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Abstract

This paper introduces a modified version
of Random Indexing, a technique for di-
mensionality reduction based on random
projections. We here describe how RI can
be efficiently implemented using the no-
tion of universal hashing. This eliminates
the need to store any random vectors, re-
placing them instead with a small number
of hash-functions, thereby dramatically re-
ducing the memory footprint. We dub
this reformulated version of the method
Hashed Random Indexing (HRI).

1 Introduction

Random indexing(RI) is a technique for dimen-
sionality reduction that was initially introduced by
Kanerva et al. (2000) for constructing compact
word-by-context vector spaces for modeling the
semantic similarity of words. The method is re-
lated to a family of techniques based onrandom
projections, but comes with several particular ad-
vantages in terms of computational simplicity and
incrementality. In this paper we introduce a mod-
ified version of RI which we callhashed random
indexing(HRI), where we replace the so-called in-
dex vectors by a small set ofhash functions.

We will start by describing the basic methodol-
ogy of random indexing as introduced by Kanerva
et al. (2000), also highlighting the relation to ran-
dom projections. In Section 3 we then describe the
notion ofuniversal families of hash functions, and
in particularmultiplicative universal hashing(Di-
etzfelbinger et al., 1997), before finally showing
how RI can be efficiently implemented using hash
functions drawn from such families. In Section 4
we also include some general caveats regarding di-
mensionality reduction based on random projec-
tions. Finally, Section 5 provides an overview of
other related work based on feature hashing, as
well as discussing possible future directions.

2 Random Indexing

Random indexing was initially introduced by Kan-
erva et al. (2000) for reducing the dimensional-
ity of word-by-document vector spaces, model-
ing the semantic similarity of words in terms of
their contextual distribution. Proving an attrac-
tive alternative (or complement) to more costly di-
mensionality reduction techniques such as singu-
lar value decomposition (SVD), it has since been
extensively used for constructing compact seman-
tic space models (Karlgren and Sahlgren, 2001;
Sahlgren, 2005; Widdows and Ferraro, 2009). Be-
yond this setting of distributional word similarity,
Velldal (2010) applied RI as a general means of
reducing the feature space of a classification prob-
lem. Working with SVM-based uncertainty detec-
tion, Velldal (2010) showed that RI could com-
press the feature space by two orders of magnitude
without sacrificing classifier performance.

As the current paper has more of a theoretical
focus, we will not assume any particular type of
data or application. We will, however, assume that
each data item is represented by ad-dimensional
feature vector~fi ∈ ℜd. Given n examples and
d features, the vectors can be thought of as rows
in a matrixF ∈ ℜn×d. The purpose of RI is to
avoid working with the original (possibly huge)
feature matrixF ∈ℜn×d, replacing it instead with
a smaller matrixG ∈ ℜn×k wherek ≪ d. The
RI method constructs this compressed representa-
tion of the data inG by incrementally accumulat-
ing so-calledindex vectorsassigned to each of the
d features (Sahlgren, 2005). The process can be
described by the following two simple steps:

- When a new feature is instantiated, it is as-
signed a randomly generated vector of a fixed
dimensionalityk, consisting of a small num-
ber of−1s and+1s (the remaining elements
being 0). This is then the so-calledindex vec-
tor or random labelof the feature.
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- The vector representing a given training ex-
ample (thejth row of G represents thejth
example) is then constructed by simply sum-
ming the random index vectors of its features.

The parameters of RI that need to be specified are
the number of non-zeros (ǫ) and the dimension-
ality (k) of the ternary index vectors. As noted
by Sahlgren (2005), if the index vectors had been
specified to consist of only one position of value
1 for each feature, i.e.orthogonalvectors ofk=d
dimensions, the two steps above would have pro-
duced the standard feature matrixF . With RI, one
instead uses randomly initializedk-dimensional
index vectors. As observed by Hecht-Nielsen
(1994), high-dimensional vectors having random
directions are very likely to beclose to orthogo-
nal, and the matrixG can in this sense be viewed
as an approximation ofF (in terms of the relative
distances of rows). Moreover, we can expect this
approximation to be better the higher we setk.

