
Proceedings of the Workshop on Information Extraction and Knowledge Acquisition, pages 2–6,
Hissar, Bulgaria, 16 September 2011.

Fine-grained Entity Set Refinement with User Feedback

Bonan Min
New York University

715 Broadway, 7th floor
New York, NY 10003 USA

min@cs.nyu.edu

Ralph Grishman
New York University

715 Broadway, 7th floor
New York, NY 10003 USA
grishman@cs.nyu.edu

Abstract

State of the art semi-supervised entity set ex-
pansion algorithms produce noisy results,
which need to be refined manually. Sets ex-
panded for intended fine-grained concepts are
especially noisy because these concepts are
not well represented by the limited number of
seeds. Such sets are usually incorrectly ex-
panded to contain elements of a more general
concept. We show that fine-grained control is
necessary for refining such sets and propose an
algorithm which uses both positive and nega-
tive user feedback for iterative refinement.
Experimental results show that it improves the
quality of fine-grained sets significantly.

1 Introduction

Entity set expansion is a well-studied problem
with several techniques proposed (Bunescu and
Mooney 2004, Etzioni et al. 2005, Wang and
Cohen 2007, Sarmento et al. 2007, Pasca 2007,
Pasca 2004, Pantel et al. 2009, Pantel and Lin
2002, Vickrey et al. 2010). In practice, semi-
supervised methods are preferred since they re-
quire only a handful of seeds and are more flexi-
ble for growing various types of entity sets.
However, they usually produce noisy sets, which
need to be refined (Vyas and Pantel, 2009). Fine-
grained sets such as National Capitals are partic-
ularly noisy. Such concepts are intrinsically hard
because they’re not well represented by initial
seeds. Moreover, most related instances have a
limited number of features, thus making it hard
to retrieve them.

We examined a few sets expanded for fine-
grained concepts and observed that lots of erro-
neous expansions are elements of a more general
concept, whose sense overlaps and subsumes the
intended sense. For example, the concept Na-
tional Capitals is expanded to contain Major ci-

ties. In such cases, a proposed feature-pruning
technique using user-tagged expansion errors to
refine sets (Vyas and Pantel 2009) removes some
informative features of the target concept. More-
over, since refining such sets needs more infor-
mation about the target concept, it is natural to
use user-tagged correct expansions as well for
the refinement.

In this paper, we refer to the problem of fine-
grained concepts being erroneously extended as
semantic spread. We show that a rich feature
representation of the target concept, coupled with
appropriate weighting of features, is necessary
for reducing semantic spread when refining fine-
grained sets. We propose an algorithm using re-
levance feedback, including both positive and
negative user feedback, for set refinement. By
expanding the set of features and weighting them
appropriately, our algorithm is able to retrieve
more related instances and provide better rank-
ing. Experimental results show that it improves
the quality of fine-grained sets significantly.

2 Related work

There is a large body of research on growing
named entity sets from a handful of seeds. Some
are pattern-based algorithms. Sarmento et al.
(2007) uses explicit patterns, e.g. “…NEa, NEb

and NEc…”, to find named entities of the same
class. Pasca (2004) uses the pattern <[StartOf-
Sent] X [such as|including] N [and|,|.]> (Hearst
1992) to find instances and their class labels
from web logs. Some are based on distributional
similarity. The distributional hypothesis states
that similar terms tend to appear with similar
contexts (Harris 1954). For example, Pasca
(2007) extracts templates (prefixes and suffixes
around seeds) from search engine query logs as
features, and then ranks new instances by their
similarity with the seeds in the vector space of
pattern features for growing sets. Their method

