A Naive Bayes classifier for automatic correction of preposition
and determiner errors in ESL text

Gerard Lynch, Erwan Moreau and Carl Vogel
Centre for Next Generation Localisation
Integrated Language Technology Group

School of Computer Science and Statistics
Trinity College Dublin, Ireland
gplynch, moreaue, vogel@scss.tcd.ie

Abstract

This is the report for the CNGL ILT team en-
try to the HOO 2012 shared task. A Naive-
Bayes-based classifier was used in the task
which involved error detection and correction
in ESL exam scripts. The features we use in-
clude n-grams of words and POS tags together
with features based on the external Google N-
Grams corpus. Our system placed 11th out
of 14 teams for the detection and recognition
tasks and 11th out of 13 teams for the correc-
tion task based on F-score for both preposition
and determiner errors.

1 Introduction

The HOO 2012 shared task seeks to apply compu-
tational methods to the correction of certain types
of errors in non-native English texts. The previous
year’s task, (Dale and Kilgarriff, 2011), focused on
a larger scale of errors and a corpus of academic ar-
ticles. This year’s task focuses on six error types in a
corpus of non-native speaker text. The scope of the
errors is as follows:!

Error Code Description Example
RT Replace Preposition When I arrived at London
MT Missing preposition I gave it John
uT Unnecessary preposition 1 told to John that
RD Replace determiner Have the nice day
MD Missing determiner 1 have car
UD Unnecessary determiner There was a lot of the traffic

Table 1: Error types for HOO 2012 Shared Task

In Section 2, we give a brief summary of the data
for the shared task and in Section 3 we explain the

lhttp: //correcttext.org/hoo2012/
errortypes.html last verified, May 10, 2012

257

individual steps in the system. Section 4 details the
different configurations for each of the runs submit-
ted and finally, Section 5 presents the results.

2 Training data

The training data for this shared task has been pro-
vided by Cambridge University Press and consists of
scripts from students sitting the Cambridge ESOL
First Certificate in English (FCE) exams. The top-
ics of the texts are comparable as they have been
drawn from two consecutive exam years. The data is
provided in XML format and contains 1000 original
exam scripts, together with a standoff file containing
edits of the type described in Section 1 above, also
in XML format. These edits consist of offset infor-
mation, edit type information and before and after
text for correction. The results for the shared task
were presented in this format.

The test data consists of 100 exam scripts drawn
from a new corpus of exam scripts.

Some extra metadata is present in the source files,
including information about the student’s mother
tongue and the age-range of the student, however the
mother tongue data is not present in the test set.

3 Approach

The approach we have chosen for this task involves
the use of supervised machine-learning algorithms
in a four-part classification task.

3.1 Overview of the system

The first part of the task involves identification of
edits in the training data, perhaps the most challeng-

The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 257-262,
Montréal, Canada, June 3-8, 2012. (©)2012 Association for Computational Linguistics

ing given the large imbalance of edits vs non-edits
in the data.

The next step concerns classification of edits into
the six types described above, and the final task
involves correction of edits, replacing or adding
prepositions and determiners, and possibly in some
cases removal of same.

There is a fourth step involved which reassesses
the classification and correction based on some sim-
ple heuristics, using POS tags of the head word of
each instance. If the headword is not a preposition
and the system has marked a replace preposition er-
ror at that position, this error will be removed from
the system. Likewise when the headword is not a
determiner and a replace determiner error has been
marked. If the replacement suggested is the same
as the original text (in some cases this occurs), the
edit is also removed. Another case for removal in
this fashion includes an error type involving a miss-
ing determiner error where the head word is neither
a noun or an adjective. In some cases the system
reported and corrected an error suggesting the same
text as was originally there, i.e no change. These
cases are also removed from the end result.

3.2 Classification

We utilise the freely available Weka machine learn-
ing toolkit (Hall et al., 2009), and the algorithm used
for classification in each step is Naive Bayes.

