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Abstract 2 Random Indexing
This paper introduces a modified version  Random indexing was initially introduced by Kan-
of Random Indexing, a technique for di-  erva et al. (2000) for reducing the dimensional-

mensionality reduction based on random ity of word-by-document vector spaces, model-
projections. We here describe how Rl can  jng the semantic similarity of words in terms of
be efficiently implemented using the no-  their contextual distribution. Proving an attrac-
tion of universal hashing. This eliminates tjye alternative (or complement) to more costly di-
the need to store any random vectors, re-  mensionality reduction techniques such as singu-
placing them instead with a small number  |ar value decomposition (SVD), it has since been
of hash-functions, thereby dramatically re-  extensively used for constructing compact seman-
ducing the memory footprint. We dub  tic space models (Karlgren and Sahlgren, 2001;
this reformulated version of the method Sah]gren, 2005; Widdows and Ferraro, 2009) Be-
Hashed Random Indexing (HRI). yond this setting of distributional word similarity,
1 Introduction Velldal (2010) applied RI as a general means of
. ) ) . ] reducing the feature space of a classification prob-
Random indexingRY) is a technique for dimen- o \working with SVM-based uncertainty detec-
sionality reduction that was initially introduced by tion, Velldal (2010) showed that Rl could com-
Kanerva et al. (2000) for constructing compactyess the feature space by two orders of magnitude
word-by-context vector spaces for modeling theithqut sacrificing classifier performance.
semantic similarity of words. The method is re-  aq the current paper has more of a theoretical
lated to a family of techniques based @mdom 5.5, we will not assume any particular type of
projections but comes with several particular ad- 454 or application. We will, however, assume that
vantages in terms of computational simplicity andgsch data item is represented by-dimensional
incrementality. In this paper we introduce a mod-fg4tre vectorf:» e %% Givenn examples and
ified version of R which we calhashed random ; feares, the vectors can be thought of as rows
indexing(HRI), where we replace the so-called in-;, a matrix F € %%, The purpose of Rl is to
dex vectors by a small set bash functions avoid working with the original (possibly huge)
We will start by describing the basic methodol- fa5ture matrixe e =4, replacing it instead with
ogy of random indexing as introduced by Kanervay gmajier matrixG € 7% wherek < d. The
et al. (2000), also highlighting the relation to ran- g method constructs this compressed representa-
dom projections. In Section 3 we then describe thgjy, of the data inG by incrementally accumulat-
notion ofuniversal families of hash functionand ing so-calledindex vectorassigned to each of the
in particularmultiplicative universal hashin@@i-  ; faatures (Sahlgren, 2005). The process can be
etzfelbinger et al., 1997), before finally showing described by the following two simple steps:
how RI can be efficiently implemented using hash
functions drawn from such families. In Section 4 - When a new feature is instantiated, it is as-
we also include some general caveats regarding di-  signed a randomly generated vector of a fixed
mensionality reduction based on random projec-  dimensionalityk, consisting of a small num-
tions. Finally, Section 5 provides an overview of ber of —1s and+1s (the remaining elements
other related work based on feature hashing, as being 0). This is then the so-call@tlex vec-
well as discussing possible future directions. tor or random labelof the feature.
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- The vector representing a given training ex- With RI, the index vector of theith fea-
ample (thejth row of G represents thgth  ture corresponds to théh row of R in Equa-
example) is then constructed by simply sum-tion 1. Moreover, fore non-zeros, the entries of
ming the random index vectors of its features.the index vectors:;; € {+1,0,—1} will then

be distributed with probabilities corresponding to
The parameters of RI that need to be specified ar@e/T2 k—e ¢/2

the number of non-zeros)(and the dimension- Onekimp%rtant advantage of the particular ran-
ality (k) of the ternary index vectors. As noted 4om indexing approach is that the fulk d feature

