen
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA
wcohen@cs.cmu.edu

Abstract

We present an algorithm for extracting abbre-
viation definitions from biomedical text. Our
approach is based on an alignment HMM,
matching abbreviations and their definitions.
We report 98% precision and 93% recall on
a standard data set, and 95% precision and
91% recall on an additional test set. Our re-
sults show an improvement over previously re-
ported methods and our model has several ad-
vantages. Our model: (1) is simpler and faster
than a comparable alignment-based abbrevia-
tion extractor; (2) is naturally generalizable to
specific types of abbreviations, e.g., abbrevia-
tions of chemical formulas; (3) is trained on a
set of unlabeled examples; and (4) associates a
probability with each predicted definition. Us-
ing the abbreviation alignment model we were
able to extract over 1.4 million abbreviations
from a corpus of 200K full-text PubMed pa-
pers, including 455,844 unique definitions.

1 Introduction

Abbreviations and acronyms are commonly used in
the biomedical literature for names of genes, dis-
eases and more (Ambrus, 1987). Abbreviation def-
initions are a source of ambiguity since they may
change depending on the context. The ability to rec-
ognize and extract abbreviations and map them to
a full definition can be useful for Information Ex-
traction tasks (Yu et al., 2007) and for the complete
understanding of scientific biomedical text.

Yu et al. (2002) distinguish the two follow-
ing uses of abbreviations: (1) Common abbrevia-
tions are those that have become widely accepted as

synonyms, such as 〈DNA, deoxyribonucleic acid〉
or 〈AIDS, acquired immunodeficiency syndrome〉.
These represent common fundamental and impor-
tant terms and are often used, although not explic-
itly defined within the text (Fred and Cheng, 2003).
In contrast, (2) Dynamic abbreviations, are defined
by the author and used within a particular article.
Such definitions can often overlap, depending on
the context. For example, the term PBS most com-
monly abbreviates Phosphate Buffered Saline, but
in other contexts may refer to the following: Pain
Behavior Scale, Painful Bladder Syndrome, Paired
Domain-Binding Site, Particle Based Simulation,
Partitioned Bremer Support, Pharmaceutical Bene-
fits Scheme, and more. Some abbreviations fall be-
tween these two definitions in the sense that they are
normally defined in the text, however, they have be-
come widely used, and therefore they do not nor-
mally overlap with other abbreviations. An exam-
ple for this is the term ATP which, almost exclu-
sively, abbreviates adenosine triphosphate, and is
only rarely used in different contexts in biomedicine.

Gaudan et al. (2005) define two similar con-
cepts, distinguishing Global and Local abbrevia-
tions. Global abbreviations are not defined within
the document, similar to common abbreviation. Lo-
cal abbreviations appear in the document alongside
the long form, similar to dynamic abbreviations.
The contextual ambiguity of dynamic, or local, ab-
breviations makes them an important target for ab-
breviation recognition tasks.

There is a great deal of variation in the way that
different authors produce abbreviations. Our defini-
tion of abbreviation is quite flexible and can best be

47

represented by the set of examples described in Ta-
ble 1. These include simple acronyms, in which the
first letter of every word from the long form is rep-
resented in the short form, as well as more complex
cases such as: inner letter matches, missing short
form characters, and specific substitutions (such as
of a chemical element and its symbol). We gener-
ally assume that the abbreviated form contains some
contraction of words or phrases from the full form.
This definition is consistent with the one defined by
many other extraction systems (see e.g., (Schwartz
and Hearst, 2002) and (Chang et al., 2002)).

We describe a method for extracting dynamic ab-
breviations, which are explicitly defined in biomed-
ical abstracts. For each of the input texts, the task
is to identify and extract 〈short form, long form〉
pairs of the abbreviations defined within the text. We
also provide a mapping, formed as an alignment, be-
tween the characters of the two forms, and the prob-
ability of this alignment according to our model.

Our approach is based on dividing the abbrevia-
tion recognition task into the following stages: (1)
Parsing the text and extracting candidate abbrevia-
tion pairs (long and short forms) based on textual
cues, such as parentheses; (2) Recovering a valid
alignment between the short and long form candi-
dates (valid alignments are defined in Section 3.2).
We perform a sequential alignment based on a pair-
HMM; (3) Extracting a final short and long form
from the alignment.