Note that, in the traditional setting of semantic
space modeling, RI is applied on thetype level,
accumulating global context vectors that represent
the aggregated distribution of words across a cor-
pus. When used more generally for compressing
the feature space of a learning problem as in (Vell-
dal, 2010), RI can also be applied at thetoken
level, producing a compact representation of each
training instance.

Mathematically, RI can be seen as part of a
larger family of dimension reduction techniques
based onrandom projections, and in particular the
“neuronal” version described by Vempala (2004).
Such methods work by multiplying the feature ma-
trix F ∈ ℜn×d by a random matrixR ∈ ℜd×k, for
k ≪ d, thereby reducing the number of dimen-
sions fromd to k:

FR = G ∈ ℜn×k with k ≪ d (1)

Given thatk is sufficiently high (logarithmic inn),
the Johnson-Lindenstrauss lemma (Johnson and
Lindenstrauss, 1984) tells us that the pairwise dis-
tances inF can be preserved with high probabil-
ity within the lower-dimensional spaceG (Li et
al., 2006). While much work on random projec-
tions for producing such so-called JL-embeddings
assumerij having a standard normal distribution,
Achlioptas (2001) shows that the only requirement
onrij is that they are i.i.d. with zero mean and unit
variance.

With RI, the index vector of theith fea-
ture corresponds to theith row of R in Equa-
tion 1. Moreover, forǫ non-zeros, the entries of
the index vectorsrij ∈ {+1, 0,−1} will then
be distributed with probabilities corresponding to
{ ǫ/2

k , k−ǫ
k , ǫ/2k }.

One important advantage of the particular ran-
dom indexing approach is that the fulln×d feature
matrixF never needs to be explicitly computed or
represented (Karlgren and Sahlgren, 2001). As de-
scribed above, with RI we construct the represen-
tation of the data inG by incrementally accumu-
lating the index vectors assigned to each feature.
This means that the dimension reduction is only
implicit, in the sense that the compressed repre-
sentation inG is constructed directly. With the in-
troduction ofhashedrandom indexing below, we
also eliminate the need to explicitly representR.

3 Indexing by Universal Hashing

In the traditional implementation of RI, a ran-
domly generated index vector is assigned to each
feature as it is first encountered. If the same fea-
ture is encountered again later, that same index
vector is simply retrieved by look-up. For each
of the d distinct features (which for typical NLP
problems can number hundreds of thousands or
millions), a separate index vector must be stored.

An attractive feature of RI is that is it allows us
to think about dimensionality reduction in terms
of data structures, rather than as a separate pro-
cess. In fact, taking a step back, the accumulated
index vectors in the reduced spaceG are remi-
niscent of probabilistic data structures likeBloom
filters and varioussketchrepresentations. These
arehash-baseddata structures, however, designed
for compactly representing things like set mem-
bership and frequency counts in an approximate
way. In a similar fashion, we here propose to save
resources in RI by using a small set ofhash func-
tions to implicitly represent the index vectors. As
we shall see, this eliminates the need for storing
the random vectors inR ∈ ℜd×k.

Leth be a hash function that maps from a set of
hash keysU into some smaller set of hash codes
C. We here assume bothU andC to be integers
(without loss of generality as strings can be con-
verted to integers). More precisely,U will cor-
respond to the dimensions of the original input
spaceF , andC will correspond to dimensions in
the lower-dimensional index vectors. Given that
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the RI method relies on a one-to-many mapping
from features into index vector positions, we need
to usemultiple distinct hash functions. For this
purpose, the notion ofuniversal families of hash
functionscomes in handy. This concept, intro-
duced by Carter and Wegman (1979), refers to a
method for randomly generating hash functions
hi : U → C from a family of functionsH that
also comes with certain guarantees on the proba-
bility of collisions(i.e. the chances ofhi mapping
two distinct keys into the same code). There ex-
ists several approaches to defining such universal
classes, typically based on computations seeded
by some large prime, as in the original proposal
by Carter and Wegman (1979). For the imple-
mentation of HRI, however, we propose to instead
select functions from the particularly simple class
of multiplicative universal hashingintroduced by
Dietzfelbinger et al. (1997), which provides map-
pings that can be evaluated very efficiently.

