Linguistically Rich Graph Based Data Driven Parsing For Hindi

Samar Husain, Pujitha Gade and Rajeev Sangal
Language Technologies Research Centre, IIIT-Hyderabad, India.

{samar,

Abstract

In this paper we show how linguistic know-
ledge can be incorporated during graph
based parsing. We use MSTParser and
show that the use of a constraint graph, in-
stead of a complete graph, to extract a
spanning tree improves parsing accuracy.
A constraint graph is formed by using lin-
guistic knowledge of a constraint based
parsing system. Through a series of expe-
riments we formulate the optimal constraint
graph that gives us the best accuracy.
These experiments show that some of the
previous MSTParser errors can be cor-
rected consistently. It also shows the limi-
tations of the proposed approach.

1 Introduction

In MSTParser (McDonald et al., 2005a, 2005b; a
graph based data driven parser), a complete graph
is used to extract a spanning tree during derivation.
MSTParser’s learning model uses large-margin
algorithm, which optimizes the parameters of the
model to maximize the score margin between the
correct dependency graph and all incorrect depen-
dency graphs for every sentence in a training set.
The learning procedure is global. Unlike, Malt-
Parser (and other transition based systems, see
Kubler et al., 2009), MSTParser considers limited
history of parser decisions during training. McDo-
nald and Nivre (2007) characterize in detail the
specific error patterns in MSTParser. Recent works
such as Sagae and Lavie (2006), Nivre and
McDonald (2008), Zhang and Clark (2008), Koo
and Collins (2010), have tried to improve the pars-
ing accuracy either by integrating the two parsers
via stacking, etc. or by introducing better learning
models.

In this work we try to investigate if parsing ac-
curacy using MSTParser can be improved by pro-
viding it a constraint graph instead of a complete

56

pujitha.gade}@research.iiit.ac.in,

sangal@mail.iiit.ac.in

graph during the derivation step. Our work is re-
lated to Bergsma and Cherry, (2010), where they try
something similar to increase parser speed. We modify
the Chu-Liu-Edmonds algorithm such that it would
start with the modified graph instead of a complete
graph. This algorithm was chosen over the Eisner’s
algorithm as the Hindi treebank contains ~14%
non-projective arcs (Mannem et al., 2009). While
we do not change the learning phase, it will be in-
teresting to see what effect certain linguistic know-
ledge alone can have on the overall accuracy. A
constraint graph is formed by using linguistic
knowledge of a constraint based parsing system
(Bharati et al., 2009). Through a series of experi-
ments we formulate the optimal constraint graph
that gives us the best accuracy. These experiments
show that some of the previous MSTParser errors
can be corrected consistently. It also shows the
limitations of the proposed approach.

The paper is arranged as follows, in section 2 we
briefly discuss the notion of a constraint graph for
a sentence; Section 3 describes the experimental
setup. The experiments are discussed in section 4,
followed by the results and observations in section
5. We finally conclude the paper along with future
directions in section 6.

2 Constraint Graph

Bharati et al., (2009) proposed a two-stage con-
straint based hybrid dependency parsing approach
for free word order languages. They divide the task
of parsing into intra-clausal and inter-clausal stag-
es. At each stage valency frames for various heads
(mainly for verbs and conjunctions) are used to
construct a constraint graph. The parser currently
uses close to 536 manually annotated valency
frames. The constraint graph is then converted into
an integer programming problem to get the parse at
each stage. Let us look at a sample constraint graph
for a Hindi sentence.

Proceedings of the 2nd Workshop on Statistical Parsing of Morphologically-Rich Languages (SPMRL 2011), pages 56-61,
Dublin, Ireland, October 6, 2011. ©2011 Association for Computational Linguistics



bacce_ne haath _se  kelan

kf"-}/;R

khaayaa

7

ama  so_gayaa _ROOT_

JHMM

(a) 1st stage Constrant Graph

coaf m

khaayaa

aura

50_gayaa

chremmym

(h) 2nd stage Constraint Graph

Figure 1. Constraint graph for sentence 1.
(Although a constraint graph has arc labels, they are not used in our experiments.)

(1) bacce ne haath se kelaa  khaayaa
‘child” ERG hand with ‘banana’ ‘eat’
aura S0 gayaa
‘and’ ‘sleep’ PAST

“The child ate the banana with his hand and slept’

Figure 1 shows the 1st stage and the 2nd stage
Constraint graph (CG) for Example 1. Note that
the arcs in 1st stage CG are localized to individual
clauses. The ROOT node is required in order to
get the partial parse at the end of the 1st stage. Al-
so note that in the 2nd stage only the inter-clausal
relations are considered (here finite verbs and a
conjunctions). In such a scenario 1st stage and 2nd
stage CGs are distinct and vary drastically in size.
This can be clearly seen in Figure 1.