We will show that our approach is fast and accu-
rate: we report 98% precision and 93% recall on a
standard data set, and 95% precision and 91% recall
on a validation set. The alignment model: (1) is sim-
pler and faster than a comparable alignment-based
abbreviation extractor; (2) is naturally generalizable
to specific types of abbreviations; (3) is trained on a
set of unlabeled examples; and (4) associates a prob-
ability with each predicted definition.

2 Related Work

A wide variety of methods have been introduced
for recognizing abbreviations in biomedical context.
Many utilize one of the following techniques: rule-
based extraction, and extraction that relies on an
alignment of the abbreviation and full definition.
Abbreviation extraction methods have been used in

two main contexts: to create online collections of
abbreviations, normally extracted from PubMed ab-
stracts (Zhou et al., 2006; Gaudan et al., 2005; Adar,
2004), and as part of larger learning frameworks,
mainly for feature generation (Chowdhury et al.,
2010; Huang et al., 2011).

Rule based extraction systems use a set of man-
ually crafted pattern-matching rules to recognize
and extract the pair of abbreviation and defini-
tion: Acrophile (Larkey et al., 2000) is an acronym
recognition system that exploits morphological rules
based on the case of the characters in the definitions.
Unlike many of the other available systems, it rec-
ognized acronyms that are defined without paren-
theses; The Alice system (Ao and Takagi, 2005) is
based on three extraction phases, each employing
an elaborate set of over 15 rules, patterns and stop
word lists. Liu and Friedman (2003) use a set of
statistical rules to resolve cases in which an abbre-
viation is defined more than once with several dif-
ferent definitions. While these methods normally
achieve high performance results, their main draw-
back is that they are difficult to implement and to
extend. Rule development is normally based on a
thorough investigation of the range of targeted ab-
breviations and the resulting heuristic patterns con-
tain subtleties that are hard to recreate or modify.

Several extraction methods have been developed
based on some variant of the Longest Common Sub-
sequence algorithm (LCS) (Schwartz and Hearst,
2002; Chang et al., 2002; Taghva and Gilbreth,
1999; Bowden et al., 1997). These systems search
for at least one possible alignment of an abbrevia-
tion and a full form definition.

The most widely used abbreviation extraction sys-
tem is that presented by Schwartz and Hearst (2002).
Their method scans the input text and extract pairs
of candidate abbreviations from text surrounding
parentheses. The algorithm scans the candidate defi-
nition from right to left, and searches for an implicit
alignment of the definition and abbreviation based
on few ad-hoc rules. This algorithm presents several
constraints on the type of recognized abbreviations,
the most restrictive being that every letter of the ab-
breviation must be matched during the process of
scanning the definition. Of the variety of available
extraction systems, this remains a popular choice
due to its simplicity and speed. However, as the au-

48

Short Long Type of Abbreviation

AMS Associated Medical Services Acronym using the first letter of each long-form word.
PS postsynaptic Inner letters are represented in the abbreviation.
NTx cross-linked N-telopeptides 1. Phonetic substitution (cross→ x).

2. The short form is out-of-order.
3. Words from the long form are missing in the short form (linked).

EDI-2 Eating Disorders Inventory Characters from the short form are missing in the long form (-2).
NaB sodium butyrate Substitution of a chemical element by its symbol (sodium→ Na).
MTIC 5-(3-N-methyltriazen-1-yl)-

imidazole-4-carboxamide
Chemical formula.

EBNA-1 Epstein-Barr virus (EBV) nuclear
antigen 1

Recursive definition, in which the long form contains another ab-
breviation definition.

3-D three-dimensional Substitution of a number name and symbol (three→ 3).
A&E accident and emergency Substitution of a word and symbol (and→ &).
anti-Tac antibody to the alpha subunit of the

IL-2 receptor
Synonym: the short form commonly represents the long form, al-
though it is not a direct abbreviation of it.

R.E.A.L. ’Revised European-American Clas-
sification of Lymphoid Neoplasms’

The long- and/or short-forms contain characters that are not di-
rectly related to the abbreviation (e.g., punctuation symbols).

