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Abstract

We show that a class of cases that has been
previously studied in terms of learning of
abstract phonological underlying representa-
tions (URs) can be handled by a learner that
chooses URs from a contextually conditioned
distribution over observed surface representa-
tions. We implement such a learner in a Max-
imum Entropy version of Optimality Theory,
in which UR learning is an instance of semi-
supervised learning. Our objective function
incorporates a term aimed to ensure general-
ization, independently required for phonotac-
tic learning in Optimality Theory, and does
not have a bias for single URs for morphemes.
This learner is successful on a test language
provided by Tesar (2006) as a challenge for
UR learning. We also provide successful re-
sults on learning of a toy case modeled on
French vowel alternations, which have also
been previously analyzed in terms of abstract
URs. This case includes lexically conditioned
variation, an aspect of the data that cannot be
handled by abstract URs, showing that in this
respect our approach is more general.

1 Introduction

Phonological underlying representations (URs) in-
troduce structural ambiguity. For example, a mor-
pheme that alternates in voicing, like the one mean-
ing ‘cat’ in Table 1, could have as its underlying
representation /bet/ or /bed/, amongst other possibil-
ities. Underlying /bed/ for surface [bet] requires fi-
nal devoicing, while intervocalic voicing is required
for underlying /bet+a/ for [beda] (/-a/ marks the plu-
ral). The ambiguity can often be resolved on the
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UR SR Meaning
a. /bed/ [bet] cat
b. /bed+a/ | [beda] | cats
c. /mot/ [mot] | dog
d. /mot+a/ | [mota] | dogs

Table 1: Standard URs for final devoicing

basis of further data. For example, if the language
includes both voiced and voiceless consonants inter-
vocalically, as in our toy language which also con-
tains [mota], then intervocalic voicing cannot apply
across-the-board. The standard phonological anal-
ysis, proposed by Jakobson (1948) for similar data
from Russian, would thus posit /bed/ as the underly-
ing form for ‘cat’, as in Table 1, along with a phono-
logical grammar that generates final devoicing.

An alternating morpheme can also be given a UR
that encodes only the fixed aspects of its structure.
For example, ‘cat’ could have as its UR /beT/, where
/T/ represents an alveolar plosive unspecified for
voicing. The grammar would then fill in its voicing
specification appropriately in both contexts, adding
[—voice] finally, and [+Voice] intervocalically. One
use of this underspecification is to capture instances
of three-way contrast. For example, the language in
Table 2 has consonants that alternate in voicing, as
in the singular and plural of ‘cat’, as well as conso-
nants that are both fixed voiceless (‘dog’/‘dogs’) and
voiced (‘pig’/‘pigs’). Given the URs shown in Table
2, the surface forms are generated if a grammar fills
in voicing on underspecified consonants, and does
not change specified ones, as in the analysis of Turk-
ish in Inkelas et al. (1997).
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UR SR Meaning
a. /beT/ [bet] cat
b. /beT+a/ | [beda] | cats
c. /mot/ [mot] | dog
d. /mot+a/ | [mota] | dogs
e. [/wid/ [wid] | pig
f. /wid+a/ | [wida] | pigs

Table 2: Underspecified URs and ternary contrast

There are alternatives to this sort of underspec-
ification. For example, the analysis of Turkish in
Becker et al. (2011) posits lexically specific intervo-
calic voicing, applying to some words but not others.
Here we pursue the learning consequences of a pro-
posal in Kager (2008), which involves a grammar
that chooses different URs across surface contexts.
In this example, /bet/ would be chosen when the
morpheme occurs word-finally as in [bet], and /bed/
when it occurs prevocalically, as in [beda] (see Table
3 rows a. and b.). This is a kind of over-specification
in that the meaning ‘cat’ has two phonological URs.
The non-alternating morphemes /mot/ and /wid/ dif-
fer in having only a single UR, with voiceless and
voiced final consonants respectively, thus yielding
the three-way contrast.

Grammars must be able to choose between URs
across surface contexts in order to handle phonolog-
ically conditioned suppletive allomorphy - i.e. al-
ternation between forms of a morpheme that are not
relatable by a phonological derivation even though
the contexts in which each occurs is phonologically
defined. The alternation between the forms of the in-
definite determiner ‘a’ and ‘an’ in English is some-
times analyzed as UR choice, since there is no gen-
eral process in English of [n] insertion or deletion,
but the conditioning context is phonological (vowel-
vs. consonant-initial following word). That gram-
mars have the power to choose URs in this way
is uncontroversial; the only controversies concern
the proper formalization of UR choice, and whether
particular cases involve UR choice or derivation
(Nevins, 2011).