The CG for each sentence provides the linguistic
knowledge that we will use in various experiments
in this paper. We can use this information in two
ways:

a) Complete CG or stage specific CG can be di-
rectly used instead of a complete graph during
the derivation.

b) Specific information from CG can be used to
prune out certain arcs in the complete graph
while retaining others.

For the experiments discussed in this paper we
use the latter. We note that although CG also pro-

57

vides arc labels, for all our experiments we are on-
ly concerned with the attachment information. This
is because the spanning tree extraction algorithm in
MSTParser uses unlabeled graph. MSTParser uses
a separate classifier to label the trees.

3 Experimental Setup

All the experiments are conducted on Hindi. We
use the dependency treebank released as part of the
ICON2010 tools contest (Husain et al., 2010). The
training data had 2,973 sentences. Development
and testing had 543 and 321 sentences respective-
ly. MSTParser' was modified so that it can use
CG during derivation. We use the non-projective
algorithm, order=1 and training k=5. We use the
feature set optimized for Hindi by Bharati et al.
(2008). Experiments were first conducted using
training and development data. Once the experi-
mental design was frozen, only then the test data
was used.

4 Experiments

For an input S = wy, wy, ....w,, i.e. the set of all
words in a sentence, let Gg be the complete graph,
and CGg be the constraint graph provided by the
constraint parser. Let N = {w,, wy, ....w,} be the

'MST Version 0.4b



set of vertices in Gs. Ag= NxNand Acg € Nx N
is the set of arcs in the two graphs. An arc between
w; and wj, shown as (w;,w;) signifies w; as the par-
ent of w;. X is the set of all the nodes which occurs
as a child in Acg. Also, let C be the set of all ver-
tices which are conjunctions, V be the set of all
vertices which are verbs, K be the set of all vertic-
es which are nouns, P be the set of all vertices that
have a case-marker/post-position and J be the set
of adjectives.

The set of arcs which will be pruned from the
complete graph in experiment 1 is shown in Table
1. This means that all the arcs in G will be pruned
except the ones present in CG.

Fory in X:
For xin S:
If A (x,y) in Acg:

Remove (x,y) from Ag

Tablel. Experiment 1 valid arcs

1/\2/\ 3

Step 1

e "
s R
- -y
- ~
~
- -
- /‘,—\i
w
- -
-—---ﬂ’

Step 3

Figure 2. Illustration of Experiment 1

58

Experiment 1 is illustrated in Figure 2. Step 1
is a sample constraint graph for a sentence with
three words which are represented as 1, 2 and 3. In
step 2 we prune arcs according to the Constraint
graph. For nodes which have no parents in CG we
keep all their incoming arcs intact as shown in
Figure 2 with dashed arcs. In step 3 we add arcs
from _ ROOT __ to all the nodes. The final graph
is used by MSTParser to extract the parse tree dur-
ing derivation.

The parser in experiment 1 (E1) outperformed
the baseline UAS (more details in section 5). Fur-
ther analysis showed that the pruning based on E1,
although useful, also had some negative effect, i.e.
it also prunes out many potentially valid arcs that
would have been originally considered by
MSTParser. Through experiments 2-8 we explore
if we can minimize such invalid pruning. We do
this by systematically considering parts of the CG
and using only those parts for pruning G.

%

1_psp 2 3
Step 1
1_}15/\ ol "‘3
Q-‘--". s‘_-“-"*
Step 2
4-""—-“"' ‘\s
~ el
- ~ ~

Step 3

Figure 3. Illustration of Experiment 2

Experiment 2 (Table 2, 1* row) begins with focus-
ing on child nodes with post-positions. Also incor-
porated are the conjunction heads. Since a CG is
formed based on explicit linguistic cues, it makes



sense to base our decision where concrete informa-
tion is available. Experiment 2 is illustrated in Fig-
ure 3. Experiment 3 (Table 2, 2™ row) uses similar
conditions, except the constraint of nodes with
post-position is only on noun children. By doing
this we are trying to explore the most appropriate
information in the CG.

to ensure that the ambiguity of correct heads for
nouns with no post-position is not resolved by CG.

