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Abstract

When digitizing a print bilingual dictionary,
whether via optical character recognition or
manual entry, it is inevitable that errors are
introduced into the electronic version that is
created. We investigate automating the pro-
cess of detecting errors in an XML repre-
sentation of a digitized print dictionary us-
ing a hybrid approach that combines rule-
based, feature-based, and language model-
based methods. We investigate combin-
ing methods and show that using random
forests is a promising approach. We find
that in isolation, unsupervised methods ri-
val the performance of supervised methods.
Random forests typically require training
data so we investigate how we can apply
random forests to combine individual base
methods that are themselves unsupervised
without requiring large amounts of training
data. Experiments reveal empirically that
a relatively small amount of data is suffi-
cient and can potentially be further reduced
through specific selection criteria.

1 Introduction

Digital versions of bilingual dictionaries often
have errors that need to be fixed. For example,
Figures 1 through 5 show an example of an er-
ror that occurred in one of our development dic-
tionaries and how the error should be corrected.
Figure 1 shows the entry for the word “turfah” as
it appeared in the original print copy of (Qureshi
and Haq, 1991). We see this word has three senses
with slightly different meanings. The third sense
is “rare”. In the original digitized XML version
of (Qureshi and Haq, 1991) depicted in Figure 2,
this was misrepresented as not being the meaning

pengyel@umiacs.umd.edu,
doermann@umiacs.umd.edu

prr@umd.edu,

+ lir'fah an). @ strange @ wonderful @ rare
ﬂ’)’&ﬁ’)}fig& tama'sha N.M. someting strange
RUJ}' tar'fa ‘@'lam x.m. wonderful state L2130
tur'fah majara nm. @ wonderful thing @
strange affair o/ #03 brar'fah ma‘joon’ nr. @
strange person @ mixture of opposites /2 # tur'-

Jogi 5.7, @ strangeness @ wonderfulness [A]

Figure 1: Example dictionary entry

<ENTRY ID="351782">
<FORM ID="351783">
<ORTH ID="351784">s b</ORTH>

<PRON ID="351785">tar'fah</PRON>
</FORM>

<SENSE N="3" ID="351794">
<USG TYPE="time" ID="351795">rare</USG>
</SENSE>

</ ENTRY>
Figure 2: Example of error in XML

of “turfah” but instead being a usage note that fre-
quency of use of the third sense was rare. Figure 3
shows the tree corresponding to this XML repre-
sentation. The corrected digital XML representa-
tion is depicted in Figure 4 and the corresponding
corrected tree is shown in Figure 5.

Zajic et al. (2011) presented a method for re-
pairing a digital dictionary in an XML format us-
ing a dictionary markup language called DML. It
remains time-consuming and error-prone however
to have a human read through and manually cor-
rect a digital version of a dictionary, even with
languages such as DML available. We therefore
investigate automating the detection of errors.

We investigate the use of three individual meth-
ods. The first is a supervised feature-based
method trained using SVMs (Support Vector Ma-
chines). The second is a language-modeling
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ENTRY
FORM .-+ SENSE
/N
ORTH PRON USG
|
&b tur'fah rare

Figure 3: Tree structure of error

<ENTRY ID="351782">
<FORM ID="3517B3">
<0RTH ID="351784">: L</ORTH>
<PRON ID="351785">t0r'fah</PRON>
</FORM>

<SENSE N="3" ID="351794">
<TRANS ID="351794+1">
<TR ID="351795"»rare</TR>
</TRANS>
</SENSE>

</ENTRY>

Figure 4: Example of error in XML, fixed

ENTRY
FORM SENSE
/N
ORTH PRON TRANS
|
& b tur'fah TR
rare

Figure 5: Tree structure of error, fixed

method that replicates the method presented in
(Rodrigues et al., 2011). The third is a simple
rule inference method. The three individual meth-
ods have different performances. So we investi-
gate how we can combine the methods most effec-
tively. We experiment with majority vote, score
combination, and random forest methods and find
that random forest combinations work the best.