Kager’s proposal for ternary contrast is unusual
in that it uses UR choice for cases that do seem rel-
atively amenable to analysis in terms of derivations
from single URs. Phonologists tend to regard a UR
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UR SR Meaning
a. /bet/ [bet] cat
b. /bed+a/ | [beda] | cats
c. /mot/ [mot] | dog
d. /mot+a/ | [mota] | dogs
e. [/wid/ [wid] | pig
f. /wid+a/ | [wida] | pigs

Table 3: UR choice and ternary contrast

choice analysis as more of a last resort, but as far as
we know, there exists no explicit proposal for when
an analyst, or a learner, should adopt an analysis
with multiple URs for a single morpheme, and when
a single UR analysis is required.

One worry about a multiple UR analysis is that it
could fail to generalize appropriately. If a learner
simply memorized which phonological forms of
each morpheme appeared in which contexts, it could
fail to extract generalizations, such as the restriction
against voicing of word-final consonants in our lan-
guage in Table 1. This is of course a familiar general
issue in learning, and it is the focus of our attention
here. We consider a learner to have successfully ac-
quired a language if it finds a grammar that general-
izes appropriately, irrespective of the extent to which
the learner uses a single phonological UR for each
meaning.

Presumably, the assumption that multiple UR
analyses of alternations are incompatible with gen-
eralization is the basis for their traditional last resort
status in phonological theory. However, in at least
the grammatical framework that we adopt, and prob-
ably in many others, it is possible to construct analy-
ses in which alternations are handled by UR choice,
and in which generalizations are still captured. A
concrete example is provided by the analysis of the
final devoicing language illustrated in Tables 4 and
5, and also by each of the results of the learning sim-
ulations presented in sections 3 and 4.

Table 4 shows the distribution over URs that our
learner, described with references to precedents in
the next section, posits for the final devoicing lan-
guage. The learner’s final grammar is using UR
choice to get context-appropriate surface forms of
‘cat’, as can be seen in rows a. and b. The grammar
usually picks /bet/ as the UR for ‘cat’ when it oc-



UR SR Meaning
a. /bet/ (0.92) /bed/ (0.08) | [bet] cat
b. /bed+a/ [beda] | cats
c. /mot/ [mot] | dog
d. /mot+a/ [mota] | dogs

Table 4: Learned URs for final devoicing

curs finally as in [bet], and almost always picks /bed/
when it occurs prevocalically as in [beda]. This anal-
ysis diverges even further from standard phonolog-
ical practice than Kager’s ternary contrast analyses,
since we have multiple URs where a single UR anal-
ysis would not require underspecification or a lexi-
cally specific grammar. Furthermore, in this anal-
ysis UR choice is probabilistic, as shown visually
in Table 4 row a: /bed/ chosen as the UR in word-
final position with probability 0.08. Probabilistic
UR choice, which also diverges from the analytic
norm in phonology, does not have any observable
effect here since the URs neutralize to [bet], but we
put it to use in the analysis of French in section 4.

These choices of URs and SRs are being made by
a probabilistic weighted constraint version of Opti-
mality Theory (OT) (Prince and Smolensky, 2004),
described in the next section. The Input is a string of
morphemes (‘meanings’), and a candidate is a (UR,
SR) pair. Throughout this paper, the candidate URs
for a morpheme are all and only its forms observed
as SRs (given morphologically segmented words).
For the current languages, we include as candidate
SRs the identity maps from the URs, and the SRs
formed by devoicing any final consonant, or voicing
any intervocalic one.

