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Abstract 

This work proposes a novel metric, Maximally 
Amortized Cost (MAC), for cost evaluations of 
error correction of predictive Chinese input 
methods (IMs). With a series of real-time sim-
ulation, user correction behaviors are analyzed 
by estimating generalized backward compati-
bility of adaptive Chinese IMs. Comparisons 
between three IMs by using MAC with differ-
ent context lengths report empirical factors of 
context length for improving predictive IMs. 
The error-tolerance level—Futile Effort, Ben-
eficial Effort and Utility—of adaptive IMs is 
also proposed and analyzed. 

1 Introduction 

Most ideograph-based Asian languages consist 
of thousands of characters, making it impractical 
to create keyboards along the same style as al-
phabetic languages. In response, most modern 
systems come with built-in tools called input 
methods (IMs) for transforming multiple key-
strokes into single ideographs. IMs are often cat-
egorized into “radical-based” or “phonetic-
based” methods. With radical-based IMs, users 
construct characters by typing the composing 
radicals or strokes. Alternatively, phonetic-based 
IMs rely on phonetic transcriptions of ideo-
graphs, where users create characters by typing 
in the approximate spellings of their syllables. In 
the case of homographs or homophones, users 
are given a choice, and the proper character is 
selected and entered. 

Besides desktop environments in Asian lan-
guages, IMs are also essential in any language 
for ambiguous keyboards that have more than 
one character or letter assigned to each key, re-
sulting in some uncertainty about the intended 
symbol when a key is pressed. Ambiguous key-
boards gain attentions because of mobile compu-
ting, which has limited space. Also, such key-
boards expand the communication possibilities 

for users with physical disabilities who have in-
sufficient motor facility to operate a full-size 
keyboard. Two methods enable ambiguous key-
boards to access a large set of characters, and 
these differ depending on who performs the dis-
ambiguation. First, there is the multi-tap method 
or non-predictive method, in which the user dis-
ambiguates using multiple keystrokes to unique-
ly indicate a character. In the case of a full-size 
keyboard, additional keystrokes such as those 
applied through the CapsLock key are a kind of 
multi-tap entry. The second approach uses a pre-
dictive method, in which the system disambigu-
ates and presents a list of ordered candidates 
from which the user chooses. For example, pre-
dictive IMs on the 12-key ITU-T keypad of mo-
bile phones such as T9 and LetterWise have been 
studied with human-computer interaction (HCI) 
metrics that measure text entry performance in 
terms of speed and accuracy, in order to quantita-
tively analyze user experiences of different IMs 
(MacKenzie et al., 2001; Silfverberg et al., 
2000). All of these studies, however, focus on 
alphabetic languages, and mostly English; thus 
far, HCI research on IM in other languages has 
been underdeveloped. 

While various types of IM can be used with a 
keyboard, this work specifically examines the 
context of predictive phonetic-based methods for 
Chinese. Predictive phonetic-based IM not only 
facilitates word prediction and word or phrase 
completion, but also disambiguates homophones 
of syllables into characters. To date, most natural 
language processing (NLP) research on Chinese 
IMs has focused on these predictive phonetic-
based approaches. Many researchers have ap-
plied n-gram language modeling (LM) and hid-
den Markov models to IMs, such as Chen et al. 
(2000), Gao et al. (2002), Wang et al. (2004), 
and Wu et al. (2003); Maximum entropy (Li et 
al., 2007) and conditional random fields (Xiao et 
al., 2009) have also been employed. While the 
studies above have made important contribu-
tions, they also assume fixed rules or stationary 
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probabilities. Developers of IMs, however, are 
expected to pay more attention to the increasing 
needs on personalization1 and new word supple-
ments via search engine logs 2  or social net-
works3. Only a handful of research papers to our 
knowledge explore adaptive language modeling 
of IM for Asian languages. Tanaka-Ishii et al. 
(2003) have examined corpus for vocabulary ac-
quisition for Japanese in terms of reused words 
and unused words; Suzuki and Gao (2005) have 
proposed an error ratio corresponding to the 
number of newly introduced errors per each im-
provement after new training text was supplied. 
These two studies reflect a common expectation 
of IM users—backward compatibility—which 
means a word prediction that was previously cor-
rect should remain correct with new words rec-
ognized simultaneously. 