Table 1: Examples of biomedical abbreviations.

thors report, this algorithm is less specific than other
approaches and consequently results in lower recall.
We will show that by performing an explicit align-
ment of the abbreviation using an alignment-HMM,
our model results in more accurate predictions, and
that the edit operations used in the alignment allow
for natural extensions of the abbreviations domain.

Another frequently used alignment based ap-
proach is that of Chang et al. (2002), and it is closest
to our approach. After calculating an abbreviation
alignment, they convert the set of aligned terms into
a feature vector which is scored using a binary logis-
tic regression classifier. Using a correct threshold on
the alignment scores produces a high performance
abbreviation extractor. However this approach has
several drawbacks. The run-time of this algorithm
is fairly long (see Section 4.3), in part due to the
steps following the alignment recovery, i.e., calcu-
lating a feature vector, and generating an alignment
score. Additionally, choosing a score threshold may
depend on the genre of text, and different thresh-
olds lead to a variety of quality in the results. We
will show that presenting limitations on the range of
available alignments can produce correct alignments
more efficiently and quickly, maintaining high qual-
ity results, without the need for threshold selection.
Our alignment method distinguishes and penalizes
inner and leading gaps in the alignment, and it ap-

plies a set of constraints on the range of legal align-
ments. We will also show that relying solely on con-
strained alignments still allows for flexibility in the
definition of the range of desired abbreviations.

Ristad and Yianilos (1998) proposed a single state
alignment-HMM for learning string-edit distance
based on matched strings. In later work, Bilenko and
Mooney (2003) extend this model to include affine
gaps, by including in their model separate states
for Matches, Deletions and Insertions. McCallum
et al. (2005) describe a discriminative string edit
CRF, following a similar approach to that of Bilenko
and Mooney. The CRF model includes two disjoint
sets of states, each representing either “matching” or
“mismatching” string pairs. Each of the sets is sim-
ilar to the model described by Bilenko and Mooney.
All of these models require labeled training exam-
ples, and the CRF approach also requires negative
training examples, which train the “mismatching”
states of the model. We describe an alignment HMM
that is suited for aligning abbreviation long and short
forms, and does not require any labeling of the input
text or training examples.

3 Method

In the following sections we describe a method for
extracting candidate abbreviation definitions from
text, and an alignment model with affine gaps for

49

Description Result

i. Input sentence: “anti-sperm antibodies were studied by indirect mixed anti-globulin reaction test (MAR)”

ii. Candidate: 〈MAR, by indirect mixed anti-globulin reaction test〉

iii. Alignment:
HMM States
Short Form
Long Form

LG LG LG LG M M M M IG M M M IG

M A R

by indirect mixed anti - globulin reaction test

iv. Abbreviation: 〈MAR, mixed anti-globulin reaction test〉

Table 2: Example of the processing steps of a sample sentence. (i) Input sentence containing a single abbreviation.
(ii) Candidate 〈short form, long form〉 pair extracted from the sentence (after truncating the long-form). (iii) The
most likely (Viterbi) alignment of the candidate pair, using our alignment model. Each state corresponds to a single
edit-operation, which consumed the corresponding short-form and long-form characters in the alignment. (iv) Final
abbreviation, extracted from the alignment by removing leading gaps.

matching the two forms of a candidate definition.
Finally we describe how to extract the final abbre-
viation prediction out of the alignment.

3.1 Extracting candidate abbreviations

The process described below scans the text for tex-
tual cues and extracts a list of candidate abbreviation
pairs, for every input document, in the form: 〈short
form, long form〉. The following text also describes
the restrictions and conditions of what we consider
to be valid candidate pairs. The assumptions made
in this work are generally less restrictive that those
introduced by previous extraction systems and they
lead to a larger pool of candidate definitions. We
will later show that false candidates normally pro-
duce invalid alignment of their short and long forms,
according to our alignment model, and so they are
removed and do not affect the final results.

