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Abstract

PP attachment has attracted considerable in-
terest the last two decades. The standard
set-up has been to extract quadruples of
verbs, direct objects, prepositions and prepo-
sitional complements from the Wall Street
Journal and classify them as either low or
high attachments. State-of-the-art results al-
most equal human performance in the stan-
dard set-up. Recently, however, Atterer and
Schütze (2007) has questioned this methodol-
ogy. In this paper, we show that state-of-the-
art results can be achieved by simpler means
than what has previously been shown, using
graphical models, but also that state-of-the-
art parsers perform insignificantly worse than
state-of-the-art PP attachment classifiers. This
questions the usefulness of previous studies
of PP attachment, even if the methodology in
these studies is sound.

1 Introduction

One of the main challenges in parsing has for a long
time been assumed to be the resolution of ambiguity.
One frequently studied type of ambiguity is preposi-
tional phrase (PP) attachment. Given a quadruple of
a verb, a direct object, a preposition and a preposi-
tional complement (the head of the NP2 embedded
in the PP), PP attachment – or PP re-attachment –
is the task of determining whether the PP should at-
tach to the verb (V) or the direct object (N). PP at-
tachment is thus construed as a binary classification
problem, typically with labels N and V.

The standard features for PP-attachment used in
Ratnaparkhi et al. (1994) and subsequent studies
are listed in Figure 1. The seven features are the

ones in rows 2–8. A distributional cluster is a set of
words that have similar distributions according to
a hierarchical clustering algorithm, typically based
on probabilities in a bigram language model. The
granularity of clusters varies, but we will use a 1000
clusters in our experiments below.

Example. To see the complexity of this learning
problem, consider the following four examples:

(1) (Andy Warhol) painted paintings with 3D-glasses.

(2) (Andy Warhol) painted [portraits with 3D-glasses].

(3) (Andy Warhol) painted [paintings with ice-cream].

(4) (Andy Warhol) painted portraits with ice-cream.

The square brackets indicate likely low attach-
ment, i.e. that the prepositional phrase most nat-
urally modifies the noun. Note that the four
data points have an XOR-like distribution in two-
dimensional space:

3D-glasses V N

ice-cream N V
paintings portraits

The distributional cluster features are of no
help here, since there is a function from words
to clusters. In sum, the learning problem has few
dimensions, but variables are highly interdependent.

The interdependence of the variables given the class,
illustrated by the examples above, was initially ig-
nored in studies such as Ratnaparkhi et al. (1994)
and Collins and Brooks (1995). However, it was
the interdependence of the variables that motivated
Toutanova et al. (2004) (who report the best result
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1 label (N or V)
2 verb
3 verb (distributional cluster)
4 direct object
5 direct object (distributional cluster)
6 preposition
7 prepositional complement
8 prepositional complement (distributional cluster)

Figure 1: Standard features in PP-attachment.

in the literature on the standard Wall Street Jour-
nal dataset for English PP attachment) to consider
graphical models.

The most important of our seven features is un-
doubtedly the prepositions (feature 6). This has
been noted before, for example by Collins and
Brooks (1995) who base their backed-off estimate
on this observation (Sect. 6): ”A key observation in
choosing between these tuples is that the preposi-
tion is particularly important to the attachment deci-
sion.” Moreover, selecting PP attachment site only
by the preposition typically provides a relatively
strong baseline. This observation was also central
in the models used by Toutanova et al. (2004).

Previous studies are reviewed in Sect. 2. Atterer
and Schütze (2007) recently questioned the method-
ology used in these studies, however. We briefly
summarize their discussion in Sect. 3.

Sect. 4 presents two PP attachment algorithms
based on graphical models that are simpler than the
one proposed by Toutanova et al. (2004), yet per-
form as well as theirs. This is an interesting empiri-
cal result independently of whether the methodology
in re-attachment studies is sound or not.

Sect. 5 qualifies the discussion in Atterer and
Schütze (2007), showing that state-of-the-art depen-
dency parsers perform about as well as state-of-the-
art re-attachment classifiers on the standard PP at-
tachment dataset. This strengthens the claim in At-
terer and Schütze (2007) that PP re-attachment stud-
ies are of little practical relevance.