This work intends to expand the approach to-
wards backward compatibility using novel eval-
uation methods for Chinese predictive phonetic-
based IM, by comparing text entry performance 
before and after user corrections of predictive 
IM-generated errors. Once an error is left uncor-
rected, it becomes noise to an IM with the ability 
to adapt. In addition, user corrections could be 
more complicated in predictive Chinese IMs than 
Japanese ones. When the user modifies some 
character, its surrounding characters often 
change automatically, because unlike Japanese, 
Chinese syntax does not have clear cues and or-
ders of subject-verb-object typology. Thus, pre-
dictive Chinese IMs must rearrange the whole 
entered text to construct more likely context ac-
cording to certain user modifications. After this 
kind of continuous automatic adjustment, user 
feedback is often too vague to interpret into exact 
word boundaries for adaptation, in terms of vo-
cabulary acquisitions. It is considerably closer to 
daily usage of IM and more difficult than most 
previous works of adaptive IMs that acquire new 
information from correct and manually segment-
ed transcriptions. This work suggests that a ro-
bust predictive Chinese IM should tolerate noisy 
user feedback during adaptation, in addition to 
the backward compatibility mentioned earlier. 

To improve understanding of these situations, 
this work reviews existing performance evalua-
tion metrics related to IMs, and then proposes 
extensions of these metrics for predictive and 

                                                
1 Google Pinyin’s privacy terms (in Chinese), 
http://www.google.com/intl/zh-CN/ime/pinyin/privacy.html 
2 Sougo Cell dictionary, http://pinyin.sogou.com/dict/ 
3 Social IME, http://www.social-ime.com/ 

adaptive Chinese IMs, especially in cases of gen-
eralized backward compatibility and error-
tolerance level for cost and influence. This work 
also develops a platform that is fully capable of 
simulating user-IM interaction, so as to collect 
data for quantitative comparison of various uses 
or different IMs. The proposed evaluation met-
rics and simulation results provide helps for fur-
ther NLP investigation of predictive phonetic-
based IM on error-tolerant adaptation and con-
duct pilot tests to report empirical factors before 
engaging in labor-intensive corpus annotations 
and human-participated HCI research. 

2 Properties of Chinese Predictive IM 
with Adaptation Ability 

2.1 Online Implicit User Feedback 

Recent Chinese predictive IM products provide 
several ways for users to leave feedback on vo-
cabulary acquisition. These methods practice in 
two different perspectives: online vs. offline and 
explicit vs. implicit. Online feedback indicates 
that an IM collects unknown words or re-ranks 
known words based on the user’s current actions, 
while offline feedback means an IM extracts 
similar information via user-provided content or 
logs. When the user indicates their preferences 
directly, an IM receives explicit feedback; oth-
erwise it must interpret user-IM interactions for 
implicit feedback. While offline and explicit 
feedback can be modeled as reinforcement learn-
ing or through the research of Tanaka-Ishii et al. 
(2003) or Suzuki and Gao (2005), our goal is to 
explore the relatively unfamiliar territory of im-
plicitly online user feedback. 

2.1.1 IM Adaptation Procedure 

First, extending the definition from Tanaka-Ishii 
et al., (2003) any predictive IM with adaption 
abilities lets the user enter text continuously in 
five stages: 

1. The user enters an ambiguous source 
keystroke string. 

2. The IM retrieves candidate chunks cor-
responding to the source string from its 
built-in database and the user’s profile. 

3. The IM sorts these candidate chunks and 
composes most likely chunks to a target 
string, according to a particular evalua-
tion function. 
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4. The user modifies the target string by 
choosing candidate chunks in case the 
IM’s prediction is not entirely correct. 