by Sahlgren (2005), if the index vectors had beenyarix 17 never needs to be explicitly computed or
specified to consist of only one position of Valuerepresented (Karlgren and Sahligren, 2001). As de-
1 for each feature, i.eorthogonalvectors ofk=d  scriped above, with Rl we construct the represen-
dimensions, the two steps above would have proggion of the data irG by incrementally accumu-
duced the standard feature matfix With RI, one  |a1ing the index vectors assigned to each feature.
instead uses randomly initializek-dimensional  This means that the dimension reduction is only
index vectors. As observed by Hecht-Nielsenmpicit, in the sense that the compressed repre-
(1994), high-dimensional vectors having randomgeniation in is constructed directly. With the in-

directions are very likely to belose to orthogo- {quction ofhashedrandom indexing below, we
nal, and the matrixG can in this sense be viewed 515 eliminate the need to explicitly represént

as an approximation af (in terms of the relative
distances of rows). Moreover, we can expect thig  |ndexing by Universal Hashing
approximation to be better the higher we Bet
Note that, in the traditional setting of semanticIn the traditional implementation of RI, a ran-
space modeling, RI is applied on tigpe level domly generated index vector is assigned to each
accumulating global context vectors that represenfeature as it is first encountered. If the same fea-
the aggregated distribution of words across a corture is encountered again later, that same index
pus. When used more generally for compressingector is simply retrieved by look-up. For each
the feature space of a learning problem as in (Vellof the d distinct features (which for typical NLP
dal, 2010), RI can also be applied at ttwken Problems can number hundreds of thousands or
level producing a compact representation of eaclinillions), a separate index vector must be stored.
training instance. An attractive feature of Rl is that is it allows us
Mathematically, Rl can be seen as part of a0 think about dimensionality reduction in terms
larger family of dimension reduction techniquesOf data structures, rather than as a separate pro-
based omandom projectionsand in particular the cess. In fact, taking a step back, the accumulated
“neuronal” version described by Vempala (2004).index vectors in the reduced spaceare remi-
Such methods work by multiplying the feature ma-hiscent of probabilistic data structures ligéoom
trix F € ®">4 by a random matrixk € R¢<* for filters and varioussketchrepresentations. These
k < d, thereby reducing the number of dimen-arehash-basediata structures, however, designed
sions fromd to k- for compactly representing things like set mem-
bership and frequency counts in an approximate
FR =G ¢ <k with k < d (1) way. In asimilar fashion, we here propose to save
resources in Rl by using a small sethafsh func-
Given thatk is sufficiently high (logarithmic im),  tionsto implicitly represent the index vectors. As
the Johnson-Lindenstrauss lemma (Johnson arnwle shall see, this eliminates the need for storing
Lindenstrauss, 1984) tells us that the pairwise disthe random vectors iR € R4,
tances inf’ can be preserved with high probabil- Leth be a hash function that maps from a set of
ity within the lower-dimensional spacg& (Li et  hash keydJ into some smaller set of hash codes
al., 2006). While much work on random projec- C. We here assume both andC to beintegers
tions for producing such so-called JL-embeddinggwithout loss of generality as strings can be con-
assumer;; having a standard normal distribution, verted to integers). More precisely; will cor-
Achlioptas (2001) shows that the only requirementrespond to the dimensions of the original input
onr;; isthat they are i.i.d. with zero mean and unitspaceF’, andC' will correspond to dimensions in
variance. the lower-dimensional index vectors. Given that

225



Erik Velldal

the Rl method relies on a one-to-many mapping Returning to the method of random indexing,
from features into index vector positions, we needve now have a principled way of very efficiently
to usemultiple distinct hash functionsFor this computing and representing the random index vec-
purpose, the notion dfiniversal families of hash tors. Any set ofi index vectorsk in k=2 dimen-
functionscomes in handy. This concept, intro- siong and withe non-zero elements can now be
duced by Carter and Wegman (1979), refers to amplicitly representedoy a set of hash functions
method for randomly generating hash functionsH¢ = {h,1,..., hq} C H,,. Each hash function
h; : U — C from a family of functionsH that h, € H®computes one non-zero element position.
also comes with certain guarantees on the probaAle randomly picks of the functions to indicate
bility of collisions(i.e. the chances df; mapping —1s, and label the remaining halfls. Letoy
two distinct keys into the same code). There excorrespondingly evaluate to1 or —1, depending
ists several approaches to defining such universan whetherh,, is selected to map into index posi-
classes, typically based on computations seedetbns with positive or negative values. In the com-
by some large prime, as in the original proposalpressed representati@n, an entry corresponding
by Carter and Wegman (1979). For the imple-to the jth dimension for théth data item can then
mentation of HRI, however, we propose to insteacbe formally described as