2 Previous studies

Collins and Brooks (1995) use a simple backed-off
estimate for modeling PP attachment. In a way sim-
ilar to nearest-neighbor learning, they first look for
identical quadruples in the training data, then for

triples and then for pairs. They report a score of
84.5% on the Wall Street Journal dataset. This is
identical to the score reported with cross-product
features above. It is also similar to what was re-
ported in Abney et al. (1999) (84.6%). It is also sim-
ilar to what was achieved by Vanschoenwinkel and
Manderick (2003) using SVMs and kernel methods
(84.8%).

Toutanova et al. (2004) present an approach to PP
attachment similar to ours. They manually construct
a Markov chain Bayesian network with only two in-
dependence assumptions; namely, that given a ver-
bal attachment, the second noun is independent of
the first noun, and that given a nominal attachment,
the second noun is independent of the verb. The pa-
rameters of the graphical model are learned discrim-
inatively by random walks. In addition to the train-
ing data, Toutanova et al. (2004) use large amounts
of automatically parsed quadruples from the BLLIP
corpus (Charniak, 2000). They also use morphologi-
cal analysis and WordNet features to achieve the best
reported results in the literature. Without these ad-
ditional resources they report an accuracy of 85.9%.
Using morphological analysis they achieve 86.2%,
and using all features, incl. WordNet features, they
achieve 87.6% which is very close to human perfor-
mance. One of the algorithms proposed below will
be similar to this algorithm, but we will learn the
graph structure automatically from the training data
using no additional resources.

In this paper we will only consider results ob-
tained without additional manually constructed re-
sources. It should be mentioned that Zhao and
Lin (2004) report a result of 86.5% on this data
set, using more advanced distributional clusters and
nearest neighbor classification. Their study is ex-
ploratory, and they report several results for the test
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data, ranging from 83.1% to 86.5%.

Finally, there has been some work in what
has been referred to as ”unsupervised” PP attach-
ment (Ratnaparkhi, 1998; Kawahara and Kurohashi,
2005). The idea in this work is to extract unam-
biguous examples of triples or quadruples from large
amounts of raw data, typically based on automat-
ically inferred part-of-speech. The methods sub-
sequently used are standard supervised techniques,
so in a way this can be seen as supervised learn-
ing with outlier detection on large amounts of data.
It is therefore not that surprising that results are
good. Ratnaparkhi (1998), who pioneered this ap-
proach, report an accuracy of 81.9% (compared to
81.6% in his earlier work), and Kawahara and Kuro-
hashi (2005) report an impressive 87.3%, but in
an explorative study where different results are re-
ported.

3 Is re-attachment sound?

Previous studies of PP attachment have, as should
be clear now, assumed an oracle that provides pre-
liminary syntactic structure, i.e. extracts the relevant
quadruples from gold-standard parse trees. The task
is then to re-attach the involved PPs. PP attach-
ment classifiers perform considerably worse in the
absence of oracles, however.

Atterer and Schütze (2007) present empirical ev-
idence for this and discuss the difficulties with the
standard methodology of using extracted quadru-
ples. One problem arises if the parser does not find
the direct object and the prepositional phrase and
then does not recognize the ambiguity. It is also
harder to decide low or high attachment if the head
words of the direct object and the prepositional com-
plement are not correctly identified. Accuracy with-
out oracles drops about 5%.

Atterer and Schütze (2007) also argue that state-
of-the-art parsers do almost as good attachment de-
cisions as re-attachers in realistic scenarios, i.e. in
the absence of oracles. In Sect. 5 we show that state-
of-the-artalso do almost as good attachment deci-
sions as attachment classifiers when oracle quadru-
ples are provided.

4 Using graphical models for PP
attachment

Graphical models (Jordan, 1998) are a happy mar-
riage between probability theory and graph the-
ory, and graphical models are best understood as a
framework for talking about and generalizing over
various known models, including mixture models,
factor analysis, hidden Markov models, Kalman fil-
ters and Ising models. Graphical models are also
ways of compactly representing joint probability
distributions. Their discriminative analogues, con-
ditional random fields (Lafferty et al., 2001), which
model conditional probabilities directly rather than
joint probabilities, will also be included under the
term graphical models here. We will refer to gener-
ative graphical models as Bayesian networks, and to
discriminative graphical models as conditional ran-
dom fields. In general, graphical models are graphs
in which each node represents a variable whose dis-
tribution is to be inferred, and edges represent de-
pendencies.