For many dictionaries, training data will not be
available in large quantities a priori and therefore
methods that require only small amounts of train-
ing data are desirable. Interestingly, for automati-
cally detecting errors in dictionaries, we find that
the unsupervised methods have performance that
rivals that of the supervised feature-based method
trained using SVMs. Moreover, when we com-
bine methods using the random forest method, the
combination of unsupervised methods works bet-
ter than the supervised method in isolation and al-
most as well as the combination of all available
methods. A potential drawback of using the ran-
dom forest combination method however is that it
requires training data. We investigated how much
training data is needed and find that the amount
of training data required is modest. Furthermore,
by selecting the training data to be labeled with
the use of specific selection methods reminiscent
of active learning, it may be possible to train the
random forest system combination method with
even less data without sacrificing performance.

In section 2 we discuss previous related work
and in section 3 we explain the three individual
methods we use for our application. In section 4
we explain the three methods we explored for
combining methods; in section 5 we present and
discuss experimental results and in section 6 we
conclude and discuss future work.

2 Related Work

Classifier combination techniques can be broadly
classified into two categories: mathematical and
behavioral (Tulyakov et al., 2008). In the first
category, functions or rules combine normalized
classifier scores from individual classifiers. Ex-
amples of techniques in this category include Ma-
jority Voting (Lam and Suen, 1997), as well as
simple score combination rules such as: sum rule,
min rule, max rule and product rule (Kittler et al.,
1998; Ross and Jain, 2003; Jain et al., 2005). In
the second category, the output of individual clas-
sifiers are combined to form a feature vector as
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the input to a generic classifier such as classifi-
cation trees (P. and Chollet, 1999; Ross and Jain,
2003) or the k-nearest neighbors classifier (P. and
Chollet, 1999). Our method falls into the second
category, where we use a random forest for sys-
tem combination.

The random forest method is described in
(Breiman, 2001). It is an ensemble classifier con-
sisting of a collection of decision trees (called a
random forest) and the output of the random for-
est is the mode of the classes output by the indi-
vidual trees. Each single tree is trained as follows:
1) a random set of samples from the initial train-
ing set is selected as a training set and 2) at each
node of the tree, a random subset of the features is
selected, and the locally optimal split is based on
only this feature subset. The tree is fully grown
without pruning. Ma et al. (2005) used random
forests for combining scores of several biometric
devices for identity verification and have shown
encouraging results. They use all fully supervised
methods. In contrast, we explore minimizing the
amount of training data needed to train a random
forest of unsupervised methods.

The use of active learning in order to re-
duce training data requirements without sacri-
ficing model performance has been reported on
extensively in the literature (e.g., (Seung et al.,
1992; Cohn et al., 1994; Lewis and Gale, 1994;
Cohn et al., 1996; Freund et al., 1997)). When
training our random forest combination of indi-
vidual methods that are themselves unsupervised,
we explore how to select the data so that only
small amounts of training data are needed because
for many dictionaries, gathering training data may
be expensive and labor-intensive.

3 Three Single Method Approaches for
Error Detection

Before we discuss our approaches for combining
systems, we briefly explain the three individual
systems that form the foundation of our combined
system.

First, we use a supervised approach where we
train a model using SVM"9"* (Joachims, 1999)
with a linear kernel and default regularization pa-
rameters. We use a depth first traversal of the
XML tree and use unigrams and bigrams of the
tags that occur as features for each subtree to
make a classification decision.

We also explore two unsupervised approaches.

The first unsupervised approach learns rules for
when to classify nodes as errors or not. The rule-
based method computes an anomaly score based
on the probability of subtree structures. Given
a structure A and its probability P(A), the event
that A occurs has anomaly score 1-P(A) and the
event that A does not occur has anomaly score
P(A). The basic idea is if a certain structure hap-
pens rarely, i.e. P(A) is very small, then the oc-
currence of A should have a high anomaly score.
On the other hand, if A occurs frequently, then
the absence of A indicates anomaly. To obtain
the anomaly score of a tree, we simply take the
maximal scores of all events induced by subtrees
within this tree.

