The INPROTK 2012 Release

Timo Baumann
Department for Informatics
University of Hamburg, Germany

baumann@informatik.uni-hamburg.de

Abstract

We describe the 2012 release of our “Incremen-
tal Processing Toolkit” (INPROTK)!, which
combines a powerful and extensible architec-
ture for incremental processing with compo-
nents for incremental speech recognition and,
new to this release, incremental speech syn-
thesis. These components work fairly domain-
independently; we also provide example imple-
mentations of higher-level components such as
natural language understanding and dialogue
management that are somewhat more tied to a
particular domain. We offer this release of the
toolkit to foster research in this new and excit-
ing area, which promises to help increase the
naturalness of behaviours that can be modelled
in such systems.

1 Introduction

As recent work has shown, incremental (or online)
processing of user input or generation of system
output enables spoken dialogue systems to produce
behaviour that is perceived as more natural than
and preferable to that produced by systems that are
bound by a turn-based processing mode (Aist et
al., 2006; Skantze and Schlangen, 2009; Buf} et al.,
2010; Skantze and Hjalmarsson, 2010). There is still
much left to find out about the best ways of mod-
elling these behaviours in such systems, however.
To foster research in this area, we are releasing a
new version of our “Incremental Processing Toolkit”
(INPROTK), which provides lower-level components
(such as speech recognition and speech synthesis,

'The code of the toolkit and some example applications
have been released as open-source at http://inprotk.
sourceforge.net.

29

David Schlangen

Faculty of Linguistics and Literary Studies

Bielefeld University, Germany
david.schlangen@uni-bielefeld.de

but also a general modular processing architecture)
and allows researchers to concentrate on higher-level
modules (such as natural language understanding and
dialogue modelling; for which we provide example
implementations).> We describe these components
in the following, pointing out the differences and
extensions to earlier releases (Baumann et al., 2010).

2 An Incremental Processing Architecture

INPROTK realises the /U-model of incremental pro-
cessing (Schlangen and Skantze, 2009; Schlangen
and Skantze, 2011), where incremental systems are
conceptualised as consisting of a network of pro-
cessing modules. Each module has a left buffer, a
processor, and a right buffer, where the normal mode
of processing is to take input from the left buffer, pro-
cess it, and provide output in the right buffer, from
where it goes to the next module’s left buffer. (Top-
down, expectation-based processing would work in
the opposite direction.) Modules exchange incremen-
tal units (1Us), which are the smallest ‘chunks’ of
information that can trigger connected modules into
action. IUs typically are part of larger units; e.g.,
individual words as parts of an utterance, or frame
elements as part of the representation of an utterance
meaning. This relation of being part of the same
larger unit is recorded through same level links; the
units that were used in creating a given IU are linked
to it via grounded in links. Modules have to be able
to react to three basic situations: that 1Us are added
to a buffer, which triggers processing; that 1Us that
were erroneously hypothesised by an earlier module

2An alternative to the toolkit described here is jindigo
(Skantze and Hjalmarsson, 2010), http://www. jindigo.
net.

NAACL-HLT 2012 Workshop on Future directions and needs in the Spoken Dialog Community: Tools and Data, pages 29-32,
Montréal, Canada, June 7, 2012. (©)2012 Association for Computational Linguistics

are revoked, which may trigger a revision of a mod-
ule’s own output; and that modules signal that they
commit to an U, that is, won’t revoke it anymore (or,
respectively, expect it to not be revoked anymore).

INPROTK offers flexibility on how tightly or
loosely modules are coupled in a system. It pro-
vides mechanisms for sending IU updates between
processes via a light-weight remote procedure call
protocol,® as well as for using shared memory within
one (Java) process. INPROTK follows an event-based
model, where modules create events, for which other
modules can register as listeners. Module networks
are configured via a system configuration file which
specifies which modules listen to which.

As opposed to our previous release (Baumann et
al., 2010), INPROTK module communication is now
completely encapsulated in the TUModule class. An
implementing processor is called into action by a
method which gives access both to the edits to IUs
in the left buffer since the last call, and to the list of
IUs directly. The implementing processor must then
notify its right buffer, either about the edits to the
right buffer, or giving the content directly. Modules
can be fully event-driven, only triggered into action
by being notified of a hypothesis change, or they
can run persistently, in order to create endogenous
events like time-outs. Event-driven modules can run
concurrently in separate threads or can be called se-
quentially by another module (which may seem to
run counter the spirit of incremental processing, but
can be advantageous for very quick computations
for which the overhead of creating threads should be
avoided). In the case of separate threads, which run
at different update intervals, the left-buffer view will
automatically be updated to its most recent state.

INPROTK also comes with an extensive set of mon-
itoring and profiling modules which can be linked
into the module network at any point and allow to
stream data to disk or to visualise it online through a
viewing tool (von der Malsburg et al., 2009), as well
as different ways to simulate input (e.g., typed or
read from a file) for debugging. All IUmodules can
also output loggging messages to the viewing tool
directly (to ease graphic debugging of error cases in
multi-threaded applications).

