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Abstract

In this paper, a new method for automatic
cognate detection in multilingual wordlists
will be presented. The main idea behind the
method is to combine different approaches to
sequence comparison in historical linguistics
and evolutionary biology into a new frame-
work which closely models the most impor-
tant aspects of the comparative method. The
method is implemented as a Python program
and provides a convenient tool which is pub-
licly available, easily applicable, and open
for further testing and improvement. Testing
the method on a large gold standard of IPA-
encoded wordlists showed that its results are
highly consistent and outperform previous
methods.

1 Introduction

During the last two decades there has been an in-
creasing interest in automatic approaches to his-
torical linguistics, which is reflected in the large
amount of literature on phylogenetic reconstruc-
tion (e.g. Ringe et al., 2002; Gray and Atkin-
son, 2003; Brown et al., 2008), statistical aspects
of genetic relationship (e.g. Baxter and Manaster
Ramer, 2000; Kessler, 2001; Mortarino, 2009),
and phonetic alignment (e.g. Kondrak, 2002;
Prokić et al., 2009; List, forthcoming).
While the supporters of these new automatic

methods would certainly agree that their greatest
advantage lies in the increase of repeatability and
objectivity, it is interesting to note that the most
crucial part of the analysis, namely the identifica-
tion of cognates in lexicostatistical datasets, is still
almost exclusively carried out manually. That this
may be problematic was recently shown in a com-
parison of two large lexicostatistical datasets pro-

duced by different scholarly teams where differ-
ences in item translation and cognate judgments
led to topological differences of 30% and more
(Geisler and List, forthcoming). Unfortunately,
automatic approaches to cognate detection still
lack the precision of trained linguists’ judgments.
Furthermore, most of the methods that have been
proposed so far only deal with bilingual as op-
posed to multilingual wordlists.
The LexStat method, which will be presented

in the following, is a convenient tool which not
only closely renders the most important aspects of
manual approaches but also yields transparent de-
cisions that can be directly compared with the re-
sults achieved by the traditional methods.

2 Identification of Cognates

2.1 The Comparative Method
In historical linguistics, cognacy is traditionally
determined within the framework of the compar-
ative method (Trask, 2000, 64-67). The final
goal of this method is the reconstruction of proto-
languages, yet the basis of the reconstruction it-
self rests on the identification of cognate words or
morphemes within genetically related languages.
Within the comparative method, cognates in a
given set of language varieties are identified by
applying a recursive procedure. First an initial list
of putative cognate sets is created by comparing
semantically and phonetically similar words from
the languages to be investigated. In most of the lit-
erature dealing with the comparative method, the
question of which words are most suitable for the
initial compilation of cognate lists is not explic-
itly addressed, yet it seems obvious that the com-
paranda should belong to the basic vocabulary of
the languages. Based on this cognate list, an ini-
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tial list of putative sound correspondences (corre-
spondence list) is created. Sound correspondences
are determined by aligning the cognate words and
searching for sound pairs which repeatedly oc-
cur in similar positions of the presumed cognate
words. After these initial steps have been made,
the cognate list and the correspondence list are
modified by

1. adding and deleting cognate sets from the
cognate list depending on whether or not they
are consistent with the correspondence list,
and

2. adding and deleting sound correspondences
from the correspondence list, depending on
whether or not they find support in the cog-
nate list.

These steps are repeated until the results seem sat-
isfying enough such that no further modifications,
neither of the cognate list, nor of the correspon-
dence list, seem to be necessary.
The specific strength of the comparativemethod

lies in the similarity measure which is applied for
the identification of cognates: Sequence similar-
ity is determined on the basis of systematic sound
correspondences (Trask, 2000, 336) as opposed to
similarity based on surface resemblances of pho-
netic segments. Thus, comparing English token
[təʊkən] and German Zeichen [ʦaɪçən] ‘sign’,
the words do not really sound similar, yet their
cognacy is assumed by the comparative method,
since their phonetic segments can be shown to cor-
respond regularly within other cognates of both
languages.1 Lass (1997, 130) calls this notion
of similarity genotypic as opposed to a pheno-
typic notion of similarity, yet the most crucial as-
pect of correspondence-based similarity is that it is
language-specific: Genotypic similarity is never
defined in general terms but always with respect
to the language systems which are being com-
pared. Correspondence relations can therefore
only be established for individual languages, they
can never be taken as general statements. This
may seem to be a weakness, yet it turns out that
the genotypic similarity notion is one of the most
crucial strengths of the comparative method: Not