The second unsupervised approach uses a reim-
plementation of the language modeling method
described in (Rodrigues et al., 2011). Briefly,
this methods works by calculating the probabil-
ity a flattened XML branch can occur, given a
probability model trained on the XML branches
from the original dictionary. We used (Stolcke,
2002) to generate bigram models using Good Tur-
ing smoothing and Katz back off, and evaluated
the log probability of the XML branches, ranking
the likelihood. The first 1000 branches were sub-
mitted to the hybrid system marked as an error,
and the remaining were submitted as a non-error.
Results for the individual classifiers are presented
in section 5.

4 Three Methods for Combining
Systems

We investigate three methods for combining the
three individual methods. As a baseline, we in-
vestigate simple majority vote. This method takes
the classification decisions of the three methods
and assigns the final classification as the classifi-
cation that the majority of the methods predicted.

A drawback of majority vote is that it does not
weight the votes at all. However, it might make
sense to weight the votes according to factors such
as the strength of the classification score. For ex-
ample, all of our classifiers make binary decisions
but output scores that are indicative of the confi-
dence of their classifications. Therefore we also
explore a score combination method that consid-
ers these scores. Since measures from the differ-
ent systems are in different ranges, we normal-
ize these measurements before combining them
(Jain et al., 2005). We use z-score which com-
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putes the arithmetic mean and standard deviation
of the given data for score normalization. We then
take the summation of normalized measures as
the final measure. Classification is performed by
thresholding this final measure.!

Another approach would be to weight them by
the performance level of the various constituent
classifiers in the ensemble. Weighting based on
performance level of the individual classifiers is
difficult because it would require extra labeled
data to estimate the various performance lev-
els. It is not clear how to translate the differ-
ent performance estimates into weights, or how
to have those weights interact with weights based
on strengths of classification. Therefore, we did
not weigh based on performance level explicitly.

We believe that our third combination method,
the use of random forests, implicitly cap-
tures weighting based on performance level and
strengths of classifications. Our random forest ap-
proach uses three features, one for each of the in-
dividual systems we use. With random forests,
strengths of classification are taken into account
because they form the values of the three fea-
tures we use. In addition, the performance level
is taken into account because the training data
used to train the decision trees that form the for-
est help to guide binning of the feature values into
appropriate ranges where classification decisions
are made correctly. This will be discussed further
in section 5.

S Experiments

This section explains the details of the experi-
ments we conducted testing the performance of
the various individual and combined systems.
Subsection 5.1 explains the details of the data we
experiment on; subsection 5.2 provides a sum-
mary of the main results of our experiments; and
subsection 5.3 discusses the results.

5.1 Experimental Setup

We obtained the data for our experiments using
a digitized version of (Qureshi and Haq, 1991),
the same Urdu-English dictionary that Zajic et
al. (2011) had used. Zajic et al. (2011) pre-
sented DML, a programming language used to
fix errors in XML documents that contain lexico-
graphic data. A team of language experts used

'In our experiments we used O as the threshold.

Recall | Precision | F1-Measure | Accuracy
LM 11.97 89.90 21.13 57.53
RULE | 99.79 70.83 82.85 80.37
FV 35.34 93.68 51.32 68.14

Table 1: Performance of individual systems at
ENTRY tier.

DML to correct errors in a digital, XML repre-
sentation of the Kitabistan Urdu dictionary. The
current research compared the source XML doc-
ument and the DML commands to identify the el-
ements that the language experts decided to mod-
ify. We consider those elements to be errors. This
is the ground truth used for training and evalua-
tion. We evaluate at two tiers, corresponding to
two node types in the XML representation of the
dictionary: ENTRY and SENSE. The example de-
picted in Figures 1 through 5 shows an example of
SENSE. The intuition of the tier is that errors are
detectable (or learnable) from observing the ele-
ments within a tier, and do not cross tier bound-
aries. These tiers are specific to the Kitabistan
Urdu dictionary, and we selected them by observ-
ing the data. A limitation of our work is that we do
not know at this time whether they are generally
useful across dictionaries. Future work will be
to automatically discover the meaningful evalua-
tion tiers for a new dictionary. After this process,
we have a dataset with 15,808 Entries, of which
47.53% are marked as errors and 78,919 Senses,
of which 10.79% are marked as errors. We per-
form tenfold cross-validation in all experiments.
In our random forest experiments, we use 12 de-
cision trees, each with only 1 feature.