There are three types of constraint. UR con-
straints (Zuraw, 2000; Boersma, 2001) demand a
particular UR for a given morpheme, and are vi-
olated when a UR differs from the specified one
(Boersma and Zuraw’s own formalizations differ
somewhat). In Table 5, there are two such con-
straints, CAT—/bed/ and CAT—/bet/. We omit UR
constraints for non-alternating morphemes, since
their candidate (UR, SR) pairs always have the same
UR, and they always satisfy the single UR con-
straint. Faithfulness constraints demand (UR, SR)
fidelity; here we employ only IDENT-VOICE, which
requires a match in voicing specification (McCarthy
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Constraint Devoicing | Contrast
CAT—/bed/ 3.65 0
CAT—/bet/ 0 0
IDENT-VOICE 6.05 43.62
No-CODA-VOICE | 401.41 39.83
INTER-V-VOICE 1.94 39.83

Table 5: Learned weights

and Prince, 1999). Finally, Output constraints (AKA
Markedness constraints) place demands on the SRs.
Here we use NO-CODA-VOICE, which penalizes fi-
nal voicing, and INTER-V-VOICE, which penalizes
an intervocalic voiceless consonant.

Table 5 shows the weights for the constraints that
were found for the final devoicing language (De-
voicing), and for the language with ternary con-
trast (Contrast); these yield with high probability
the (UR, SR) choices for Tables 4 and 3 respec-
tively. The competition between (/bet/, [bet]) and
(/bed/, [bet]) as (UR, SR) pairs for ‘cat’ illustrates
the effects of the first three constraints. The two UR
constraints obviously differ in their assessments of
the two candidates, as does IDENT-VOICE, which
prefers the faithful mapping (/bet/, [bet]) over a voic-
ing change in (/bed/, [bet]). For the final devoic-
ing language, the summed weight of IDENT-VOICE
and CAT—/bet/ (6.05) is greater than the weight
of cAT—/bed/ (3.65), and so the grammar assigns
higher probability to (/bet/, [bet]), as shown in Ta-
ble 4. For the ternary contrast language on the other
hand, the UR constraints have zero weight, and so
the decision is fully determined by the relatively
high weighted IDENT-VOICE, favoring (/bet/, [bet]).

Even though the learner of the final devoicing lan-
guage has not acquired the single UR of the tradi-
tional phonological analysis, it has acquired a con-
textually conditioned distribution over UR choices
that is appropriate for the learning data. There are
weights on the UR constraints that would fail to
yield this result. For example, if CAT—/bet/ had
a sufficiently high weight relative to the other con-
straints, then the UR would be fixed as /bet/, and
there would be no weighting of the remaining con-
straints that would pick both [beda] as the highest
probability candidate for ‘cats’, and [mota] as the
highest probability candidate for ‘dogs’.



Anticipating the discussion of learning in the next
section, the weight configuration just described can
form a local minimum for our learner. In our simu-
lations, it does not fall into this minimum, nor others
like it, when weights are initialized at zero.

The effects of the Output constraints are seen in
the choice of URs for ‘cat’” across phonological con-
texts in both the final devoicing and ternary con-
trast languages. NO-CODA-VOICE prefers word-
final (/bet/, [bet]) over (/bed/, [bed]), and INTER-
V-VOICE prefers intervocalic (/bed+a/, [beda]) over
(/bet+a/, [beta]). The high weight on IDENT-VOICE
in the ternary contrast language results in very low
probability for the unfaithful (UR, SR) mappings
(/bed/, [bet]) and (/bet+a/, [beda]). The weights for
the coda devoicing language are such that a non-
negligible proportion of the probability is reserved
for unfaithful (/bed/, [bet]).

Since we have in the case of final devoicing an ex-
ample of a multiple UR analysis for a language with
a phonological regularity, we need to ask whether
the grammar generalizes appropriately. The an-
swer is yes. Because of the high weight of NO-
CODA-VOICE (401.41) and relatively low weight of
IDENT-VOICE (6.05), an underlying voiced obstru-
ent will with extremely high probability map to a
surface voiceless one in word-final position. In gen-
erating final devoicing this grammar produces pre-
dictable relationships between morphologically re-
lated words. For example, if a learner with this
grammar were to see a plural like [maga] and no sin-
gular form, it would posit only /mag/ as the UR for
the root. Nonetheless, it would predict with proba-
bility near 1 that the singular is pronounced [mak].