1Compare, for example, English weak [wiːk] vs. Ger-
man weich [vaɪç] ‘soft’ for the correspondence of [k] with
[ç], and English tongue [tʌŋ] vs. German Zunge [ʦʊŋə]
‘tongue’ for the correspondence of [t] with [ʦ].

only does it allow us to dive deeper in the his-
tory of languages in cases where phonetic change
has corrupted the former identity of cognates to
such an extent that no sufficient surface similarity
is left, it also makes it easier to distinguish bor-
rowed from commonly inherited items, since the
former usually come along with a greater degree
of phenotypic similarity.

2.2 Automatic Approaches
In contrast to the language-specific notion of simi-
larity that serves as the basis for cognate detection
within the framework of the comparative method,
most automatic methods seek to determine cog-
nacy on the basis of surface similarity by calcu-
lating the phonetic distance or similarity between
phonetic sequences (words, morphemes).
The most popular distance measures are based

on the paradigm of sequence alignment. In align-
ment analyses two ormore sequences are arranged
in a matrix in such a way that all correspond-
ing segments appear in the same column, while
empty cells of the matrix, resulting from non-
corresponding segments, are filled with gap sym-
bols (Gusfield, 1997, 216). Table 1 gives an ex-
ample for the alignment of German Tochter [tɔx-
tər] ‘daughter’ and English daughter [dɔːtər]:
Here, all corresponding segments are inserted in
the same columns, while the velar fricative [x] of
the German sequence which does not have a cor-
responding segment in the English word is repre-
sented by a gap symbol.

German t ɔ x t ə r
English d ɔː - t ə r

Table 1: Alignment Analysis

In order to retrieve a distance or a similar-
ity score from such an alignment analysis, the
matched residue pairs, i.e. the segments which
appear in the same column of the alignment, are
compared and given a specific score depending on
their similarity. How the phonetic segments are
scored depends on the respective scoring function
which is the core of all alignment analyses. Thus,
the scoring function underlying the edit distance
only distinguishes identical from non-identical
segments, while the scoring function used in the
ALINE algorithm of Kondrak (2002) assigns in-
dividual similarity scores for the matching of pho-
netic segments based on phonetic features.
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Using alignment analyses, cognacy can be de-
termined by converting the distance or similarity
scores to normalized distance scores and assum-
ing cognacy for distances beyond a certain thresh-
old. The normalized edit distance (NED) of two
sequencesA andB is usually calculated by divid-
ing the edit distance by the length of the small-
est sequence. The normalized distance score of
algorithms which yield similarities (such as the
ALINE algorithm) can be calculated by the for-
mula of Downey et al. (2008):

(1) 1− 2SAB

SA + SB
,

where SA and SB are the similarity scores of the
sequences aligned with themselves, and SAB is
the similarity score of the alignment of both se-
quences. For the alignment given in Table 1, the
normalized edit distance is 0.6, and the ALINE
distance is 0.25.
A certain drawback of most of the common

alignment methods is that their scoring function
defines segment similarity on the basis of phe-
notypic criteria. The similarity of phonetic seg-
ments is determined on the basis of their phonetic
features and not on the basis of the probability
that their segments occur in a correspondence re-
lation in genetically related languages. An alter-
native way to calculate phonetic similarity which
comes closer to a genotypic notion of similarity
is to compare phonetic sequences with respect to
their sound classes. The concept of sound classes
goes back to Dolgopolsky (1964). The original
idea was “to divide sounds into such groups, that
changes within the boundary of the groups are
more probable than transitions from one group
into another” (Burlak and Starostin, 2005, 272)2.
In his original study, Dolgopolsky proposed ten

fundamental sound classes, based on an empirical
analysis of sound-correspondence frequencies in a
sample of 400 languages. Cognacy between two
words is determined by comparing the first two
consonants of both words. If the sound classes are
identical, the words are judged to be cognate. Oth-
erwise no cognacy is assumed. Thus, given the
words German Tochter [tɔxtər] ‘daughter’ and
English daughter [dɔːtər], the sound class rep-
resentation of both sequences will be TKTR and

2My translation, original text: “[...] выделить такие
группы звуков, что изменения в пределах группы более
вероятны, чем переводы из одной группы в другую”.