5.2 Results

This section presents experimental results, first
for individual systems and then for combined sys-
tems.

5.2.1 Performance of individual systems

Tables 1 and 2 show the performance of lan-
guage modeling-based method (LM), rule-based
method (RULE) and the supervised feature-based
method (FV) at different tiers. As can be seen,
at the ENTRY tier, RULE obtains the highest F1-
Measure and accuracy, while at the SENSE tier,
FV performs the best.
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Recall | Precision | F1-Measure | Accuracy
LM 9.85 94.00 17.83 90.20
RULE | 84.59 58.86 69.42 91.96
FV 72.44 98.66 83.54 96.92

Table 2: Performance of individual systems at
SENSE tier.

5.2.2 Improving individual systems using
random forests

In this section, we show that by applying ran-
dom forests on top of the output of individual sys-
tems, we can have gains (absolute gains, not rel-
ative) in accuracy of 4.34% to 6.39% and gains
(again absolute, not relative) in Fl-measure of
3.64% to 11.39%. Tables 3 and 4 show our ex-
perimental results at ENTRY and SENSE tiers
when applying random forests with the rule-based
method.? These results are all obtained from 100
iterations of the experiments with different parti-
tions of the training data chosen at each iteration.
Mean values of different evaluation measures and
their standard deviations are shown in these ta-
bles. We change the percentage of training data
and repeat the experiments to see how the amount
of training data affects performance.

It might be surprising to see the gains in per-
formance that can be achieved by using a ran-
dom forest of decision trees created using only
the rule-based scores as features. To shed light
on why this is so, we show the distribution of
RULE-based output scores for anomaly nodes and
clean nodes in Figure 6. They are well separated
and this explains why RULE alone can have good
performance. Recall RULE classifies nodes with
anomaly scores larger than 0.9 as errors. How-
ever, in Figure 6, we can see that there are many
clean nodes with anomaly scores larger than 0.9.
Thus, the simple thresholding strategy will bring
in errors. Applying random forest will help us
identify these errorful regions to improve the per-
formance. Another method for helping to identify
these errorful regions and classify them correctly
is to apply random forest of RULE combined with
the other methods, which we will see will even
further boost the performance.

>We also applied random forests to our language mod-
eling and feature-based methods, and saw similar gains in
performance.

1500

T T
—¥— anomaly
clean

1000

occurrences

o]
0.55

0.7 0.75 0.8 0.85 0.9
output score of rule-based system

Figure 6: Output anomalies score from RULE
(ENTRY tier).

5.2.3 System combination

In this section, we explore different methods
for combining measures from the three systems.
Table 5 shows the results of majority voting and
score combination at the ENTRY tier. As can
be seen, majority voting performs poorly. This
may be due to the fact that the performances of
the three systems are very different. RULE sig-
nificantly outperforms the other two systems, and
as discussed in Section 4 neither majority voting
nor score combination weights this higher perfor-
mance appropriately.

Tables 6 and 7 show the results of combining
RULE and LM. This is of particular interest since
these two systems are unsupervised. Combin-
ing these two unsupervised systems works better
than the individual methods, including supervised
methods. Tables 8 and 9 show the results for com-
binations of all available systems. This yields the
highest performance, but only slightly higher than
the combination of only unsupervised base meth-
ods.

The random forest combination technique does
require labeled data even if the underlying base
methods are unsupervised. Based on the ob-
servation in Figure 6, we further study whether
choosing more training data from the most error-
ful regions will help to improve the performance.
Experimental results in Table 10 show how the
choice of training data affects performance. It
appears that there may be a weak trend toward
higher performance when we force the selection
of the majority of the training data to be from
ENTRY nodes whose RULE anomaly scores are
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Table 3: Mean and std of evaluation measures from 100 iterations of experiments using RULE+RF.

