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Abstract

This paper describes a simple method
to achieve logical constraints on words
for topic models based on a recently de-
veloped topic modeling framework with
Dirichlet forest priors (LDA-DF). Log-
ical constraints mean logical expressions
of pairwise constraints,Must-links and
Cannot-Links, used in the literature of
constrained clustering. Our method can
not only cover the original constraints of
the existing work, but also allow us eas-
ily to add new customized constraints.
We discuss the validity of our method by
defining its asymptotic behaviors. We ver-
ify the effectiveness of our method with
comparative studies on a synthetic corpus
and interactive topic analysis on a real cor-
pus.

1 Introduction

Topic models such as Latent Dirichlet Allocation
or LDA (Blei et al., 2003) are widely used to cap-
ture hidden topics in a corpus. When we have do-
main knowledge of a target corpus, incorporating
the knowledge into topic models would be useful
in a practical sense. Thus there have been many
studies of semi-supervised extensions of topic
models (Andrzejewski et al., 2007; Toutanova and
Johnson, 2008; Andrzejewski et al., 2009; An-
drzejewski and Zhu, 2009), although topic mod-
els are often regarded as unsupervised learning.
Recently, (Andrzejewski et al., 2009) developed
a novel topic modeling framework, LDA with
Dirichlet Forest priors (LDA-DF), which achieves
two links Must-Link (ML) andCannot-Link(CL)
in the constrained clustering literature (Basu et al.,
2008). For given wordsA andB, ML(A,B) and
CL(A, B) are soft constraints thatA andB must
appear in the same topic, and thatA andB cannot
appear in the same topic, respectively.

Let us consider topic analysis of a cor-
pus with movie reviews for illustrative pur-
poses. We know that two words ‘jackie’
(means Jackie Chan) and ‘kung-fu’ should ap-
pear in the same topic, while ‘dicaprio’ (means
Leonardo DiCaprio) and ‘kung-fu’ should not
appear in the same topic. In this case, we
can add constraintsML(‘jackie’, ‘kung-fu’) and
CL(‘dicaprio’, ‘kung-fu’) to smoothly conduct
analysis. However, what if there is a word
‘bruce’ (means Bruce Lee) in the corpus, and we
want to distinguish between ‘jackie’ and ‘bruce’?
Our full knowledge among ‘kung-fu’, ‘jackie’,
and ‘bruce’ should be(ML(‘kung-fu’, ‘jackie’) ∨
ML(‘kung-fu’, ‘bruce’)) ∧ CL(‘bruce’, ‘jackie’),
although the original framework does not allow
a disjunction (∨) of links. In this paper, we ad-
dress such logical expressions of links on LDA-DF
framework.

Combination between a probabilistic model and
logical knowledge expressions such as Markov
Logic Network (MLN) is recently getting a lot of
attention (Riedel and Meza-Ruiz, 2008; Yu et al.,
2008; Meza-Ruiz and Riedel, 2009; Yoshikawa
et al., 2009; Poon and Domingos, 2009), and our
work can be regarded as on this research line. At
least, to our knowledge, our method is the first
one that can directly incorporate logical knowl-
edge into a prior for topic models without MLN.
This means the complexity of the inference in our
method is essentially the same as in the original
LDA-DF, despite that our method can broaden
knowledge expressions.

2 LDA with Dirichlet Forest Priors

We briefly review LDA-DF. Letw := w1 . . . wn

be a corpus consisting ofD documents, wheren
is the total number of words in the documents. Let
di and zi be the document that includes thei-th
word wi and the hidden topic that is assigned to
wi, respectively. LetT be the number of topics.
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As in LDA, we assume a probabilistic language
model that generates a corpus as a mixture of hid-
den topics and infer two parameters: a document-
topic probabilityθ that represents a mixture rate of
topics in each document, and a topic-word proba-
bility ϕ that represents an occurrence rate of words
in each topic. The model is defined as

θdi
∼ Dirichlet(α),

zi|θdi
∼ Multinomial(θdi

),

q ∼ DirichletForest(β, η),

ϕzi ∼ DirichletTree(q),

wi|zi, ϕzi ∼ Multinomial(ϕzi),

where α and (β, η) are hyper parameters forθ
andϕ, respectively. The only difference between
LDA and LDA-DF is thatϕ is chosen not from the
Dirichlet distribution, but from the Dirichlet tree
distribution (Dennis III, 1991), which is a gener-
alization of the Dirichlet distribution. The Dirich-
let forest distribution assigns one tree to each topic
from a set of Dirichlet trees, into which we encode
domain knowledge. The trees assigned to topicsz
are denoted asq.