TTR, respectively. Since the first two consonants
of both words do not match regarding their sound
classes, the words are judged to be non-cognate.
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Figure 1: SCA Distance vs. NED

In recent studies, sound classes have also been
used as an internal representation format for
pairwise and multiple alignment analyses. The
method for sound-class alignment (SCA, cf. List,
forthcoming) combines the idea of sound classes
with traditional alignment algorithms. In contrast
to the original proposal by Dolgopolsky, SCA
employs an extended sound-class model which
also represents tones and vowels along with a re-
fined scoring scheme that defines specific transi-
tion probabilities between sound classes. The ben-
efits of the SCA distance compared to NED can
be demonstrated by comparing the distance scores
the methods yield for the comparison of the same
data. Figure 1 contrasts the scores of NED with
SCA distance for the alignment of 658 cognate
and 658 non-cognate word pairs between English
and German (see Sup. Mat. A). As can be seen
from the figure, the scores for NED do not show
a very sharp distinction between cognate and non-
cognate words. Even with a “perfect” threshold
of 0.8 that minimizes the number of false positive
and false negative decisions there are still 13% of
incorrect decisions. The SCA scores, on the other
hand, show a sharper distinction between scores
for cognates and non-cognates. With a threshold
of 0.5 the percentage of incorrect decisions de-
creases to 8%.
There are only three recent approaches known

to the author which explicitly deal with the task of
cognate detection in multilingual wordlists. All
methods take multilingual, semantically aligned
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wordlists as input data. Bergsma and Kondrak
(2007) first calculate the longest common sub-
sequence ratio between all word pairs in the in-
put data and then use an integer linear program-
ming approach to cluster the words into cognate
sets. Unfortunately, their method is only tested
on a dataset containing alphabetic transcriptions;
hence, no direct comparison with the method
proposed in this paper is possible. Turchin et
al. (2010) use the above-mentioned sound-class
model and the cognate-identification criterion by
Dolgopolsky (1964) to identify cognates in lexi-
costatistical datasets. Their method is also imple-
mented within LexStat, and the results of a direct
comparisonwill be reported in section 4.3. Steiner
et al. (2011) propose an iterative approach which
starts by clustering words into tentative cognate
sets based on their alignment scores. These pre-
liminary results are then refined by filtering words
according to similar meanings, computing multi-
ple alignments, and determining recurrent sound
correspondences. The authors test their method
on two large datasets. Since no gold standard for
their test set is available, they only report interme-
diate results, and their method cannot be directly
compared to the one proposed in this paper.

3 LexStat

LexStat combines the most important aspects of
the comparative method with recent approaches
to sequence comparison in historical linguistics
and evolutionary biology. The method employs
automatically extracted language-specific scor-
ing schemes for computing distance scores from
pairwise alignments of the input data. These
language-specific scoring schemes come close to
the notion of sound correspondences in traditional
historical linguistics.
The method is implemented as a part of the

LingPy library, a Python library for automatic
tasks in quantitative historical linguistics.3 It can
either be used in Python scripts or directly be
called from the Python prompt.
The input data are analyzed within a four-step

approach: (1) sequence conversion, (2) scoring-
scheme creation, (3) distance calculation, and (4)
sequence clustering. In stage (1), the input se-
quences are converted to sound classes and their

3Online available under http://lingulist.de/
lingpy/.

sonority profiles are determined. In stage (2), a
permutation method is used to create language-
specific scoring schemes for all language pairs.
In stage (3) the pairwise distances between all
word pairs, based on the language-specific scor-
ing schemes, are computed. In stage (4), the se-
quences are clustered into cognate sets whose av-
erage distance is beyond a certain threshold.

3.1 Input and Output Format

The method takes multilingual, semantically
aligned wordlists in IPA transcription as input.
The input format is a CSV-representation of the
way multilingual wordlists are represented in the
STARLING software package for lexicostatistical
analyses.4 Thus, the input data are specified in a
simple tab-delimited text file with the names of the
languages in the first row, an ID for the semantic
slots (basic vocabulary items in traditional lexico-
statistic terminology) in the first column, and the
language entries in the columns corresponding to
the language names. The language entries should
be given either in plain IPA encoding. Addition-
ally, the file can contain headwords (items) for se-
mantic slots corresponding to the IDs. Synonyms,
i.e. multiple entries in one language for a given
meaning are listed in separate rows and given the
same ID. Table 2 gives an example for the possible
structure of an input file.