Training % Recall Precision F1-Measure Accuracy
0.1 78.17(14.83) | 75.87(3.96) | 76.18(7.99) | 77.68(5.11)
1 82.46(4.81) | 81.34(2.14) | 81.79(2.20) | 82.61( 1.69)
10 87.30(1.96) | 84.11(1.29) | 85.64(0.46) | 86.10( 0.35)
50 89.19( 1.75) | 83.99(1.20) | 86.49(0.34) | 86.76( 0.28)

(ENTRY tier)
Training % Recall Precision F1-Measure Accuracy
0.1 60.22( 12.95) | 69.66(9.54) | 63.29(7.92) | 92.61( 1.57)
1 70.28(3.48) | 86.26(3.69) | 77.31( 1.39) | 95.55(0.25)
10 71.52(1.23) | 91.26( 1.39) | 80.18(0.41) | 96.18(0.07)
50 72.11(0.75) | 91.90(0.64) | 80.81(0.39) | 96.30( 0.06)

Table 4: Mean and std of evaluation measures from 100 iterations of experiments using RULE+RF.

(SENSE tier)

larger than 0.9. However, the magnitudes of the
observed differences in performance are within a
single standard deviation so it remains for future
work to determine if there are ways to select the
training data for our random forest combination
in ways that substantially improve upon random
selection.

5.3 Discussion

Majority voting (at the entry level) performs
poorly, since the performance of the three individ-
ual systems are very different and majority voting
does not weight votes at all. Score combination
is a type of weighted voting. It takes into account
the confidence level of output from different sys-
tems, which enables it to perform better than ma-
jority voting. However, score combination does
not take into account the performance levels of
the different systems, and we believe this limits its
performance compared with random forest com-
binations.

Random forest combinations perform the best,
but the cost is that it is a supervised combination
method. We investigated how the amount of train-
ing data affects the performance, and found that a
small amount of labeled data is all that the random
forest needs in order to be successful. Moreover,
although this requires further exploration, there is
weak evidence that the size of the labeled data can
potentially be reduced by choosing it carefully
from the region that is expected to be most error-
ful. For our application with a rule-based system,
this is the high-anomaly scoring region because
although it is true that anomalies are often errors,

it is also the case that some structures occur rarely
but are not errorful.

RULE+LM with random forest is a little bet-
ter than RULE with random forest, with gain of
about 0.7% on F1-measure when evaluated at the
ENTRY level using 10% data for training.

An examination of examples that are marked as
being errors in our ground truth but that were not
detected to be errors by any of our systems sug-
gests that some examples are decided on the ba-
sis of features not yet considered by any system.
For example, in Figure 7 the second FORM is
well-formed structurally, but the Urdu text in the
first FORM is the beginning of the phrase translit-
erated in the second FORM. Automatic systems
detected that the first FORM was an error, how-
ever did not mark the second FORM as an error
whereas our ground truth marked both as errors.

Examination of false negatives also revealed
cases where the systems were correct that there
was no error but our ground truth wrongly indi-
cated that there was an error. These were due to
our semi-automated method for producing ground
truth that considers elements mentioned in DML
commands to be errors. We discovered instances
in which merely mentioning an element in a DML
command does not imply that the element is an er-
ror. These cases are useful for making refinements
to how ground truth is generated from DML com-
mands.