select functions from the particularly simple class

of multiplicative universal hashingtroduced by Gij = Z Z ok fi (4)
Dietzfelbinger et al. (1997), which provides map- hi€HE L:hy(l)=j

pings that can be evaluated very efficiently.

More precisely, Dietzfelbinger et al. (1997) de- Procedurally speaking(+ is constructed in the
fine a universal family of mappings frorbit incremental fashion described in Section 2, and

keysto m-bit indices Let U={0,...,2!—1} without the need to first construct the full fea-
and C={0,...,2m—1}. Furthermore, let4 ture count matrixF: As a feature is instantiated,

be the set of positive odd-bit numbers, i.e. W€ updateG according to the values and posi-
A={a|0 < a < 2 anda is odd}. This then tions indicated by the hash functions. Evaluat-

defines a family of universal hash functionsing the hash functions is very cheap and done in
Hy = {hela € A}, with h, computed as: constant time. Most importantly, however; storing
the full set of index vectors—corresponding to the
he(z) = (az mod 21) dival=™ forz e U (2) d x krandom matrixR in Equation 1—now sim-
ply amounts to storing the few random seed num-
wheremod refers to the modulo operation and bers (theus) for generating the hash functions. In
div means integer division. By randomly picking terms of this implicit representation &, no extra
anumbemr € A, we generate a new hash functionoverhead is associated with increasing the dimen-
h, from the set o2~ distinct hash functions in sionality of the feature spacel)(or the reduced
the clasgd; ,,,. Note that, as the bits of the keys arespace k), or the number of training examples)(
typically assumed fixed to some value like- 32, In theory, implementing the random index vec-
we will write H ,,, as simplyH,,,. tors in terms of universal hashing means introduc-
As noted by Dietzfelbinger et al. (1997), the ing some new dependencies in our mappings. The
fact that the arithmetic involved in Equation 2 is lemma in Equation 3 gives the probability of a
based on powers of two, allows the mapping togiven hash-function mapping two different given
be efficiently implemented at the level of simple keys to the same value, i.B;(z) = h;(y). How-
bitwise operations. Dietzfelbinger et al. (1997) ever, given that each index assignment assumes a
also prove thaft?,, is so-called2-universal This  one-to-many mapping, we would also like to avoid
means that, for two distinct keysandy, the func-  that two different functions map the same key to
tion h, obeys the following lemma: the same value, i.é,;(x) =h;(x). In practice, this
proves to be a minimal concern, with collisions of

1 . . . .
Prob (he(z) = ha(y)) < S (3) this sort occurring with an observed probability of
roughly 55
1The modulo operation can be computed as bit-wise
AND (e.g. ymod 2" = y anD (2 — 1)), and the in- 2Note that the dimensionality will always be specified
teger division can be done by simple bit-shifting (e.g.as a power of two, given the definition of the multiplicative
y div 2° = y RIGHT-SHIFT-BY ). hash functions in Equation 2.
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Note that, the incrementality of Rl means that5 #Hashing—A Trending Topic
the method generally lends itself well fmaral-
lelization or stream processing For example, to There has recently been a series of papers in the
combine or update different context vectors accuNLP and ML literature on the use of hashing
mulated for a given word, we simply add them to-for constructing faster and more compact mod-
gether. This presupposes that the assignment of ii)s. Several authors have explored the use of hash-
dex vectors is shared and known across subtasks Bgsed randomized data structures for storing ap-
machines, however (to ensure coherentmappings?.rOXimate frequency counts for large data sets,
With HRI, parallelization is even simpler, as the SUch as the generalized notion oB&om filter

only knowledge that needs to be shared is the seeéf€d by Talbot and Osborne (2007) and Durme
numbers for the hash functions. and Lall (2009) in the context of language mod-