3.2.1 Representing the data

We represent each word in the training data as a
vector of features. There are 39 basic features used
in the detection process, and 42 in the classification
and training step. The first 7 features contain in-
formation which is not used for classification but is
used to create the edit structures, such as start offset,
end offset, native language, age group and source
filename and part information. These features in-
clude the current word plus the four preceding and
following words, POS and spell-checked versions of
each, together with bigrams of the two following and
two preceding words with spell-checked and POS
versions for these. Information on speaker age and
native language is also included although native lan-
guage information is not present in the test set.

258

3.2.2 Additional processing

All tokens have been lower-cased and punctuation
has been removed. POS information for each token
has been added. The open-source POS tagger from
the OpenNLP tools package (OpenNLP, 2012) has
been used to this end. Spell correction facility has
been provided using the basic spellchecker in the
Lucene information retrieval API(Gospodnetic and
Hatcher, 2005) and the top match string as provided
by this spell correcting software is used in addition
to each feature. The basic maximum entropy model
for English is used for the POS tagger.

We had also planned to include features based
on the Google Books n-gram corpus, (Michel et al.,
2011) which is freely available on the web, but un-
fortunately did not get to include them in the ver-
sion submitted due to errors which were found in the
scripts for generating the features late in the process.
Nevertheless, we describe these features in Section
3.3 and present some cross-validation results from
the training data for the detection step in Section 5.1.

3.3 Google N-grams Features
3.3.1 Motivation

The Google Books N-Grams? is a collection of
datasets which consist of all the sequences of words
(n-grams) extracted from millions of books (Michel
etal., 2011). The “English Million” dataset contains
more more than 500 millions distinct n-grams?, from
size 1 to 5. for every n-gram, its frequency, page
frequency (number of pages containing it) and book
frequency (number of books containing it) are pro-
vided.

In this Shared Task, we aim to use the Google N-
grams as a reference corpus to help detecting the
errors in the input. The intuition is the following:
if an error occurs, comparing the frequency of the
input n-grams against the frequency of other possi-
bilities in the Google N-grams data might provide
useful indication on the location/type of the error.
For example, given the input “I had to go in a li-
brary”, The Google N-grams contain only 36,716
occurrences of the trigram “go in a”, but 244,098
occurrences of “go to a”, which indicates that the
latter is more likely.

http://books.google.com/ngrams/datasets
3The least frequent n-grams were discarded.

However there are several difficulties in using
such a dataset:

e Technical limitations. Extracting information
from the dataset can take a lot of time because
of the size of the data, thus the range of ap-
proaches is restricted by efficiency constraints.

o Quality of the data. The Google N-grams were
extracted automatically using OCR, which
means that the dataset can contain errors or un-
expected data (for example, the English dataset
contains a significant number of non-English
words).

This is why the Google N-grams must be used
cautiously, and only as an indication among others.

3.3.2 Method

Our goal is to add features extracted from the
Google N-grams dataset to the features described
above, and feed the supervised classification process
with these. Before computing the features, a list L
of “target expressions” is extracted from the train-
ing data, which contains all the words or sequences
of words (determiners and prepositions) which oc-
cur in a correction. Then, given an input sentence
Ap...A, and a position n in this sentence, two
types of information are extracted from the Google
data:

e Specific indications of whether an error exists
at this position:

1. No change: the frequency of the input se-
quence A, 1A, and A1 ApAntt;

2. Unnecessary word(s): the frequency of the
sequence A, _1A,+1if A € L;

3. Missing word(s): the frequency of the se-
quence X A, (resp. A,_1XA, for tri-
grams) for any target expression X € L;

4. Replacement: if A € L, the frequency of
XApi1 (resp. Ap—_1 X Ay for trigrams)
for any target expression X € L;

e Generic indications taking the context into ac-
count: for length N from 1 to 5 in a window
Ap—yq ... Anytyq, 16 combinations are computed
based only on the fact the n-grams appear in the

259

Google data; for example, one of these combi-
nations is the normalized sum for the 4 5-grams
in this window of 0 or 1 (the n-gram occurs or
does not).

Additionally, several variants are considered:
e bigrams or trigrams for “specific” features;

e binary values for “specific” features: 1 if the
n-gram appears, 0 otherwise;

e keep only the “generic” features and the first
three features.