2

outperforms methods based on handcrafted pat-
terns (Pasca 2004) but requires extensive query
logs to tolerate noisy queries. Calculating the
similarity matrix between all pairs of named enti-
ties is expensive. Pantel et.al (2009) proposed a
web-scale parallel implementation on the Ma-
pReduce distributed computing framework.
 Observing the low quality of expanded sets,
Vyas and Pantel (2009) uses negative user feed-
back for set refinement. They propose the Simi-
larity Method (SIM) and Feature Modification
Method (FMM), to refine entity sets by removing
expansions which are similar to user-tagged er-
rors, and removing features related to the errone-
ous sense from the centroid of the seed set for
better ranking, respectively. Their algorithms
rely on two assumptions 1) most expansion er-
rors are caused by ambiguous seeds, and 2) enti-
ties which are similar in one sense are usually
not similar in their other senses. They show av-
erage performance gain over a few sets. Vyas et
al. (2009) studied the problem from the other
side by selecting better seeds. They proposed
three metrics and three corresponding algorithms
to guide editors to choose better seeds. All three
algorithms outperform the baseline.

3 Similarity modeling revisited

Given a set of candidate named entities
represented by vectors of features, the goal of set
refinement is to find a subset of entities which
are similar to the target concept, based on a cer-
tain similarity metric (Cosine, Dice, etc). The
concept is usually approximated with a set of
seed instances. A previous feature pruning tech-
nique (Vyas and Pantel 2009) aims at reducing
semantic drift introduced by ambiguous seeds.
 We’re particularly interested in fine-grained
classes since they’re intrinsically hard to expand
because of the crude representation from the li-
mited number of seeds. In practice, we observed,
when expanding fine-grained classes, that se-
mantic spread instead of semantic drift (McIn-
tosh 2010) severely affects expansion quality. By
semantic spread we mean a situation where an
initial concept, represented by its member enti-
ties, changes in the course of entity set expansion
into a broader concept which subsumes the orig-
inal concept.
 Semantic spread is usually introduced when
erroneous instances, which belong to a more
general concept, are incorrectly included during
the set expansion process. For example, when
using Google Sets (labs.google.com/sets) to ex-

pand National Capitals, we found a highly
ranked error New York. By checking with our
distributional thesaurus extracted from 37 years’
newspaper, we notice the following features:
prep_in(embassy， *) 1 , nn(*, capital), nn (*,
president). These are indicators of capital cities.
However, as the financial “capital” and a politi-
cally important city, New York shares lots of in-
formative features with the National Capitals
concept. Therefore, we need more sophisticated
techniques for the refinement process for fine-
grained concepts.

4 Refine fine-grained classes with user
feedback

User feedback is a valuable resource for learning
the target concept. We propose to use both posi-
tive and negative feedback to learn a rich set of
features for the target concept while weighting
them appropriately. Our algorithm chooses in-
formative instances to query the user, uses posi-
tive feedback for expanding the feature set, and
negative feedback for feature weight adjustment.

Relevance feedback (Harman 1992) is widely
applied to improve search engine performance by
modifying queries based on user feedback. Vari-
ous techniques are proposed for both the vector
space model and probabilistic model. Since set
refinement is done in the vector space of fea-
tures, we only consider techniques for the vector
space model. To refine entity sets, the centroid of
all vectors of seeds is used as a query for retriev-
ing related named entities from the candidate
pool. Observing that errors are usually caused by
incorrect or overweighted features of seeds, we
propose to incorporate user feedback for set re-
finement with a variant of the Rocchio algorithm
(Rocchio 1971). The new centroid is calculated
as follows:

where I is an entity that is a member of seed
set S or the set of user-tagged positive entities P,
and CN is a member of the set of user-tagged
negative entities N. γ is the parameter penalizing
features of irrelevant entities. This method does
feature set expansion and iterative adjustment of
feature weights for the centroid. It adds features
from informative instances back into the centroid

1 Syntactic context is used in our experiment. For the format
of dependencies, please refer to the Stanford typed depen-
dencies manual.

|||| N

C

PS

I
Centroid

NC
N

PSI N


 


 

3

and penalizes inaccurate features based on user-
tagged errors, thus modifying the centroid to be a
better representation of the target class.

