Hindi Derivational Morphological Analyzer

Nikhil Kanuparthi Abhilash Inumella Dipti Misra Sharma
LTRC LTRC LTRC
III'T-Hyderabad [II'T-Hyderabad III'T-Hyderabad
India India India

{nikhil.kvs,abhilashi} @research.iiit.ac.in

Abstract

Hindi is an Indian language which is rela-
tively rich in morphology. A few morpholog-
ical analyzers of this language have been de-
veloped. However, they give only inflectional
analysis of the language. In this paper, we
present our Hindi derivational morphological
analyzer. Our algorithm upgrades an existing
inflectional analyzer to a derivational analyzer
and primarily achieves two goals. First, it suc-
cessfully incorporates derivational analysis in
the inflectional analyzer. Second, it also in-
creases the coverage of the inflectional analy-
sis of the existing inflectional analyzer.

1 Introduction

Morphology is the study of processes of word for-
mation and also the linguistic units such as mor-
phemes, affixes in a given language. It consists
of two branches: derivational morphology and in-
flectional morphology. Derivational morphology
is the study of those processes of word formation
where new words are formed from the existing stems
through the addition of morphemes. The meaning of
the resultant new word is different from the original
word and it often belongs to a different syntactic cat-
egory. Example: happiness (noun) = happy (adjec-
tive) + ness. Inflectional morphology is the study of
those processes of word formation where various in-
flectional forms are formed from the existing stems.
Number is an example of inflectional morphology.
Example: cars = car + plural affix ’s’.

The main objective of our work is to develop a
tool which executes the derivational morphological

10

dipti@iiit.ac.in

analysis of Hindi. Morphological analysis is an im-
portant step for any linguistically informed natural
language processing task. Most morphological ana-
lyzers perform only inflectional analysis. However,
derivational analysis is also crucial for better perfor-
mance of several systems. They are used to improve
the efficiency of machine translators (C Gdaniec et
al., 2001). They are also used in search engines
to improve the information extraction (J Vilares et
al., 2001). Since derivational processes can often be
productive in a language, the development of an ef-
fective derivational analyzer will prove beneficial in
several aspects.

We developed a derivational analyzer for Hindi
over an already existing inflectional analyzer devel-
oped at IIIT Hyderabad. In this approach, first, the
derived words in Hindi were studied to obtain the
derivational suffixes of the language. Then the rules
were designed by understanding the properties of the
suffixes. The Hindi Wikipedia was also utilized to
collect the required background data. Finally, an al-
gorithm was developed based on the above findings.
This algorithm has been used to upgrade the inflec-
tional analyzer to a derivational analyzer.

In the sections that follow, we describe the ap-
proach we followed to develop our derivational an-
alyzer and the experiments that we conducted using
our system.

2 Related Work

There is no derivational morphological analyzer for
Hindi to the best of our knowledge. However,
a few inflectional morphological analyzers (IIIT;
Vishal and G. Singh, 2008; Niraj and Robert, 2010)

Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology (SIGMORPHON2012), pages 10-16,

Montréal, Canada, June 7, 2012. (©)2012 Association for Computational Linguistics

of this language have been developed. There are
derivational analyzers for other Indian languages
like Marathi (Ashwini Vaidya, 2009) and Kannada
(Bhuvaneshwari C Melinamath et al., 2011). The
Marathi morphological analyzer was built using a
Paradigm based approach whereas the Kannada ana-
lyzer was built using an FST based approach. As far
as English is concerned, there are some important
works (Woods, 2000; Hoeppner, 1982) pertaining
to the area of derivational morphological analysis.
However, both of these are lexicon based works.

For our work, we employed a set of suffix replace-
ment rules and a dictionary in our derivational ana-
lyzer, having taken insights from the Porter’s stem-
mer (Porter, 1980) and the K-stemmer (R. Krovetz.
1993). They are amongst the most cited stemmers
in the literature. The primary goal of Porter’s stem-
mer is suffix stripping. So when a word is given as
input, the stemmer strips all the suffixes in the word
to produce a stem. It achieves the task in five steps
applying rules at each step. Given a word as input,
the Krovetz stemmer removes inflectional suffixes
present in the word in three steps. First it converts
the plural form of the word into a singular form,
then it converts past tense to present tense, and fi-
nally removes -ing. As the last step, the stemmer
checks the dictionary for any recoding and returns
the stem. Our algorithm uses the main principles of
both the Porters stemmer and Krovetz stemmer. The
suffix replacement rules of our algorithm resemble
that of the Porters and a segment of the algorithm
is analogous to the dictionary based approach of the
Krovetzs stemmer.

