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Abstract

Experimental evidence demonstrates that syn-
tactic structure influences human online sen-
tence processing behavior. Despite this ev-
idence, open questions remain: which type
of syntactic structure best explains observed
behavior—hierarchical or sequential, and lexi-
calized or unlexicalized? Recently, Frank and
Bod (2011) find that unlexicalized sequen-
tial models predict reading times better than
unlexicalized hierarchical models, relative to
a baseline prediction model that takes word-
level factors into account. They conclude that
the human parser is insensitive to hierarchi-
cal syntactic structure. We investigate these
claims and find a picture more complicated
than the one they present. First, we show that
incorporating additional lexical n-gram prob-
abilities estimated from several different cor-
pora into the baseline model of Frank and Bod
(2011) eliminates all differences in accuracy
between those unlexicalized sequential and hi-
erarchical models. Second, we show that lexi-
calizing the hierarchical models used in Frank
and Bod (2011) significantly improves pre-
diction accuracy relative to the unlexicalized
versions. Third, we show that using state-
of-the-art lexicalized hierarchical models fur-
ther improves prediction accuracy. Our results
demonstrate that the claim of Frank and Bod
(2011) that sequential models predict reading
times better than hierarchical models is pre-
mature, and also that lexicalization matters for
prediction accuracy.
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1 Introduction

Various factors influence human reading times dur-
ing online sentence processing, including word-level
factors such as word length, unigram and bigram
probabilities, and position in the sentence. Yet word-
level factors cannot explain many observed process-
ing phenomena; ample experimental evidence ex-
ists for the influence of syntax on human behav-
ior during online sentence processing, beyond what
can be predicted using word-level factors alone.
Examples include the English subject/object rela-
tive clause asymmetry (Gibson et al., 2005; King
and Just, 1991) and anti-locality effects in German
(Konieczny, 2000; Konieczny anddding, 2003),
Hindi (Vasishth and Lewis, 2006), and Japanese
(Nakatani and Gibson, 2008). Levy (2008) shows
that these processing phenomena can be explained
by surprisal theory under a hierarchical probabilis-
tic context-free grammar (PCFG). Other evidence
of syntactic expectation in sentence processing in-
cludes the facilitation of processing at “or” follow-
ing “either” (Staub and Clifton, 2006); expectations
of heavy noun phrase shifts (Staub et al., 2006); el-
lipsis processing (Lau et al., 2006); and syntactic
priming (Sturt et al., 2010).

Experimental evidence for the influence of syn-
tax on human behavior is not limited to experiments
carefully designed to isolate a particular processing
phenomenon. Several broad-coverage experimental
studies have shown that surprisal under hierarchi-
cal syntactic models predicts human processing dif-
ficulty on large corpora of naturally occurring text,
even after word-level factors have been taken into
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account (Boston et al., 2008; Demberg and Kelletexicalized models over part-of-speech (POS) tags,
2008; Roark et al., 2009). we investigate the lexicalized versions of each hi-

Despite this evidence, in recent work Frank anerarchical model, and show that lexicalization sig-
Bod (2011) challenge the notion that hierarchicanificantly improves psychological accuracy. Third,
syntactic structure is strictly necessary to prediowvhile they explore only a subset of the PSG’s im-
reading times. They compare per-word surprisgllemented under the incremental parser of Roark
predictions from unlexicalized hierarchical and se¢2001), we explore a state-of-the-art lexicalized hi-
guential models of syntactic structure along tweerarchical model that conditions on richer contexts,
axes:linguistic accuracy (how well the model pre- and show that this model performs still better. Our
dicts the test corpus) anpsychological accuracy findings demonstrate that Frank and Bod (2011)’s
(how well the model predicts observed reading timestrong claim that sequential models predict reading
on the test corpus). They find that, while hierartimes better than hierarchical models is premature,
chical phrase-structure grammars (PSG’s) achiewand also that lexicalization improves the psycholog-
better linguistic accuracy, sequential echo state natal accuracy of hierarchical models.
works (ESN's) achieve better psychological accu-
racy on the English Dundee corpus (Kennedy angd Related Work
Pynte, 2005). Frank and Bod (2011) do not in-
clude lexicalized syntactic models in the comparSeveral broad-coverage experimental studies
ison on the grounds that, once word-level factordemonstrate that surprisal under a hierarchical syn-
have been included as control predictors in the rea¢fctic model predicts human processing difficulty
ing times model, lexicalized syntactic models do no®n @ corpus of naturally occurring text, even after
predict reading times better than unlexicalized syrivord-level factors have been taken into account.
tactic models (Demberg and Keller, 2008). Based odnder surprisal theory (Hale, 2001; Levy, 2008),
the results of their comparisons between unlexicaRrocessing difficulty at wordy; is proportional to
ized models, they conclude that the human parser'igading time atv;, which in turn is proportional to
insensitive to hierarchical syntactic structure. the surprisal ofw; in the context in which it is ob-