5. The IM adapts the user’s modifications 
with context as implicit online feedback 
for user profiling. 

One may argue that user’s modifications can 
be accumulated as logs for lazy evaluation as 
offline feedback. According to some Chinese IM 
product’s customer service reports (personal 
communication), however, users expect their 
modifications to be adapted as soon as possible 
to avoid repeat modifications for the same error 
cases. This expectation motivates this work to 
investigate real-time solutions of online feed-
back. 

2.1.2 User Adaptation Habit 

One intuitive and ideal solution of online feed-
back involves applying early evaluations of 
Move-to-Front (Bentley et al., 1986) and Predic-
tion by Partial Match (Bell et al., 1990) tech-
niques on modified chunks with context. In our 
experience, however, users may also adapt to an 
IM’s performance and develop habits to correct 
just one chunk and then submit the target string 
immediately, which leaves fewer contexts for an 
IM to analyze. To overcome this situation, some 
IMs analyze unmodified target strings for more 
information, which can be misleading if the user 
has left some incorrect chunks. Eventually users 
will face a dilemma: typing more chunks to feed 
an IM for better adaptive predictions but encoun-
tering more errors. Hence this work studies prop-
erties of IM regarding the trade-off between cost 
and benefit of error correction. 

2.2 Error Correction Evaluation Metrics 

In order to understand the role of Amortized Cost 
that will be defined later in this section, it is first 
useful to examine previous research on error cor-
rection by describing well-known evaluation 
metrics for text entry and considering their short-
comings. To avoid confusion, all metrics use the 
notations formerly introduced by Soukoreff and 
MacKenzie (2003) as follows: 

 Presented text (P) is text that participants 
were required to enter by the experiment, 
and |P| is the length of P; 

 Transcribed text (T) is the final text en-
tered by the participant, and |T| is the 
length of T; 

 Input stream (IS) is the text that contains 
all keystrokes performed while entering 
P and |IS| is the length of IS; 

 Correct (C): the number of correct char-
acters in T; 

 Incorrect Not Fixed (INF): the number of 
unnoticed errors in T; 

 Incorrect Fixed (IF): keystrokes are 
those in IS that are not editing keys (F), 
and which do not appear in T; 

 Fixes (F): are keystrokes in IS, which are 
edit functions, modifier keys, or naviga-
tion keys. 

2.2.1 MSD 

Evaluating the accuracy of text entry involves 
more than simply comparing strings. Consider 
the following example: 

P: the quick brown fox 
T: the quixck brwn fox 

The notion of minimum string distance (MSD), 
which is the minimum number of primitives—
insertions, deletions, or substitutions—needed to 
transfer one string to another, is introduced to 
deal with such a situation (Soukoreff et al., 2001). 
In this case, P and T’s MSD is 2. The idea of 
MSD error rate is to find the smallest number of 
operations to transform T to match P, and then to 
calculate the ratio of that number to the larger of 
|P| and |T|. The MSD error rate is defined as 

%,100),(
×=

AS
TPMSDteMSDErrorRa  

where AS  is the mean length of the alignment 
strings. MSD can only provide information about 
the remaining T, because errors corrected by the 
editing process can no longer be observed. 

2.2.2 KSPC 

In contrast to MSD, it is possible to observe cor-
rected errors by logging all keystrokes as IS. 
From IS, a new metric, key-strokes per character 
(KSPC), is defined by MacKenzie (2001) simply 
as |IS| / |T|. KSPC sketches the effort required to 
correct errors without considering uncorrected 
errors. A large number of errors that only require 
low correction effort and a few errors requiring 
high correction effort may result in the same 
KSPC value. Although the keystrokes that send 
errors and keystrokes that correct errors are dif-
ferent, they are not differentiated by KSPC. 
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2.2.3 Unified Error Metrics  

After observing the shortcomings of the MSD 
error rate and the KSPC value, Soukoreff et al. 
(2003) proposed a unified error metric that logs 
IS in the same way as KSPC and then classifies 
the keystrokes to analyze T. The MSD is only 
concerned with INF, while KSPC only reports 
the sum of IF and F. The Total Error Rate is a 
unified method, which recognizes all keystrokes 
of INF and IF and measures the ratio of the total 
number of incorrect and corrected characters as 

%100×
++

+
=

IFINFC
IFINFRateTotalError

. 
The MSD error rate and KSPC statistic can be 

defined in terms of the keystroke taxonomy as 

%;100×
+
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For example, once a user corrected the error 

“brwn” of T to form “the quixck brown 
fox” as T’, TotalErrorRate(T’), MSDError-
Rate(T’), and KSPC(T’) will be (2/18)%, 
(1/17)%, and 19/17, respectively. 