Fory in X:
For x in S:
If A (xy) in Acg:
Remove (x,y) from Ag
If 3 (xy) in Acgand y&P and x&C.
Remove(x,y) from Ag

For yin X:
For x in S:
If 2 (xy) in Acg:
Remove (x,y) from Ag
If 3 (x,y) in Acc and yeK and y&P and x€V:
IfA (z,y) in Acg and (z€C or z€J)
Remove(x,y) from Ag

Fory in X:
For x in S:
If 2 (x,y) in Acg:
Remove (x,y) from Ag
If 3 (x,y) in Acg and yeEK and y&P and x&C:
Remove(x,y) from Ag

For yin X:
For x in S:
If 2 (xy) in Acg:
Remove (x,y) from Ag
If 3(xy) in Acg and yeK and y&P and x¢C:
If A (z,y) in Acg and (z€C or z€J)
Remove(x,y) from Ag

Table 2. Experiment 2 and 3 valid arcs

For yin X:
For x in S:
If A (X,y) in ACG:
Remove (x,y) from Ag
If 3 (x,y) in Acc and yeK and y&P and x€V:
Remove(x,y) from Ag

Table 3. Experiment 4 valid arcs

It is interesting to note that in experiment 4 we are
trying to prune out invalid arcs related to the ar-
gument structure information of a verb (x€V)
available in a CG. Using CG only for verbal argu-
ments with case-marker captures various verbal
alternations manifested via case-markings.
Experiment 5 and 6 extends experiments 4 and 3
respectively by introducing an exception where a
noun child y with no case-marker is considered
only if there exists other potential conjunc-
tion/adjectival head for y. Owing to the free-word
order property of Hindi, identifying the head of a
noun with no case-marker is a rather difficult task.
In spite of their availability many robust generali-
zations (that help disambiguate relations with
nouns with no case-markings) such as agreement
remain unexploited during training (Ambati et al.,
2010). In this experiment therefore, we are trying

59

Table 4. Experiment 5 and 6 valid arcs

Experiments 2-6 only catered to verbal, conjunc-
tion or adjectival head. Experiment 7 and 8 extend
5 and 6 to handle nominal predicate heads. We
note here that this information is not obtained from
the CG and is being treated as a heuristic rather
than having some linguistic validity. The constraint
parser has very limited coverage for nominal pre-
dicates and therefore we cannot rely on it for this
kind of information. The heuristic considers a pos-
sibility of an attachment between two consecutive
nouns and does not remove such arcs from the G.

5 Results and Discussion

Figure 4 shows the results for all the experiment.
The baseline UAS was 88.66 and the best result
was obtained from experiment 8 with the UAS of
89.31. This is an increase of 0.65%. There was also
an increase of 0.45% in the LAS. All the im-
provements in the results were statistically signifi-
cant using McNemar’s test (p<0.01 for
improvement in UAS).




394
39.3

392

39:1 —
iz}
359
358
38.7
356
38577
354
35.3

bazeline expmnt! expmnt2 expmnts expmntd expmts expmnts expmnt? expmnts

Figure 4. UAS of all the experiments.

Table 5 shows that the improvement in the accu-
racies is spread across different kinds of relations.

As mentioned earlier, the constraint graph is
originally formed using the linguistic knowledge of
the constraint based system. It is clear that for our
experiments the coverage of this knowledge is very
crucial. Our experiments show that while the cov-
erage of verbal and conjunction heads is good,
knowledge of other heads such as predicative
nouns and adjectives is lacking. As mentioned ear-
lier the constraint parser currently uses close to 536
valence frames. It would be interesting to see how
grammar extraction methods for Hindi (Kolachina
et al., 2010) can be combined with our approach to
boost the knowledge base being currently used.

Relations Baseline Experiment 8
UAS |LAS |UAS |LAS

Intra-clausal 87.86 | 73.63 | 88.30 | 74.00

Verbal Args* | 89.46 | 72.28 | 90.02 | 72.68

(Intra-clausal)

Non-args 86.25 | 75.00 | 86.57 | 7532

(Intra-clausal)

Inter-clausal 91.85 | 91.53 ]93.29 |92.33

Table 5. Comparison of baseline and Experiment 8
accuracies for various relations.
(*Args: arguments)

Both inter-clausal as well as intra-clausal rela-
tions benefit. Within a clause, both argument struc-
ture of a verb and other relations are better
identified in Experiment 8 when compared to the
baseline. There was a consistent improvement in
the analysis of certain phenomenon. These were:

a) Intra-clausal coordinating conjunction as de-
pendents. These may appear either as argu-
ments of the verb or as children of non-verbal
heads.

b) Better handling of arguments of non-finite
verbs and gerunds

¢) Better handling of clausal arguments and rela-
tive clauses.

A similar pattern is seen from Table 6 where
there is an increase for almost all the POS tags in
the head attachment accuracy, except for adjectival
attachments.