The parsing process includes a search for both
single abbreviations, and abbreviation patterns. An
example of a sentence with a single abbreviation
can be seen in Table 2(i). We consider the fol-
lowing two cases of a single abbreviation defini-
tion: (1) “long form (short form)”, and (2) “short
form (long form)”. Note that in some cases, the
term within the parenthesis is parsed, e.g., in the
following text, ELISA is extracted from the paren-
thesis, by removing the text beyond the ’;’ symbol:
“. . . human commercial enzyme-linked immunosor-
bent assay (ELISA; BioGen, Germany) . . . ”.

We also consider abbreviation patterns which

define multiple abbreviations simultaneously, as
demonstrated by these examples:

• “anti-sperm (ASA), anti-phospholipid (APA),
and antizonal (AZA) antibodies” – The main
noun (antibodies) follows the pattern.

• “Epithelial-mesenchymal transition (EMT)
and interaction (EMI)” – The main noun
(Epithelial-mesenchymal) is at the head of the
pattern.

Using textual cues (patterns and parentheses) we
extract candidate short and long forms. Whenever
possible, we consider the term within the parenthe-
sis as the short form, and the text to the left of the
parenthesis (until the beginning of the sentence) as
the candidate long form. We consider valid short
forms to be no longer than 3 words, having between
1 and 15 characters, and containing at least one let-
ter. In the case that the candidate short form was
found to be invalid by these definitions, we switch
the assignment of long and short forms. The long-
form string is truncated, following Park and Byrd
(2001), to a length of min(|A|+ 5, |A| ∗ 2), where
|A| is the length of the short form.

The length of the candidate long form is estimated
using the Park and Byrd formula, and it is therefore
normally the case that the resulting candidate long
form contains some leading characters that are not
part of the abbreviation definition. Next, we define
an alignment between short and long form strings

50

<“CRF-BP”, “ligands for the corticotrophin-releasing factor binding protein”>

 | | | | | |C | |R | |F | |-|B | |P |
ligands| |for| |the| |corticotrophin|-|releasing| |factor| | |binding| |protein|

!"

#$"

%"

&$"

'"

Figure 1: Abbreviation alignment HMM model with
states: start (s), leading gaps (LG), match (M), inner gap
(IG) and end (e).

Edit
Operation

SF
Match

LF
Match

Valid
States

LF deletion ε alpha-numeric
char

LG, IG

LF deletion ε punct. symbol LG, M
LF deletion ε word LG, IG
SF deletion digit or punct. ε IG
Match char (partial) word M
Match char char M
Substitution ’&’ ’and’ M
Substitution ’1’-’9’ ’one’-’nine’ M
Substitution chem. symbol chemical name M

Table 3: Edit operations used in the alignment HMM
model including, long form (LF) and short form (SF)
deletions, matches and substitutions. We note the SF and
LF characters consumed by each edit operation, and the
HMM states in which it may be used.

which detects possible segments that are missing in
the alignment in either string (gaps).

3.2 Aligning candidate long and short forms

For each of the candidate pairs produced in the pre-
vious step, we find the best alignment (if any) be-
tween the short and the long form strings. We de-
scribe an alignment HMM that is suited for abbrevi-
ation alignments. The model is shown in Figure 1,
and Table 2 shows the parsing process of a sam-
ple sentence, including an alignment created for this
sample using the model.

3.3 Abbreviation Alignment with Affine
Leading and Inner Gaps

An alignment between a long and a short form of an
abbreviation can be modeled as a series of edit oper-
ations between the two strings, in which characters
from the short form may match a single or a series
of characters from the long form. In previous work,
Bilenko and Mooney (2003) describe a generative

model for string edit distance with affine gaps, and
an Expectation Maximization algorithm for learning
the model parameters using a labeled set of match-
ing strings. We propose a similar model for aligning
the short and long form of an abbreviation, using an
affine cost model for gaps

cost(g) = s+ e · l (1)

where s is the cost of starting a gap, e is the cost of
extending a gap and l is the length of the gap. In our
method, we use extracted candidate pairs (candidate
short and long forms) as training examples.

