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Abstract 

Developing interactive robots is an extremely 
challenging task which requires a broad range 
of expertise across diverse disciplines, includ-
ing, robotic planning, spoken language under-
standing, belief tracking and action 
management. While there has been a boom in 
recent years in the development of reusable 
components for robotic systems within com-
mon architectures, such as the Robot Operat-
ing System (ROS), little emphasis has been 
placed on developing components for Human-
Robot-Interaction. In this paper we introduce 
HRItk (the Human-Robot-Interaction toolkit), 
a framework, consisting of messaging proto-
cols, core-components, and development tools 
for rapidly building speech-centric interactive 
systems within the ROS environment. The 
proposed toolkit was specifically designed for 
extensibility, ease of use, and rapid develop-
ment, allowing developers to quickly incorpo-
rate speech interaction into existing projects. 

1 Introduction 
Robots that operate along and with humans in settings 
such as a home or office are on the verge of becoming a 
natural part of our daily environment (Bohren et al., 
2011, Rosenthal and Veloso 2010, Kanda et al., 2009, 
Srinivasa et al., 2009). To work cooperatively in these 
environments, however, they need the ability to interact 
with people, both known and unknown to them. Natural 
interaction through speech and gestures is a prime can-
didate for such interaction, however, the combination of 
communicative and physical actions, as well as the un-
certainty inherent in audio and visual sensing make such 
systems extremely challenging to create. 

Developing speech and gesture-based interactive 
robots requires a broad range of expertise, including, 
robotic planning, computer vision, acoustic processing, 
speech recognition, natural language understanding, 
belief tracking, as well as dialog management and ac-
tion selection, among others. This complexity makes it 

difficult for all but very large research groups to devel-
op complete systems. While there has been a boom in 
recent years in the development and sharing of reusable 
components, such as path planning, SLAM and object 
recognition, within common architectures, such as the 
Robot Operating System (ROS) (Quigley, 2009), little 
emphasis has been placed on the development of com-
ponents for Human-Robot Interaction although despite 
the growing need for research in this area.  

Prior work in Human-Robot Interaction has gener-
ally resulted in solutions for specific robotic platforms 
(Clodic et al., 2008) or standalone frameworks (Fong et 
al., 2006) that cannot be easily combined with standard 
architectures used by robotics researchers. Earlier work 
(Kanda et al., 2009, Fong et al., 2006) has demonstrated 
the possibilities of multimodal and multiparty interac-
tion on robotic platforms, however, the tasks and inte-
ractions explored until now have been extremely 
limited, due to the complexity of infrastructure required 
to support such interactions and the expertise required to 
effectively implement and optimize individual compo-
nents. To make significant progress, we believe that a 
common, easy to use, and easily extensible infrastruc-
ture, similar to that supported by ROS, is required for 
multi-modal human-robot interaction. Such a frame-
work will allow researchers to rapidly develop initial 
speech and gesture-based interactive systems, enabling 
them to rapidly deploy systems, observe and collect 
interactions in the field and iteratively improve system 
components based on observed deficiencies. By using a 
common architecture and messaging framework, com-
ponents and component models can easily be upgraded 
and extended by a community of researchers, while not 
affecting other components. 

Towards this goal we have developed HRItk1 
(Human-Robot-Interaction toolkit), an infrastructure 
and set of components for developing speech-centric 
interactive systems within the ROS environment. The 
proposed toolkit provides the core components required 
for speech interaction, including, speech recognition, 
natural language understanding and belief tracking. Ad-
ditionally it provides basic components for gesture rec-
ognition and gaze tracking. 
                                                           

1 HRItk is available for download at: 
http://speech.sv.cmu.edu/HRItk 
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Figure 1: Overview of core understanding and tracking components within HRItk 

 
2 Framework Overview 
An overview of the core components in the toolkit are 
highlighted in Figure 1. We introduce two classes of 
components required for speech and multimodal interac-
tion into the ROS framework, understanding nodes and 
tracking services. Understanding nodes are perceptual 
components that recognize and understand interaction 
events. Using input from sensors, intermediate 
processing nodes or other understanding components, 
these nodes generate hypotheses about current user in-
put. Tracking services monitor the long term and conti-
nuous aspects of interaction, including user dialog goals 

. These services are 
leveraged by components including Dialog Manage-
ment and Action Selection to perform interaction. Addi-
tionally, these services provide context to understanding 
nodes enabling them to apply context-specific 
processing during the understanding phase. 

