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Abstract 

In this paper we describe our work in progress 
on FTrace, a tool for finite-state morphology 
that provides a tracing facility for developers 
of applications for synchronic and diachronic 
language descriptions. We discuss not only 
the current tool for downward tracing, but also 
the challenges that we face in the further de-
velopment of FTrace, especially in upward 
tracing. Finally, we present an example, draw 
some conclusions, and outline our future 
work. Keywords: FTrace, tracing, finite-state 
morphology, xfst, foma, SWI Prolog, Prolog 
network-interpreter, diachronic language de-
scrip-tion. 

1 Introduction 

In this paper we describe FTrace, a tool for finite-
state morphology that provides a tracing facility 
for developers of applications for synchronic and 
diachronic language descriptions. It constitutes 
work in progress, and we therefore will discuss not 
only the current tool for downward tracing, but 
also the challenges that we face in the further de-
velopment of FTrace, especially in upward tracing. 

In Section 2 we explain our motivation for cre-
ating FTrace, in Section 3 we describe the overall 
architecture of the system and outline briefly the 
language-description module and the visualization 
environment. In Section 4 we describe in detail the 
module for compiling and exporting the individual 
networks for replacement rules into Prolog nota-
tion before we describe the Prolog network-
interpreter and the specific problems we face in 
downward and upward tracing in Section 5. Fi-

nally, in Section 6 we illustrate the tool with an 
example, and in Section 7 we draw some conclu-
sions and outline our future work. 

2 Motivation 

In the past decade software systems like xfst and 
foma (cf. Beesley and Karttunen, 2003; Hulden, 
2009, respectively) based on finite-state technol-
ogy have greatly facilitated the use of replacement 
rules (Karttunen, 1995) in computational descrip-
tions of natural languages. The vast majority of 
such applications have been purely synchronic and 
often employ replacement rules to capture mor-
phophonemic alternations within lexical para-
digms.  

The replacement format, however, makes the 
rules equally attractive as a framework in which 
the phonology of a language can be modelled dia-
chronically. The formal process is essentially the 
same, whether we synchronically derive surface 
forms from underlying lexical representations with 
morphophonemic rules, or diachronically derive 
later representations from corresponding earlier 
forms. In both cases we have a binary relation con-
sisting of pairs <w0, wn> of an upper-level string w0 
and a lower-level string wn defined in the descrip-
tion by a sequence of replacement rules R1, … , Rn 
and implicitly by the corresponding derivation w0, 
w1, … , wn , where each string wj for j ≥ 1 is pro-
duced from string wj-1 by the application of Rj. 

So much for the elementary formal language 
theory. The whole point of systems like xfst is that 
the entire sequence R1, … , Rn of replacement rules 
is composed and compiled into a single network 
encoding the binary relation. So we don’t see any 
of the intermediate strings wj of the derivation, and 
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that is precisely what makes finite-state technology 
so efficient. 

Once an application has been correctly devel-
oped, we normally have no need or desire to see 
derivations, but the situation is different if we have 
difficulty formulating replacement rules in a way 
that gives us the results we want. This is especially 
the case for students learning to use xfst or foma to 
encode linguistic descriptions. Then it is very help-
ful to be able to follow entire derivations in terms 
of the individual rule applications. This is just what 
a tracing facility would provide, but neither xfst 
nor foma has one. Vi-xfst (cf. Oflazer and Yilmaz, 
2004) has a very useful dependency-tracking tool 
that we can use to visualize relationships between 
rules, but it includes no tracing facility that meets 
our requirements. 

A first glance this appears to be a job that the 
developers of xfst or foma should do in order to 
produce the best tracing tool, but there is a short 
cut that requires no changes in the source code or 
involvement of the original developers. A feature 
of both systems is that they allow individual net-
works to be exported in Prolog notation. If each 
rule Rj is exported as a corresponding network Nj, 
then it is easy for a user to write his own Prolog 
program to interpret the individual networks as 
governed by a “play list” of the names of rule net-
works in their order of application. Such Prolog 
programming is described, e.g., in (Gazdar and 
Mellish, 1989, p. 37 ff.) and serves as the basis for 
our Prolog code which we specify below in 5.2 for 
the benefit of readers unfamiliar with (Gazdar and 
Mellish, 1989). 