4.1 Query strategy

To be practical, we should ask the user to review
as few instances as possible, while obtaining as
much information as possible. Observing that 1)
top-ranked instances are likely to be positive 2)
random instances of a fine-grained class usually
contain relatively few features with non-zero
weight, thus not providing much information for
approaching the target concept, our procedure
selects at each iteration the n instances most sim-
ilar to the centroid and presents them to the user
in descending order of their number of features
with non-zero weight (the user will review high-
er-dimension ones first). This ranking strategy
prefers more representative instances with more
features (Shen et al., 2004). The user is asked to
pick the first positive instance.

A similar idea applies to negative instance
finding. We use co-testing (Muslea et al., 2006)
to construct two ranking-based classifiers on
randomly split views of the feature space. In-
stances are ranked by their similarity to the cen-
troid. The classifiers classify instances which
ranked higher than the golden set size as correct,
and classify others as incorrect. We select n con-
tention instances – instances identified as correct
expansions by one of the classifiers and incorrect
by the other. These instances are more ambi-
guous and likely to be negative. Instances are
also presented to the user in descending order of
number of features with non-zero weight.
Coupled with the strategy for positive instance
finding, it helps to reweight a rich set of features.

Since we asked the user to review instances
that are most likely to be positive and negative,
and these instances are presented to the user in
sequence, the user only has to review very few
examples to find a positive and a negative in-
stance in each iteration. In practice we set n=10.
We observed that around 85% of the time the
user only has to review 1 instance to find a cor-
rect one, and over 90% of the time has to review
3 or fewer instances to find a negative one.

5 Experiment

Corpus: we used 37 years newspaper corpus2

which is dependency parsed with the Stanford

2 It contains news articles from: TDT5, NYT(94-00),
APW(98-00), XINHUA(96-00), WSJ(94-96), LATWP(94-
97), REUFF(94-96), REUTE(94-96), and WSJSF(87-94). It

Parser3 and has all named entities tagged with
Jet4 NE tagger (we didn’t use the NE tags re-
ported by the tagger but only the fact that it is a
name). We use syntactic context, which is the
grammatical relation in conjunction with the
words as feature, and we replace the word in the
candidate NE with *. Both syntactic contexts in
which the candidate entities are the heads and
contexts in which the candidate entities are the
dependents are used. The feature set is created
from syntactic contexts of all entities tagged in
the corpus. An example common feature for
class National Capital is prep_in(ministry, *).
We remove features in which the dependent is a
stop word, and remove a limited number of less
useful dependency types such as numerical mod-
ifier and determiner. We use pointwise mutual
information (PMI) to weight features for entities,
and cosine as the similarity measure between the
centroid of the seeds and candidate instances.
PMI scores are generated from the newspaper
corpus statistics. Candidates are then ranked by
similarity. We construct each named entity can-
didate pool by including similar instances with
cosine score greater than 0.05 with the centroid
of the corresponding golden set. This ensures
that each candidate pool contains tens of thou-
sands of elements so that it contains all similar
instances with high probability.
 Golden sets5: Several golden sets are prepared
by hand. We start from lists from Wikipedia, and
then manually refine the sets6 by removing incor-
rect instances and adding correct instances found
as distributionally-similar instances from the
corpus. The criteria for choosing the lists is 1)
our corpus covers most elements of the list, 2)
the list represents a fine-grained concept, 3) it
contains hundreds of elements for reasons of
fairness, since we don’t want the added positive
examples themselves to overshadow other as-
pects of the evaluated algorithms. Based on these
criteria, we chose three lists: National Capitals,
IT companies7 and New York City (NYC) neigh-
borhoods. All three sets have more than 200
elements. User feedback is simulated by check-
ing membership in the golden set. Since existing

contains roughly 65 million sentences and 1.3 billion to-
kens.
3 http://nlp.stanford.edu/software/lex-parser.shtml
4 http://cs.nyu.edu/grishman/jet/license.html
5 Golden sets are available for download at
http://www.cs.nyu.edu/~min/goldset_37news.tgz
6 Manually checking indicates the golden sets are complete
with high probability.
7 Set contains both software and hardware companies