ID Items German English Swedish
1 hand hant hænd hand
2 woman fraʊ wʊmən kvina
3 know kɛnən nəʊ çɛna
3 know vɪsən - veːta

Table 2: LexStat Input Format

The output format is the same as the input for-
mat except that each language column is accom-
panied by a column indicating the cognate judg-
ments made by LexStat. Cognate judgments are
displayed by assigning a cognate ID to each entry.
If entries in the output file share the same cognate
ID, they are judged to be cognate by the method.

3.2 Sequence Conversion

In the stage of sequence conversion, all input se-
quences are converted to sound classes, and their

4Online available under http://starling.
rinet.ru/program.php; a closer description of the
software is given in Burlak and Starostin (2005, 270-275)
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respective sonority profiles are calculated. Lex-
Stat uses the SCA sound-class model by default,
yet other sound class models are also available.
The idea of sonority profiles was developed

in List (forthcoming). It accounts for the well-
known fact that certain types of sound changes are
more likely to occur in specific prosodic contexts.
Based on the sonority hierarchy of Geisler (1992,
30), the sound segments of phonetic sequences
are assigned to different prosodic environments,
depending on their prosodic context. The cur-
rent version of SCA distinguishes seven different
prosodic environments.5 The information regard-
ing sound classes and prosodic context are com-
bined, and each input sequence is further repre-
sented as a sequence of tuples, consisting of the
sound class and the prosodic environment of the
respective phonetic segment. During the calcula-
tion, only those segments which are identical re-
garding their sound class as well as their prosodic
context are treated as identical.

3.3 Scoring-Scheme Creation

In order to create language specific scoring
schemes, a permutation method is used (Kessler,
2001). The method compares the attested distri-
bution of residue pairs in phonetic alignment anal-
yses of a given dataset to the expected distribution.
The attested distribution of residue pairs is de-

rived from global and local alignment analyses of
all word pairs whose distance is beyond a cer-
tain threshold. The threshold is used to reflect the
fact that within the comparative method, recurrent
sound correspondences are only established with
respect to presumed cognate words, whereas non-
cognate words or borrowings are ignored. Tak-
ing only the best-scoring word pairs for the cal-
culation of the attested frequency distribution in-
creases the accuracy of the approach and helps to
avoid false positive matches contributing to the
creation of the scoring scheme. Alignment analy-
ses are carried out with help of the SCA method.
While the attested distribution is derived from

alignments of semantically aligned words, the ex-
pected distribution is calculated by aligning word
pairs without regard to semantic criteria. This
is achieved by repeatedly shuffling the wordlists

5The different environments are: # (word-initial, cons.),
V (word-initial, vow.), C (ascending sonority, cons.), v (max-
imum sonority, vow.), c (descending sonority, cons.), $
(word-final, cons.), and > (word-final, vow.).

and aligning them with help of the same methods
which were used for the calculation of the attested
distributions. In the default settings, the number
of repetitions is set to 1000, yet many tests showed
that even the number of 100 repetitions is suffi-
cient to yield satisfying results that do not vary
significantly.
Once the attested and the expected distributions

for the segments of all language pairs are cal-
culated, a language-specific score sx,y for each
residue pair x and y in the dataset is created us-
ing the formula

(2) sx,y =
1

r1 + r2

(
r1 log2

(
a2

x,y

e2
x,y

)
+ r2dx,y

)
,

where ax,y is the attested frequency of the segment
pair, ex,y is the expected frequency, r1 and r2 are
scaling factors, and dx,y is the similarity score of
the original scoring function which was used to
retrieve the attested and the expected distributions.
Formula (2) combines different approaches