3In an earlier release, we used OAA (Cheyer and Martin,
2001), which however turned out to be too slow.

30

3 Incremental Speech Recognition

Our speech recognition module is based on the
Sphinx-4 (Walker et al., 2004) toolkit and comes with
acoustic models for German.* The module queries
the ASR’s current best hypothesis after each frame of
audio and changes its output accordingly, adding or
revoking WordIUs and notifying its listeners. Addi-
tionally, for each of the WordIUs, Sy11lableIUs and
Segment IUs are created and bound to the word (and
to the syllable respectively) via the grounded-in hier-
archy. Later modules in the pipeline are thus able to
use this lower-level information (e.g. to disambiguate
meaning based on prosodic aspects of words). For
prosodic processing, we inject additional processors
into Sphinx’ acoustic frontend which provide features
for further prosodic processing (pitch, loudness, and
spectral tilt). In this way, IUs are able to access the
precise acoustic data (in raw and processed forms).

An ASR’s current best hypothesis frequently
changes during the recognition process with the ma-
jority of the changes not improving the result. Every
such change triggers all listening modules (and pos-
sibly their listeners), resulting in a lot of unnecessary
processing. Furthermore, changes may actually dete-
riorate results, if a ‘good’ hypothesis is intermittently
changed for worse. Therefore, we developed hypoth-
esis smoothing approaches (Baumann et al., 2009)
which greatly reduce spurious edits in the output at
the cost of some timeliness: With a lag of 320 ms we
reduced the amount of spurious edits to 10 % from an
initial 90 %. The current implementation of hypothe-
sis smoothing is taylored specifically towards ASR
output, but other input modules (like gesture or facial
expression recognition) could easily be smoothed
with similar methods.

4 Incremental NLU and DM

As mentioned above, the more ‘“higher-level” com-
ponents in our toolkit are more domain-specific than
the other components, and in any case are proba-
bly exactly those modules which users of the toolkit
may want to substitute with their own. Neverthe-
less, we provide example implementations of a sim-
ple keyword-spotting ‘NLU’, as well as statistically

*Models for English, French and other languages
are available from the Sphinx’ distribution and from
http://www.voxforge.org.

trained ones (Schlangen et al., 2009; Heintze et al.,
2010).

We have recently built a somewhat more traditional
NLU component which could be more easily ported
to other domains (by adapting lexicon and grammar).
It consists of a probabilistic, beam-search top-down
parser (following (Roark, 2001)), which produces
a principled semantic representation in the formal-
ism robust minimal recursion semantics (Copestake,
2006). This component is described in more detail in
(Peldszus et al., 2012).

5 Incremental Speech Synthesis

Rounding out the toolkit is our new component for in-
cremental speech synthesis, which has the following
properties:
(a) It makes possible changes to the as-yet unspoken
part of the ongoing utterance,
(b) allows adaptations of delivery parameters such
as speaking rate or pitch with very low latency.
(c) It autonomously makes delivery-related deci-
sions (such as producing hesitations), and
(d) it provides information about delivery status (e. g.
useful in case of barge-ins).
(e) And, last but not least, it runs in real time.
Figure 1 provides a look into the internal data
structures of the component, showing a triangular
structure where on successive levels structure is built
Jjust-in-time (e.g., turning target phoneme sequences
into vocoding parameters) and hence can be changed
with low cost, if necessary. We have evaluated the
component in an application scenario where it proved
to increase perceived naturalness, and have also stud-
ied the tradeoff between look-ahead and prosodic
quality. To this end, Figure 2 plots the deviation of
the prosodic parameters pitch and timing from that
of a non-incremental synthesis of the same utterance
versus the amount of look-ahead, that is, how far into
the current phrase the next phrase becomes known. It
shows that best results are achieved if the next phrase
that is to be synthesized becomes known no later than
one or two words into the current phrase (wg or wy).

6 Evaluation of Incremental Processors

While not part of the toolkit proper, we think that it
can only be useful for the field to agree on common
evaluation metrics. Incremental processing brings

31

current point in time

(conseplualzano saylpeter(s) » open(x.2) |
[syntactic plan/pattern ‘ N H v H NP ‘
S
g words to be spoken ‘ Peter H opened H the H N ‘
= phonemes to be uttered ‘pH H H HOGHpH H H H 6‘ aé"éié‘ as placeholder

vocoding parameter frames
(motor planning)

synthesized speech audio
articulation)

LRI et
fo model co-articulation

just enough to keep
sound-card buffers full

Figure 1: Hierarchic structure of incremental units describ-
ing an example utterance as it is being produced during
delivery, showing the event-based just-in-time processing
strategy.

o
™ A
o : -4 pitch dev.
N —— timing dev. L A----- A
— A S o
o _| AT
I N ¥
o] w
I I I I I I
Wo Wy Wo Wz Wpg Wy

Figure 2: Deviation of pitch and timing plotted against
lookahead (right context available for incremental synthe-
sis). The more lookahead available, the better the results.

new considerations of dynamics into the assessment
of processing quality, and hence requires additional
metrics compared to non-incremental processing. In
(Baumann et al., 2011) we have proposed a family
of such metrics, and we provide an evaluation frame-
work for analysing incremental ASR performance as
part of our distribution.