In light of the existing evidence that hierarchicalserved: surprisal(w;) = —log(pr(w;|conteat)).
syntax influences human sentence processing, thgpically, context =~ wi..wi—;.  Comput-
claim of Frank and Bod (2011) is surprising. In thisnd surprisal(w;) thus reduces to computing
work, we investigate this claim, and find a picture—log(pr(wiwi...wi —1)).  Henceforth, we refer
more complicated than the one they present. W& this original formulation of surprisal atotal
first replicate the results of Frank and Bod (2011§urprisal.
using the dataset provided by the authors, verifying Boston et al. (2008) show that surprisal estimates
that we obtain the same linguistic and psychologifrom a lexicalized dependency parser (Nivre, 2006)
cal accuracies reported by the authors. We then eand an unlexicalized PCFG are significant predic-
tend their work in several ways. First, we repeators of reading times on the German Potsdam Cor-
their comparisons using additional, more robustlpus. Demberg and Keller (2008) propose to isolate
estimated lexical n-gram probabilities as control presyntactic surprisal from total surprisal by replacing
dictors in the baseline mod&lWe show that when €ach word with its POS tag, then calculating sur-
these additional lexical n-gram probabilities are use@risal as usual under the incremental probabilistic
as control predictors, any differences in psychologPhrase-structure parser of Roark (2001). (Following
ical accuracy between the hierarchical and sequeRoark et al. (2009), we hereafter refer to this type of
tial models used in Frank and Bod (2011) vanishsurprisal a®OSsurprisal.) They find that only POS

Second, while they restrict their comparisons to ursurprisal, not total surprisal, is a significant predictor

- of reading time predictions on the English Dundee
!By robustly estimated, we mean that these probabilities corpus

are estimated from larger corpora and use a better smoothing , L
method (Kneser-Ney) than the lexical n-grams of Frank and D€mberg and Keller (2008)'s definition of POS

Bod (2011). surprisal introduces two constraints. First, by omit-
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ting lexical information from the conditioning con- pr(w;|w;...w;—1) therefore requires marginalizing
text, they ignore differences among words within aver all possible latent contexi®. In this formu-
syntactic category that can influence syntactic exation of surprisal, the context includes lexical infor-
pectations about upcoming material. Second, by reaation (;...w;_1) as well as syntactic information
placing words with their most likely POS tags, the\(T" : yield(T) = w;...w;—1), and the predicted event
treat POS tags as veridical, observed input rathéself (w;) contains lexical information.
than marginalizing over all possible latent POS tag Other formulations of surprisal are also possible,
sequences consistent with the observed words.  in which the event, observed context, and latent con-
Roark et al. (2009) propose a more principled wayext are otherwise defined. In this work, we classify
of decomposing total surprisal into its syntactic andyntactic models as followdexicalized models in-
lexical components, defining the syntactic surprisalude lexical information in the context, in the pre-
of w; as: dicted event, or bothunlexicalized models include
lexical information neither in the context nor in the
predicted eventhierarchical models induce a latent

l ED:yield(D):wl...wi pr(D minus last step)