from the literature on sequence comparison in his-
torical linguistics and biology. The idea of squar-
ing the frequencies of attested and expected fre-
quencies was adopted from Kessler (2001, 150),
reflecting “the general intuition among linguists
that the evidence of phoneme recurrence grows
faster than linearly”. Using the binary loga-
rithm of the division of attested and expected fre-
quencies of occurrence is common in evolution-
ary biology to retrieve similarity scores (“log-
odds scores”) which are apt for the computation
of alignment analyses (Henikoff and Henikoff,
1992). The incorporation of the alignment scores
of the original language-independent scoring-
scheme copes with possible problems resulting
from small wordlists: If the dataset is too small to
allow the identification of recurrent sound corre-
spondences, the language-independent alignment
scores prevent the method from treating gener-
ally probable and generally improbable matchings
alike. The ratio of language-specific to language-
independent alignment scores is determined by the
scaling factors r1 and r2.
As an example of the computation of language-

specific scoring schemes, Table 3 shows attested
and expected frequencies along with the resulting
similarity scores for the matching of word-initial
and word-final sound classes in the KSL testset
(see Sup. Mat. B and C). The word-initial and
word-final classes T = [t, d], C = [ʦ], S = [ʃ, s, z]
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English German Att. Exp. Score
#[t,d] #[t,d] 3.0 1.24 6.3
#[t,d] #[ʦ] 3.0 0.38 6.0
#[t,d] #[ʃ,s,z] 1.0 1.99 -1.5
#[θ,ð] #[t,d] 7.0 0.72 6.3
#[θ,ð] #[ʦ] 0.0 0.25 -1.5
#[θ,ð] #[s,z] 0.0 1.33 0.5
[t,d]$ [t,d]$ 21.0 8.86 6.3
[t,d]$ [ʦ]$ 3.0 1.62 3.9
[t,d]$ [ʃ,s]$ 6.0 5.30 1.5
[θ,ð]$ [t,d]$ 4.0 1.14 4.8
[θ,ð]$ [ʦ]$ 0.0 0.20 -1.5
[θ,ð]$ [ʃ,s]$ 0.0 0.80 0.5

Table 3: Attested vs. Expected Frequencies

in German are contrasted with the word-initial and
word-final sound classes T = [t, d] and D = [θ, ð]
in English. As can be seen from the table, the scor-
ing scheme correctly reflects the complex sound
correspondences between English and German re-
sulting from the High German Consonant Shift
(Trask, 2000, 300-302), which is reflected in such
cognate pairs as English town [taʊn] vs. Ger-
man Zaun [ʦaun] ‘fence’, English thorn [θɔːn]
vs. German Dorn [dɔrn] ‘thorn’, English dale
[deɪl] vs. German Tal ‘valley’ [taːl], and English
hot [hɔt] vs. German heiß [haɪs] ‘hot’. The spe-
cific benefit of representing the phonetic segments
as tuples consisting of their respective sound class
along with their prosodic context also becomes
evident: The correspondence of English [t] with
German [s] is only attested in word-final position,
correctly reflecting the complex change of former
[t] to [s] in non-initial position in German. If it
were not for the specific representation of the pho-
netic segments by both their sound class and their
prosodic context, the evidence would be blurred.

3.4 Distance Calculation

Once the language-specific scoring scheme is
computed, the distances between all word pairs
are calculated. Here, LexStat uses the “end-space
free variant” (Gusfield, 1997, 228) of the tradi-
tional algorithm for pairwise sequence alignments
which does not penalize gaps introduced in the be-
ginning and the end of the sequences. This mod-
ification is useful when words contain prefixes or
suffixes which might distort the calculation. The

alignment analysis requires no further parameters
such as gap penalties, since they have already been
calculated in the previous step. The similarity
scores for pairwise alignments are converted to
distance scores following the approach of Downey
et al. (2008) which was described in section 2.2.

Word Pair SCA LexStat
German Schlange [ʃlaŋə]
English Snake [sneɪk] 0.44 0.67

German Wald [valt]
English wood [wʊd] 0.40 0.64

German Staub [ʃtaup]
English dust [dʌst] 0.43 0.78

Table 4: SCA Distance vs. LexStat Distance

The benefits of the language-specific distance
scores become obvious when comparing them
with general ones. Table 4 gives some exam-
ples for non-cognate word pairs taken from the
KSL testset (see Sup. Mat. B and C). While the
SCA distances for these pairs are all considerably
low, as it is suggested by the surface similarity of
the words, the language-specific distances are all
much higher, resulting from the fact that no fur-
ther evidence for the matching of specific residue
pairs can be found in the data.