More precisely, Dietzfelbinger et al. (1997) de-
fine a universal family of mappings froml-bit
keys to m-bit indices. Let U={0, . . . , 2l−1}
and C={0, . . . , 2m−1}. Furthermore, letA
be the set of positive oddl-bit numbers, i.e.
A={a | 0 < a < 2l anda is odd}. This then
defines a family of universal hash functions
Hl,m = {ha|a ∈ A}, with ha computed as:

ha(x) = (ax mod 2l) div 2l−m for x ∈ U (2)

wheremod refers to the modulo operation and
div means integer division. By randomly picking
a numbera ∈ A, we generate a new hash function
ha from the set of2l−1 distinct hash functions in
the classHl,m. Note that, as the bits of the keys are
typically assumed fixed to some value likel = 32,
we will write Hl,m as simplyHm.

As noted by Dietzfelbinger et al. (1997), the
fact that the arithmetic involved in Equation 2 is
based on powers of two, allows the mapping to
be efficiently implemented at the level of simple
bitwise operations.1 Dietzfelbinger et al. (1997)
also prove thatHm is so-called2-universal. This
means that, for two distinct keysx andy, the func-
tion ha obeys the following lemma:

Prob (ha(x) = ha(y)) ≤
1

2m−1
(3)

1The modulo operation can be computed as bit-wise
AND (e.g. y mod 2l = y AND (2l − 1)), and the in-
teger division can be done by simple bit-shifting (e.g.
y div 2x = y RIGHT-SHIFT-BY x).

Returning to the method of random indexing,
we now have a principled way of very efficiently
computing and representing the random index vec-
tors. Any set ofd index vectorsR in k=2m dimen-
sions2 and with ǫ non-zero elements can now be
implicitly representedby a set of hash functions
Hǫ = {ha1 , . . . , haǫ} ⊂ Hm. Each hash function
ha ∈ Hǫ computes one non-zero element position.
We randomly pickǫ

2 of the functions to indicate
−1s, and label the remaining half+1s. Let σk
correspondingly evaluate to+1 or −1, depending
on whetherhk is selected to map into index posi-
tions with positive or negative values. In the com-
pressed representationG, an entry corresponding
to thejth dimension for theith data item can then
be formally described as

Gij =
∑

hk∈Hǫ

∑

l:hk(l)=j

σk fil (4)

Procedurally speaking,G is constructed in the
incremental fashion described in Section 2, and
without the need to first construct the full fea-
ture count matrixF : As a feature is instantiated,
we updateG according to the values and posi-
tions indicated by the hash functions. Evaluat-
ing the hash functions is very cheap and done in
constant time. Most importantly, however; storing
the full set of index vectors—corresponding to the
d× k random matrixR in Equation 1—now sim-
ply amounts to storing the few random seed num-
bers (theas) for generating the hash functions. In
terms of this implicit representation ofR, no extra
overhead is associated with increasing the dimen-
sionality of the feature space (d) or the reduced
space (k), or the number of training examples (n).

In theory, implementing the random index vec-
tors in terms of universal hashing means introduc-
ing some new dependencies in our mappings. The
lemma in Equation 3 gives the probability of a
given hash-function mapping two different given
keys to the same value, i.e.hi(x) = hi(y). How-
ever, given that each index assignment assumes a
one-to-many mapping, we would also like to avoid
that two different functions map the same key to
the same value, i.e.hi(x)=hj(x). In practice, this
proves to be a minimal concern, with collisions of
this sort occurring with an observed probability of
roughly 1

2m .

2Note that the dimensionalityk will always be specified
as a power of two, given the definition of the multiplicative
hash functions in Equation 2.
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Note that, the incrementality of RI means that
the method generally lends itself well toparal-
lelization or stream processing. For example, to
combine or update different context vectors accu-
mulated for a given word, we simply add them to-
gether. This presupposes that the assignment of in-
dex vectors is shared and known across subtasks or
machines, however (to ensure coherent mappings).
With HRI, parallelization is even simpler, as the
only knowledge that needs to be shared is the seed
numbers for the hash functions.