4.1 Bayesian networks with cross-product of
features

Using Bayesian networks we need a method for
learning directed graphs over our variables and a
method for doing inference in them. This is in con-
trast to Toutanova et al. (2004) who designed the
Bayesian network by hand, guided by linguistic in-
tuition. In the experiments below, we focus onhill
climbing for learning graphs (Jordan, 1998). Esti-
mation or inference is simple. The choice of us-
ing hill climbing is primarily motivated by replica-
bility and computational efficiency, but our initial
experiments showed that more advanced methods
such as K2 or conditional independence tests did
not lead to better results on development data. We
also restrict ourselves to Bayesian networks where
all nodes have at most one parent. In other words,
our graphical models are unordered trees. Experi-
ments showed that allowing for two or three parents
did not lead to better results either. This means that
our graphical models are much simpler than the ones
used in Toutanova et al. (2004).

Theestimation method is simply to compute

argmax
y

P (Y = y|parents(Y ))
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1 xi

2 xi+1

3 xi+2

4 ci(xi)
5 ci+1(xi+1)
6 ci+2(xi+2)
7 cj(xi−1)

Figure 2: Feature template used in all experiments for
classifiercj .

Finally, we take the cross-product of the standard
features (Figure 1). Since some of these feature pairs
may be irrelevant, we use a particle swarm approach
to assign weights to each feature. In particular, we
use the RapidMiner 4.6 implementation of particle
swarm feature weighting with a default parameter
setting of 40 generations of size 6.1

4.2 Stacked conditional random fields

In conditional random fields, each node in our
graphs has an exponential family distribution. Some
variables are observed, whereas others are to be in-
ferred (in our case using a quasi-Newton approach).
In classification, there is really only one hidden vari-
able, but we will pretend that there are as many as
there are observable variables. The new hidden vari-
ables will just be copies of this variable.

In particular, we will assume chain graphs, i.e. a
subclass of the graphs considered in Bayesian net-
works. In addition, we will condition each hidden
variable on the corresponding observed variables
and the twosucceeding observable variables.2 The
full set of features is presented in Figure 2. A feature
ci(xi) means the prediction of the classifier trained
on sequences of lengthi prediction for nodei (its fi-
nal prediction). Note that these features are orthog-
onal to the features of the underlying classification
problem (Figure 1). The features of the classifica-
tion problem only affect the length of the sequences
that are given to our stacked sequential labeler.

Our learning algorithmC2C transforms ann-
dimensional classification problem to a sequence la-
beling task for sequences ofm length withm ≤ n.
In some cases we will group two or more variables

1http://rapid-i.com/
2The intuition here is that the preceding observable variables

are reflected in the previous classifier’s predictions; see below.

together in nodes, which is whym may be smaller
thann. This happens, for example, if we use both
word forms and distributional clusters to represent
words in PP attachment (in a way similar to Rat-
naparkhi et al. (1994)). Each node is then repre-
sented by two features, som = n

2 . Note also that
all sequences in our data will have the same length,
i.e. the number of attributes in the original classifi-
cation data set. Note also that the special case where
we groupn variables together reduces to standard
classification.

Otherwise (whenm = n) we will transform a
classification data set with data points:

yi xi1 xi2 . . . xin

into a sequence labeling task for sequences
xi1 . . . x

i
n.

The idea is then to trainn many models; the
smallest model will be trained on sequences of
length 1 (the first featurexi1 paired with the class
label), the next smallest model on sequences of two
nodes (x′1, x

′
2), and so on. The largest model will be

trained on the full length sequences. Each node will
be augmented with a prediction feature initialized as
’NULL’ for all nodes. Each model on sequences of
lengthj will be used to set the value of the prediction
feature of nodei in each sequence, basically repre-
senting the class prediction this far in the sequence.

So our model is in a way similar to ensemble-
based methods or corrective modeling, i.e. a form of
stacking (Wolpert, 1992). The smallest model in PP-
attachment may try to guess low or high attachment
based on the verb, for example. The next model sees
the next word, say the object noun, but also the class
predicted by the smaller model and tries to guess
whether the PP attaches to the verb or to the object
noun. The next model then sees the preposition also
and possibly corrects the guess, and finally the larger
model produces the final class prediction. Note that
the bigger models when predicting the label of node
xij both have access to the predictions of the smaller
models and its own last prediction forxij−1. Herein
lies the strength of our model.