60

POS tag %]Instance | Accuracy
Baseline | E8
Noun 64% 89% 90%
Finite verb 15% 94% 95%
Non-finite verb | 3% 83% 83%
Gerund 5% 86% 88%
Conjunction 7% 75% 77%
Adjective 4% 98% 95%
Table 6. Head attachment accuracy distribution
over POS

6 Conclusion and Future directions

In this paper we successfully integrated linguisti-
cally driven constraint graph in MSTParser.
Through a series of experiments we showed that
selective use of such information leads to im-
provement in parser accuracy. Through analyzing
the results we fleshed out the areas of improve-
ment. We also pointed out where our approach
harms the parsing accuracy.

The linguistic knowledge in all our experi-
ments are currently being used as hard constraints,
but they can also be used as soft constraints similar
to parser stacking approaches explored by Nivre
and McDonald, (2008) and Husain et al., (2011).
Use of grammar extraction techniques in the future
to automatically construct the constraint graph
seems to present a very attractive strategy which
can complement these experiments.

Acknowledgement

We would like to thank the three anonymous re-
viewers for their extensive and insightful com-
ments that helped us improve the paper.




References
B. R. Ambati, S. Husain, J. Nivre and R. Sangal. 2010.

On the Role of Morphosyntactic Features in Hindi
Dependency Parsing. In Proceedings of NAACL-HLT
2010 workshop on Statistical Parsing of Morpholog-
ically Rich Languages (SPMRL 2010), Los Angeles,
CA.

. Bharati, S. Husain, D. M. Sharma and R. Sangal.
2009. Two stage constraint based hybrid approach to
free word order language dependency parsing. In
Proceedings of the 11" International Conference on
Parsing Technologies (IWPT). Paris.

. Bharati, S. Husain, B. Ambati, S. Jain, D. M. Sharma
and R. Sangal. 2008. Two semantic features make all
the difference in Parsing accuracy. In Proceedings of
the Oth International Conference on Natural Lan-
guage Processing (ICON-08), CDAC Pune, India.

. Husain, P. Gadde, J. Nivre and R. Sangal. 2011.
Clausal parsing helps data-driven dependency pars-
ing: Experiments with Hindi. In Proceedings of
IJCNLP 2011.

. Husain, P. Mannem, B. R. Ambati, and P. Gadde.
2010. The ICON-2010 Tools Contest on Indian Lan-
guage Dependency Parsing. In Proceedings of ICON-
2010 Tools Contest on Indian Language Dependency
Parsing. Kharagpur, India.

. Kolachina, S. Kolachina, A. K. Singh, V. Naidu, S.
Husain, R. Sangal and A. Bharati. 2010. Grammar
Extraction from Treebanks for Hindi and Telugu. /n
Proceedings of The 7th International Conference on
Language Resources and Evaluation (LREC). Valle-
ta. Malta. 2010.

. Koo and M. Collins. 2010. Efficient Third-order De-
pendency Parsers. In Proc of ACL2010.

. Kubler, R. McDonald and J. Nivre. 2009. Dependen-
¢y parsing. Morgan and Claypool.

. Mannem, H. Chaudhry and A.Bharati. 2009. Insights
into Non-projectivity in Hindi. Proceedings of ACL-
IJCNLP Student Research Workshop. Singapore.

. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proceedings of ACL 2005. pp. 91-98.

. McDonald, F. Pereira, K. Ribarov, and J. Hajic.
2005b. Non-projective dependency parsing using
spanning  tree  algorithms.  Proceedings  of
HLT/EMNLP, pp. 523-530.

. McDonald and J. Nivre. 2007. Characterizing the
Errors of Data-Driven Dependency Parsing Models.
In Proc of Joint Conference on Empirical Methods in

61

Natural Language Processing and Computational
Natural Language Learning

J. Nilsson and J. Nivre. 2008. Malteval: An evaluation

and visualization tool for dependency parsing. In the
Proc of Sixth International Language Resources and
Evaluation, Marrakech, Morocco.

. Nivre and R. McDonald. 2008. Integrating graph-

based and transition-based dependency parsers. In
Proc. of ACL-HLT.

J. Nivre. 2006. Inductive Dependency Parsing. Sprin-

ger.

K. Sagae and A. Lavie. 2006. Parser combination by

reparsing. In Proc. HLT/NAACL.

S. Bergsma and C. Cherry. 2010. Fast and Accurate Arc

Filtering for Dependency Parsing. In Proceedings of
the 23rd  International Conference on
Computational Linguistics (Coling 2010).

Y. Zhang and S. Clark. 2008. A tale of two parsers: In-

vestigating and combining graph-based and transi-
tion-based dependency parsing. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 562-571.