2.3 Evaluation of Predictive IM 

Predictive Chinese IMs consist of a display buff-
er for composition as a target string waiting for 
editing, and lists of candidate chunks for every 
potential editing position. These characteristics, 
which come from the complexity of languages 
that do not have delimiters (e.g. spaces) in their 
writing systems, such as Chinese and Japanese, 
are not captured by the metrics discussed above, 
because those metrics were originally designed 
for short text entry with alphabetic languages on 
handheld devices. It is therefore necessary to 
consider an alternative approach to overcome the 
shortcomings of existing metrics. In doing so, 
this work first examines long buffer variables 
and multiple candidate lists by reviewing Fitts’ 
law and Hick’s law before using them to create 
an improved evaluation metric. 

2.3.1 Fitts’ law 

Fitts’ law is a function of the distance to the final 
target and its size, and is used to predict the time 
required to move rapidly from a starting position 
to a final target area. Mathematically, Fitts’ law 
can be formulated in several ways. One refined 
form, proposed by Soukoreff et al. (2003) is 

),1/(log2 ++= wdbat  

where the average time t is taken to complete 
the movement, and a and b are empirical con-
stants that can be determined by fitting a straight 
line to measured data. The distance d is from the 
starting point to the center of the target. The 
width w is of the target measured along the axis 
of motion. The term log2(d/w + 1) represents the 
index of difficulty (ID) of the given task. Since a 
text entry task usually shifts the cursor by key-
strokes rather than mouse movements, ID may 
link to the number of keystrokes directly. 

2.3.2 Hick’s law 

When correcting typing errors, both the time tak-
en by moving cursor and the time for candidate 
selection should be considered. Here, Hick’s law, 

)1(log2 ++= nbat , 
describes the time, t, it takes users to make a 

decision as a function of the equal possible n 
choices they have, where a and b are empirical 
constants. The law hints some baseline points, 
but the realistic candidate selection time still 
needs to be measured via subject experiments. 
As far as we know, Hick’s law has not been 
widely adapted to candidate selection for typing 
error correction of text entry tasks. 

2.3.3 Maximally Amortized Cost 

In previous work of Arif et al. (2009), text entry 
experiments are conducted with one of three er-
ror correction conditions, including None, Rec-
ommended and Forced. The participants are not 
allowed to correct any error in the None condi-
tion. On the other extreme, participants are 
forced to correct every error to keep T error free 
in the Forced condition. Lastly, participants are 
recommended to correct errors as they identify 
them in the Recommended condition. During the 
None condition, typists sometimes instinctively 
tried to correct their errors before they remem-
bered that they could not. Such a failed error cor-
rection attempt takes a bit of time, as participants 
need to mentally recover and resume the original 
task. Again, during the Recommended condition 
participants tended to correct their errors almost 
the moment they made them (i.e. character level 
error correction), making this condition similar 
to the Forced condition. 

In the end, Arif et al. did not find any relation-
ship between the typists’ entry speed and their 
instinctive attempt to correct errors. Therefore, 
the None and Forced conditions are not consid-
ered hereafter. Furthermore, this work argues 
that a more realistic condition of error correction 
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lies in the spectrum of motivations behind Rec-
ommended conditions. For the purpose of effi-
ciency, a user may not correct most errors that 
occur during mobile phone texting or Internet 
chatting, but the same user is likely to try to 
make every word as effective as possible in sit-
uations of formal writing. When a predictive IM 
is involved, the user tends to find a compromise 
between efficiency and effectiveness according 
to the certain IM’s performance, as mentioned in 
subsection 2.1.2 of users’ habit, for example. In 
fact, technical news articles in China have even 
devised a conventional performance evaluation 
metric called “accuracy rate of the first suggested 
chunk4 (首選詞正確率)”. This has not been adopt-
ed in academic papers, since it lacks clear defini-
tions for chunk and reference corpus. If the pre-
dictive IM adapts user behavior while the user 
adapts IM behavior simultaneously, feedback in-
between could be very complicated. To model 
this phenomenon, situations are categorized, as 
shown in Table 1, and an information theoretic 
point of view is applied to define the Amortized 
Cost (AC) of text entry as follows: 