In the framework,ML(A, B) is achieved by the
Dirichlet tree in Fig. 1(a), which equalizes the oc-
currence probabilities ofA andB in a topic when
η is large. This tree generates probabilities with
Dirichlet(2β, β) and redistributes the probability
for “2β” with Dirichlet(ηβ, ηβ).

In the case ofCLs, we use the following algo-
rithm.

1. Consider a undirected graph regarding words
as vertices and linksCL(A,B) as edges be-
tweenA andB.

2. Divide the graph into connected components.

3. Extract the maximal independent sets of each
component.

4. Create Dirichlet trees to raise the occurrence
probabilities of words corresponding to each
maximal independent set.

For examples, the algorithm creates the two
trees in Fig. 1(b) for the constraintCL(A,B) ∧
CL(A, C). The constraint is achieved whenη is
large, since words in each topic are chosen from
the distribution of either the left tree that zeros the
occurrence probability ofA, or the right tree that
zeros those ofB andC.

2β

β

ηβ ηβ

B CA

(a)ML(A, B)

β β

2ηβ

β

B CA

ββ

ηβ

2β

BC A

(b) CL(A, B) ∧ CL(A, C)

Figure 1: Dirichlet trees for two constraints of (a)
ML(A,B) and (b)CL(A, B) ∧ CL(A, C).

Inference ofϕ andθ is achieved by alternately
sampling topiczi for each wordwi and Dirichlet
treeqz for each topicz. Since the Dirichlet tree
distribution is conjugate to the multinomial distri-
bution, the sampling equation ofzi is easily de-
rived like LDA as follows:

p(zi = z | z−i,q,w) ∝

(n
(di)
−i,z + α)

Iz(↑i)∏
s

γ
(Cz(s↓i))
z + n

(Cz(s↓i))
−i∑Cz(s)

k

(
γ

(k)
z + n

(k)
−i,z

) ,

wheren
(d)
−i,z represents the number of words (ex-

cludingwi) assigning topicz in documentd. n
(k)
−i,z

represents the number of words (excludingwi) as-
signing topicz in the subtree rooted at nodek in
treeqz. Iz(↑ i) andCz(s ↓ i) represents the set of
internal nodes and the immediate child of nodes,
respectively, on the path from the root to leafwi

in treeqz. Cz(s) represents the set of children of

nodes in treeqz. γ
(k)
z represents a weight of the

edge to nodek in treeqz. Additionally, we define∑S
s :=

∑
s∈S .

Sampling of treeqz is achieved by sequen-
tially sampling subtreeq(r)

z corresponding to the
r-th connected component by using the following
equation:

p(q(r)
z = q′ | z,q−z, q

(−r)
z ,w) ∝ |Mr,q′ |×

I
(q′)
z,r∏
s

 Γ
(∑Cz(s)

k γ
(k)
z

)∏Cz(s)
k Γ

(
γ

(k)
z + n

(k)
z

)
Γ
(∑Cz(s)

k (γ
(k)
z + n

(k)
z )
)∏Cz(s)

k Γ
(
γ

(k)
z

)
,

whereI
(q′)
z,r represents the set of internal nodes in

the subtreeq′ corresponding to ther-th connected
component for treeqz. |Mr,q′ | represents the size
of the maximal independent set corresponding to
the subtreeq′ for r-th connected component.

After sufficiently samplingzi andqz, we can in-
fer posterior probabilitieŝϕ and θ̂ using the last
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sampledz andq, in a similar manner to the stan-
dard LDA as follows.

θ̂(d)
z =

n
(d)
z + α∑T

z′=1

(
n

(d)
z′ + α

)
ϕ̂(w)

z =

Iz(↑w)∏
s

γ
(Cz(s↓w))
z + n

(Cz(s↓w))
z∑Cz(s)

k

(
γ

(k)
z + n

(k)
z

)
3 Logical Constraints on Words

In this section, we address logical expressions of
two links using disjunctions (∨) and negations (¬),
as well as conjunctions (∧), e.g.,¬ML(A,B) ∨
ML(A,C). We denote it as (∧,∨,¬)-expressions.
Since each negation can be removed in a prepro-
cessing stage, we focus only on (∧,∨)-expressions.
Interpretation of negations is discussed in Sec. 3.4.