ZD:yield(D)wlmwi—l pr(D) context of trees compatible with the inpsegquen-
and the lexical surprisal ab; as: tial models either induce no latent context at all,
or induce a latent sequence of POS tags compati-
_log ZD:yield(D):wl...wi pr(D) ble with the input. Table 1 summarizes the syntactic
2 Diyield(D)=ws..w; PT(D minus last step)  models and various formulations of surprisal used in

_ o ) , this work.
\tl)vehaer:qe {i ;1 th?\/;‘?t gl;nté)erilvafucggst ihe parsgrs Following Frank and Bod (2011), we consider one
y given p P yield(D) = wiwi 00 ot hierarchical model (PSG's) and two types of

is th t of all derivations iD consistent with .
s the rse ° ) © ons . onsis sequential models (Markov models and ESN's).
wi...w;; and D minus last step includes all steps

in the derivatiorexcept for the last step, in whichy;
is generated by conditioning upon all previous ste
of D (includingt;). PSG’s consists of rules expanding a parent node into
Roark et al. (2009) show that syntactic surprisathildren nodes in the syntactic tree, with associ-
produces more accurate reading time predictions @fted probabilities. Frank and Bod (2011) use PSG’s
an English corpus than POS surprisal, and that déhat generate POS tag sequences, not words. Under
composing total surprisal into its syntactic and lexsuch grammars, the prefix probability of a tag se-
ical components produces more accurate readijgiencet is the sum of the probabilities of all trees
time predictions than total surprisal taken as a single : yield(T) = t;...t;, where the probability of
quantity. In this work, we compare not only differ-each treel” is the product of the probabilities of the
ent types of syntactic models, but also different meaules used in the derivation af.
sures of surprisal under each of those models (total, vianjlla PCFG's, a special case of PSG’s in which
POS, syntactic-only, and lexical-only). the probability of a rule depends only on the identity
3 M of the parent node, achieve sub-optimal parsing ac-
odels : . : >
curacy relative to grammars in which the probability
Estimating surprisal(w;) amounts to calculating of each rule depends on a richer context (Charniak,
—log(pr(w;|w;...w;—1)). Language models differ 1996; Johnson, 1998; Klein and Manning, 2003).
in the way they estimate the conditional probado this end, Frank and Bod (2011) explore several
bility of the eventw; given the observed context variants of PSG’s conditioned on successively richer
wi...w;—1. In the traditional formulation of surprisal contexts, including ancestor models (which condi-
under a hierarchical model, the event is condi- tion rule expansions on ancestor nodes from 1-4
tioned not only on thebserved contextw:...w; 1 levels up in the tree) and ancestor+sibling models
but also on theatent context consisting of the syn- (which condition rule expansions on the ancestor’s
tactic treesl” whose yield isw;...w;_1; computing left sibling as well). Both sets of grammars also con-

pig.l Phrase-Structure Grammars
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Authors Model | Surprisal | Observed| Latent Predicted
Context | Context Event

Boston et al. (2008) Hier. POS ti..ti_1 TreesT with yield ¢1...¢; 1 ti

Demberg and Keller (2008)

Roark et al. (2009)

Frank and Bod (2011)

This Work

Demberg and Keller (2008) Hier. Total wi...w;_1 | TreesT with yield ¢;...t; 1 w;

Roark et al. (2009)

This Work

Roark et al. (2009) Hier. Syntactic-| wy...w;_1 | TreesT with yield wy...w;_1 ti

This Work Only

Roark et al. (2009) Hier. Lexical- wi...w;j—1 | TreesT with yield wy...w;_1; t; | w;

This Work Only

Frank and Bod (2011) Seq. POS ti...ti—1 | — ti

This Work

- Seq Total wy...wi—1 | t1...t;—1 with yleId w1... Wi;—1 w;

Table 1: Contexts and events used to produce surprisal mesasuder various probabilistic syntactic modé&lgefers
to treesy refers to POS tags; and refers to words.

dition rule expansions on the current head rfode

3.3 Echo State Networks

In addition to the grammars over POS tag sednlike Markov models, ESN's &ber, 2001) can
guences used by Frank and Bod (2011), we evalgapture long-distance dependencies. ESN’s are a
ate PSG's over word sequences. We also includgpe of recurrent neural network (Elman, 1991) in
the state-of-the-art Berkeley grammar (Petrov an@hich only the weights from the hidden layer to the
Klein, 2007) in our comparison.