As described above, candidate long forms are
formed by extracting text preceding parentheses and
truncating it to some length. This process may lead
to candidate long forms that contain leading charac-
ters that do not belong to the abbreviation, which
will result in leading gaps in the final alignment.
For example, the candidate long form presented in
Table 2(ii) contains the leading text “by indirect “.
While extra leading text is expected as an artifact of
our candidates extraction method, inner alignment
gaps are not expected to commonly appear in abbre-
viation alignments, and are usually an indication of a
bad alignment. The example presented in Table 2 is
of an abbreviation that does contain inner gaps (e.g.,
globulin) despite being a valid definition.

We distinguish leading and inner alignment gaps
using a model with five states: Leading Gap (LG),
Match (M), Inner Gap (IG), and two “dummy” states
for the beginning and end of an alignment (Figure 1).
Since leading and inner gaps are represented by dif-
ferent states, their penalization is not coupled, i.e.,
they are associated with different s, e and l costs.
We use the EM algorithm to learn the model param-
eters, based on a set of unlabeled candidate pairs,
following the assumption that many false-candidates
will not produce a valid alignment, and will not af-
fect training. This is in contrast to previous string
edit distance models, which require labeled training
examples.

The main effort in developing a successful ab-
breviation alignment model involves generating a
meaningful set of edit operations. The edit opera-
tions used in our model,E = Ed∪Em∪Es, is shown
in Table 3 and includes: Ed, deletions of characters
or words from the long form, or of single characters

51

from the short form; Em, matches of a full of par-
tial word from the long form to a character in the
short form; and Es, word substitutions in which a
word from the long form is replaced by a symbol in
the short form. Note that: (1) while all types of dele-
tions from the long form are valid, deletions from the
short form are limited to digits and punctuation sym-
bols, and (2) deletion of non-alpha-numeric charac-
ters from the long form is not considered as opening
a gap but as a match, as it is common for non-alpha-
numeric characters to be missing in an abbreviation
(i.e., be “matched” with the empty string, ε).

Let x = x1 . . . xT be the short form candidate,
y = y1 . . . yV be the long form candidate, and
a = 〈ap〉np=1, ap = (ep, qp, ixp, jyp), be a pos-
sible alignment of the strings x and y. a repre-
sents as a sequence of HMM transitions, ap, where
ep ∈ E is an edit operation that consumes charac-
ters from x (deletion from the long form), y (dele-
tion from the short form), or both (match or substi-
tution), up to position ixp in x and jyp in y, and
is associated with a transition in the model to state
qp ∈ {LG,M, IG, e}. Let π(q, q′) be the transition
probability between states q and q′, and let τ(q, e)
be the emission probability of the edit operation e at
state q. Given a candidate abbreviation pair 〈x, y〉,
and the model parameters π and τ , the probability of
an alignment is given by

p(a|x, y, π, τ) =

|a|∏
p=1

π(qp−1, qp) · τ(qp, ep) (2)

where q0 is the start state. This probability can be
calculated efficiently using dynamic programming
with the forward-backward algorithm, and the most
likely alignment corresponds to the Viterbi distance
between x and y.

In our method, the model parameters, π and τ ,
are estimated using the EM algorithm on an unla-
beled training set of candidate pairs that have been
extracted from the text, without any further process-
ing. At each EM iteration, we train on pairs that have
valid alignments (see below) with non-zero proba-
bility under the model parameters at that iteration.

3.3.1 Valid Alignments
Given the edit operations defined above, the only

valid way of matching a letter from the short form

to the long form is by matching that letter to the
beginning of a full or partial word, or by matching
that letter using a substitution operation. There is
no edit operation for deleting letters from the short
form (only digits and punctuation symbols can be
deleted). This means that for some candidate pairs
there are no valid alignments under this model, in
which case, no abbreviation will be predicted.

3.3.2 Extracting the Final Abbreviation
Given a valid alignment a between the candi-

date pair, x and y, we create a truncated alignment,
a′, by removing from a initial transitions in which
qp = LG. We consider a′ valid if the number of
matches in a′ = 〈a′p〉n

′
p=1 is greater than the number

of deletions,

n′∑
p=1

I(q′p = M) >
n′∑

p=1

I(q′p = IG) (3)

where I is an indicator function.
The final abbreviation prediction is given by the

portions of the x and y strings that are associated
with a′, named x′ and y′, respectively. These may be
truncated compared to x and y, as leading alignment
gaps are removed. The final alignment probability is
given by p(a′|x′, y′, π, τ).