4 Run configurations

Ten runs were submitted to the organisers based on
different configurations. Modification of the data
was carried out using both instance reduction and
feature selection techniques. The system facilitated
the use of different training data for each of the three
main classification steps.

4.1 Least frequent words filter

Before classification, the data is preprocessed by re-
placing all the least frequent words with a default
value (actually treated as missing values by the clas-
sifier). This is intended to help the classifier focus
on the most relevant indications and to prevent over-
specification of the classification model.

4.2 Instance reduction filters

4.2.1 POSTrigrams filter

The POS trigrams filter works as follows: during
the training stage, the sequences of POS tags for the
words current-1.current.current+1 are extracted for
each instance, together with its corresponding class.
Every POS trigram is then associated with the fol-
lowing ratio:

Frequency of true instances

Frequency of false instances

Then, when predicting the class, the filter is applied
before running the classifier: the sequences of tri-
grams are extracted for each instance, and are com-
pared against the corresponding ratio observed dur-
ing the training stage; the instance is filtered out if
the ratio is lower than some threshold N%. In Table

Run | Detection Classification Correction
0 R1 Normal Normal
1 R20 Normal Normal
2 Full F12 Normal
3 R10 Normal Normal
4 R30 Normal Normal
5 F12 F12 Normal
6 R4new Normal Normal
7 R4 + F12 F12 Normal
8 R4 Normal Normal
9 R2 Normal Normal

Table 2: Run configurations

2, the label RN refers to the percentage (N) used as
cut-off in the experiments.

This filter is intended to reduce the impact of the
fact that the classes are strongly unbalanced. It per-
mits discarding a high number of false instances,
while removing only a small number of true in-
stances. However, as a side effect, it can cause the
classifier to miss some clues which were in the dis-
carded instances.

4.2.2 CurrentPlusOrMinusOne filter

The current plusorminus one filter works as fol-
lows: A list of all current.current+1 word bigrams
is made from the error instances in the training data,
along with all current-1.current bigrams. The non-
error instances in the training data are then filtered
based on whether an instance contains an occur-
rence of any current.current+1 or current-1.current
bigram in the list.

4.3 Feature selection filters

43.1 F12

During preliminary experiments, selecting a sub-
set of 12 features produced classification accuracy
gains in the detection and classification steps of the
process using ten-fold cross validation on the train-
ing set. These twelve features were: current, cur-
rent+1.current+2, current-1.current-2, currentSC,
currentPOS, current-1, current-2, current+1, cur-
rent+2, current+1SC, and current-1SC. The SC
postfix refers to the spell-corrected token, with POS
referring to the part-of-speech tag. The F12 config-
uration filter removes all other features except these.

260

5 Results

Table 3 displays the results for both preposition and
determiner errors which were obtained by the sys-
tem on the preliminary test set before teams sub-
mitted their revisions. Table 4 refers to the results
obtained by the system after the revised errors were
removed/edited.

Task Rank Run Precision Recall F-Score
Detection 11 9 5.33 25.61 8.82
Recognition 11 9 4.18 20.09 6.92
Correction 11 9 2.66 12.8 4.41

Table 3: Overall results on original data: TC

Task Rank Run Precision Recall F-Score
Detection 11 8 6.56 26.0 10.48
Recognition 11 8 491 19.45 7.84
Correction 11 8 3.09 12.26 4.94

Table 4: Overall results on revised data: TC

5.1 Some detailed results (detection)

The results reported here were obtained on the train-
ing data only, using 5-fold cross-validation, and only
for the detection task. We have studied various set-
tings for the parameters; figure 1 shows a global
overview of the performance depending on several
parameters (we show only a few different values in
order to keep the graph readable).

The results show that the Google features con-
tribute positively to the performance, but only
slightly: the F1 score is 0.6% better on average. This
overview also hides the fact that some combinations
of values work better together; for instance, contrary
to the fact that not filtering the POS trigrams per-

Run3 Recall | Precision | F

Detection 9.05 7.42 8.15
Correction 4.19 3.44 3.78
Recognition | 9.05 7.42 8.15
Run8 Recall | Precision | F

Detection 22.51 5.44 8.76
Correction 11.25 2.72 4.38
Recognition | 22.51 5.44 8.76
Run9 Recall | Precision | F

Detection 25.61 5.33 8.82
Correction 12.80 2.66 4.41
Recognition | 20.09 4.18 6.92

Table 5: Top results on original test data

Figure 1:

mean of f1

16

13

Average F-score depending on several parameters.