In our own work we have adopted the latter 
strategy. 

3 Architecture of the Tool 

There are four modules in FTrace:  
 

1. the language-description module,  
2. the module for export of xfst/foma networks 

in Prolog notation, 
3. the Prolog interpreter, 
4. the visualisation environment (SWI Prolog). 

3.1 The Language-Description Module 

The language-description module can consist of a 
single xfst script that contains the (continuation) 
lexicons and the replacement rules as well as vari-

able declarations that define natural classes of 
segments and clusters of morphological tags. 
However, it can be a full-fledged lexicon that con-
tains an xfst script with the variable declarations, 
the replacement rules, etc., a lexc master lexicon, 
and several (lexicographic) text files that contain 
the stems belonging to different inflectional 
classes. 

It is very important to mention that the xfst 
script must comply with a number of special con-
ventions. 

Since we are not interested in the individual 
networks of tag clusters or natural classes of seg-
ments but want to export only the individual net-
works of the replacement rules, we need to 
introduce different naming conventions. Thus, the 
names of tag clusters or natural classes of segments 
begin with a capital letter (e.g., VowFrt, Vowfrt, 
TAGS), while the names of the rules begin with a 
lower-case letter (e.g., r2, jerFrtVoc). 

The second convention refers to the play list 
that is needed by the Prolog network-interpreter 
(cf. above, Section 2, Motivation). The play list 
can be a part of the language-description module 
and have the form of a regular expression that de-
notes a cascade of replacement rules and has xfst 
syntax. It is possible, however, for the play list to 
be omitted from the language-description module. 
In this case the developer writes the play list as an 
xfst comment. In both cases the name of the regu-
lar expression must begin with a lower-case letter 
and the line must contain an xfst comment ‘# … 
QQ’, which marks the play list for Perl (cf. Section 
4). We have chosen this particular string because it 
is highly unlikely to be a substring of any reserved 
or natural-language word. 

3.2 The XFST/Foma-Specific Module(s) 

Of the four modules only the export module is spe-
cific to either xfst or foma. This is necessary since 
there are some important differences between xfst 
and foma: 
 
− an xfst script cannot be started from outside 

the application environment but can make 
calls to the system; 

− a foma script can be started from outside the 
application environment but cannot make 
calls to the system (last tested version: 
0.9.14alpha). 
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In Section 4 we explain in detail an export mod-
ule for xfst. 

3.3 The Visualisation Environment 

Since the Prolog network-interpreter will be de-
scribed in detail in Section 5, we still need to say a 
few words about the visualisation environment. 
Our interpreter is compatible with most distribu-
tions of Prolog. However, we have chosen SWI 
Prolog for the following reasons: 
 
− SWI Prolog is widely used for research and in 

instruction, it offers a comprehensive envi-
ronment and is free; 

− It is very easy to type UTF8 characters in the 
console and to display them. This makes SWI 
Prolog an ideal environment for tracing with 
language descriptions that use various writing 
systems such as, e.g., Cyrillic and Arabic.  

 

4 The Module for Compiling and Export-
ing the Prolog Networks 

The module consists of several xfst and Perl files. 
The task is to print the Prolog networks for each 
replacement rule and to export the rules to a sepa-
rate Prolog UTF8 file that will be used by the net-
work interpreter. In addition, the play list that is 
specified in the language description has to be ex-
tracted and added to that file. All tasks in this 
module run automatically; the user just needs to 
provide the name of the language-description file.  

The main element of this module is an xfst 
script ftrace.xfst. First it starts an interactive Perl 
script GetName.perl.pl1 that asks the user to type 
in the name of the language description file and 
saves it to a text file2 LDSrc.txt. In the next steps 
the language description file is compiled, and the 
names of the defined variables are printed and 
saved to a file defined.txt.  