C
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where the basic measurement of the four cate-

gories is character. Some might argue that the 
metric F should be counted on keystrokes. How-
ever, each function/control keystroke F can suc-
cessfully map to a virtual character unit as an 
information term. As long as the numerators and 
denominators are measured in the same unit, the 
definition is satisfied. Although Table 1 shows 
three situations, only situation S0 is easy for au-
tomated simulation because it is unconcerned 
about methods of corrections. 

In alphabetic text entry, if assuming the same 
amount of errors occurred and the user applied 
the same correction skill in different situations, 
one could design a keystroke logger to record all 
editing processes and find the boundary of AC: 

                                                
4 ZOL reports (in Chinese), 

http://soft.zol.com.cn/103/1033537.html 
http://soft.zol.com.cn/132/1320458.html 
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Unfortunately, unlike alphabetic text entry, it 
is insufficient to map the metric F to as the same 
measurement of the keystroke or character one 
by one for Chinese IMs, as with other metrics. 
For example, a backspace keystroke can be used 
to either erase a Chinese character or a phonetic 
character, and thus runs into trouble when evalu-
ating its cost. For this reason, this work defines 
the metrics average correction penalty (p), aver-
age correction reward (r) and then another AC of 
modification (ACm) instead of the original term 
Fall / C as 

,
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where ID is calculated by the distance moving 
to the furthest wrong word needing correction; tH 
describes the time for selecting candidates meas-
ured by Hick’s law; tF represents the time for 
moving a cursor through ID based on Fitt’s law. 
From these variables, a Maximally Amortized 
Cost (MAC) is proposed as follows: 

.)max(000

C
IDtINFt

C
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C
INFMAC HH

m
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+=+=  

Here, MAC can be viewed as a metric to esti-
mate user experiences of Chinese predictive IMs 
using automated simulation, which will be 
demonstrated in the next section. 

2.4 Generalized Backward Compatibility 

Tanaka-Ishii et al. (2003) argue that the major 
drawback to predictive IM is related to diction-
ary use; a user cannot enter vocabulary not regis-
tered in the dictionary. They presume that miss-
ing vocabulary should exist within the user's text, 
depending on the user’s context. In order to ana-
lyze how vocabulary is reused when a user edits 
text, they investigate how the reused word rate 
changed according to the offset of a text, by 
marking the text at the offset of 0.5 KB and 
counting the reused word rate in the 1 KB win-
dow. Their results suggest that context is provid-
ed by 70% to 80% of the vocabulary and the sto-
ry evolves through the rest. From this observa-
tion, they suspect that typical users reuse 70% to 
80% of their vocabulary only after an offset win-
dow of several KB. Based on this previous work, 
simulations where text is typed repeatedly should 

Situation Fixed characters INF IF F 
S0 none INF0 0 0 
Si some INFi IFi Fi 
Sall all 0 IFall Fall 
Table 1. Three situations of errors correction 
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be representative enough for adaptation of Chi-
nese predictive IMs. 

Suzuki and Gao (2005) present comparative 
experiment results on four techniques of adaptive 
LM for IMs. Their evaluation of four techniques 
is unique in that they go beyond simply compar-
ing those techniques in terms of character error 
rate (CER); they measure the distance between 
background and adaptation domains by using a 
metric of distributional similarity, and attempt to 
correlate it with the CER of each adaptation 
method. They also propose a novel metric for 
measuring the side effects of adapted models 
using the notion of backward compatibility. The 
error ratio (ER) is introduced for estimating side 
effects, which is defined as |EA| / |EB|, where |EA| 
is the number of errors found only in the newly 
adapted model, and |EB| the number of errors cor-
rected by the new model. Intuitively, ER captures 
the cost of improvement of certain adaptation 
method, corresponding to the number of newly 
introduced errors per each improvement. 