Given the observed data from the language in
Table 4, it would not have been necessary for the
learner to construct a grammar that generalizes in
this way. For example, the grammar learned for the
ternary contrast language also generates the alter-
nation between [bet] and [bed+a], without produc-
ing generalized final devoicing. We thus require a
learner with a bias for generalization. Our learner,
described in the next section, meets this requirement
by incorporating an independently motivated prefer-
ence for high weighted Output constraints, and low
weighted Faithfulness. After describing the learner,
we go on to provide simulations for somewhat more
complex learning problems.
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2 The grammar and learning models

In Maximum Entropy or MaxEnt grammar (Gold-
water and Johnson, 2003), the probability of an in-
put/output pair (z;,y;;) is determined by its har-
mony. The harmony H;; of such a pair is the
sum of constraint violations f.(x;, y;;) scaled by the
weights of the constraints w.

Hz'j = Z wcfc(wia yij)
c

This definition of harmony is a common prop-
erty of grammars that use weighted constraints, as
in Harmonic Grammar (Smolensky and Legendre,
2006). A MaxEnt grammar maps harmonies to prob-
abilities, where the probability of a particular output
for a particular input p(y;; | ;) is proportional to
the exponential of its harmony. These exponentials
are normalized within an input, yielding probability
distributions.

1 4
p(yij | xi) :ZBH”

(2
Zi = E [ ij’
3’

As discussed above, our output candidates are
more elaborate than simple surface forms. Instead,
inputs are strings of morphemes and candidates are
(UR, SR) pairs. A string of input morphemes z;
can map to an SR y;; in potentially many ways—
through many possible URs. Each of these (Input,
UR, SR) triples potentially incurs distinct constraint
violations. The Input/UR pairing is controlled by
the UR constraints, while the UR/SR pairing is con-
trolled by Faithfulness. We thus expand our defini-
tion of the probability of a mapping from Input to
SR to include all options for the URs z;;.

plyig | @) = pWijs zign | 21)
k

The probabilities p(y;;, zijx | «;) are defined just
as for simple input/output probabilities—they sim-
ply include a contribution from candidates on URs.
This definition encodes an idea that all URs are
potentially valid ways of reaching a particular SR,
determined only by the relevant violations of con-
straints, and does not require a single UR to exist for
every Input/SR pairing.



The URs z;j;, considered for an input x; are deter-
mined by the UR constraints. A UR z;;y, is included
in the probability calculation for input z; only if
there exists some constraint x; — 2z;;x. These UR
constraints, in turn, rely on observed mappings. For
every SR y;; corresponding to an input x;, we in-
clude a UR constraint z; — y;;. Thus the candidate
URs are simply observed surface forms. In the case
of a non-alternating form, only one UR constraint
will be included and thus only one UR is entertained.
In such cases these constraints are always satisfied;
we therefore omit them from our analyses without
loss of correctness.

This grammatical framework allows a way of
viewing the problem of learning as somewhat ag-
nostic with respect to URs. The learner observes
some particular distribution over SRs for a partic-
ular input morpheme string and can make any con-
sistent choice about the distribution over URs. It is
in this respect that our approach diverges most im-
portantly from prior work on learning URs in Opti-
mality Theory-like frameworks. Our model incorpo-
rates ideas from Apoussidou (2007), who uses UR
constraints for on-line learning of URs in a prob-
abilistic OT framework, and Eisenstat (2009), who
uses a log-linear model very similar to ours. Our ap-
proach differs, however, in that learning of unique
URs is not taken as a goal.

With the above explicit statement of probabilities,
the learner’s problem is then to minimize the distinc-
tion between its predicted Input/SR distribution and
the observed probabilities. For the results presented
here, we minimize the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) between the pre-
dicted distribution p,, and observed distribution p*.

(y’bj | ;)
(ym | xz)

Zzp yzy ‘ Zg lOg

||pw

We use an L2 (Gaussian) prior (Tychonoff and
Arsenin, 1977) on the weights. Such a prior in-
troduces a pressure for lower weights, which is es-
pecially important for categorical learning cases (in
which KL minimization reduces to likelihood max-
imization). These problems contain probabilities at
unity, causing weights to scale arbitrarily high with-
out additional restriction. We used a regularization
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with o2 = 10, 000 for all solutions presented in this
paper.

w* = argminD(p* || pw)
w

QQZw

We also include in our prior a term that maximizes
the sum of the weights of Output constraints, and
minimizes the sum of the weights of Faithfulness
constraints. The objective function remains bounded
from above by the L2 prior, and is also bounded
from below by a restriction to non-negative weights.
This term is adapted from research on phonotactic
learning in OT starting with Smolensky (1996); see
further references in Jesney and Tessier (2011). It
resembles somewhat the R-measure of Prince and
Tesar (2004), but unlike the R-measure this added
prior is continuous, improving performance in opti-
mization.