3.1 (∧,∨)-expressions of Links

We propose a simple method that simultaneously
achieves conjunctions and disjunctions of links,
where the existing method can only treat conjunc-
tions of links. The key observation is that any
Dirichlet trees constructed byMLs andCLs are
essentially based only on two primitives. One
is Ep(A,B) that equalizes the occurrence prob-
abilities of A and B in a topic as in Fig. 1(a),
and the other isNp(A) that zeros the occurrence
probability of A in a topic as in the left tree of
Fig. 1(b). The right tree of Fig. 1(b) is created by
Np(B) ∧ Np(C). Thus, we can substituteML and
CL with EpandNpas follows:

ML(A,B) = Ep(A,B)

CL(A,B) = Np(A) ∨ Np(B)

Using this substitution, we can compile a (∧, ∨)-
expression of links to the corresponding Dirichlet
trees with the following algorithm.

1. Substitute all links (ML andCL) with the cor-
responding primitives (EpandNp).

2. Calculate the minimum DNF of the primi-
tives.

3. Construct Dirichlet trees corresponding to the
(monotone) monomials of the DNF.

Let us consider three wordsA = ‘kung-fu’, B =
‘jackie’, andC = ‘bruce’ in Sec. 1. We want to
constrain them with(ML(A,B) ∨ ML(A,C)) ∧

CL(B,C). In this case, the algorithm calculates
the minimum DNF of primitives as

(ML(A,B) ∨ML(A, C)) ∧ CL(B, C)

= (Ep(A,B) ∨ Ep(A, C)) ∧ (Np(B) ∨Np(C))

= (Ep(A,B) ∧ Np(B)) ∨ (Ep(A,B) ∧ Np(C))

∨ (Ep(A,C) ∧ Np(B)) ∨ (Ep(A,C) ∧ Np(C))

and constructs four Dirichlet trees correspond-
ing to the four monomialsEp(A,B) ∧ Np(B),
Ep(A,B) ∧ Np(C), Ep(A,C) ∧ Np(B), and
Ep(A,C) ∧ Np(C) in the last equation.

Considering only (∧)-expressions of links, our
method is equivalent to the existing method in the
original framework in terms of an asymptotic be-
havior of Dirichlet trees. We define asymptotic
behavior asAsymptotic Topic Family (ATF)as fol-
lows.

Definition 1 (Asymptotic Topic Family). For any
(∧,∨)-expressionf of primitives and any setW of
words, we definethe asymptotic topic family off
with respect toW as a familyf∗ calculated by the
following rules: Given (∧, ∨)-expressionsf1 and
f2 of primitives and wordsA,B ∈ W,

(i) (f1 ∨ f2)
∗ := f∗1 ∪ f∗2，

(ii) (f1 ∧ f2)
∗ := f∗1 ∩ f∗2，

(iii) Ep∗(A,B) := {∅, {A,B}} ⊗ 2W−{A,B},

(iv) Np∗(A) := 2W−{A}．

Here, notation⊗ is defined asX ⊗ Y := {x ∪
y | x ∈ X, y ∈ Y } for given two setsX and
Y . ATF expresses all combinations of words that
can occur in a topic whenη is large. In the above
example, the ATF of its expression with respect to
W = {A,B, C} is calculated as

((ML(A,B) ∨ML(A,C)) ∧ CL(B,C))∗

= (Ep(A,B) ∨ Ep(A, C)) ∧ (Np(B) ∨ Np(C))∗

=

(
{∅, {A,B}} ⊗ 2W−{A,B}

∪{∅, {A,C}} ⊗ 2W−{A,C}

)
∩
(
2W−{B} ∪ 2W−{C}

)
= {∅, {B}, {C}, {A,B}, {A,C}}.

As we expected, the ATF of the last equation in-
dicates such a constraint that eitherA andB or A
andC must appear in the same topic, andB and
C cannot appear in the same topic. Note that the
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part of {B} satisfiesML(A, C) ∧ CL(B, C). If
you want to remove{B} and{C}, you can use
exclusive disjunctions. For the sake of simplicity,
we omit descriptions aboutW when its instance is
arbitrary or obvious from now on.