Arif et al. have observed that error correction 
involves both human-specific elements and sys-
tem-specific elements; for example, the time to 
verify a correction, and the key sequence re-
quired for replacing a wrong character, respec-
tively. On one hand, users usually immediately 
verify what they have typed and correct errors 
right away, i.e. character-level correction. On the 
other hand, users also chunk their input and veri-
fy the result only after typing a few characters or 
even the whole word as word-level correction. 
This observation is quite similar to common us-
ages of predictive Chinese IMs. As determined 
by analysis of human error correction behavior, 
however, the predominant strategy for alphabet 
text entry is to use the backspace key for both 
character-level and word-level corrections. This 
situation is different from predictive Chinese IMs, 
in that users tend to move to particular positions 
and then correct Chinese chunks (i.e. de facto 
words from the user’s perception) by substitution. 

This work expands the concept of backward 
compatibility to indicate a considerably more 
general and continuous scenario: previous cor-
rections must not only remain correct after adap-
tation, but also new manual corrections made 
during adaptation should come into effect as 
soon as possible and remain correct as long as 
possible. For generalized backward compatibility 
(GBC) of adaptive Chinese IMs, a diagram from 
Arif et al. (2010) is modified to introduce new 
factors that represent intentional user skip error 
correction as Figure 1. 

Unlike Arif et al., who focused on how errors 
from non-predictive text entry systems (ρs

error) 
affect user experiences, this work is interested in 
how human correction behaviors (ρh

correction) in-
fluence accuracy of adaptively predictive IMs. 
The γ values stand for components of ρ at certain 
decision point. For instance, γi,h

error represents the 
chance of human error occurred during the pro-
cess of input. In order to test and demonstrate the 
ability of proposed evaluation methodology, this 
work conducts a simulation of three IM products. 

3 Simulation 

Three products of adaptively predictive IMs, 
named IM-A, IM-B, and IM-C, are used in the 
simulation. The presented text P consists of 
4,000 sentences, containing 39,469 words re-
trieved from the Academia Sinica Balanced Cor-
pus (ASBC) (Chen et al., 1996). Two independ-
ent variables are simulated: context length in 
terms of character and ρh

correction. 
The context length k is for different strategies 

of word-level correction. Since there is not yet a 
consensus on the Chinese word-hood debate, the 
number of words is calculated by characters as 
context length k in this work. It is interesting to 
observe how IMs are influenced by these differ-
ent strategies. The simulation is designed so that 
if |T| is shorter than k, errors occurring in T will 
not change. Otherwise, the simulation will chop 
the first k characters of T to form a substring, 
denoted as T’, and then process T’ in the same 
way. For example, in a simulation with context 
length 3, “ab” remains intact, while “abcdefgh” 
is processed separately in three substrings “abc”, 
“def”, and finally “gh.” 

The factor ρh
correction simulates human correc-

tion behavior. Here, errors are classified into two 
types: IM prediction error (ρs

error) and human 
typing error (ρh

error). The simulation simplifies 

Figure 1. Activity diagram of user correction 
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the sum of ρs
error  and ρh

error as the ratio of cor-
rected errors. 

To simulate the actual typing process, the pre-
sented text P is converted into related keystrokes. 
Common transcription methods of Chinese char-
acters are Bopomofo (also known as Zhuyin) and 
Pinyin. This simulation uses Bopomofo. There 
are many keyboard layouts for Bopomofo, such 
as Daqian (大千), Eten (倚天) or Hsu’s (許氏). 
This work applies Daqian. Each Chinese charac-
ter of P is transcribed into Bopomofo syllables 
and then transformed into Daqian keystrokes. 