3 Existing Inflectional Hindi
Morphological Analyzers

A derivational morph analyzer can be developed
from an existing morph analyzer instead of build-
ing one from scratch. So three inflectional analyzers
were considered for the purpose. The morphological
analyzer developed by Vishal and Gurpreet stores all
the commonly used word forms for all Hindi root
words in its database. Thus, space is a constraint for
this analyzer but the search time is quite low. The
morph analyzer developed by Niraj and Robert ex-
tracts a set of suffix replacement rules from a corpus
and a dictionary. The rules are applied to an inflected

11

word to obtain the root word. They show that the
process of developing such rulessets is simple and it
can be applied to develop morphological analyzers
of other Indian languages.

However, our derivational analyzer is an exten-
sion of an existing inflectional morphological ana-
lyzer developed at IIIT Hyderabad (Bharati Akshar
et al, 1995). The inflectional analyzer is based on
the paradigm model. It uses the combination of
paradigms and a root word dictionary to provide in-
flectional analysis. Given an inflected Hindi word,
this inflectional analyzer returns its root form and
other grammatical features such as gender, num-
ber, person, etc. For example: if the input word
to the morphological analyzer is bAgabAnoM' (gar-
deners), the output will be bAgabAna (gardener),
noun, m, pl, etc. Here the word bAgabAna is the
root word of the input word. ’Noun’ is the cate-
gory of the input word, ’'m’ means masculine and
"pl” means that the input word is plural in number.

The analyzer uses a root word dictionary for the
purpose. If a word is present in the root word dic-
tionary, the analyzer handles all the inflections per-
taining to that word. For example: xe (give) is a root
word present in the dictionary of the analyzer. xewA
(gives), xenA (to give), xiyA (gave) and other inflec-
tional forms of the root word xe are handled by the
analyzer. There are 34407 words in the root word
dictionary.

The analyzer handles inflected words using the
paradigm tables. Every entry (word) in the dic-
tionary has values like lexical category, paradigm
class, etc. For example: there is a word pulisavAIA
(policeman) in the dictionary. Its paradigm class
is ladakA. Table 1 shows the paradigm forms of
ladakA. Since the paradigm value of pulisavAIA is
ladakA, its four inflections will be similar to the four
paradigms of ladakA (root paradigm). The four in-
flections of pulisavAlA are pulisavAlA, pulisavAle,
pulisavAle, pulisavAloM. Only the root form (word)
pulisavAIA is present in the dictionary. In this way
every root word present in the dictionary belongs to
a paradigm class and this paradigm class has a struc-
tured paradigm table containing all the inflections of
the main paradigm. This paradigm table is used by

'"The Hindi words are in wx-format
skrit.inria.fr/DATA/wx.html) followed by IIIT-Hyderabad.

(san-

Table 1: Paradigm table of ladakA

Case Singular form Plural form
Direct ladakA (boy) ladake (boys)
Oblique ladake (boy) ladakoM (boys)

the analyzer to reconstruct all the inflections of the
root words belonging to this paradigm class. There-
fore the analyzer can analyze a word only if its root
word is present in the dictionary.

This inflectional morphological analyzer works as
a platform for our derivational morphological ana-
lyzer. So our tool gives derivational analysis of all
the words whose root forms are present in the root
word dictionary. Our tool also tackles certain words
whose root forms are not present in the root word
dictionary of the IIIT morphological analyzer.

4 Approach

We pursued the following five step approach for
building our derivational analyzer.

4.1 Studying Hindi Derivations

To build the derivational morphological analyzer, we
first conducted a study to identify the derivational
suffixes and the related morphological changes. Af-
ter identifying the suffixes, the rules pertaining to
these suffixes were obtained.