                                                          

The second Perl script PrintNwks.perl.pl selec-
tively extracts from defined.txt only the names of 
variables that (according to the convention) begin 
with a lower-case letter, and dynamically creates 

 
1 Since both Perl and Prolog files have extension ‘pl’, the Perl 
scripts additionally have ‘perl’ in the filename before the ‘pl’ 
extension. 
2 All files that are created by the export module are saved to a 
temp directory and are deleted with the next execution of 
ftrace.xfst 

an xfst script print-prolog-source.xfst that prints 
the corresponding Prolog networks. However, the 
names that are assigned to the networks by xfst 
have nothing to do with the names given to the 
rules by the linguist. The original names of the 
rules are restored automatically before the net-
works are saved to a Prolog file <filenameoflang-
descr>-Nwks.pl.  

The third Perl script PrintPlList.perl.pl extracts 
the play list and rewrites it in Prolog syntax. Then 
the play list is appended to the file (<file-
nameoflangdescr>-Nwks.pl) that contains the 
Prolog networks.  

Finally, the Perl script reminds the user that his 
files are saved to a temporary directory and will be 
deleted with the next execution of FTrace. The 
name and the location of the file that contains the 
Prolog networks and the play list are also dis-
played. 

5 The Prolog Network-Interpreter 

The complexity of the tracing interpreter depends 
chiefly on the sublanguage of xfst or foma we wish 
to cover for tracing. For the time being we have 
excluded special features such as flag diacritics 
and merge in xfst (cf. Beesley and Karttunen, 
2003: 339 ff., 401 ff.) and assume simply (1) vari-
able definitions to specify natural segment classes, 
(2) elementary regular expressions to define the 
distribution of segments in the upper-level lan-
guage (i.e. “(mor)-phonotactics” of the proto-
language), and (3) replacement rules. Crucially, we 
want our tracing facility to provide not only apply-
down traces of derivations from upper to lower 
forms, but also of apply-up derivations from lower 
to upper.  

5.1 Special Problems  

Special problems of programming the trace inter-
preter are posed by some reserved symbols. In par-
ticular, ‘?’ for “any symbol” and ‘0’ or ‘[]’ and 
‘[..]’ for deletion and epenthesis rules, respectively, 
require attention. ‘?’ is familiar enough and need 
not be discussed here.  

The null-symbols ‘0’ or ‘[]’ and ‘[..]’, however, 
can lead to difficulties with termination. For 
downward tracing there is no problem with dele-
tion rules using ‘0’ or ‘[]’, whether they are condi-
tioned by an environment or not, and tracing 
apply-down application of epenthesis rules with an 
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environment is likewise unproblematic. An uncon-
ditioned epenthesis rule would be disastrous for a 
description and for tracing, but we assume one 
normally would not want to write such a rule in the 
first place for a natural language. This is all fairly 
obvious.  

The situation is less transparent, however, when 
it comes to apply-up tracing. Again, there is no 
problem with deletion or epenthesis rules with en-
vironments, and – symmetrically to the apply-
down application of deletion rules – even apply-up 
application of unconditioned epenthesis rules could 
in principle be handled, but we don’t want such 
rules, anyway.  

The real problem arises with unconditioned de-
letion rules. We have just seen that apply-down 
application is unproblematic, but their apply-up 
application is equivalent to apply-down application 
of unconditioned epenthesis, which we have ex-
cluded. So we appear to be faced with a dilemma: 
For many descriptions it appears attractive to have 
unconditioned rules to delete, e.g., symbols for 
morpheme boundaries, and in any case, we would 
not want to disallow their use by linguists; on the 
other hand, apply-up tracing seems inevitably to 
lead to an infinite or at least unacceptably large 
number of possible antecedent strings from which 
a given string could arise through uncondtioned 
deletion of a segment.  