3.4 Substitution Edit Operations
In contrast to rule-based extraction algorithms, in
our model, it is easy to introduce new types of edit
operations, and adjust the model to recognize a va-
riety of abbreviation types. As an example, we have
added a number of substitution operations (see Ta-
ble 3), including an operation for the commonly
used convention of replacing a chemical element
name (e.g., Sodium) with its symbol (Na). These
types of operations are not available using simpler
models, such as that presented by Schwartz and
Hearst (2002), making it impossible to recognize
some important biomedical entities, such as chem-
ical compounds (e.g., 〈NaB, SodiumButyrate〉).
In contrast, such additions are natural in our model.

4 Evaluation

4.1 Abbreviation Extraction Analysis
We evaluated the alignment abbreviation model over
two data sets (Table 4). The method was tuned using

52

Data Set Name Abstracts Abbreviations Testing Method

Development (D) Medstract 400 483 10-fold cross validation.
Validation (V) PubMed Sample 50 76 Training on set D and testing on set V.

Table 4: Evaluation Data Sets.

Model D (average %) V (%)

P R F1 P R F1

Alignment HMM 98 93 96 95 91 93
SH 96 88 91 97 83 89
Chang 0.88 99 46 62 97 47 64
Chang 0.14 94 89 91 95 91 93
Chang 0.03 92 91 91 88 93 90
Chang 0 49 92 64 53 93 67

Table 5: Results on validation (V) and development (D)
sets. Average results are shown for D set, which was
tested using 10-fold cross-validation (results rounded to
nearest percent, all standard deviations were < 0.1)

10 fold cross-validation over the publicly available
Medstract corpus (Pustejovsky et al., 2002) which
includes 400 Medline abstracts. The online version
of the corpus was missing the Gold Standard annota-
tions throughout the development of our algorithm,
nor was it possible to get them through communica-
tion with the authors. We therefore hand-annotated
the Medstract data, yielding 483 abbreviation defi-
nitions in the form of 〈short form, long form〉 pairs.
In order to be consistent with previous evaluations
over Medstract, our annotations include only defini-
tions in which either the short or the long form ap-
pear in parenthesis, and it is assumed that there are
no trailing gaps in the term preceding the parenthe-
sis, although our model does detect such gaps.

We compare our results with two algorithms
available for download: the Schwartz and Hearst
(SH; (2002)) algorithm1, and the Chang et al. (2002)
algorithm2 used at three score cutoffs reported in
their paper (0.88, 0.14, 0.03). We also use a fourth
score cutoff of 0 to account for any legal alignments
produced by the Chang model.

In Table 5 we report precision (P), recall (R) and

1Taken from http://biotext.berkeley.edu/software.html
2Taken from http://abbreviation.stanford.edu

F1 scores for all methods, calculated by

P =
correct predicted abbreviations

all predicted abbreviations
(4)

R =
correct predicted abbreviations

all correct abbreviations
(5)

On the development set, our alignment model
achieves 98% precision, 93% recall and 96% F1 (av-
erage values over cross-validation iterations, with
standard deviations all under 0.03).

To test the final model we used a validation
dataset consisting of 50 abstracts, randomly selected
out of a corpus of 200K full-text biomedical articles
taken from the PubMed Central Open Access Sub-
set (extracted in October 2010)3. These were hand-
annotated, yielding 76 abbreviation definitions.

On the validation set, we predicted 69 out of 76
abbreviations, with 4 false predictions, giving 95%
precision, 91% recall and 93% F1. Our alignment
model results in higher F1 score over all baselines
in both datasets (with Chang0.14 giving equal results
on the validation set). Our results are most compa-
rable with the Chang model at a score cutoff of 0.14,
though our model does not require selecting a score
cutoff, and as we will show, it is considerably faster.
Interestingly, our model results in lower recall than
precision on both data sets. This may be due to a
limited scope of edit operations.

In order to evaluate the usability of our method,
we used it to scan the 200K full-text documents of
the PubMed Central Open Access Subset corpus.
The process completed in under 3 hours, yielding
over 1.4 million abbreviations, including 455,844
unique definitions. A random sample of the ex-
tracted abbreviations suggests a low rate of false
positive predictions.