2.1 Data Processing Nodes 

The understanding components implemented in this 
work heavily leverage existing components developed 
in ROS (Quigley et al., 2009). T open-
ni_kinect processes depth-images from 
the Microsoft Kinect sensor, the openni_tracker
which performs skeletal tracking, and uvccam
which processes color images from external USB cam-
eras. In the near future we also plan to support far-field 
speech recognition using the HARK_ROS toolkit (Na-
kadai et al., 2010). 

2.2 Understanding Nodes 

Understanding nodes recognize and understand events 
observed during interaction. As input they use either 
data obtained directly from sensors, preprocessed data 
from intermediate processing nodes or output from oth-
er understanding components. They either perform 
processing on explicit interaction events, such as speech 
or gesture input, or process continuous input such as 
joint position or gaze direction. The current understand-
ing nodes implemented within HRItk are listed in Table 
1 along with the ROS topics on which they publish.  

Understanding nodes publish two forms of messag-
state READY, START and STOP}, in-

dicating the state of the node and whether an interaction 
event has been detected, hypothesis ges 
which enumerate the most likely observed events along 
with a likelihood measure for each. The specific struc-

hypothesis is dependent on the 
event being observed. 

2.3 State Tracking Services 

In addition to understanding specific events such as 
utterances or gestures, an interactive system needs to 
track longer term and/or continuous aspects of interac-
tion. Such aspects include user goals, which can span 

attention (using, e.g., gaze and posture information). 
These can be defined as characterizing the state of the 
world (i.e. the user, the interaction, or the environment) 
at a given time, with possible reference to history.
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Table 1: ROS nodes, Topics, Services and Messages implemented within HRItk 
ROS Node Topic / Service (* ) Description of Messages  

Speech Detection 
and Recognition 

speech/state 
speech/hypothesis 
speech/hypothesis/best 
speech/hypothesis/final 
speech/context 

State identifying interaction event, each with a unique eventID 
Partial and final hypotheses generated during speech recognition. 
Outputs include 1-best, N-best hypotheses and confusion net-
works. All output contains confidence or component model scores 
Context indicating dialog-state, domain, task of current interaction 

Natural Language 
Understanding 

dialogact/hypothesis 
dialogact/context 

Hypotheses of Concept/Value-pairs generated during NLU 
Context indicating dialog-state, domain, task of current interaction 

Gesture Recognition hand/hypothesis 
hand/context 

Hypothesis set of Gesture-Actions with confidence measure 
Context indicating domain or task of current interaction 

Gaze Tracking gaze/hypothesis 
hand/context 

Estimate of gaze direction 
Context listing visually salient objects within users field of view 

Dialog State  
Tracking 

dialogstate/state 
belief * 
dialogstate/context 

Receives an UPDATED message when the belief changes 
Belief over the concept set specified in the service request 
Context indicating system actions potentially affecting belief 

 
In addition, states can be significantly larger objects 

than individual event understanding results, which could 
unnecessarily consume significant bandwidth if con-
stantly broadcast. Therefore, state tracking modules use 
ROS services rather than topics to communicate their 
output to other modules. Any module can send a mes-
sage to the tracking service containing a specific query 
and will receive in response the matching state or belief 
over states. 

In order to allow components to react to changes in 
the state, each state-tracking module publishes an 
UPDATED message to its state topic whenever a new 
state is computed. 

2.4 Component Implementations 

Speech Detection and Recognition is performed using 
a ROS node developed around the Julius Speech Rec-
ognition Engine (Lee and Kawahara, 2009). We se-
lected this engine for its compatibility with HARK 
(Nakadai et al, 2010), and its support of common model 
formats. A wrapper for Julius was implemented in C++ 
to support the ROS messaging architecture listed in Ta-
ble 1. Partial hypotheses are output during decoding, 
and final hypotheses are provided in 1-best, N-best and 
Confusion Network formats. Context is supported via 
language model switching. 

In order to develop a Speech Recognition compo-
nent for a new task at minimum two component models 
are required, a pronunciation dictionary, and a language 
model (or recognition grammar). Within HRItk we pro-
vide the tools required to generate these models from a 
set of labeled example utterances. We describe the rapid 
model building procedure in Section 4. 
 