For MAC, estimating the time spent on candi-
date selection (tH) and cursor movement (tF) to 
the error needing correction is complicated. 
Many situations can occur during candidate se-
lection, such as resorting to numeric keys to 
make a choice or seeking the correct word ap-
pearing on the next page of the candidate list, 
etc. Time also varies from person to person de-
pending on how familiar they are with the IM. 
Clearly, it is impossible to quantify these two 
factors without having real-time user inquiries. 
This simulation assumes that the average time 
taken to choose a proper candidate is the same 
for every correction. Notably, the method of es-
timating tF on a QWERTY keyboard is different 
from that of estimating tF on a mobile keypad, 
because only thumbs are usually used in the lat-
ter case. In spite of this difference, it is observed 
that Chinese IM users rarely approach cursor 
movement with direct pointing devices such as a 
mouse. Thus, the value of tF is simplified to the 
distance in terms of the character to which the 
cursor has to be moved. 

The steps of the simulation consists of using 
different ρh

correction to type all data of P, and then 
typing the same data again without correcting 
any error, so as to record and compare the char-
acter accuracy rate (CAR) after adaptation. For 
calculating CAR, T generated via particular IM is 
recorded and checked with P. For calculating 
MAC, the number of C and INF are counted 
while typing. During the simulation, the adaptive 
features of the IMs are enabled. Before the simu-
lation, the adapted user profile of each IM is 
cleaned to ensure that the IM’s CAR is unbiased. 

3.1 Result 

Figure 2 displays the comparison of MAC be-
tween the three IMs. For IM-A, IM-B, and IM-C 
between context lengths 1 and 4, their MACs rap-
idly decline. IM-A’s MAC continues to decrease 
slightly after context length 4 and the curve of 
the trend became relatively flat after context 

length 8; IM-B’s MAC slowly increases during 
context 4 to context length 11 but there is an ab-
errant peaks at context length 12; IM-C’s MAC 
generally draws a curve similar to IM-B’s. 

Figure 2 shows ρh
correction effects at context 

length 6 that is in the middle of relatively stable 
curves with low MAC for IM-A, IM-B, and IM-C, 
according to previous results. Instead of using 
ER, it is found sufficient to compare CARs be-
fore and after adaptations in order to analyze the 
GBC of IM-A, IM-B, and IM-C. While the more 
corrections the user made the better adaptation 
IM-A performs, IM-B and IM-C show lower 
GBC when the user corrects more than 50% of 
errors. 

4 Discussion 

4.1 Empirical Factors of Context Length 

According to Figure 2, the balanced choice of 
context length for IM-B and IM-C, in terms of 
MAC managing the trade-off between correction 
costs and context-provided benefits, is around 6 
characters. This result suggests that it is possible 
to improve IM-B or IM-C by maintaining the 
size of a chunk for prediction and adaptation to 6 
characters to save users’ precious time in cursor 

 
Figure 2. Comparison of MAC  

 
Figure 3. GBC at Context Length 6 
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movement and candidate selection, without sig-
nificantly decreasing accuracy. In the situation of 
IM-A, however, the ideal window size can ex-
pand to 8-13 characters, since the tail of its curve 
is smoother than IM-B and IM-C. Such differ-
ence is conjecturally related to their respective 
prediction and adaptation algorithms. 

4.2 Error-Tolerance Level 

The simulation result of Figure 3 show that at a 
context length of six characters, IM-A represents 
genuine GBC when the user corrects more than 
50% of errors, but IM-B and IM-C encounter 
confusions when the user actively provides feed-
back. Since GBC involves user expectations of 
how fast a manually corrected chunk is adapted 
and how long it is sustained, this work provides a 
deeper analysis by defining three aspects of the 
error-tolerance level (ETL) as follows: 

Futile Effort (Ef): how many times a missing 
vocabulary in terms of chunk is typed by the user 
but still cannot be adapted by the IM; 

Beneficial Effort (Eb): how many times a 
missing vocabulary in terms of chunk is correct-
ed by the user before it is adapted by the IM; 

Utility (U): how many times an adapted chunk 
is used before it is “forgotten” (because of the 
IM’s limitation of memory space and/or adapta-
tion algorithm, in general cases). 