4

golden sets such as the sets from Vyas and Pantel
(2009) are not designed specifically for evaluat-
ing refinement on fine-grained concepts and they
are quite small for evaluating positive feedback
(with less than 70 elements after removing low
frequency ones in our corpus), we decided to
construct our own.
 Algorithms evaluated: The following algo-
rithms are applied for iteratively updating the
centroid using user-tagged examples: 1) baseline
algorithm (BS), an algorithm adding the correct
example most similar to the centroid as a new
seed for each iteration; this simulates using the
user-tagged first positive example to assist re-
finement, 2) RF-P, relevance feedback algorithm
using only positive feedback by adding one in-
formative instance (selected using the method
described in section 4.1) into seed set, 3) FMM
(Vyas and Pantel, 2009) which uses the first us-
er-tagged negative example for feature pruning
in each iteration. 4) RF-N, relevance feedback
algorithm using only negative feedback (selected
using the method described in section 4.1), 5)
Relevance feedback (RF-all) using both positive
and negative user feedback selected using me-
thods from Section 4.1. We use 6 seeds for all
experiments, and set γ=0.25 for all RF experi-
ments.

For each algorithm, we evaluate the results af-
ter each iteration as follows: we calculate a cen-
troid feature vector and then rank all candidates
based on their similarity to the centroid. We add
sufficient top-ranked candidates to the seed and
user-tagged positive items to form a set equal in
size to the golden set. This set, the refined set, is
then compared to the golden set. The following
tables show a commonly reported metric, aver-
age R-precision 8 of 40 runs starting with ran-
domly picked initial seeds (The first column
shows the number of iterations.):

BS RF-P FMM RF-N RF-all
2 0.258 0.298 0.253 0.246 0.286
4 0.260 0.317 0.250 0.251 0.316
6 0.260 0.323 0.244 0.255 0.332
8 0.260 0.325 0.243 0.255 0.342
10 0.265 0.325 0.245 0.256 0.343

Table 1. Performance on class national capitals

BS RF-P FMM RF-N RF-all
2 0.303 0.340 0.301 0.303 0.319
4 0.312 0.403 0.303 0.311 0.406

8 Precision at the rank of golden set size

6 0.317 0.432 0.312 0.312 0.451
8 0.323 0.442 0.312 0.314 0.467
10 0.327 0.445 0.306 0.314 0.481

Table 2. Performance on class IT companies

BS RF-P FMM RF-N RF-all
2 0.168 0.190 0.159 0.161 0.191
4 0.179 0.217 0.164 0.163 0.232
6 0.189 0.235 0.163 0.166 0.249
8 0.198 0.243 0.166 0.176 0.259
10 0.206 0.248 0.169 0.181 0.262

Table 3. Performance on class NYC neighbor-
hoods

Results show that RF-P outperforms the base-
line algorithm by using positive examples with
rich contexts rather than the first positive exam-
ple for each iteration. The baseline algorithm
shows small improvement over 10 iterations.
This shows that simply adding the example
which is most similar to the centroid is not very
helpful. Comparing R-precision gain between
RF-P and the baseline suggests that selecting
informative examples is critical for refining fine-
grained sets. By enriching the feature set of the
centroid, RF-P is able to retrieve instances with a
limited number of features overlapping the origi-
nal centroid. RF-N outperforms FMM since it
only reweights (penalizes some weights) but
doesn’t prune out intersection features between
user-tagged errors and the centroid. This flexibil-
ity avoids over-penalizing weak but informative
features of the intended concept. For FMM, we
observe a small performance gain with success-
sive iterations over IT companies and NYC
neighborhoods but a performance decrease for
National Capitals. Inspection of results shows
that FMM tends to retrieve more capital cities
for small geographical regions because of re-
moval of weak features for informative sense
such as Major Cities.