The overall algorithm is sketched in Figure 3. In
the first line, we simply rewrite our classification
training and test sets, respectivelyT0 andT1, as se-
quential labeling data sets. Ifm = n, this amounts
to pairing the class label with all attributes and see-
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1: Tt = τ(T0), Ts = τ(T1)
2: for 1 ≤ i < m do
3: ci = train({x1 . . . xi|x1 . . .xm ∈ Tt})
4: y1 . . . yi = ci(x1 . . . xi)
5: xi[i] = yi # update prediction feature
6: end forcm = train(Tt)
7: for x1 . . .xm ∈ Ts do
8: for 1 ≤ i < m do
9: y1 . . . yi = ci(x1 . . . xi)

10: xi[i] = yi # update prediction feature
11: end for
12: y1 . . . ym = cm(x1 . . .xm)
13: return ym
14: end for

Figure 3:C2C.

ing the pairs of attributes and class labels as se-
quences. We then dom− 1 iterations. In each iter-
ation, we train a sequential labelerci on sequences
of i length inT0, 1 ≤ i < m (line 3). The sequen-
tial labeler is then applied to partial sequences, and
the final prediction (for nodei) is used to update the
prediction feature of this node. This information is
then used for training the classifier in the next itera-
tion. We return the prediction for the last node in the
sequences of lengthm in the test data.

4.3 Data

In our experiments we use the PP attachment dataset
presented in Ratnaparkhi et al. (1994).3 The dataset
contains 20,801 quadruples from the syntactically
annotated Wall Street Journal (Penn Treebank 0.5)
with attachment decisions for training, 4,039 for de-
velopment, and 3,097 for testing. Each quadruple
consists of a verb, a direct object, a preposition and
a prepositional complement, e.g.:

prepare dinner for family (V)
shipped crabs from province (V)
ran broadcast on way (N)
is apartment with floors (N)

Remember the label N means low attachment,
while V means that the preposition is a complement
of the verb. The quadruples are extracted from the
Wall Street Journal relying on manual annotation.
Consider some suggested lower and upper bounds

3ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData/

on this dataset:

Acc (%)

Majority baseline 59.0
Most likely for each preposition 72.2
Human (quadruples) 88.2
Human (sentences) 93.2

Majority baseline is the accuracy of a system that
always predict low attachment. Here, ’Most likely
for each preposition’ means use the attachment seen
most often in training data for the preposition seen in
the test quadruple. The human performance results
are taken from Ratnaparkhi et al. (1994), and are the
average performance of three treebanking experts on
a set of 300 randomly selected test events from the
Wall Street Journal corpus, first looking at the four
head words alone, then using the whole sentence.
The results are thus not directly comparable to those
obtained using the test section.

Ratnaparkhi et al. (1994) use the standard features
listed in Figure 1, but also suggest to usen-gram fea-
tures (1 ≤ n ≤ 4) over words and Brown clusters.
Ratnaparkhi et al. (1994) used logistic regression to
learn from these presentations.

In our experiments, we only use unigrams. Our
feature vectors are therefore very short; we use
eight features in the standard representation, namely
words and clusters of verbs, direct objects, preposi-
tions and prepositional complements, and four and
ten features in the two alternative representations.
Actually, since all prepositions belong to the same
cluster in our hierarchical clustering, we only need
to consider seven variables in the standard repre-
sentation. For reproduceability, we use the Brown
clusters available on the website that accompanies
Turian et al. (2010) withC = 1000, to build our
feature representations.

4.4 Results

We compare Bayesian networks andC2C with pre-
vious studies of PP attachment. Ratnaparkhi et
al. (1994) used logistic regression on standard fea-
tures. Since we do not use exactly the same hier-
archical clusters as they did, we include both his
reported results and results obtained with our fea-
ture representations using generalized iterative scal-
ing (GIS).4 Our graphical models are learned using

4http://homepages.inf.ed.ac.uk/lzhang10/LogRegtoolkit.html
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hill climbing and with the restriction that each node
has at most one parent (P=1).

Our results are presented in Figure 4. Note that
both our approaches perform as good as the ap-
proach in Toutanova et al. (2004).