The next theorem gives the guarantee of asymp-
totic equivalency between our method and the ex-
isting method. LetMIS(G) be the set of max-
imal independent sets of graphG. We define
L := {{w, w′} | w, w′ ∈ W, w ̸= w′}. We con-
siderCLs only, since the asymptotic equivalency
including MLs is obvious by identifying all ver-
tices connected byMLs.

Theorem 2. For any (∧)-expression of CLs rep-
resented by

∧
{x,y}∈ℓ:ℓ⊆L CL(x, y), the ATF of the

corresponding minimum DNF of primitives repre-
sented by

∨
X∈X :X⊆2W (

∧
x∈X Np(x)) is equiva-

lent to the union of the power sets of every max-
imal independent setS ∈ MIS(G) of a graph
G := (W, ℓ), that is,

∪
X∈X

(∩
x∈X Np∗(x)

)
=∪

S∈MIS(G) 2S .

Proof. For any (∧)-expressions of links character-
ized byℓ ⊆ L, we denotefℓ andGℓ as the corre-
sponding minimum DNF and graph, respectively.
We defineUℓ :=

∪
S∈MIS(Gℓ)

2S . When |ℓ| = 1,
f∗ℓ = Uℓ is trivial. Assumingf∗ℓ = Uℓ when
|ℓ| > 1, for any setℓ′ := ℓ ∪ {{A, B}} with an
additional link characterized by{A, B} ∈ L, we
obtain

f∗ℓ′ = ((Np(A) ∨ Np(B)) ∧ fℓ)
∗

= (2W−{A} ∪ 2W−{B}) ∩ Uℓ

=
∪

S∈MIS(Gℓ)

(
(2W−{A} ∩ 2S)

∪(2W−{B} ∩ 2S)

)
=

∪
S∈MIS(Gℓ)

(2S−{A} ∪ 2S−{B})

=
∪

S∈MIS(Gℓ′ )
2S = Uℓ′

This proves the theorem by induction. In the
last line of the above deformation, we used∪

S∈MIS(G) 2S =
∪

S∈IS(G) 2S and MIS(Gℓ′) ⊆∪
S∈MIS(Gℓ)

((S − {A}) ∪ (S − {B})) ⊆ IS(Gℓ′),
whereIS(G) represents the set of all independent
sets on graphG.

In the above theorem,
∪

X∈X
(∩

x∈X Np∗(x)
)

represents asymptotic behaviors of our method,
while

∪
S∈MIS(G) 2S represents those of the exist-

ing method. By using a similar argument to the
proof, we can prove the elements of the two sets
are completely the same, i.e.,

∩
x∈X Np∗(x) =

{2S | S ∈ MIS(G)}. This interestingly means
that for any logical expression characterized by
CLs, calculating its minimum DNF is the same
as calculating the maximal independent sets of the
corresponding graph, or the maximal cliques of its
complement graph.

3.2 Shrinking Dirichlet Forests

Focusing on asymptotic behaviors, we can reduce
the number of Dirichlet trees, which means the
performance improvement of Gibbs sampling for
Dirichlet trees. This is achieved just by minimiz-
ing DNF on asymptotic equivalence relationde-
fined as follows.

Definition 3 (Asymptotic Equivalence Relation).
Given two (∧, ∨)-expressionsf1, f2, we say that
f1 is asymptotically equivalent tof2, if and only
if f∗1 = f∗2 . We denote the relation as notation≍,
that is,f1 ≍ f2 ⇔ f∗1 = f∗2 .

The next proposition gives an intuitive under-
standing of why asymptotic equivalence relation
can shrink Dirichlet forests.

Proposition 4. For any two wordsA,B ∈ W,

(a) Ep(A,B) ∨ (Np(A) ∧ Np(B)) ≍ Ep(A,B)，

(b) Ep(A,B) ∧ Np(A) ≍ Np(A) ∧ Np(B)．

Proof. We prove (a) only.

Ep∗(A,B) ∪ (Np∗(A) ∩ Np∗(B))

= {∅, {A,B}} ⊗ 2W−{A,B}

∪ (2W−{A} ∩ 2W−{B})

= ({∅, {A, B}} ∪ ({∅, {B}} ∩ {∅, {A}}))
⊗ 2W−{A,B}

= {∅, {A,B}} ⊗ 2W−{A,B} = Ep∗(A,B)

In the above proposition, Eq. (a) directly re-
duces the number of Dirichlet trees since a dis-
junction (∨) disappears, while Eq. (b) indirectly
reduces since(Np(A) ∧ Np(B)) ∨ Np(B) =
Np(B).