dowp= D wo

fer 0€0

In experimentation, we found that this term was
necessary to ensure generalization; the L2 prior
alone, even with a smaller variance for Faithfulness
than Output constraints, was insufficient. It might
be possible to create a more refined version of this
term that is sensitive to dependencies between con-
straints, but this version has sufficed for our pur-
poses. The scaling factor A controls the relative
importance of generalization compared to KL mini-
mization. For the solutions presented here, the value
of A was chosen on the basis of repeated optimiza-
tions. A\ was decreased gradually until a criterion
level of performance was reached. For categorical
cases, this criterion level was a likelihood of greater
than 0.95. For non-categorical cases, criterion was
a sum squared error of less than 0.05. The mini-
mization problem presented here was solved using
the L-BFGS-B method (Byrd et al., 1995) as im-
plemented in R (R Development Core Team, 2010),
and all optimizations were constrained to use non-
negative weights, with weights initialized at zero.'

'Scripts ~ and  input  files are  available  at
http://blogs.umass.edu/hgr/examples-and-other-resources-
for-perceptron-and-solver-t/.



‘ fre-/ ‘ fra:-/ ‘ /r6-/ ‘ /ra:-/
/-se/ | [rése] | [ra:se] | [rése] | [ru:se]
/-sa/ | [resa] | [rasa] | [résa] | [ru:sa]
/-80:/ | [resé:] | [rasé:] | [réso] | [rd:so]

Table 6: Abstract UR analysis of Tesar’s language

3 Stress-length interaction

To illustrate some of the challenges of UR learning,
Tesar (2006) provides the toy language in Table 6.
The table shows the phonological results of combin-
ing four initial, perhaps root, morphemes with three
final, perhaps suffix, morphemes. The phonologi-
cally relevant differences between the vowels are in
length, marked with a colon, and stress, marked with
an acute accent. The rows and columns are labeled
with the URs that Tesar posits; we will discuss their
justification shortly.

Stressed vowels can either be short or long, but
there is an absolute surface restriction against stress-
less long vowels. The stress-alternating morphemes
that have long allomorphs, ‘ra’ and ‘so’, show a pre-
dictable alternation in length: long when stressed,
short when stressless. There is also a preference for
stress on roots. Although the suffixes ‘sa’ and ‘so’
attract stress over roots ‘re’ and ‘ra’, they lose their
stress to fixed stress roots ‘ru’ and ‘ro’, and there are
no fixed stress suffixes.

Tesar’s URs represent the contrastive properties
of the morphemes. The contrast between vowels
that are long when stressed and those that are al-
ways short is encoded as an underlying difference in
length. The contrast between the suffixes that attract
stress and those that don’t is similarly encoded as
an underlying difference in stress, as is the contrast
between roots that alternate in stress and those that
don’t. The abstract UR is /ra:/, which never surfaces
in that shape due to the restriction against unstressed
long vowels. The vowel must be long to contrast
with /re/, and stressless to contrast with /ra:/.

We adopt Tesar’s Output and Faithfulness con-
straints. STRESS-ROOT demands stress on the root,
and STRESS-SUFFIX demands stress on the suffix.
Output words are limited to a single stress, so one
of these constraints is always violated. NO-LONG-
UNSTRESS is violated by a surface long stressless
vowel. NO-LONG penalizes all long vowels. The
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| UR | SR [ p | UR | SR | p |
fré+se/ | [rése] | 0.98 || /re+sd/ | [resd] 1
[re+se/ 0.02
fre+s6:/ | [reso:] 1 [ra:+se/ | [ra:se] | 0.99
/ra+se/ | [rase] | 0.01
[ra+sa/ | [rasa] 1 [ra+s6:/ | [raso6:] | 0.99
fra:+so/ | [ra:so] | 0.01
/ré+se/ | [rose] 1 /ré6+sa/ | [résa] | 0.93
/r6+sa/ 0.07
/ro+sa/ | [rosa] | 0.01
/ré+so/ | [roéso] | 0.99 || /ra:+se/ | [rd:se] 1
/r6+s6:/ | [rosé:] | 0.01
/ra:+sa/ | [ra:sa] | 0.93 || /ra:+so/ | [rd:so] 1
/rd:+sa/ 0.07

Table 7: Learned analysis of Tesar’s language

Faithfulness constraint IDENT-STRESS demands a
(UR, SR) match in stress, and IDENT-LONG de-
mands (UR, SR) fidelity in length. We include in
addition a set of UR constraints that demand forms
corresponding to each of the observed SRs, except
for those that have only a single SR, whose UR is
fixed. Candidate SRs for each UR were all combina-
tions of stress on either the root or suffix (not both),
and faithful and shortened long vowels.