Combining RF-P and RF-N, RF-all uses both
positive informative examples and negative in-
formative examples to expand feature sets of the
centroid and weight them appropriately, thus
achieving the most performance gain. RF-N by
itself doesn’t improve performance significantly.
Comparing RF-all with RF-P, using informative
negative examples helps to improve performance
substantially because only when both informa-
tive positive examples and informative negative
examples are used can we learn a significantly
large set of features and appropriate weights for
them.

5

We also implemented a few methods combin-
ing positive feedback and FMM, and didn’t ob-
serve encouraging performance. RF-all also has
the highest Average Precision (AP) for all sets,
thus showing that it provides better ranking over
candidates. Due to space limitations, tables of
AP are not included. The quality of the top
ranked elements with RF-all can be seen in the
precision at rank 50 for the three sets: 84.6%,
81.6%, and 71.7%.

6 Conclusion and Future work

We propose an algorithm using both positive and
negative user feedback to reduce semantic spread
for fine-grained entity set refinement. Our expe-
rimental results show performance improvement
over baseline and existing solutions.

Our next step is to investigate feature cluster-
ing techniques since we observe that data sparse-
ness severely affects set refinement.

Acknowledgments

We are grateful to the anonymous reviewers for
their valuable comments. We would like to also
thank Prof. Satoshi Sekine and Ang Sun for their
helpful discussion and comments on an early
draft of this paper.

References

Razvan Bunescu and Raymond J. Mooney. 2004. Col-
lective Information Extraction with Relational
Markov Networks. In Proceedings of ACL-04.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld and Alexander Yates. 2005. Unsu-
pervised named-entity extraction from the Web:
An Experimental Study. In Artificial Intelligence,
165(1):91-134.

Donna Harman. 1992. Relevance feedback revisited.
In Proceedings of SIGIR-92.

Zellig S. Harris. 1954. Distributional Structure. Word.
Vol 10: 146-162.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
COLING-92.

Tara McIntosh. 2010. Unsupervised discovery of neg-
ative categories in lexicon bootstrapping, In Pro-
ceedings of EMNLP-10.

Ion Muslea, Steven Minton and Craig A. Knoblock.
2006. Active Learning with Multiple Views, Jour-
nal of Artificial Intelligence Research 27: 203-233.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu and Vishnu Vyas. 2009. Web-Scale
Distributional Similarity and Entity Set Expansion.
In Proceedings of EMNLP-09.

Patrick Pantel and Dekang Lin. 2002. Discovering
word senses from text. In Proceedings of KDD-02.

Marius Pasca. 2004. Acquisition of Categorized
Named Entities for Web Search, In Proceedings of
CIKM-04.

Marius Pasca. 2007. Weakly-supervised discovery of
named entities using web search queries. In Pro-
ceedings of CIKM-07.

Marco Pennacchiotti and Patrick Pantel. 2009. Entity
Extraction via Ensemble Semantics. In Proceedings
of EMNLP-09.

J. J. Rocchio. 1971. Relevance feedback in informa-
tion retrieval. The SMART Retrieval System: Ex-
periments in Automatic Document Processing:
313-323.

Luis Sarmento, Valentin Jijkoun, Maarten de Rijke
and Eugenio Oliveira. 2007. “More like these”:
growing entity classes from seeds. In Proceedings
of CIKM-07.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou and
Chew-Lim Tan. 2004. Multi-criteria-based active
learning for named entity recognition. In Proceed-
ings of ACL-04.

David Vickrey, Oscar Kipersztok and Daphne Koller.
2010. An Active Learning Approach to Finding
Related Terms. In Proceedings of ACL-10.

Vishnu Vyas and Patrick Pantel. 2009. Semi-
Automatic Entity Set Refinement. In Proceedings
of NAACL/HLT-09.

Vishnu Vyas, Patrick Pantel and Eric Crestan. 2009,
Helping Editors Choose Better Seed Sets for Entity
Set Expansion, In Proceedings of CIKM-09.

Richard C. Wang and William W. Cohen. 2007. Lan-
guage- Independent Set Expansion of Named Enti-
ties Using the Web. In Proceedings of ICDM-07.

6