First, the nouns present in the Hindi vocabulary
were studied. The study of nouns helped us in iden-
tifying some of the most productive derivational suf-
fixes present in the language. For example, let us
consider the word maxaxagAra (helper). This word
is derived from the word maxaxa (maxaxagAra =
maxaxa (help) + gAra). But gAra cannot be con-
firmed as a suffix because of just one instance. In
order to confirm gAra as a suffix, even other words
ending with gAra must be examined. The more the
number of words we find, the greater is the pro-
ductivity of the suffix. Words like yAxagAra (de-
rived from yAxa) and gunAhagAra (criminal) (de-
rived from gunAha (crime)) prove that gAra is a
derivational suffix. However, every word ending
with gAra need not be a derived word. For exam-
ple: the word aMgAra is not a derived word. There-
fore only relevant words were studied and the suf-
fixes were obtained only from them.

12

Table 2: Example derivations of some suffixes

Suffix Root Derivation
Ana laganA lagAna
bAna bAga bAgabAna
gAra yAxa yAxagAra
xAra xukAna xukAnaxAra
ika aXikAra aXikArika
1 KuSa KuSI
Al acCA acCAI

Table 3: Rules of few suffixes

Suffix First set rules

bAna noun = noun/adj + bAna

gAra noun = noun/adj + gAra

XAra noun = noun/adj + xAra
ika adj=noun - a + ika

The entire process of obtaining the derivational
suffixes was done manually and was a time consum-
ing process. This process was repeated for adjec-
tives as well. Only those suffixes that participate in
the formation of nouns and adjectives were found.
A total of 22 productive derivational suffixes were
procured. Table 2 shows a few suffixes and their
derivations.

4.2 Derivational Rules

After finding the derivational suffixes, two sets of
derivational rules were developed for each suffix.
The first set explains the formation of the derived
words from their root words. Let us consider the
suffix gAra. This suffix generates nouns from nouns
and adjectives. The rule of this suffix explains the
formation of derivations like yAxagAra (yAxagAra
= yAxa (noun) + gAra) and maxaxagAra (maxaxa-
gAra = maxaxa + gAra). The second set consists of
reverse rules of the first set. The reverse rule for the
previous example is noun/adj = noun - suffix. In this
way, rules were developed for all the 22 derivational
suffixes. These rules form a vital component of our
algorithm. Table 3 contains the derivational rules of
a few suffixes.

4.3 Finding Majority Properties

The majority properties (of derived words of a suf-
fix) are the properties which most of the words ex-

hibit. Example: let us consider the derived words
of the suffix vAIA. There are 36 derived words of
the vAIA suffix in the root word dictionary. Some
of these words are adjectives but the majority are
nouns. Hence noun is fixed as the category (major-
ity category) for derived words of this class. Simi-
larly the majority paradigm class of these words is
ladakA. The majority properties of derived words
pertaining to all the 22 suffixes were acquired.

The majority properties of a suffix help us in the
derivational analysis of the unknown derived words
of that suffix. For example: consider the word Gar-
avAIA (housekeeper). Let us assume that it is not
present in the root word dictionary. Therefore the
lexical category, paradigm value and other important
features of this word are not known. But let us as-
sume that this word is a genuine derived word of the
suffix vAIA. So the tool must handle this case. The
majority properties of the vAI/A suffix are assigned to
this word. So noun and ladakA are fixed as the cat-
egory and paradigm of this word. Thus the genuine
derived words which are unknown to the analyzer
will be analyzed using the majority properties.

The majority properties of derived words were ob-
tained in two main steps. First, a suffix was consid-
ered. Then all the derived words pertaining to that
suffix were acquired. Only genuine derived words
were taken into consideration. Genuine derivations
were found out using the suffix derivational rules.
Example: let us take the word maxaxagAra (ending
with gAra). First, the root word of this word is re-
trieved using the gAra derivational rule. The root
word according to the rule is maxaxa. This word is
present in the dictionary and it also satisfies the cat-
egory condition of the rule. The word maxaxa is a
noun. Hence the word maxaxagAra is accepted as a
derived word. If the word maxaxa is not found in the
dictionary or if its category is not a noun/adjective,
the word maxaxagAra will be rejected. In this way
all the valid derivations of the suffix were acquired.
This process was repeated for other suffixes as well.
In the second step, the majority properties of the de-
rived words were directly retrieved.