The resulting analysis is shown in Table 7, with
probabilities rounded to two decimal points. Can-
didates whose probabilities round to zero are omit-
ted. In all cases a candidate (UR, SR) pair with the
correct SR is given highest probability, and is listed
in the first row of each cell. Subsequent rows that
contain only a UR have the same SR; identical SRs
are omitted to aid readability. Given a probabilis-
tic model like a MaxEnt grammar, one cannot de-
fine success on a categorical language like this one
in terms of granting p = 1 to the correct forms, since
this will by definition never happen (unless there is
only one candidate in a candidate set). Our objec-
tive function is stated in terms of maximizing the
summed probability of all (UR, SR) pairs that have
the correct SR, and an appropriate criterion is there-
fore to require that the summed probability over full
structures be greater for the correct SR than for any
other SR. We thus term this simulation successful.
We further note that given a MaxEnt grammar that
meets this criterion, one can make the probabilities



Constraint Weight
NO-LONG-UNSTRESS | 26.43
STRESS-RoOOT 26.05
STRESS-SUFFIX 23.50
IDENT-STRESS 7.66
IDENT-LONG 6.50
‘SA’—/sd/ 5.04
‘SO’ —/s6:/ 4.96
‘RE’—/re/ 3.85
‘RA’—/ra/ 3.15
‘RA’—/ra:/ 0.25
‘SO’ —/so/ 0.02
‘SA’—/sa/ 0
‘RE’—/ré/ 0
NO-LONG 0

Table 8: Learned weights for Tesar’s language

of the correct forms arbitrarily close to 1 by scaling
the weights (multiplying them by some constant).

The constraint weights for the analysis are shown
in Table 8. Both of the faithfulness constraints
IDENT-STRESS and IDENT-LONG have reasonably
high weights, which is expected given the observed
contrasts in stress and vowel length across mor-
phemes. The highest probability (UR, SR) map-
pings are in fact always faithful, with alternations
arising from different URs being chosen across
phonological contexts.

The crucial case for comparison with the abstract
UR analysis is the choice between long stressed
/rd:/ and short stressless /ra/, shown with underlin-
ing in Table 7. When the morpheme ‘ra’ combines
with ‘se’, (/ra:+se/, [ré:se]) is preferred to (/ra+se/,
[rasé]), partly because it avoids an IDENT-STRESS
violation on the suffix, and also partly because of
the greater weight of STRESS-ROOT than STRESS-
SUFFIX. On the other hand, when the input is ‘ra’
and ‘sa’, IDENT-STRESS is no longer at issue since
‘sa’, unlike ‘se’, provides the option of a stressed
UR. In this case, the sum of the weights of the con-
straints preferring short stressless /ra/ in (/ra+séd/,
[rasd]) is greater than for those preferring /rd:/ in
(/ra:+sa/, [ra:sa]). The fixed stress roots differ from
‘ra’ in not providing the option of a stressless UR, so
that a violation of IDENT-STRESS would be incurred
if the suffix were stressed. While the constraint in-
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teractions are more complex here, UR choice suc-
ceeds in replacing underspecification in a parallel
fashion to the simpler case of the ternary voicing
contrast discussed in the introduction.

The Output constraints sensitive to vowel length
are in the expected configuration given the restric-
tion of long vowels to stressed syllables: unviolated
NO-LONG-UNSTRESS has a relatively high weight
(the highest), while the often-violated NO-LONG,
which penalizes all long vowels, has a relatively low
weight (the lowest). IDENT-LONG is sandwiched
in between, with the result that an underlying long
vowel that surfaces in a stressed syllable will retain
its length, while one that surfaces in a stressless syl-
lable will be realized as short, with probabilities ap-
proaching 1.