We conduct an experiment to clarify how many
trees can be reduced by asymptotic equivalency. In
the experiment, we prepare conjunctions of ran-
dom links of MLs and CLs when |W| = 10,
and compare the average numbers of Dirichlet
trees compiled by minimum DNF (M-DNF) and
asymptotic minimum DNF (AM-DNF) in 100 tri-
als. The experimental result shown in Tab. 1
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Table 1: The average numbers of Dirichlet
trees compiled by minimum DNF (M-DNF) and
asymptotic minimum DNF (AM-DNF) in terms of
the number of random links. Each value is the av-
erage of 100 trials.

# of links 1 2 4 8 16
M-DNF 1 2.08 3.43 6.18 10.35

AM-DNF 1 2.08 3.23 4.24 4.07

indicates that asymptotic equivalency effectively
reduces the number of Dirichlet trees especially
when the number of links is large.

3.3 Customizing New Links

Two primitivesEp andNp allow us to easily cus-
tomize new links without changing the algorithm.
Let us considerImply-Link(A,B) or IL(A,B),
which is a constraint thatB must appear ifA ap-
pears in a topic (informally,A → B). In this case,
the setting

IL(A,B) = Ep(A,B) ∨ Np(A)

is acceptable, since the ATF ofIL(A, B) with
respect toW = {A,B} is {∅, {A,B}, {B}}.
IL(A,B) is effective whenB has multiple mean-
ings as mentioned later in Sec. 4.

Informally regardingIL(A,B) asA → B and
ML(A,B) asA ⇔ B, ML(A,B) seems to be the
same meaning ofIL(A,B) ∧ IL(B,A). However,
this anticipation is wrong on the normal equiv-
alency, i.e.,ML(A,B) ̸= IL(A,B) ∧ IL(B, A).
The asymptotic equivalency can fulfill the antici-
pation with the next proposition. This simultane-
ously suggests that our definition is semantically
valid.

Proposition 5. For any two wordsA,B ∈ W,

IL(A,B) ∧ IL(B,A) ≍ ML(A,B)

Proof. From Proposition 4,

IL(A,B) ∧ IL(B, A)

= (Ep(A,B) ∨ Np(A)) ∧ (Ep(B,A) ∨ Np(B))

= Ep(A,B) ∨ (Ep(A,B) ∧ Np(A))

∨ (Ep(A, B) ∧ Np(B)) ∨ (Np(A) ∧ Np(B))

≍ Ep(A,B) ∨ (Np(A) ∧ Np(B))

≍ Ep(A,B) = ML(A,B)

Further, we can constructXIL(X1, · · · , Xn, Y )
as an extended version ofIL(A,B), which allows
us to use multiple conditions like Horn clauses.
This informally means

∧n
i=1 Xi → Y as an ex-

tension ofA → B. In this case, we set

XIL(X1, · · · , Xn, Y ) =
n∧

i=1

Ep(Xi, Y )∨
n∨

i=1

Np(Xi).

When we want to isolate unnecessary words
(i.e., stop words), we can useIsolate-Link (ISL)
defined as

ISL(X1, · · · , Xn) =

n∧
i=1

Np(Xi).

This is easier than consideringCLs between high-
frequency words and unnecessary words as de-
scribed in (Andrzejewski et al., 2009).

3.4 Negation of Links

There are two types of interpretation for negation
of links. One isstrong negation, which regards
¬ML(A,B) as “A andB must not appear in the
same topic”, and the other isweak negation, which
regards it as “A andB need not appear in the same
topic”. We set¬ML(A,B) ≍ CL(A, B) for strong
negation, while we just remove¬ML(A, B) for
weak negation. We consider the strong negation
in this study.

According to Def. 1, the ATF of the negation¬f
of primitive f seems to be defined as(¬f)∗ :=
2W − f∗. However, this definition is not fit in
strong negation, since¬ML(A,B) ̸≍ CL(A,B)
on the definition. Thus we define it to be fit in
strong negation as follows.

Definition 6 (ATF of strong negation of links).
Given a linkL with argumentsX1, · · · , Xn, let-
ting fL be the primitives ofL, we define the ATF
of the negation ofL as (¬L(X1, · · · , Xn))∗ :=
(2W − f∗L(X1, · · · , Xn)) ∪ 2W−{X1,··· ,Xn}.