In order to deal with this we have developed a 
strategy based on the notion of distributional filter-
ing. Consider the above-mentioned example of a 
rule ‘'+' -> 0’ to delete all instances of a mor-
pheme boundary ‘+’ after it has served its function, 
e.g. in conditioning other morphophonemic rules. 
If our description consisted merely of a sequence 
of replacement rules R1, … , Rn including the de-
letion rule, then not only apply-up tracing with 
single rules, but also apply-up applications with the 
overall network in general would lead to an explo-
sion in the computation of upper forms from which 
a lower form could arise. The problem dissolves, 
however, if we compose a network N0 constraining 
the distribution of symbols in the ultimate upper 
language with the total network R arising from the 
composition of all replacement rules; if N0 cor-
rectly specifies where ‘+’ can occur in the first 
place, then it can only be deleted from these posi-
tions, and the problem is solved for apply up in a 
single, composite network.  

We now need to carry over the filtering idea to 
upward tracing. The upper language defined by the 
network of a single unconditioned deletion rule 
must be restricted in order to ensure that the set of 
possible antecedent strings is highly constrained. 
Consider the sequence of networks N0, N1, …, Nn 
where each Ni except N0 arises from Ri. For each 
Nj stemming from an unconditioned deletion rule, 
we can define Nj' as the composition N0 .o. N1 .o. 
… Nj-1. Then in upward tracing of the application 
of Nj to produce string w, not [Nj .o. w].u , but ra-
ther [Nj'.l .o. Nj .o. w].u is computed to get the set 
of possible antecedent strings. This gives us the 
desired filtering effect and solves the problem for 
tracing.  

5.2 Downward tracing  

The implementation of downward tracing is sim-
ple. Given replacement rules defined like these  
 
define r1 [ k -> c || _ i ] ;  
define r2 [ i -> 0 || _ .#. ] ;  
 
xfst or foma constructs the network encoded in 
Prolog, which is exported to a file (cf. the example 
in Section 6 below).  

Following the techniques of Gazdar and Mel-
lish mentioned above, a Prolog network-interpreter 
for downward tracing can then be implemented 
easily. Due to limitations of space we omit the list-
ings here. The interpreter has been tested exten-
sively. 

6 An Example 

The following example already given above is very 
simple and transforms a fictitious proto-language 
PL into a daughter language DL with two ordered 
sound changes: palatalization of the velar k to c 
before the front vowel i, followed by the deletion 
of i in final position. Here, again, is the code of the 
language description:  
 
# LgDL.txt  
define r1 [ k -> c || _ i ] ;  
define r2 [ i -> 0 || _ .#. ] ;  
# define lgdl [r1 .o. r2] ; QQ  
 

After the compilation of the language descrip-
tion, the Prolog networks of replacement rules r1 
and r2 and the play list are exported to LgDL-
Nwks.pl. Here is part of the content of this file:  
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:- encoding(utf8).  
network(r1).  
arc(r1, 0, 0, "?").  
arc(r1, 0, 0, "c").  
arc(r1, 0, 0, "i").  
arc(r1, 0, 1, "k").  
arc(r1, 0, 2, "k":"c").  
arc(r1, 1, 0, "?").  
arc(r1, 1, 0, "c").  
arc(r1, 1, 1, "k").  
arc(r1, 1, 2, "k":"c").  
arc(r1, 2, 0, "i").  
final(r1, 0).  
final(r1, 1).  
network(r2).  
arc(r2, 0, 0, "?").  
arc(r2, 0, 1, "i").  
arc(r2, 0, 2, "i":"0").  
arc(r2, 1, 0, "?").  
arc(r2, 1, 1, "i").  
arc(r2, 1, 2, "i":"0").  
final(r2, 0).  
final(r2, 2).  
rule_list(lgdl, [r1, r2]).  
 

The Prolog downward tracing interpreter ap-
plydn.pl is compiled in the SWI Prolog console, 
and then LgDL-Nwks.pl is consulted. Now the de-
veloper can test pairs of words from the proto-
language and the daughter language: 

 

 

7 Conclusion 

We believe that FTrace can be useful and help de-
velopers of synchronic and diachronic language 
descriptions to debug their applications. In teach-
ing historical linguistics it makes it possible to 
show the historical development of the phonologi-
cal system of a language in detail and to test the 
proposed rules for derivations of individual forms. 
The same tool can equally well be used to produce 

explicit synchronic derivations from underlying 
forms to surface forms. 
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