Syntactic cateoutput layer are trained; the weights from the input

gories in the Berkeley grammar are automaticallyayer to the hidden layer and from the hidden layer
split into fine-grained subcategories to improve theo itself are set randomly and do not change. In re-
likelihood of the training corpus under the modelcurrent networks, the activation of the hidden layer
This increased expressivity allows the parser tattagt; depends not only on the activation of the in-
achieve state-of-the-art automatic parsing accuragyut layer at tag;, but also on the activation of the
but increases grammar size considerably. hidden layer at tag;_;, which in turn depends on
the activation of the hidden layer at tag -, and so
forth. The activation of the output layer at tagis
therefore a function of all previous input symbols
Frank and Bod (2011) use Markov models ovet;...t;_; in the sequence. The prefix probability of
POS tag sequences, where the prefix probability sequenceunder this model i§ [, pr(t;|t1...ti—1),

of a sequence is [[, pr(tilti—n+1,ti—nt2...ti—1). Wherepr(t;|ti...t;—1) is the normalized activation of
They use three types of smoothing: additive, Goodhe output layer at tag. Frank and Bod (2011) eval-
Turing, and Witten-Bell, and explore values of uate ESN'’s with 100, 200...600 hidden nodes.

from 1 to 3.

3.2 Markov Models

4 Methods

ZOI’ rightmOSt child node, if the head node is not yet aVailWe use two Incremental parsers to Calculate sur-

able(Roark, 2001). . . . ,
3To make parsing with the Berkeley grammar tractable unprlsals under the hierarchical models. For the PSG’s

der the prefix probability parser, we prune away all rules witvailable under the Roark et al. (_2009) parser, we
probability less than0~*, use that parser to calculate approximate prefix prob-
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abilities using beam search. For the Berkeley gran#.2.1 Linguistic Accuracy
mar, we use a probabilistic Earley parser modified
by Levy* to calculate exact prefix probabilities us-
ing the_ algorlt_hm of Stolcke (1995). We evaluqt '}e test corpus i% S surprisal(w;), wheren
each hierarchical model under each type of surprisa v=
. . IS the number of words in the test corpus.

(POS, total, lexical-only, and syntactic-only), where
possible.

Each model provides surprisal estimates
surprisal(w;).  The linguistic accuracy over

4.2.2 Psychological Accuracy

41 Data Sets We add each model's per-word surprisal predic-
tions to a linear mixed-effects model of first-pass
Each syntactic model is trained on sections 2-21 gkading times, then measure the improvement in
the Wall Street Journal (WSJ) portion of the Penmeading time predictions (according to the de-
Treebank (Marcus et al., 1994), and tested on théance information criterion) relative to a baseline
Dundee Corpus (Kennedy and Pynte, 2005), whichnodel; the resulting decrease in deviance is the
contains reading time measures for 10 subjects ovpsychological accuracy of the language model.
a corpus of 2,391 sentences of naturally occurringsing thel mer package for linear mixed-effects
text. Gold-standard POS tags for the Dundee comodels in R (Baayen et al., 2008), we first fit a
pus are obtained automatically using the Brill taggelbaseline model to first-pass readings times over
(Brill, 1995). the test corpus. Each baseline model contains

Frank and Bod (2011) exclude subject/word pairf?€ following control predictors for each sub-
from evaluation if any of the following conditions i€ct/word pair:sent pos (position of the word in
hold true: “the word was not fixated, was presentef’® sentence)nr char (number of characters in
as the first or last on a line, was attached to punéd€ word), prevnonfix (whether the previous
tuation, contained more than one capital letter, oford was fixated by the subjecthext nonfi x
contained a non-letter (this included clitics)”. This(whether the next word was fixated by the subject),
leaves 191,380 subject/word pairs in the data sk@9wordprob (log(pr(w;))), | ogf orwprob
published by Frank and Bod (2011). Because wiod(pr(wiwi-1))), and | ogbackprob
consider lexicalized hierarchical models in additiod/o9(pr(wilwit1))). ~ When fitting each base-
to unlexicalized ones, we additionally exclude subline model, we include all control predictors; all
ject/word pairs where the word is “unknown” to theSignificant two-way interactions between them
model® This leaves us with a total of 148,829 sub{lt| = 1.96); by-subject and by-word intercepts;
ject/word pairs; all of our reported results refer t@nd @ by-subject random slope for the predictor that
this data set. shows the most significant effectr(char ).6