4 POS-trigrams.0
POS-trigrams.1 +

- window2
500 windowd,
1868 %os.mgyams s 2-atinay
: aetinary |

E }‘ e L
20

window0

POS-trigrams.10 -1

factor(minFreq) filter googleFeatures atributes

forms better on average, the best performances are As shown in Figure 2, using a high threshold

obtained when filtering, as shown in figure 2.

Figure 2: F-score (%) w.r.t POS trigrams filter threshold.
Parameters: window 2, Google features with bigrams and

trigrams.

helps the classifier build a better model.

o POS trigrams filter (see 4.2.1.) Even if not fil-
tering at all performs better on average, the best
cases are obtained with a low threshold. Addi-
tionally, this parameter can be used to balance
between recall and precision (when one wants

20
1

1 score
1

A min. frequency 20

+ min. frequency 50

x min. frequency 100
min. frequency 500

¥ min. frequency 1000

to favor one or the other).

o Size of the context window. Results can show
important differences depending on the size
of the window, but no best configuration was
found in general for this parameter.

b

o Google features (see 3.3.2.) The Google fea-
tures help slightly in general, and are used in
the best cases that we have obtained. How-
ever there is no significantly better approach

e Minimum frequency* (preprocessing, see 4.1).

filter threshold

‘ ‘ between using the original frequencies, simpli-
fying these to binary values, or even not using
the list of target expressions.

6 Conclusions

“Remark: the values used as “minimum frequencies” re- Lhe task of automated error correction is a difficult
ported in this paper can seem unusually high. This is due to one, with the best-performing systems managing ap-
the fact that, for technical reasons, the thresholds were applied prox. 40 % F-score for the detection, recognition

globally to the data after it had been formatted as individual in-
stances, each instance containing a context window of 9 words.

and correction (Dale et al., 2012). There are several

, . .
As a consequence a threshold of N means that a given word ~ ar€as where our system’s performance might be im-

must occur at least N/9 times in the original input data.

proved. The spellcheck dictionary which was used

261

was a general one and this resulted in many spelling
corrections which were out of context. A more tai-
lored dictionary employing contextual awareness in-
formation could be beneficial for the preprocessing
step.

Multi-word corrections were not supported by the
system due to how the instances were constructed
and these cases were simply ignored, to the detri-
ment of the results.

In the basic feature set, the majority of features
were based on word unigrams, however more n-
gram features could improve results as these were
found to perform well during classification.

There were many different ways to exploit the
Google N-Grams features and it may be the case
that better combinations of features can be found for
each of the classification steps.

Finally, very little time was spent tuning the
datasets for the classification and correction step as
opposed to the detection phase, this is another part of
the system where fine-tuning parameters could im-
prove performance.

Acknowledgments

This material is based upon works supported by
the Science Foundation Ireland under Grant No.[SFI
07/CE/M 1142.].

References

Robert Dale and Adam Kilgarriff. 2011. Helping Our
Own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation, Dublin, Ireland.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A Report on the Preposition and
Determiner Error Correction Shared Task. In Pro-
ceedings of the Seventh Workshop on Innovative Use
of NLP for Building Educational Applications, Mon-
treal, Canada.

0. Gospodnetic and E. Hatcher. 2005. Lucene. Man-
ning.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I.LH. Witten. 2009. The WEKA data min-
ing software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10-18.

J.B. Michel, Y.K. Shen, A.P. Aiden, A. Veres, M.K.
Gray, J.P. Pickett, D. Hoiberg, D. Clancy, P. Norvig,
J. Orwant, et al. 2011. Quantitative analysis of

262

culture using millions of digitized books. Science,
331(6014):176.

OpenNLP. 2012. Website: http://opennlp. apache. org.