Examination of false positives revealed two
categories. One was where the element is indeed
an error but was not marked as an element in our
ground truth because it was part of a larger error
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Method Recall | Precision | F1-Measure | Accuracy
Majority voting 36.71 90.90 52.30 68.18
Score combination | 76.48 75.82 76.15 77.23

Table 5: LM+RULE+FV (ENTRY tier)

Training % Recall Precision F1-Measure Accuracy
0.1 77.43(15.14) | 72.77(6.03) | 74.26(8.68) | 75.32( 6.71)
1 86.50(3.59) | 80.41(1.95) | 83.27(1.33) | 83.51( 1.11)
10 88.12( 1.12) | 84.65(0.57) | 86.34(0.46) | 86.76( 0.39)
50 89.12( 0.62) | 87.39(0.56) | 88.25(0.30) | 88.72( 0.29)

Table 6: System combination based on random forest (LM+RULE). (ENTRY tier, mean (std))

Training % Recall Precision F1-Measure Accuracy
0.1 65.85(12.70) | 71.96(7.63) | 67.68(7.06) | 93.38( 1.03)
1 80.29(3.58) | 84.97(3.13) | 82.45(1.36) | 96.31( 0.28)
10 82.68(2.49) | 90.91(2.37) | 86.53(0.41) | 97.22(0.07)
50 83.22(2.43) | 92.21(2.29) | 87.42(0.35) | 97.42( 0.04)

Table 7: System combination based on random forest (LM+RULE). (SENSE tier, mean (std))

Training % Recall Precision F1-Measure Accuracy
20 91.57(0.55) | 87.77(0.43) | 89.63(0.23) | 89.93(0.22)
50 92.04( 0.54) | 88.85(0.48) | 90.41(0.29) | 90.72( 0.28)

Table 8: System combination based on random forest (LM+RULE+FV). (ENTRY tier, mean (std))

Training % Recall Precision F1-Measure Accuracy
20 86.47(1.01) | 90.67( 1.02) | 88.51(0.26) | 97.58(0.06)
50 86.50( 0.81) | 92.04(0.85) | 89.18(0.30) | 97.73(0.06)

Table 9: System combination based on random forest (LM+RULE+FV). (SENSE tier, mean (std))

Recall Precision F1-Measure Accuracy
50% 85.40(4.65) | 80.71(3.49) | 82.82( 1.57) | 82.63(1.54)
70% 86.13(3.94) | 80.97(2.64) | 83.36(1.33) | 83.30( 1.21)
90% 85.77(3.61) | 81.82(2.72) | 83.65(1.45) | 83.69( 1.35)
95% 85.93(3.46) | 82.14(2.98) | 83.89(1.32) | 83.94(1.18)
random | 86.50(3.59) | 80.41(1.95) | 83.27( 1.33) | 83.51(1.11)

Table 10: Effect of choice of training data based on rule based method (Mean evaluation measures
from 100 iterations of experiments using RULE+LM at ENTRY tier). We choose 1% of the data for
training and the first column in the table specifies the percentage of training data chosen from Entries

with anomalous score larger than 0.9.
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<FORM><ORTH>.# I</ORTH></FORM>
<FORM><ORTH> = 254c _pip 5</ORTH>

</FORM>

Figure 7: Example of error in XML

that got deleted and therefore no DML command
ever mentioned the smaller element but lexicog-
raphers upon inspection agree that the smaller el-
ement is indeed errorful. The other category was
where there were actual errors that the dictionary
editors didn’t repair with DML but that should
have been repaired.

A major limitation of our work is testing how
well it generalizes to detecting errors in other dic-
tionaries besides the Urdu-English one (Qureshi
and Haq, 1991) that we conducted our experi-
ments on.

6 Conclusions

We explored hybrid approaches for the applica-
tion of automatically detecting errors in digitized
copies of dictionaries. The base methods we
explored consisted of a variety of unsupervised
and supervised methods. The combination meth-
ods we explored also consisted of some methods
which required labeled data and some which did
not.

We found that our base methods had differ-
ent levels of performance and with this scenario
majority voting and score combination methods,
though appealing since they require no labeled
data, did not perform well since they do not
weight votes well.

We found that random forests of decision trees
was the best combination method. We hypothe-
size that this is due to the nature of our task and
base systems. Random forests were able to help
tease apart the high-error region (where anoma-
lies take place). A drawback of random forests
as a combination method is that they require la-
beled data. However, experiments reveal empiri-
cally that a relatively small amount of data is suf-
ficient and the amount might be able to be further
reduced through specific selection criteria.
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