3.5 Sequence Clustering

In the last step of the LexStat algorithm all se-
quences occurring in the same semantic slot are
clustered into cognate sets using a flat cluster vari-
ant of the UPGMA algorithm (Sokal and Mich-
ener, 1958) which was written by the author. In
contrast to traditional UPGMA clustering, this al-
gorithm terminates when a user-defined threshold
of average pairwise distances is reached.

Ger. Eng. Dan. Swe. Dut. Nor.
Ger. [frau] 0.00 0.95 0.81 0.70 0.34 1.00
Eng. [wʊmən] 0.95 0.00 0.78 0.90 0.80 0.80
Dan. [kvenə] 0.81 0.78 0.00 0.17 0.96 0.13
Swe. [kvinːa] 0.70 0.90 0.17 0.00 0.86 0.10
Dut. [vrɑuʋ] 0.34 0.80 0.96 0.86 0.00 0.89
Nor. [kʋinə] 1.00 0.80 0.13 0.10 0.89 0.00
Clusters 1 2 3 3 1 3

Table 5: Pairwise Distance Matrix

Table 5 shows pairwise distances of German,
English, Danish, Swedish, Dutch, and Norwegian
entries for the itemWOMAN taken from the GER
dataset (see Sup. Mat. B) along with the resulting
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cluster decisions of the algorithm when setting the
threshold to 0.6.

4 Evaluation

4.1 Gold Standard
In order to test the method, a gold standard was
compiled by the author. The gold standard con-
sists of 9 multilingual wordlists conforming to the
input format required by LexStat (see Supplemen-
tary Material B). The data was collected from dif-
ferent publicly available sources. Hence, the se-
lection of language entries as well as the man-
ually conducted cognate judgments were carried
out independently of the author. Since not all the
original sources provided phonetic transcriptions
of the language entries, the respective alphabetic
entries were converted to IPA transcription by the
author. The datasets differ regarding the treatment
of borrowings. In some datasets they are explic-
itly marked as such and treated as non-cognates, in
other datasets no explicit distinction between bor-
rowing and cognacy is drawn. Information on the
structure and the sources of the datasets is given
in Table 6.

File Family Lng. Itm. Entr. Source
GER Germanic 7 110 814 Starostin (2008)
ROM Romance 5 110 589 Starostin (2008)
SLV Slavic 4 110 454 Starostin (2008)
PIE Indo-Eur. 18 110 2057 Starostin (2008)
OUG Uralic 21 110 2055 Starostin (2008)
BAI Bai 9 110 1028 Wang (2006)
SIN Sinitic 9 180 1614 Hóu (2004)
KSL varia 8 200 1600 Kessler (2001)
JAP Japonic 10 200 1986 Shirō (1973)

Table 6: The Gold Standard

4.2 Evaluation Measures
Bergsma andKondrak (2007) test their method for
automatic cognate detection by calculating the set
precision (PRE), the set recall (REC), and the set
F-score (FS): The set precision p is the proportion
of cognate sets calculated by the method which
also occurs in the gold standard. The set recall r is
the proportion of cognate sets in the gold standard
which are also calculated by the method, and the
set F-score f is calculated by the formula

(3) f = 2
pr

p + r
.

A certain drawback of these scores is that they
only check for completely identical decisions re-

garding the clustering of words into cognate sets
while neglecting similar tendencies. The similar-
ity of decisions can be evaluated by calculating the
proportion of identical decisions (PID)when com-
paring the test results with those of the gold stan-
dard. Given all pairwise decisions regarding the
cognacy of word pairs inherent in the gold stan-
dard and in the testset, the differences can be dis-
played using a contingency table, as shown in Ta-
ble 7.

Cognate Non-Cognate
Gold Standard Gold Standard

Cognate
Testset true positives false positives

Non-Cognate
Testset false negatives true negatives

Table 7: Comparing Gold Standard and Testset

The PID score can then simply be calculated by
dividing the sum of true positives and true nega-
tives by the total number of decisions. In an analo-
gous way the proportion of identical positive deci-
sions (PIPD) and the proportion of identical nega-
tive decisions (PIND) can be calculated by divid-
ing the number of true positives by the sum of true
positives and false negatives, and by dividing the
number of false positives by the sum of false pos-
itives and true negatives, respectively.