Natural Language Understanding is implemented 
using Conditional Random Fields (Lafferty et al. 2001) 
similar to the approach described in (Cohn, 2007). For 
example, given Take this tray to 
the kitchen listed in Table 3, three concept/value pairs 

are extracted: Action{Carry},  Object{tray},  
Room{kitchen}.  Similar to the speech recognition 
component, the NLU component can be rapidly re-
trained using a set of tagged example sentences. 
 

Gesture Recognition of simple hand positions is im-
plemented using a Kinect depth sensor and previous 
work by Fujimura and Xu (2007) for palm/finger seg-
mentation. Currently, the module publishes a hypothesis 
for the number of fingers raised by the user, though 
more complex gestures can be implemented based on 
this model. 
 

Gaze Tracking is implemented using ASEF filters 
(Bolme et al., 2009) and geometric projection. Separate 
ASEF filters were training to locate the pupils of the left 
and right eye as well as their inner and outer corners. 
Filters were trained on hand-labeled images we col-
lected in-house.  
 

Dialog State Tracking is in charge of monitoring as-
pects of dialog that span multiple turns such as user 
goal. Our implementation is based on the Hound dialog 
belief tracking library developed at Honda Research 
Institute USA. Currently, our belief tracking model is 
Dynamic Probabilistic Ontology Trees (Raux and Ma 
2011), which capture the hidden user goal in the form of 
a tree-shaped Bayesian Network. Each node in the Goal 
Network represents a concept that can appear in lan-
guage and gesture understanding results. The structure 
of the network indicates (assumed) conditional indepen-
dence between concepts. With each new input, the net-
work is extended with evidence nodes according to the 
final understanding hypotheses and the system belief is 
estimated as the posterior probability of user goal nodes 
given the evidence so far. 

A request to the dialog state tracking service takes 
the form of a set of concept names, to which the service 
responds with an m-best list of concept value assign-
ments along with the joint posterior probability. 
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3 Rapid System Build Environment 

The models required for the core interaction compo-
nents in the system can be build from a single set of 
labeled examples Examples.txt concept 

Structure.txt  used by the Dialog State 
Tracker as shown in Figure 2. Running the automatic 
build procedure on these two files will generate 3 new 
models,  

The data used to train 
the language model and pronunciation dictionary used 
by the Speech Detection and Understanding Node and 
the statistical CRF-parser applied in the Natural Lan-
guage Understanding component. Given a set of labeled 
examples, the three models listed above are trained au-
tomatically without any intervention required from the 
user. Once a system has been deployed, speech input is 
logged, and can be transcribed and labeled with seman-
tic concepts to improve the effectiveness of these com-
ponent models. 

As explained in section 3.5, our dialog state tracker 
organizes concepts in a tree structure. For a given do-
main, we specify that structure in a simple text file 
where each line contains a concept followed by the 
name of the parent concept or the keyword ROOT for 
the root of the tree. Based on this file and on the SLU 
data file, the resource building process generates the 
files required by the Hound belief tracker at runtime. 

-the-  assumes at each node a 
uniform conditional distribution of children values giv-
en the parent value. These distributions are stored in a 
human-readable text file and can thus be manually up-
dated to more informative values. 

Using the above tools, we have developed a sample 
using the proposed framework for robot navigation task. 
The entire system can be build from a single set of la-
beled examples as shown in Figure 3 used to train the 
language model and a component to perform actions on 
the SLU output. 

 

4 Conclusions  

In this paper we introduce HRItk (the Human-Robot-
Interaction toolkit), a framework, consisting of messag-
ing protocols, components, and development tools for 
rapidly building speech-centric interactive systems 
within the ROS environment. The proposed toolkit pro-
vides all the core components required for speech inte-
raction, including, speech recognition, natural language 
understanding and belief tracking and initial implemen-
tations for gesture recognition and gaze tracking. The 
toolkit is specifically designed for extensibility, ease of 
use, and rapid development, allowing developers to 
quickly incorporate speech interaction into existing 
ROS projects. 
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Examples.txt 
<Tagged example sentence> <Action> 
 

@Room{kitchen}   None  
on  the  @Floor{fifth}  floor   None  
take  this  @Object{package}    
to  @Room{room  123}     Carry  

Structure.txt 
<Node> <Parent> 
Room     ROOT  
Floor   Room  
Object   Room 
 

Figure 2: Training examples for robot navigation task 
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