We evaluate the statistical significance of the dif-
ference in psychological accuracy between two pre-
dictors using a nested model comparison. If the

Following Frank and Bod (2011), we compare thénodel containing both predictors performs signifi-
per-word surprisal predictions from hierarchical angantly better than the model containing only the first
sequential models of syntactic structure along tweredictor under a* test p < 0.05), then the sec-
axes: linguistic accuracy (how well the model exond predictor accounts for variance in reading times
plains the test corpus) and psychological accurad@Pove and beyond the first predictor, and vice versa.

(how well the model explains observed reading
times on the test corpus). 8In accordance with the methods of Frank and Bod (2011),
“Surprisal was not included as a by-subject random slope be-

- cause of the possibility that participants’ sensitivity to surprisal
“The prefix parser is available at: varies more strongly for some sets of surprisal estimates than

www.http://idiom.ucsd.edu/ rlevy/prefixprobabilityparser.html for others, making the comparisons between language models
SWe consider words appearing fewer than 5 times in thenreliable. Since subject variability is not currently of interest,

training data to be unknown. it is safer to leave out random surprisal effects.”

4.2 Evaluation
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5 Reaults et al. (2009). We also calculate POS surprisal un-

er the Berkeley grammar (b) using the Levy prefix

We first repllce_ltg the results (.)f Frank a”O! BOCErobability parser. Figure 2 shows the accuracies of
(2011) by obtaining POS surprisal values d'reCtI¥hese modelg

from the authors’ published dataset for each syntac-

tic model, then evaluating the psychological accut exicalized Hierarchical Models Next, we lex-
racy of each of those models relative to the baseliniealize the hierarchical models. Figure 3 shows
model defined abové. the results of computing total surprisal under

Baseline Model with Additional L exical N-grams each lexicalized hierarchical model (al-a4T, s1-s4T,

. . and bT). The lexicalized models improve signifi-
Next, we explore the impact of the lexical n-gram . -
cantly upon their unlexicalized counterparig (=

probapllltles used as control predictors upon PSY- =9 10 12.47.p < 0.01) in all cases; by con-
chological accuracy. Frank and Bod (2011) stat . . L
fast, the unlexicalized models improve signifi-

that they compute lexical unigram and bigram prObéantIy upon their lexicalized counterpartg?( —

abilities via linear interpolation between estimateg . - o » < 0.05) only in some cases (si-

from th? British Natlona! Corpu_s and the Dunole%4). Each lexicalized model improves significantly
corpus itself (p.c.); upon inspection, we find that the L
bigram probabilities released in their published dataro &4 the best unlexicalized model of Frank

gram p . . 1eirpu and Bod (2011) > = 6.96t023.45,p < 0.01),
set (which are consistent with their published exper; . .
) .. though e4 also achieves a smaller but still signifi-
imental results) more closely resemble probabilities

. Cant improvement upon each of the lexicalized mod-
estimated from the Dundee corpus alone. Because aL 2 .
. . . els (x* = 4.49t07.58, p < 0.05). The lexical-
the small size of the Dundee corpus, lexical bigrams

from this corpus alone are unlikely to be represent ized Berkeley grammar (bT) achieves the highest

) ’ qi-n uistic and psychological accuracy; the improve-
tive of a human’s language experience. g Psy g y P

. . ment of bT upon e4 is substantial and significant
We augment the lexical bigram probabilities use(gn P g

2 . .
. : x“(1) = 23.45, p < 0.001), while the improve-
i, e f k200 COL)en o o upo b 1 svll ut <l s
) . > (x%(1) = 4.50, p < 0.1). Estimated coefficients
Eated u;mg the ST:IITM t?OIK't Eﬁtolcke, 2002_) Wlthfor surprisal estimates under each lexicalized hierar-
neser-Ney smoothing from Inree corpora. S€CGical model are shown in Table'®.