Note that the definition is used not for primi-
tives but for links. Actually, the similar definition
for primitives is not fit in strong negation, and so
we must remove all negations in a preprocessing
stage.

The next proposition gives the way to remove
the negation of each link treated in this study. We
define no constraint condition asϵ for the result of
ISL.

Proposition 7. For any wordsA,B, X1, · · · , Xn,
Y ∈ W,
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(a) ¬ML(A,B) ≍ CL(A,B)，

(b) ¬CL(A,B) ≍ ML(A,B)，

(c) ¬IL(A,B) ≍ Np(B)，

(d) ¬XIL(X1, · · · , Xn, Y )
≍
∧n−1

i=1 Ep(Xi, Xn) ∧ Np(Y )，

(e) ¬ISL(X1, · · · , Xn) ≍ ϵ．

Proof. We prove (a) only.

(¬ML(A,B))∗

= (2W − Ep∗(A,B)) ∪ 2W−{A,B}

= (2{A,B} − {∅, {A,B}})⊗ 2W−{A,B}

∪ 2W−{A,B}

= {∅, {A}, {B}} ⊗ 2W−{A,B}

= 2W−{A} ∪ 2W−{B}

= Np∗(A) ∪ Np∗(B) = (CL(A,B))∗

4 Comparison on a Synthetic Corpus

We experiment using a synthetic corpus
{ABAB, ACAC} × 2 with vocabulary
W = {A, B,C} to clarify the property of
our method in the same way as in the existing
work (Andrzejewski et al., 2009). We set topic
size asT = 2. The goal of this experiment is
to obtain two topics: a topic whereA and B
frequently occur and a topic whereA and C
frequently occur. We abbreviate the grouping type
as AB|AC. In preliminary experiments, LDA
yielded almost four grouping types:AB|AC,
AB|C, AC|B, and A|BC. Thus, we naively
classify a grouping type of each result into the
four types. Concretely speaking, for any two
topic-word probabilitiesϕ̂ and ϕ̂′, we calculate
the average of Euclidian distances between each
vector component of̂ϕ and the corresponding one
of ϕ̂′, ignoring the difference of topic labels, and
regard them as the same type if the average is less
than0.1.

Fig. 2 shows the occurrence rates of grouping
types on 1,000 results after 1,000 iterations by
LDA-DF with six constraints (1) no constraint,
(2) ML(A,B), (3) CL(B, C), (4) ML(A,B) ∧
CL(B, C), (5) IL(B, A), and (6) ML(A,B) ∨
ML(A, C). In the experiment, we setα = 1,
β = 0.01, andη = 100. In the figure, the higher
rate of the objective typeAB|AC (open bar) is

Figure 2: Rates of Grouping types in the 1,000
results on synthetic corpus{ABAB,ACAC} ×
2 with six constraints: (1) no constraint, (2)
ML(A,B), (3) CL(B, C), (4) ML(A,B) ∧
CL(B,C), (5) IL(B,A), and (6) ML(A,B) ∨
ML(A,C).

better. The results of (1-4) can be achieved even
by the existing method, and those of (5-6) can be
achieved only by our method. Roughly speaking,
the figure shows that our method is clearly better
than the existing method, since our method can ob-
tain almost 100% as the rate ofAB|AC, which is
the best of all results, while the existing methods
can only obtain about 60%, which is the best of
the results of (1-4).

The result of (1) is the same result as LDA,
because of no constraints. In the result, the
rate of AB|AC is only about 50%, since each
of AB|C, AC|B, andA|BC remains at a high
15%. As we expected, the result of (2) shows that
ML(A,B) cannot removeAB|C although it can
removeAC|B andA|BC, while the result of (3)
shows thatCL(B, C) cannot removeAB|C and
AC|B although it can removeA|BC. The re-
sult of (4) indicates thatML(A, B) ∧ CL(B, C)
is the best of knowledge expressions in the exist-
ing method. Note thatML(A,B)∧ML(A,C) im-
pliesML(B,C) by transitive law and is inconsis-
tent with all of the four types. The result (80%)
of (5) IL(B, A) is interestingly better than that
(60%) of (4), despite that (5) has less primitives
than (4). The reason is that (5) allowsA to ap-
pear withC, while (4) does not. In the result of
(6) ML(A,B)∨ML(A,C), the constraint achieves
almost 100%, which is the best of knowledge ex-
pressions in our method. Of course, the constraint
of (ML(A,B) ∨ML(A,C)) ∧ CL(B, C) can also
achieve almost 100%.