Finally, a suffix table was built using the major-
ity properties of the derived words. The suffix table
contains all the suffixes and their inflectional forms.
Table 4 contains few suffixes and their inflectional
forms. For example: the majority paradigm of de-

13

Table 4: Few suffixes and their forms

Suffix Suffix-forms

Ana Ana
bAna bAna, bAnoM
gAra gAra, gAroM
xAra xAra, xAroM

ika ika

1 1
Al Al
anl anl, aniyAz, aniyoM

rived words of vAIA suffix is ladakA. This implies
that the derived words of this suffix end with vAIA,
vAle and vAloM. Thus the possible inflections of a
suffix can be derived from its majority properties.
This information was stored in a table. The majority
properties and the suffix table play an important role
in the analysis of the unknown words. Their usage in
our algorithm will be described in the later sections.

4.4 Using Wikipedia Data for Confirming
Genuineness

If an invalid word is not analyzed by the inflec-
tional analyzer, there is no need for proceeding to
the derivational analysis of that word. Therefore the
genuineness of a word must be tested before going
for the derivational analysis. The Hindi Wikipedia
was chosen as a resource that enables us to test the
genuineness of a word.

A total of 400k words were extracted from the
Hindi Wikipedia. This data contains many words
which do not exist in Hindi vocabulary. So 220k
proper Hindi words were selected (on the basis of
frequency) from the data and a list containing those
220k words was created. A word will be treated as
a genuine word only when it is present in that list.
This assumption is used by our algorithm. The Wiki
data is used as a standard corpus.

4.5 Algorithm for Derivational Analysis

An algorithm was developed to make use of the
existing inflectional morphological analyzer for
derivational analysis. This algorithm enabled us to
bypass the construction of a derivational analyzer
from the scratch. The majority properties of the
derivations, the Wikipedia data and the suffix-table
are also employed by the algorithm for analyzing un-

known derivations.

1.Give a
word as input

2.Perform
analysis using
the ITIT morph

3.if
analysis
is suc-

3b.1.Check
the input word
ending using

cessful? the suffix table

3a.2.if
normal-
form is

no

ending
with one

yes

[8b.3.Find the |
3a.3.Find the normal-form

root word using of the word

the deriva-

tional rule
of the suffix

3b.4.if
the
normal-
form is
in Wiki?,

3a.4.if
condi-
tions of

the rule
are sat-
isfied?

(3a.5.Final
derivational
analysis
L
e

3a.6.No 1:7

derivation

no

Figure 1: Algorithm

The input to the algorithm is a word. The out-
put is a combination of the inflectional analysis and
the derivational analysis of the input word. For ex-
ample: if the input word is bAgabAnoM (garden-
ers). First, the algorithm gives the inflectional anal-
ysis of the input word. In this case the word bAga-
bAnoM is a noun, plural in number, etc. Then it
gives the information (category, gender) of the root
word (bAga (garden)) from which the input word is
derived (derivational analysis). So a dual analysis of
the input word is provided.

4.6 Examples

The following 4 examples explain the working of
the algorithm in 4 different cases. These examples
are provided to give a clear picture of the complete
algorithm.

14

a) Example 1

Input word: pulisavAle (Policemen)

In the step-2, the word is analyzed by the IIIT
inflectional analyzer. In the step 3a.l, the word
pulisavAIA (Policeman) is the normal-form of the
input word. The normal-form is ending (vAI/A)
with one of our 22 suffixes. The rule of the suffix
is noun = noun/verb + vAIA. So the root word is
pulisa because pulisavAIA = pulisa + vAIA. The
word pulisa should be a noun or a verb in order
to satisfy the rule. All the conditions are met and
the step 3a.5 becomes the vital final step. This
step gives the information that the final root word
pulisa is a masculine noun and the input word is
also a masculine noun and it is plural in number.
Here the information about the final root word and
the input word is again given using the inflectional
morphological analyzer.

b) Example 2

Input word: kirAexAroM (Tenants)

The IIIT inflectional analyzer cannot analyze this
word. The word kirAexAroM is ending with one
of the forms (xAroM) present in the suffix table.
The normal-form of the input word is obtained by
replacing the suffix form in the input word with
the suffix. Hence the normal-form of the input
word kirAexAroM is kirAexAra. In this way, the
normal-form of the input word is acquired without
the inflectional analyzer. The word kirAexAra is
present in Wiki data and it is ending with one of
the 22 suffixes. The rule of the suffix is noun =
noun/adj + xAra. So the root word is kirAe because
kirAexAra = kirAe + xAra.