4.2 Error Analysis
Our model makes 4 incorrect predictions on the val-
idation set, 3 of which are partial matches to the

3http://www.ncbi.nlm.nih.gov/pmc/

53

Description D V

Letters in short form are missing (e.g., 〈GlyRalpha2, glycine alpha2〉) 5 3
Abbreviation missed due to extraction rules. 6 1
Abbreviation is a synonym (e.g., 〈IRX-2, natural cytokine mixture〉) 5 1
Abbreviation letters are out-of-order (e.g., 〈VSV-G, G glycoprotein of vesicular stomatitis virus〉) 4 1
Correct alignment was found but it is invalid due to many inner gaps (see Section 3.3.1). 5 0
Abbreviations of chemical formulas or compounds. 4 0

Table 6: Abbreviations missed in development (D) and validation (V) sets.

correct definitions, e.g., we predict the pair 〈GlOx,
glutamate oxidase〉 instead of 〈GlOx, L-glutamate
oxidase〉. On the development set, 3 out of 5 incor-
rect predictions are partial matches.

Our model did not extract 7 of the abbreviations
from the validation set and 33 from the development
set. Many of these abbreviations (6 from the valida-
tion set and 29 from the development set) had one
of the properties described in Table 6. The remain-
ing 5 definitions have been missed due to miscel-
laneous issues. Note that while we added several
substitution operations for chemical formula recog-
nition, the elaborate set of operations required for
recovering the full range of chemical formulas was
not included in this work, leading to 4 chemical for-
mula abbreviations being missed.

4.3 Run-Time Analysis

We provide an estimated comparison of the run
time of our method and the baseline algorithms.
This analysis is especially interesting for cases in
which an abbreviation extraction model is included
within a larger learning framework (Chowdhury et
al., 2010; Huang et al., 2011), and may be used in
it in an online fashion. Run time was evaluated on
an Apple iMac with 4GB 1333 MHz RAM, and a
3.06 GHz Core i3, double-core processor, by run-
ning all models on a random set of 400 abstracts.
In order to evaluate the run time contribution of the
substitution operations introduced in our model we
ran it both with (88 docs

sec) and without (98 docs
sec) the

use of substitution operations. We find that using
substitutions did not have considerable effect on run
time, adding under 1 ms for processing each docu-
ment. We should note that the performance of the
substitution-less model on this test data was similar
to that of the original model, as substitutions were

relevant to only a smaller portion of the abbrevi-
ations. As expected, the SH algorithm is consid-
erably faster (6451 docs

sec) than our model, as it is
based on only a number of simple rules. The Chang
model, however, is slower (4 docs

sec) as it includes
processing steps following the discovery of an ab-
breviation alignment, which means that our model
provides comparable results to the Chang model and
runs an order-of-magnitude faster.

5 Conclusions and Discussion

We presented a method for extracting abbreviation
definitions with high precision and high recall (95%
precision, 91% recall and 93% F1 on a validation
set). Our model achieves higher F1 on both the de-
velopment and validation data sets, when compared
with two popular extraction methods.

Our approach is based on a sequential genera-
tive model, aligning the short and long form of an
abbreviation. Using the proposed method we ex-
tracted 1.4 million abbreviations from a corpus of
200K PubMed articles. This data can be valuable
for Information Extraction tasks and for the full un-
derstanding of biomedical scientific data.

The alignment abbreviation extractor can be eas-
ily extended by adding edit-operations over short
and long forms. This was demonstrated by including
substitutions of chemical elements and their sym-
bols, which facilitates recognition of chemical for-
mulas and compounds.

We have identified the main classes of abbrevia-
tion definitions missed by our approach. These in-
clude out-of-order matches, synonym-like abbrevia-
tions, and short forms with excess letters. It may be
possible to address some of these issues by includ-
ing “global” information on abbreviations, such as
the occurrence of frequent definitions.

54

Acknowledgments

This work was funded by grant 1R101GM081293
from NIH, IIS-0811562 from NSF and by a gift from
Google. The opinions expressed in this paper are
solely those of the authors.