So far we have occupied ourselves with a par-
ticular method forcomputinga reduced spaceG.
In the next section we shift focus slightly and turn
to look at some potential pitfalls ofworking within
such a reduced space, as produced by random pro-
jection based methods in general.

4 Caveats

Although methods based on random projections,
such as random indexing, typically come with the
promise of reducing memory load and computa-
tional cost, there are certain limitations and possi-
ble caveats that are worth bearing in mind and that
are often overlooked in the literature.

First, if the original input spaceF is very
sparse, as is indeed often the case in NLP settings,
the reduced spaceG will typically be much more
dense—the exact degree depending on the num-
ber of non-zero entries specified inR. In other
words, the absolute number of non-zero elements
will then be higher for the reduced space than the
original space. In practice, the cost of storing
a given matrix depends not on its dimensionality
alone, but its number of non-zero elements. The
reason, of course, is that any zero-valued element
can simply be ignored. This means that storing
the reduced space might actually end up requir-
ing more memory than storing the original non-
reduced space.

Naturally, the same line of argument also ap-
plies to computational aspects. Assuming a non-
naive implementation, the computational cost of
many vector operations depends less on the total
number dimensions and more on the number of
non-zero elements of the vectors. This means that
certain common operations such as dot-products,
euclidean distance, etc., might takelonger to com-
pute in the reduced (but more dense) space com-
pared to the non-reduced (but more sparse) space.

5 #Hashing—A Trending Topic

There has recently been a series of papers in the
NLP and ML literature on the use of hashing
for constructing faster and more compact mod-
els. Several authors have explored the use of hash-
based randomized data structures for storing ap-
proximate frequency counts for large data sets,
such as the generalized notion of aBloom filter
used by Talbot and Osborne (2007) and Durme
and Lall (2009) in the context of language mod-
eling, or theCount-Min sketchused by Goyal et
al. (2010) for computing web-scale distributional
similarities. More closely related to the work pre-
sented in the current paper perhaps, is the notion
of hash kernelsintroduced by Shi et al. (2009)
and Weinberger et al. (2009) in the context of
SVM-based spam filtering and topic categoriza-
tion. With hash kernels, high-dimensional input
vectors are compressed using a single hash func-
tion that maps the original features into a smaller
range of indices, and dot-products are then com-
puted between these hash maps. For an input vec-
tor f ∈ ℜd, and for some hash functionsh : U →
C andξ : U → {±1}, the ith element of a hash
mapφ(f) is defined as

φ
(h,ξ)
i (f) =

∑

j:h(j)=i

ξ(j)fj (5)

Each element in the hash map is given by a signed
sum of all coordinates with the same hash code
(Weinberger et al., 2009). Shi et al. (2009) ar-
gue that by using only a single hash function, hash
kernelspreserve sparsity. However, to reduce the
information loss caused by collisions in the hash
map, the original features are explicitlyduplicated
prior to hashing (Weinberger et al., 2009). Each
level of duplication will incur a doubling in the di-
mensionalityd of the original feature spaceF . In
contrast, with the RI methodology, the same effect
is achieved by simply increasing the ratio of non-
zeros in the index vectors. On this background,
we see that the signed sum in the hash kernel of
Weinberger et al. (2009) is essentially equivalent
to the result of adding ternary index vectors in
the random indexing approach of Kanerva et al.
(2000). Moreover, when comparing hash kernels
to the general approach of random projections,
Weinberger et al. (2009) note that one advantage
of the former is that there is no need for storing
the random matrices. With hashed RI, however,
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we need not store neither the random projection
matrixR nor the original feature matrixF .