So far we have occupied ourselves with a par—e"ng’ or theCount-Min sketclused by Goyal et

ticular method forcomputinga reduced spac. al. (2010) for computing web-scale distributional

In the next section we shift focus slightly and tumsimilarit.ies. More closely related to thg work prg-
to look at some potential pitfalls @forking within sented in the current paper perhaps, is the notion

such a reduced space, as produced by random pr?)"i dhavsvh _kgrnelsntrtodLIJcegogg S.h' tf]t al. (2t00t9) f
jection based methods in general. an einberger et al. ( ) in the context o

SVM-based spam filtering and topic categoriza-

tion. With hash kernels, high-dimensional input
4 Caveats vectors are compressed using a single hash func-

tion that maps the original features into a smaller
Although methods based on random projectionsyange of indices, and dot-products are then com-
such as random indexing, typically come with thepyted between these hash maps. For an input vec-
promise of reducing memory load and computator ¢ R¢, and for some hash functiors: U —

tional cost, there are certain limitations and possit and¢ : 7 — {+1}, theith element of a hash
ble caveats that are worth bearing in mind and thafap( #) is defined as

are often overlooked in the literature.

First, if the original input space’ is very ¢(h,§) f) = €G) i (5)
sparse as is indeed often the case in NLP settings, o) j:%_i s
the reduced spad@ will typically be much more

dense—the exact degree depending on the nunfzach element in the hash map is given by a signed
ber of non-zero entries specified . In other  sum of all coordinates with the same hash code
words, the absolute number of non-zero elementpieinberger et al., 2009). Shi et al. (2009) ar-
will then be hlgher for the reduced Space than th%ue that by using 0n|y a Sing|e hash function, hash
original space. In practice, the cost of storingkernelspreserve sparsityHowever, to reduce the
a given matrix depends not on its dimensionalityinformation loss caused by collisions in the hash
alone, but its number of non-zero elements. ThQnap, the Origina| features are exp|iciﬂy|p|icated
reason, of course, is that any zero-valued elemerﬁrior to hashing (Weinberger et al., 2009). Each
can simply be ignored. This means that storingevel of duplication will incur a doubling in the di-
the reduced space might actually end up requirmensionalityd of the original feature spack. In
ing more memory than storing the original non- contrast, with the Rl methodology, the same effect
reduced space. is achieved by simply increasing the ratio of non-
Naturally, the same line of argument also ap-zeros in the index vectors. On this background,
plies to computational aspects. Assuming a honwe see that the signed sum in the hash kernel of
naive implementation, the computational cost ofWeinberger et al. (2009) is essentially equivalent
many vector operations depends less on the totab the result of adding ternary index vectors in
number dimensions and more on the number ofthe random indexing approach of Kanerva et al.
non-zero elements of the vectors. This means thg2000). Moreover, when comparing hash kernels
certain common operations such as dot-productdp the general approach of random projections,
euclidean distance, etc., might tdkagerto com-  Weinberger et al. (2009) note that one advantage
pute in the reduced (but more dense) space conof the former is that there is no need for storing
pared to the non-reduced (but more sparse) spacthe random matrices. With hashed RI, however,
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we need not store neither the random projectiorthe feature handling in a data-driven dependency
matrix R nor the original feature matrix'. parser. It is important to note that, rather than be-
ing primarily aimed at dimensionality reduction,
the approach of Ganchev and Dredze (2008) aims
to save resources by discarding the symbol-table.
dIn fact, in order to reduce the chances of collisions,
hhe assumed dimensionality is instead sometimes