7 Conclusions

We have sketched the major features of our “Incre-
mental Processing Toolkit” INPROTK. While it is far
from offering ‘plug-and-play’ ease of constructing
incremental dialogue systems, we hope it will prove
useful for other researchers insofar as it offers solu-
tions to the more low-level problems that often are
not one’s main focus, but which need solving any-
ways before more interesting things can be done. We
look forward to what these interesting things may be
that others will build.

Acknowledgments

Most of the work decribed in this paper was funded
by a grant from DFG in the Emmy Noether Pro-
gramme.

References

G.S. Aist, J. Allen, E. Campana, L. Galescu, C.A.
Gomez Gallo, S. Stoness, M. Swift, and M Tanen-
haus. 2006. Software architectures for incremental
understanding of human speech. In Proceedings of the
International Conference on Spoken Language Process-
ing (ICSLP), Pittsburgh, PA, USA, September.

Timo Baumann, Michaela Atterer, and David Schlangen.
2009. Assessing and improving the performance of
speech recognition for incremental systems. In Pro-
ceedings of the North American Chapter of the Associa-
tion for Computational Linguistics - Human Language
Technologies (NAACL HLT) 2009 Conference, Boulder,
Colorado, USA, May.

Timo Baumann, Okko Buf}, and David Schlangen. 2010.
InproTK in action: Open-source software for building
german-speaking incremental spoken dialogue systems.
In Proceedings of ESSV 2010, Berlin, Germany.

Timo Baumann, Okko Buf3, and David Schlangen. 2011.
Evaluation and optimization of incremental processors.
Dialogue and Discourse, 2(1):113—-141.

Okko BuB}, Timo Baumann, and David Schlangen. 2010.
Collaborating on utterances with a spoken dialogue
system using an isu-based approach to incremental dia-
logue management. In Proceedings of the SIGdial 2010
Conference, pages 233-236, Tokyo, Japan, September.

Adam Cheyer and David Martin. 2001. The open agent
architecture. Journal of Autonomous Agents and Multi-
Agent Systems, 4(1):143—-148, March. OAA.

Ann Copestake. 2006. Robust minimal recursion se-
mantics. Technical report, Cambridge Computer Lab.
Unpublished draft.

Silvan Heintze, Timo Baumann, and David Schlangen.
2010. Comparing local and sequential models for sta-
tistical incremental natural language understanding. In
Proceedings of the SIGdial 2010 Conference, pages
9-16, Tokyo, Japan, September.

32

Andreas Peldszus, Okko Buf3, Timo Baumann, and David
Schlangen. 2012. Joint satisfaction of syntactic and
pragmatic constraints improves incremental spoken lan-
guage understanding. In Proceedings of the Confer-
ence of the European Association for Computational
Linguistics (EACL 2012), Avignon, France, April.

Brian Roark. 2001. Robust Probabilistic Predictive Syn-
tactic Processing: Motivations, Models, and Appli-
cations. Ph.D. thesis, Department of Cognitive and
Linguistic Sciences, Brown University.

David Schlangen and Gabriel Skantze. 2009. A general,
abstract model of incremental dialogue processing. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL 2009), pages 710-718, Athens, Greece,
March.

David Schlangen and Gabriel Skantze. 2011. A gen-
eral, abstract model of incremental dialogue processing.
Dialogue and Discourse, 2(1):83-111.

David Schlangen, Timo Baumann, and Michaela Atterer.
2009. Incremental reference resolution: The task, met-
rics for evaluation, and a bayesian filtering model that
is sensitive to disfluencies. In Proceedings of SIGdial
2009, the 10th Annual SIGDIAL Meeting on Discourse
and Dialogue, London, UK, September.

Gabriel Skantze and Anna Hjalmarsson. 2010. Towards
incremental speech generation in dialogue systems. In
Proceedings of the SIGdial 2010 Conference, pages
1-8, Tokyo, Japan, September.

Gabriel Skantze and David Schlangen. 2009. Incremental
dialogue processing in a micro-domain. In Proceedings
of the 12th Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2009), pages 745-753, Athens, Greece, March.

Titus von der Malsburg, Timo Baumann, and David
Schlangen. 2009. Telida: A package for manipulation
and visualisation of timed linguistic data. In Proceed-
ings of the Poster Session at SIGdial 2009, the 10th
Annual SIGDIAL Meeting on Discourse and Dialogue,
London, UK, September.

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, and Joe
Woelfel. 2004. Sphinx-4: A flexible open source
framework for speech recognition. Technical Report
SMLI TR2004-0811, Sun Microsystems Inc.