Because of the availability of UR choice, the map-
ping from an underlying long vowel to a surface
short stressless one that high-weighted NO-LONG-
UNSTRESS generates is never observed in Table 7.
However, it is the high probability of this mapping
given underlying length and surface stresslessness
that ensures that the grammar generalizes appropri-
ately. One paradigmatic regularity in this language
is that stressless vowels are short, even when they
occur in morphemes whose stressed variants have
long vowels. To see how this is captured, imagine
that a learner with the grammar in Table 8 were pre-
sented with a new morpheme ‘su’ in combination
with ‘re’, which resulted in SR [resui:]. Given the
segmentation [re+su:], it would then form the UR
/st:/, containing the long stressed vowel of the only
alternant that it had seen. The morpheme ‘ru’ also
has a single UR, /rt:/, since it is only observed in the
learning data as [ri:]. When these are combined as
/rd:+su:/ the resulting SR will be [rd:su], with prob-
ability near 1. That is, the grammar generalizes the
length alternations, as well as the stress alternations
that occur because of the preference for root over
suffix stress.

4 Lexically conditioned variation

Here we apply our model to a case of variation,
French vowel deletion, which is formalized in terms
of candidate SRs having probabilities intermediate
between 1 and 0. This case is of particular inter-
est because the probability of deletion varies across



Word UR SR D URYV SR p | URV SR P
a. | femelle | /fgmel/ [fomel] | 1 Y | smestre [ 0.08] Y | s’melle | 0.04
b. | semestre | /sVmests/ | [sgmests] | 0.8 N s’mestre | 0.15 N s’melle | 0.45
[smests] | 0.2 Y semestre | 0.77 Y semelle | 0.47
c. | semelle | /sVmel/ [sgmel] | 0.5 N semestre | 0.01 N semelle | 0.03
[smel] 0.5 Y f’melle | 0.09 N F[g]lnac | 0.07
Fnac /fnak/ [fnak] 1 Y femelle | 0.91 N Fnac 0.93

e. | breton /beat3/ [bsgts] 1 Y breton 1

Table 9: Underspecified URs for French and data

words, which can be captured in terms of differences
in weights of UR constraints.

In French, the mid-vowel [@] is variably deleted
(this vowel is sometimes called ‘schwa’, though it
is not an IPA schwa in most varieties). Like one of
the toy voicing languages in section 1, French has
a ternary contrast, this time in vowel specification.
Words either have a non-alternating [¢] (‘femelle’),
an alternating [¢] (‘semestre’, ‘semelle’), or no [¢]
(‘Fnac’). The ternary contrast has been analyzed
by Anderson (1982) as the result of underspecifica-
tion.2 As shown in Table 9, a UR with an under-
specified vowel (/V/) is able to be deleted, while a
UR with a fully specified vowel (/@/) is not.

The proportions in Table 9 are partially arbitrary,
but accurately reflect the relative probabilities in de-
scriptions such as Dell (1973) and in speaker judg-
ments (Racine, 2007). These show that alternating
vowels exhibit a range of deletability. Dictionaries
also find the two-way distinction between deleting
and non-deleting vowels descriptively inadequate,
and a number of experimental and corpus studies
find a range of deletion rates across words. Near-
minimal pairs in which deletion can occur in both
words but at different rates, such as ‘semaine’ and
‘semestre’, show that differences in deletion rates
cannot be attributed solely to phonological differ-
ences, and must be encoded in the the lexicon.

Although [¢]s can be optionally deleted when pre-
ceded by a single consonant as in Table 9, [¢] can
never be deleted when its deletion would create a

2Anderson (1982) argues that underspecification explains
the fact that the alternating vowels can both participate in dele-
tion and alternate with [€], while the non-alternating /@/ can do
neither. However, Morin (1988) presents a number of examples
of words that participate in [€]-alternation without participating
in deletion.
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Table 10: Learned analysis of French

Constraint Weight
*CCC 467.26
MAX 4.93
‘SEMESTRE’ —/sgmests/ | 4.23
‘SEMELLE’ —/sgmel/ 2.71
*[o] 2.58
‘SEMELLE’ —/smel/ 0.10
‘SEMESTRE’—/smests/ | 0.03
DEP 0.00

Table 11: Learned weights for French

three-consonant sequence within a word, as in ‘bre-
ton’ [be@td]. There are also no words with this sort
of three-consonant sequence. In addition to learning
the differences in the deletion rates of optional [@]s,
the learner must learn the generalization that an [¢]
must be present in the ‘breton’ environment. Given
a /CCC/ input, we want the grammar to avoid the
three-consonant cluster by inserting a vowel.