Another line of work bearing resemblance to
(H)RI is the use ofLocality Sensitive Hashing
(LSH) for identifying semantically similar words
by Ravichandran et al. (2005). LSH is a metho
for fast but approximate nearest neighbor searc . . : )
based on compadtit signaturescreated for each greatlymcrease_djsmg th|_s approach, as in the de-
data point or vector. These signatures are creatddf nde_ncy par_smg gxpe_rlments of Bohnet (2010).
by applying multiple binary hash functions to each An mtere_stlng dwecpon for future work \_/vould
point in a way so that close items are hashed to thB€ t©© combine HRI with the feature hashing ap-
same buckets with a high probability. The cosine_proaCh of Ganchev and' Dredze (2008), i.e. aPp'y'
similarity of the original word vectors is then ap- ing HRI on the symbolic feature representations

proximated by the hamming distance of their bitdlrectly. It sh_ould be note_d that when learning
signatures. In the work of Ravichandran et al2 model that is to be applled FO unseen test ex-
(2005), the value of each hash functiofo(L}) amplesZ the expected savings in terms of storage
is defined by the sign of the dot product betweenVould likely come at the cost of reduced accu-
each word vector and a random vector. The bit sigiacy- The reason is that the space of possible
natures produced by LSH can be viewed as similaf2{Ureés instantiated by our feature templates is
to the reduced representations produced by HRFYPically not closed, in the sense that we might
although the underlying perspective on the proces@XpeCt lo'instantiate fgatureg .durlng testing that
itself can at first seem rather different: While the Vere Nnot observed during training (e.g. unseen
LSH approach of Ravichandran et al. (2005) dedrams). Usually such unseen features will be fil-

fines hash functions over points in terms of ran_tered out and discarded as they will not correspond

dom projections, HRI defines random projections!® an entry in the model's symbol-table. How-

in terms of hash functions over dimensions. More-€V€» When by-passing the symbol-table and ap-
over, a modified version of projection-based LSHPYINg the feature hashing directly on the string
is presented by Van Durme and Lall (2010) for on-/€V€l, we risk introducing some noise by mapping
line generation of bit signatures for datieams such previously unknown features into our feature
Taking advantage of the fact that the operations if€Ctors- If on th"e other hand, we are to work
the dot products between the data vectors and ghithin the F:Iosed vector space itself (for exam-
random “hash vectors” are linear, Van Durme anoOIe.’ segrchlng for nearest neighbors among given
Lall (2010) replace the dot products with individ- POINtS In @ semantic space model, as opposed to
ual additions corresponding to the random value&'Sind the space as input for estimating a classifier),
associated with each feature as it is encountered #HCh worries would not arise. Although it would
the stream, thereby taking a step towards the incrd1€an giving up the possibility to assign meaning

mentality that we have several times pointed out if specific dimensions, th"?‘t IS somethmg we haye
relation to random indexing above. already done when applying random indexing in
first place.
The final example of related work that we

will be discussing is the feature hashing ap-g Conclusion

proach of Ganchev and Dredze (2008). Target-

ing NLP applications on resource constrained deWhile random indexing (RI) is a well-established
vices, Ganchev and Dredze (2008) suggdishi- technique for dimensionality reduction, this pa-
nating the symbol-tablélso known as the alpha- per has described a novel reformulation of the
bet, dictionary, etc.), replacing it instead with amethod, dubbed hashed random indexing (HRI),
hash function. Tests on a range of tasks (sentithat eliminates the need to store any random vec-
ment analysis, spam detection, topic labeling, etc.ors, thereby substantially reducing the memory
shows “tolerable” degradation of performance rel-footprint of the method. This is accomplished by
ative to savings in storage (Ganchev and Dredzeagplacing the so-called index vectors or random
2008). A similar approach was taken by Bohnetlabels with a set of hash-functions. We further-
(2010), who uses feature hashing for speeding umore suggest that these functions are drawn from
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the family of multiplicative universal hash func- Jussi Karlgren and Magnus Sahlgren. 2001. From
tions described by Dietzfelbinger et al. (1997). Fi- Wwords to understanding. In Y. Uesaka, P. Kanerva,
rlly we hiave 1o oted some general caveatsre- A cdtooundats of e o
garding dimensionality reduction methods based

on random projections, random indexing included Ping Li, Trevor Hastie, and Kenneth Church. 2006.
as well as discussed the relation of (H)RI to other Very sparse random projections. Rroceedings

. . . of the Twelfth ACM SIGKDD International Confer-
approaches employing various notions of feature ence on Knowledge Discovery and Data Mining

hashing. Philadelphia, USA.
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