4.3 Results

Based on the new method for automatic cognate
detection, the 9 testsets were analyzed by Lex-
Stat, using a gap penalty of -2 for the alignment
analysis, a threshold of 0.7 for the creation of
the attested distribution, and 1:1 as the ratio of
language-specific to language-independent simi-
larity scores. The threshold for the clustering of
sequences into cognate sets was set to 0.6. In order
to compare the output of LexStat with other meth-
ods, three additional analyses of the datasets were
carried out: The first two analyses were based on
the calculation of SCA and NED distances of all
language entries. Based on these scores all words
were clustered into cognate sets using the flat clus-
ter variant of UPGMA with a threshold of 0.4 for
SCA distances and a threshold of 0.7 for NED,
since these both turned out to yield the best results
for these approaches. The third analysis was based
on the above-mentioned approach by Turchin et
al. (2010). Since in this approach all decisions re-
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garding cognacy are either positive or negative, no
specific cluster algorithm had to be applied.

Score LexStat SCA NED Turchin
PID 0.85 0.82 0.76 0.74
PIPD 0.78 0.75 0.66 0.56
PIND 0.93 0.90 0.86 0.94
PRE 0.59 0.51 0.39 0.39
REC 0.68 0.57 0.47 0.55
FS 0.63 0.55 0.42 0.46

Table 8: Performance of the Methods

The results of the tests are summarized in Ta-
ble 8. As can be seen from the table, LexStat
outperforms the other methods in almost all re-
spects, the only exception being the proportion of
identical negative decisions (PIND). Since non-
identical negative decisions point to false posi-
tives, this shows that – for the given settings of
LexStat – the method of Turchin et al. (2010) per-
forms best at avoiding false positive cognate judg-
ments, but it fails to detect many cognates cor-
rectly identified by LexStat.6 Figure 2 gives the
separate PID scores for all datasets, showing that
LexStat’s good performance is prevalent through-
out all datasets. The fact that all methods per-
form badly on the PIE dataset may point to prob-
lems resulting from the size of the wordlists: if
the dataset is too small and the genetic distance of
the languages too large, one may simply lack the
evidence to prove cognacy without doubt.

SLV KSL GER BAI SIN PIE ROM JAP OUG
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Figure 2: PID Scores of the Methods

6LexStat can easily be adjusted to avoid false positives
by lowering the threshold for sequence clustering. Using a
threshold of 0.5 will yield a PIND score of 0.96, yet the PID
score will lower down to 0.82.

The LexStat method was designed to distin-
guish systematic from non-systematic similarities.
The method should therefore produce less false
positive cognate judgments resulting from chance
resemblances and borrowings than the other meth-
ods. In the KSL dataset borrowings are marked
along with their sources. Out of a total of 5600
word pairs, 72 exhibit a loan relation, and 83 are
phonetically similar (with an NED score less then
0.6) but unrelated. Table 9 lists the number and the
percentage of false positives resulting from unde-
tected borrowings or chance resemblances for the
different methods (see also Sup. Mat. D). While
LexStat outperforms the other methods regarding
the detection of chance resemblances, it is not
particularly good at handling borrowings. Lex-
Stat cannot per se deal with borrowings, but only
with language-specific as opposed to language-
independent similarities. In order to handle bor-
rowings, other methods (such as, e.g., the one by
Nelson-Sathi et al., 2011) have to be applied.

LexStat SCA NED Turchin
Borr. 36 / 50% 44 / 61% 35 / 49% 38 / 53%
Chance R. 14 / 17% 35 / 42% 74 / 89% 26 / 31%

Table 9: Borrowings and Chance Resemblances

5 Conclusion

In this paper, a new method for automatic cognate
detection in multilingual wordlists has been pre-
sented. The method differs from other approaches
in so far as it employs language-specific scoring
schemes which are derived with the help of im-
proved methods for automatic alignment analy-
ses. The test of the method on a large dataset of
wordlists taken from different language families
shows that it is consistent regardless of the lan-
guages being analyzed and outperforms previous
approaches.
In contrast to the black box character of many

automatic analyses which only yield total scores
for the comparison of wordlists, the method yields
transparent decisions which can be directly com-
pared with the traditional results of the compar-
ative method. Apart from the basic ideas of the
procedure, which surely are in need of enhance-
ment through reevaluation and modification, the
most striking limit of the method lies in the data:
If the wordlists are too short, certain cases of cog-
nacy are simply impossible to be detected.
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