tions 2-21 of the WSJ portion of the Penn Tree-

bank, the Brown corpus, and the British Nationabecomposing Total Surprisal Figure 3 shows the
corpus. We include these additional predictors angsults of decomposing total surprisal (al-a4T, s1-
all two-way interactions between them in the bases4T) into its lexical and syntactic components, then
line model. Figure 1 shows that the relative differentering both components as predictors into the
ences in psychological accuracy between unlexicamixed-effects model (al-a4LS, s1-s4l’$For each
ized hierarchical and sequential models vanish undgrammar, the psychological accuracy of the surprisal
this stronger baseline conditién. estimates is slightly higher when both lexical and

Unlexicalized Hierarchical Models We then cal- Sy”ta.c“c surprisal are entgre_d as pred!gtors, though
the differences are not statistically significant.

culate POS surprisal values under each of the ances-

tor (al-a4) and the ancestor+sibling (s1-s4) hierar- °0Our POS surprisal estimates have slightly worse linguistic
chical models ourselves, using the parser of Roa#dkcuracy but slightly better psychological accuracy than Frank
and Bod (2011); these differences are likely due to differences
"The only difference between our results and the originain beam settings and in the subset of the WSJ used as training
results in Figure 2 of Frank and Bod (2011) is that we evaluatdata.
accuracy over a subset of the subject/items pairs used in Frank!°Each surprisal estimate predicts reading times in the ex-
and Bod (2011) (see Section 4.1 for details). pected (positive) direction.
8The psychological accuracies of the best sequential model **Decomposing surprisal into its lexical and syntactic com-
(e4) and the best hierarchical model (s3) used in Frank and Bgubnents is possible with the Levy prefix probability parser as
(2011) relative to the stronger baseline with additional lexicalvell, but requires modifications to the parser; the Roark et al.
n-grams are not significantly different, according tgZtest. (2009) parser computes these quantities explicitly by default.
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POS surprisal POS Surprisal

§ -1 e{n}=echo state network with nx100 hidden nodes & - a{1,2,3,4}=Roark parser/ancestor grammar
m,g,w{n}=n-gram Markov model s{1,2,3,4}=Roark parser/ancestor+sibling grammar
a{1,2,3,4}=Roark parser/ancestor grammar b=Levy parser/Berkeley grammar
s{1,2,3,4}=Roark parser/ancestor+sibling grammar o
o
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Figure 1: Psychological vs. linguistic accuracy of POS dtigure 2: Psychological vs. linguistic accuracy of POS
prisal estimates from unlexicalized sequential and hiesarprisal estimates from unlexicalized hierarchical ni®de
chical models of Frank and Bod (2011) relative to baselised in this work, relative to a baseline system with ad-
system of Frank and Bod (2011) (shown above dotted lid&jpnal lexical unigrams and bigrams. Horizontal line in-
and relative to a baseline system including additional idikates most psychologically accurate model of Frank and
ical unigrams and bigrams (shown below dotted line). Bod (2011) for ease of comparison.

corporating additional lexical n-grams into baseline syst

virtually eliminates all differences in psychological aec

racy among models.

POS vs. Syntactic-only Surprisal Figures 2 and (Berkeley) also achieves the highest psychological

4 show the results of computing POS surprisal (alaccuracy.

a4, s1-s4) and syntactic-only surprisal (al-a4S, s1- Decomposing total surprisal into its lexical- and

s4S), respectively, under each of the Roark gransyntactic-only components improves psychological

mars. While syntactic surprisal achieves slightlaccuracy, but this improvement is not statistically

higher psychological accuracy than POS surprisaignificant. Computing syntactic-only surprisal in-

for each model, the difference is statistically signifistead of POS surprisal improves psychological accu-

cant in only one case (s1). racy, but this improvement is statistically significant
in only one case (s1).