5 Interactive Topic Analysis

We demonstrate advantages of our method via in-
teractive topic analysis on a real corpus, which
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consists of stemmed, down-cased 1,000 (positive)
movie reviews used in (Pang and Lee, 2004). In
this experiment, the parameters are set asα = 1,
β = 0.01, η = 1000, andT = 20.

We first ran LDA-DF with 1,000 itera-
tions without any constraints and noticed that
most topics have stop words (e.g., ‘have’ and
‘not’) and corpus-specific, unnecessary words
(e.g., ‘film’, ‘movie’), as in the first block
in Tab. 2. To remove them, we added
ISL(‘film’ , ‘movie’, ‘have’, ‘not’ , ‘n’t’ ) to the con-
straint of LDA-DF, which is compiled to one
Dirichlet tree. After the second run of LDA-DF
with the isolate-link, we specified most topics such
as Comedy, Disney, and Family, since cumber-
some words are isolated, and so we noticed that
two topics about Star Wars and Star Trek are
merged, as in the second block. Each topic la-
bel is determined by looking carefully at high-
frequency words in the topic. To split the merged
two topics, we addedCL(‘jedi’ , ‘trek’) to the con-
straint, which is compiled to two Dirichlet trees.
However, after the third run of LDA-DF, we no-
ticed that there is no topic only about Star Trek,
since ‘star’ appears only in the Star Wars topic,
as in the third block. Note that the topic includ-
ing ‘trek’ had other topics such as a topic about
comedy film Big Lebowski. We finally added
ML(‘star’, ‘jedi’ ) ∨ ML(‘star’, ‘trek’) to the con-
straint, which is compiled to four Dirichlet trees,
to split the two topics considering polysemy of
‘star’. After the fourth run of LDA-DF, we appro-
priately obtained two topics about Star Wars and
Star Trek as in the fourth block. Note that our so-
lution is not ad-hoc, and we can easily apply it to
similar problems.

6 Conclusions

We proposed a simple method to achieve topic
models with logical constraints on words. Our
method compiles a given constraint to the prior
of LDA-DF, which is a recently developed semi-
supervised extension of LDA with Dirichlet forest
priors. As well as covering the constraints in the
original LDA-DF, our method allows us to con-
struct new customized constraints without chang-
ing the algorithm. We proved that our method is
asymptotically the same as the existing method for
any constraints with conjunctive expressions, and
showed that asymptotic equivalency can shrink a
constructed Dirichlet forest. In the comparative

Table 2: Characteristic topics obtained in the ex-
periment on the real corpus. Four blocks in the
table corresponds to the results of the four con-
straintsϵ, ISL(· · · ), CL(‘jedi’ , ‘trek’) ∧ ISL(· · · ),
and (ML(‘jedi’ , ‘trek’) ∨ ML(‘star’, ‘trek’)) ∧
CL(‘jedi’ , ‘trek’) ∧ ISL(· · · ), respectively.
Topic High frequency words in each topic

? havegive nightfilm turn performance
? not life haveown first only family tell
? moviehaven’t get goodnot see
? haveblack scene tom death die joe
? film haven’t not make out well see

Isolated havefilm movienot good maken’t
? star war trek planet effect special
Comedy comedy funny laugh school hilarious
Disney disney voice mulan animated song
Family life love family mother woman father

Isolated havefilm movienot make goodn’t
StarWarsstar war lucas effectjedi special
? science worldtrek fiction lebowski
Comedy funny comedy laugh get hilarious
Disney disney truman voice toy show
Family family father mother boy child son

Isolated havefilm movienot make goodn’t
StarWarsstar war toy jedi menace phantom
StarTrek alien effectstar science specialtrek
Comedy comedy funny laugh hilarious joke
Disney disney voice animated mulan
Family life love family man story child

study on a synthetic corpus, we clarified the prop-
erty of our method, and in the interactive topic
analysis on a movie review corpus, we demon-
strated its effectiveness. In the future, we intend to
address detail comparative studies on real corpora
and consider a simple method integrating nega-
tions into a whole, although we removed them in
a preprocessing stage in this study.
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