Table 2 and Table 3 show the corresponding 
maximums/averages of these three aspects for 
IM-A and IM-B, respectively, where chunks are 
sampled by character bi-grams and tri-grams au-

tomatically, so as to bypass the issue of Chinese 
word segmentation standards. The ETLs of IM-C 
are omitted in the interest of brevity and clarity, 
since IM-C’s curves of MAC and GBC are 
similar to IM-B’s. 

For counts of manually corrected chunks that 
are never adapted as Ef, both IM-A and IM-B 
show that when the user puts more effort into 
correction, systems encounter more trouble with 
disambiguation. Statistics on reused counts of 
chunks U provide a different angle to CAR com-
parison of adaptation on GBC. IM-A holds 
adapted chunks better when the user has partially 
corrects input errors. Although IM-B seems to be 
relatively stable, it is unable to sustain its accura-
cy as long as IM-A. For quick responses and 
short-term memory of recently adapted chunks 
that are interpreted from Eb, IM-A and IM-B 
both get confused when the user corrects more 
frequently, and IM-A struggles harder than IM-B 
on the top-1 chunk. More specifically, for exam-
ple, IM-A encounters frequent problems with 
Chinese homophones, where “his,” “her” and 
“it” are all pronounced in the same disyllable, 
while IM-B seems to avoid any problems with 
this situation. Notably, IM-A’s CAR series of 
GBC has correlation coefficients 0.49, 0.92, and 
0.66 to Ef

avg, Eb
avg, and Uavg, respectively, while 

IM-B’s has -0.78, -0.62, and -0.51. 

5 Conclusions 

This work proposes a novel metric for text entry 
evaluation of adaptively predictive Chinese IMs. 
The modification process of predictive Chinese 
IMs is quite different from that of alphabetic text 
entry (e.g. in English). Therefore, combining the 
time taken by cursor movements and candidate 
selections, and the Amortized Cost of infor-
mation theory, the proposed metric, called the 
Maximally Amortized Cost (MAC), estimates the 
error correction cost of predictive Chinese IMs.  
A series of real-time simulation is then conduct-
ed, which approximates user correction behav-
iors for evaluation of generalized backward 
compatibility of adaptive Chinese IMs. Compari-
sons between three IMs using MAC with differ-
ent context lengths report the appropriate context 
length as empirical factors for simulation and a 
possible direction to improve predictive Chinese 
IMs. This work has also suggested three aspects 
of error-tolerance level—Futile Effort, Benefi-
cial Effort, and Utility—that could be useful for 
further investigation such as building reference 
corpus for shared tasks of IMs. 

ρh
correction Ef

max Ef
avg Eb

max Eb
avg Umax Uavg 

10% 0 0.00 1 0.00 30 5.73 
20% 2 2.00 1 1.00 22 8.30 
30% 0 0.00 1 1.00 31 13.00 
40% 4 2.40 3 1.45 51 12.05 
50% 3 2.20 2 1.20 111 23.25 
60% 2 2.00 6 2.50 57 20.85 
70% 2 2.00 8 2.60 56 22.55 
80% 5 2.35 9 3.00 35 18.75 
90% 5 2.40 10 2.90 33 18.00 
100% 5 2.25 18 3.55 29 16.50 

Table 2. Error-tolerance level of IM-A 

ρh
correction Ef

max Ef
avg Eb

max Eb
avg Umax Uavg 

10% 0 0.00 1 1.00 33 8.00 
20% 0 0.00 1 1.00 10 2.75 
30% 2 0.00 2 1.05 33 9.95 
40% 0 0.00 2 1.05 37 13.80 
50% 2 2.00 2 1.20 31 10.45 
60% 2 2.00 2 1.20 19 14.45 
70% 3 2.13 4 1.70 28 11.65 
80% 2 2.00 4 2.20 21 10.15 
90% 5 2.45 3 2.25 24 12.10 
100% 3 2.25 4 2.55 25 13.45 

Table 3. Error-tolerance level of IM-B 
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