The phonological conditioning of deletion in real
French is far more complex than our simple sketch,
but this simplified version is sufficient for present
purposes. We use the following constraints. The
Output constraints *[@] and *CCC militate against
[¢] and three-consonant sequences in the SR, respec-
tively. The faithfulness constraint MAX requires
segments in the UR to be present in the SR (‘no dele-
tion’), while DEP requires SR segments to be in the
UR (‘no insertion’). As in the previous sections, UR
constraints are only included for morphemes with
more than one SR. The learning data consisted of
the SRs and probabilities from Table 9.

The resulting analysis is shown in Table 10, us-
ing the orthographic convention of marking the lack
of a vowel with an apostrophe. The presence of



>

an underlying vowel is indicated with a ‘Y’ in the
UR column, and its lack with an ‘N’. The analysis
captures the difference between the rates of [@] in
‘semelle’ and ‘semestre’ as a difference in UR selec-
tion. The UR with [@] is more likely for ‘semestre’
than ‘semelle’. The source of this difference can be
seen in the constraint weights in Table 11. The dif-
ference between the weights of the UR constraint
for ‘semestre’ requiring the vowel and the one that
omits it is greater than that for ‘semelle’. The
phonological generalization that three-consonant se-
quences are forbidden is captured by the high weight
of *CCC relative to DEP, which means that the
grammar will add a vowel to a /CCC/ input.

The contrast between the rates of deletion in
‘semelle’ and ‘semestre’ illustrates a widespread
phenomenon that is unaddressed by most OT ap-
proaches to variation and learning, termed lexically
conditioned variation (Coetzee and Pater, 2011).
That it is handled in at least this toy version of
French is a great benefit of this approach. Under-
specification, on the other hand, offers no leverage
on this problem, since it provides only a distinction
between deleting and non-deleting vowels, and not
the finer grained distinctions that the data require.

5 Conclusions

It is a generally unresolved issue how a learner de-
cides whether to use one, or more, URs in an analy-
sis of an alternation. Presumably, learners begin by
encoding the various phonological realizations of a
morpheme. How, and when, do they decide to col-
lapse these into a single UR? The problem is made
more difficult because as noted in the introduction,
learners need to consider contextually conditioned
UR choice, which is required for at least phonolog-
ically conditioned suppletive allomorphy. Previous
work on UR learning, including Tesar (2006), ab-
stracts from this issue by allowing only single URs.
As a reviewer suggests, a Minimum Description
Length criterion might create a bias for fewer URs,
but this seems not yet to have been implemented.

In the present approach, phonological general-
izations can be acquired even when multiple URs
are used, as shown in all of our simulations. This
means that the issue raised in the last paragraph can
be completely sidestepped by never requiring learn-
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ers to adopt single URs for alternating morphemes.
This approach also sidesteps the difficult issues of
choosing which parts of each alternant make up the
single UR, and when to leave some structure un-
derspecified. With the French simulation, we have
further shown that UR choice handles data that es-
cape underspecification. These advantages suggest
that the single UR doctrine, in place since Jakobson
(1948), is worth reconsidering, especially in frame-
works like OT that can formalize contextual choice
of URs without loss of generalization.

One direction for further research is in model-
ing not only choice between allomorphs, but also
their discovery in morpheme segmentation, which
involves increasing the size of the hypothesized
UR constraint set. Our initial explorations show
promise, and this could lead to useful applications
in natural language processing, in which MaxEnt
models are of course already common. Another ex-
tension is to other cases of semi-supervised learn-
ing. Here we sum over all of the (UR, SR) pairs
corresponding to an observed form. Similar sum-
mations can be made over other full structures when
the learning data are incomplete: over representa-
tions such as syllable structures and syntactic trees,
and even over derivations. One such extension that
we have explored is to learning ‘opacity’ (Kiparsky,
1973); see Staubs and Pater (2012) for initial re-
sults, which do rely on a type of abstract UR. Finally,
one might attempt to model learning of paradigmatic
generalizations that are probabilistic across the lexi-
con, as in Turkish voicing (Becker et al., 2011) - see
the related MaxEnt results in Hayes et al. (2009) and
Moore-Cantwell (2012).
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