¢) Example 3

Input word: ladake (Boys)

In the step-2, the word is analyzed by the IIIT
inflectional analyzer. The normal form of the word
is ladakA (boy). The normal-form of the word is not
ending with any of our 22 suffixes. So there is no
derivational analysis of this particular case.

d) Example 4

Input word: ppppwA (invalid word)

The IIIT inflectional analyzer cannot analyze this
word. The word ppppwA is ending with one of
the forms (wA) present in the suffix table. But the

normal-form (ppppwA) is not present in Wikipedia.
So there is no derivational analysis for this particular
case.

4.7 Expanding Inflectional Analysis

The algorithm for derivational analysis was also
used for expanding the inflectional analysis of the
analyzer. Consider the second example in the pre-
vious section. The word kirAexAroM is analyzed
by the derivational analyzer even though its root
form (kirAexAra) is not present in the root word dic-
tionary. Words like kirAexAra are genuine deriva-
tions and can be added to the root word dictio-
nary. The addition of such kind of words will extend
the inflectional analysis of the analyzer. For exam-
ple. if the word kirAexAra is added, its forms ki-
rAexAroM and kirAexAra will be automatically ana-
lyzed. This is because the word kirAexAra would be
added along with its features/values like category,
paradigm class, etc.

Therefore all the words which fall into the
example-2 category of the previous section can be
added to the dictionary. All such words must be ob-
tained in order to expand our dictionary. For this
purpose, a Wiki data consisting of 220k Wiki words
was extracted from Wikipedia. Out of these 220k
words, 40k words are ending with our 22 suffixes
and their forms. So the derived words which can be
analyzed by our system are part of this sub-dataset.
Out of 40k words, the derivational analyzer analyzed
5579 words. The inflectional analyzer analyzed only
2362 words out of 40000. So the derivational an-
alyzer analyzed 3217 derived words more than the
inflectional analyzer. So these words were added to
the root word dictionary for expanding the inflec-
tional analysis of the analyzer. The algorithm which
was designed to perform derivational analysis also
inflated the inflectional analysis of the analyzer.

S Experiments and Results

The performance of our derivational analyzer must
be compared with an existing derivational analyzer.
Since there is no such derivational analyzer, we
compared the performance of our tool with the ex-
isting IIIT inflectional analyzer (or the old morpho-
logical analyzer). The two tools must be tested on
a gold-data (data that does not contain any errors).

15

For example: let us assume that we have a data of
100 words and their morphological analysis. The
analysis of these 100 words does not contain any
errors and it is a gold-data. Now we must get the
analysis of these 100 words from both the deriva-
tional analyzer and the old morphological analyzer.
Then their analyses must be compared against the
gold-data. This is nothing but directly comparing
the outputs of the derivational analyzer and the old
morphological analyzer. This will help in evaluating
the derivational analyzer. This method of evaluation
will also tell the improvement the derivational ana-
lyzer achieved.

Type Quput Gold Description
Type | ABCD/ ABCD Al the analyses present in the reference
present i the output + No wrong analyses
present in the output
Type2 | ABCDE/ABCD | Allthe analyses present n the reference
present n the output + Some wrong analyses
present in the output
Type3 ABC/ ABCD Some analyses present in the reference
present in the output + No wrong analyses
present in the output
Typed ABCE/ABCD Some analyses present i the reference
present in the output + Some wrong analyses
present i the output
Type EFG/ABCD No analyses present in the reference present
inthe output + Some wrong analyses present
in the output
Type6 | NoOutput/ABCD No output given by the morph

Figure 2: Evaluation Methodology for Morph Analyzers

The figure 2 (Amba P Kulkarni, 2010) explains
our evaluation methodology for morphological ana-
lyzers. Let us continue with the example mentioned
in the previous paragraph. First, we find the anal-
ysis of the 100 words by the old morph analyzer.
We compare its output with the gold output/analysis.
Let there be 50 words which belong to Type-1. It
means the gold analysis and morphological analysis
(by old morph) of 50 words is perfectly equal. Let
there be 10 words which belong to Type-6. It means