Another line of work bearing resemblance to
(H)RI is the use ofLocality Sensitive Hashing
(LSH) for identifying semantically similar words
by Ravichandran et al. (2005). LSH is a method
for fast but approximate nearest neighbor search
based on compactbit signaturescreated for each
data point or vector. These signatures are created
by applying multiple binary hash functions to each
point in a way so that close items are hashed to the
same buckets with a high probability. The cosine
similarity of the original word vectors is then ap-
proximated by the hamming distance of their bit
signatures. In the work of Ravichandran et al.
(2005), the value of each hash function ({0,1})
is defined by the sign of the dot product between
each word vector and a random vector. The bit sig-
natures produced by LSH can be viewed as similar
to the reduced representations produced by HRI,
although the underlying perspective on the process
itself can at first seem rather different: While the
LSH approach of Ravichandran et al. (2005) de-
fines hash functions over points in terms of ran-
dom projections, HRI defines random projections
in terms of hash functions over dimensions. More-
over, a modified version of projection-based LSH
is presented by Van Durme and Lall (2010) for on-
line generation of bit signatures for datastreams.
Taking advantage of the fact that the operations in
the dot products between the data vectors and the
random “hash vectors” are linear, Van Durme and
Lall (2010) replace the dot products with individ-
ual additions corresponding to the random values
associated with each feature as it is encountered in
the stream, thereby taking a step towards the incre-
mentality that we have several times pointed out in
relation to random indexing above.

The final example of related work that we
will be discussing is the feature hashing ap-
proach of Ganchev and Dredze (2008). Target-
ing NLP applications on resource constrained de-
vices, Ganchev and Dredze (2008) suggestelimi-
nating the symbol-table(also known as the alpha-
bet, dictionary, etc.), replacing it instead with a
hash function. Tests on a range of tasks (senti-
ment analysis, spam detection, topic labeling, etc.)
shows “tolerable” degradation of performance rel-
ative to savings in storage (Ganchev and Dredze,
2008). A similar approach was taken by Bohnet
(2010), who uses feature hashing for speeding up

the feature handling in a data-driven dependency
parser. It is important to note that, rather than be-
ing primarily aimed at dimensionality reduction,
the approach of Ganchev and Dredze (2008) aims
to save resources by discarding the symbol-table.
In fact, in order to reduce the chances of collisions,
the assumed dimensionality is instead sometimes
greatlyincreasedusing this approach, as in the de-
pendency parsing experiments of Bohnet (2010).

An interesting direction for future work would
be to combine HRI with the feature hashing ap-
proach of Ganchev and Dredze (2008), i.e. apply-
ing HRI on the symbolic feature representations
directly. It should be noted that when learning
a model that is to be applied to unseen test ex-
amples, the expected savings in terms of storage
would likely come at the cost of reduced accu-
racy. The reason is that the space of possible
features instantiated by our feature templates is
typically not closed, in the sense that we might
expect to instantiate features during testing that
were not observed during training (e.g. unseenn-
grams). Usually such unseen features will be fil-
tered out and discarded as they will not correspond
to an entry in the model’s symbol-table. How-
ever, when by-passing the symbol-table and ap-
plying the feature hashing directly on the string
level, we risk introducing some noise by mapping
such previously unknown features into our feature
vectors. If, on the other hand, we are to work
within the “closed” vector space itself (for exam-
ple, searching for nearest neighbors among given
points in a semantic space model, as opposed to
using the space as input for estimating a classifier),
such worries would not arise. Although it would
mean giving up the possibility to assign meaning
to specific dimensions, that is something we have
already done when applying random indexing in
first place.

6 Conclusion

While random indexing (RI) is a well-established
technique for dimensionality reduction, this pa-
per has described a novel reformulation of the
method, dubbed hashed random indexing (HRI),
that eliminates the need to store any random vec-
tors, thereby substantially reducing the memory
footprint of the method. This is accomplished by
replacing the so-called index vectors or random
labels with a set of hash-functions. We further-
more suggest that these functions are drawn from
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the family of multiplicative universal hash func-
tions described by Dietzfelbinger et al. (1997). Fi-
nally, we have also noted some general caveats re-
garding dimensionality reduction methods based
on random projections, random indexing included,
as well as discussed the relation of (H)RI to other
approaches employing various notions of feature
hashing.
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