6 Discussion

N _ 7 Conclusion and Future Work
In the presence of additional lexical n-gram control

predictors, all gaps in performance between the uiirrank and Bod (2011) claim that sequential unlexi-
lexicalized sequential and hierarchical models usezhlized syntactic models predict reading times bet-
in Frank and Bod (2011) vanish (Figure 1). Franker than hierarchical unlexicalized syntactic models,
and Bod (2011) do not include lexicalized hierarchiand conclude that the human parser is insensitive
cal models in their study; our results indicate thato hierarchical syntactic structure. We find that the
lexicalizing hierarchical models improves their psypicture is more complicated than this. We show,
chological accuracy significantly compared to thdirst, that the gap in psychological accuracy between
unlexicalized versions. Overall, the lexicalized hierthe unlexicalized hierarchical and sequential models
archical model with the highest linguistic accuracyf Frank and Bod (2011) vanishes when additional,
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Lexical+Syntactic and Total Surprisal Lexical-only and Syntactic-only Surprisal

& - a{1,2,3,4}=Roark parser/ancestor grammar & - a{1,2,3,4}=Roark parser/ancestor grammar
s{1,2,3,4}=Roark parser/ancestor+sibling grammar bT s{1,2,3,4}=Roark parser/ancestor+sibling grammar
b=Levy parser/Berkeley grammar L=lexical-only surprisal
T=total surprisal S=syntactic—only surprisal
5 & 7 LS=lexical+syntactic surprisal s «
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Figure 3: Psychological vs. linguistic accuracy of lekigure 4: Psychological vs. linguistic accuracy of lexical
cal+syntactic (LS) and total (T) surprisal estimates fromy (L) and syntactic-only (S) surprisal estimates from
lexicalized hierarchical models used in this work, rekatigxicalized hierarchical models used in this work, rekativ
to baseline system with additional lexical unigrams andbibaseline system with additional lexical unigrams and bi-
grams as control predictors. Decomposing total surpgsams as control predictors. On its own, syntactic-only sur
into lexical-only and syntactic-components improves pssisal predicts reading times better than lexical-only- sur
chological accuracy. Horizontal line indicates most pgyisal. Horizontal line indicates most psychologically ac
chologically accurate model of (Frank and Bod, 2011). curate model of (Frank and Bod, 2011).

| Surprisal| Coef. | [f] || Surprisal| Coef. | [t{] |  chological accuracy still further. Our results demon-
alLs 0.82 | 2.61 || alT 1.30 | 2.98 strate that the claim of Frank and Bod (2011) that
az2Ls 101 | 324 a2T 1.38 | 3.19| sequential models predict reading times better than
adLls | 1.14 | 3.65| a3T 156 | 3.60| pjerarchical models is premature, and that further in-
a4lLs 1.17 3.76 || a4T 1.56 3.64 VeStigation is requil’ed.
SLLS 1.38 | 443)) SIT 1.71 |4.00 In future work, we plan to incorporate lexical in-
s2LS 1.37 | 4.44] s2T 1.75 | 4.16 . ’ : .
S3LS 120 1390 saT 164 391 formatlon into the sequential syntactic models used
SALS 121 | 3.97 | s4T 162 | 3.89 in Frank and Bod (2011) so that we can compare
bT 315 | 534 the hierarchical lexicalized models described here

against sequential lexicalized models.
Table 2: Estimated coefficients ant-values for sur-
prisal estimates shown in Figure 3. Coefficients are eAcknowledgments

timated by adding each surprisal estimate, one at a time, o
to the baseline model of reading times used in Figure 3.The authors thank Stefan Frank for providing the

dataset of Frank and Bod (2011) and a detailed spec-
ification of their experimental configuration. This
robustly estimated lexical n-gram probabilities aréeS€arch was supported by NSF grant 0953870,

incorporated as control predictors into the baselinty!H grant IRO1HD065829, and funding from the
model of reading times. Next, we show that lexical#ArMy Research Laboratory’s Cognition & Neuroer-

izing hierarchical grammars improves psychologicaonomics Collaborative Technology Alliance.
accuracy significantly. Finally, we show that using
better lexicalized hierarchical models improves psy-
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