Table 5: Output analysis of old morph analyzer

Type Number of instances % of Type
Typel 2361 47.2
Type2 763 15.2
Type3 419 8.4
Type4 575 11.5
Type5 599 11.9
Type6 288 5.8

Table 6: Output analysis of derivational analyzer

Type Number of instances % of Type
Typel 2600 51.9
Type2 771 154
Type3 418 8.4
Type4 576 11.5
Type5 609 12.2
Type6 31 0.6

that the old morphological analyzer could not an-
alyze 10 words but there is gold analysis of those
words. In this way, each type forms an important
part of the evaluation process. Similarly we evalu-
ate the analysis of the 100 words by the derivational
analyzer. Finally we compare the evaluations of the
old morphological analyzer and our derivational an-
alyzer. This is our evaluation methodology.

So a gold-data consisting of the analysis of 5000
words was taken. The linguistic experts of IIIT Hy-
derabad have built this data and it was acquired from
that institution. The 5000 words were tested on both
the derivational analyzer and the inflectional ana-
lyzer.

Both the analyzers were tested on the gold-data
containing 5000 words. The table 6 proves that
the performance of the new derivational analyzer
is better than the old morphological analyzer. The
old analyzer could not provide any output of 288
words (Type-6) whereas that number is only 31 in-
case of the derivational analyzer. As a result of
this improvement, the overall Type-1 (Perfect output
which is completely matching with the gold output)
of derivational analyzer is nearly 5% more than that
of the old morphological analyzer. The data size is
small (only 5000). A testing on a larger gold-data
will show an even better picture of the improvement
that can be achieved by the derivational analyzer.

16

6 Conclusions

We presented an algorithm which uses an exist-
ing inflectional analyzer for performing derivational
analysis. The algorithm uses the main principles of
both the Porters stemmer and Krovetz stemmer for
achieving the task. The algorithm achieves decent
precision and recall. It also expands the coverage
of the inflectional analyzer. But it must be incorpo-
rated in applications like machine translators which
use derivational analysis for understanding its real
strengths and limitations.

References

Claudia Gdaniec, Esm Manandise, Michael C. McCord.
2001. Derivational morphology to the rescue: how it
can help resolve unfound words in MT, pp.129-131.
Summit VIII: Machine Translation in the Information
Age, Proceedings, Santiago de Compostela, Spain.

Jesus Vilares, David Cabrero and Miguel A. Alonso.
2001. Applying Productive Derivational Morphology
to Term Indexing of Spanish Texts. In Proceedings of
CICLing.

Vishal Goyal, Gurpreet Singh Lehal. 2008. Hindi Mor-
phological Analyzer and Generator, pp. 1156-1159.
IEEE Computer Society Press, California, USA.

Niraj Aswani, Robert Gaizauskas. 2010. Develop-
ing Morphological Analysers for South Asian Lan-
guages: Experimenting with the Hindi and Gujarati
Languages. In Proceedings of LREC.

Ashwini Vaidya. 2009. Using paradigms for certain
morphological phenomena in Marathi. In Proceedings
of ICON.

Bhuvaneshwari C Melinamath, Shubhagini D. 2011. A
robust Morphological analyzer to capture Kannada
noun Morphology, VOL 13. TPCSIT.

William A. Woods. 2000. Aggressive Morphology for
Robust Lexical Coverage. In Proceedings of ANLC.
Wolfgang Hoeppner. 1982. A multilayered approach to
the handling of word formation. In Proceedings of

COLING.

R. Krovetz. 1993. Viewing morphology as an inference
process. In Proceedings of COLING.

M. F. Porter. 1980. An algorithm for suffix stripping.
Originally published in Program, 14 no. 3, pp 130-137.

Bharati Akshar, Vineet Chaitanya, Rajeev Sangal. 1995.
Natural Language Processing: A Paninian Perspec-
tive. Prentice-Hall of India.

Amba P Kulkarni. 2010. A Report on Evaluation of San-
skrit Tools.