References
E. Adar. 2004. Sarad: A simple and robust abbreviation

dictionary. Bioinformatics, 20(4):527–533.
JL Ambrus. 1987. Acronyms and abbreviations. Journal

of medicine, 18(3-4):134.
H. Ao and T. Takagi. 2005. Alice: an algorithm to extract

abbreviations from medline. Journal of the American
Medical Informatics Association, 12(5):576–586.

M. Bilenko and R.J. Mooney. 2003. Adaptive duplicate
detection using learnable string similarity measures.
In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 39–48. ACM.

P.R. Bowden, P. Halstead, and T.G. Rose. 1997. Dic-
tionaryless english plural noun singularisation using
a corpus-based list of irregular forms. LANGUAGE
AND COMPUTERS, 20:339–352.

J.T. Chang, H. Schütze, and R.B. Altman. 2002. Cre-
ating an online dictionary of abbreviations from med-
line. Journal of the American Medical Informatics As-
sociation, 9(6):612–620.

M. Chowdhury, M. Faisal, et al. 2010. Disease mention
recognition with specific features. In Proceedings of
the 2010 Workshop on Biomedical Natural Language
Processing, pages 83–90. Association for Computa-
tional Linguistics.

H.L. Fred and T.O. Cheng. 2003. Acronymesis: the
exploding misuse of acronyms. Texas Heart Institute
Journal, 30(4):255.

S. Gaudan, H. Kirsch, and D. Rebholz-Schuhmann.
2005. Resolving abbreviations to their senses in med-
line. Bioinformatics, 21(18):3658–3664.

M. Huang, J. Liu, and X. Zhu. 2011. Genetukit: a soft-
ware for document-level gene normalization. Bioin-
formatics, 27(7):1032–1033.

L.S. Larkey, P. Ogilvie, M.A. Price, and B. Tamilio.
2000. Acrophile: an automated acronym extractor and
server. In Proceedings of the fifth ACM conference on
Digital libraries, pages 205–214. ACM.

H. Liu, C. Friedman, et al. 2003. Mining terminological
knowledge in large biomedical corpora. In Pac Symp
Biocomput, pages 415–426.

A. McCallum, K. Bellare, and F. Pereira. 2005. A condi-
tional random field for discriminatively-trained finite-
state string edit distance. In Conference on Uncer-
tainty in AI (UAI).

Y. Park and R.J. Byrd. 2001. Hybrid text mining for find-
ing abbreviations and their definitions. In Proceedings
of the 2001 conference on empirical methods in natu-
ral language processing, pages 126–133.

J. Pustejovsky, J. Castano, R. Sauri, A. Rumshinsky,
J. Zhang, and W. Luo. 2002. Medstract: creat-
ing large-scale information servers for biomedical li-
braries. In Proceedings of the ACL-02 workshop
on Natural language processing in the biomedical
domain-Volume 3, pages 85–92. Association for Com-
putational Linguistics.

E.S. Ristad and P.N. Yianilos. 1998. Learning string-edit
distance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20(5):522–532.

A.S. Schwartz and M.A. Hearst. 2002. A simple
algorithm for identifying abbreviation definitions in
biomedical text. In Pacific Symposium on Biocomput-
ing 2003: Kauai, Hawaii, 3-7 January 2003, page 451.
World Scientific Pub Co Inc.

K. Taghva and J. Gilbreth. 1999. Recognizing acronyms
and their definitions. International Journal on Docu-
ment Analysis and Recognition, 1(4):191–198.

H. Yu, G. Hripcsak, and C. Friedman. 2002. Map-
ping abbreviations to full forms in biomedical articles.
Journal of the American Medical Informatics Associa-
tion, 9(3):262–272.

H. Yu, W. Kim, V. Hatzivassiloglou, and W.J. Wilbur.
2007. Using medline as a knowledge source for dis-
ambiguating abbreviations and acronyms in full-text
biomedical journal articles. Journal of biomedical in-
formatics, 40(2):150–159.

W. Zhou, V.I. Torvik, and N.R. Smalheiser. 2006. Adam:
another database of abbreviations in medline. Bioin-
formatics, 22(22):2813.

55