5 How well do parsers perform?

PP attachment became an interesting topic with Rat-
naparkhi et al. (1994) at a time where most parsers
were grammar-based, and statistical PP attachment
was necessary for ambiguity management. Statisti-
cal parsers of course do PP attachment themselves
finding the most probable parse, but re-attachment
may still improve the overall quality of parsers if at-
tachment classifiers are trained specifically to deal
with this problem.

Atterer and Schütze (2007) showed that attach-
ment classifiers are only a little better than mod-
ern statistical parsers in realistic scenarios where
quadruples are not known. Here we show that mod-
ern parsers are almost as good as re-attachment clas-
sifiers, even when quadruplesare known.

To cast the re-attachment task as a dependency
parsing problem, we convert the labeled quadruples
into dependency structures the following way:

In a low attachment the preposition, which is the
head of the prepositional complement and thereby
head of the PP, is a dependent of the noun, and the
dependency between them is labeled MOD for mod-
ifier. If the label is V, the preposition is a dependent
of the verb, and the dependency is labeled OBL for
oblique.

Consider, for example, the dependency structure
in Figure 5. The black dependencies are correct
and predicted dependencies. The blue dependency
is correct, and the red is predicted. In other words,
this quadruple, which is the first in the test section of
our dataset, is annotated as V, but a low attachment
is predicted.

The information available to the dependency
parser in Figure 5 is words and hybrid POS tags
and clusters. POS tags are obviously redundant on
their own. In general, we tried three different fea-
ture representations: using only words, using words
and clusters, and using words and hybrid POS tags
and clusters. Note that the hybrid setting is similar
to what was used for semi-supervised dependency

Parser Acc (%) Toutanova et al.
(significance)

MaltParser 83.1 < 0.01
MSTParser 84.1 > 0.05
Opt. MaltParser 85.1 > 0.05

Bikel 83.7 < 0.05

Figure 6: PP re-attachment accuracy of state-of-the-art
parsers.

FORM CPOSTAG

Input 0,1 1
Stack 0,1 0,1

Figure 7: Features used in Opt. MaltParser. 0 is the first
word on the buffer (Input) or stack; 1 the second, and so
on.

parsing in Koo (2008). This setting led to the best
results on the development data.

We trained two different parsers on the converted
PP attachment dataset, namely MaltParser (Nivre et
al., 2007) and MSTParser (McDonald et al., 2005).
We report results for the two parsers with default pa-
rameters and a result for MaltParser with a feature
model partially optimized on development data; all
results are listed in Figure 6. The optimized fea-
ture model is presented in Figure 7.5 The third col-
umn reports significance compared to the results in
Toutanova et al. (2004), usingχ2 test. The result of
the Bikel parser (Bikel, 2004) is taken directly from
Atterer and Schütze (2007).

It follows that state-of-the-art dependency parsers
are not significantly worse than state-of-the-art PP
attachment classifiers. This questions the usefulness
of PP attachment classifiers in statistical parsing.

6 Conclusions

We have contributed to the PP attachment literature
in two ways. First we have presented two new al-
gorithms that equal state-of-the-art in their perfor-
mance on the standard Wall Street Journal dataset.
One is based on Bayesian networks, the other is
based on conditional random fields. Second we have
strengthened the claim in Atterer and Schütze (2007)

5Optimization was performed by greedily removing features
from the default feature model for the arc-eager parsing algo-
rithm. All other features were left unoptimized.
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Learning algorithm Method Params/Ref Acc (%)

LogReg GIS Standard 80.4
LogReg RRRR94 Standard 81.6
Backed-off estimate CB95 Words 84.5
Boosting ASS99 Standard 84.6
Bayesian networks TMN04 Words 85.9
Bayesian networks Hill climbing, P=1 Cross-product 85.8
C2C - Standard 85.9
Human (quadruples) 88.2

Figure 4: Results.

Figure 5: PP re-attachment as parsing problem.

that statistical parsers can do PP attachment almost
as good as specialized classifiers in the absence of
oracles. In fact, we have shown that state-of-the-art
dependency parsers are insignificantly worse than
such classifiers even in the presence of oracles. In
particular, we showed that the difference between a
statistical parser and the best re-attachment classi-
fiers was less than 0.8%.
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