
Proceedings of the 9th Workshop on Asian Language Resources, pages 23–30,
Chiang Mai, Thailand, November 12 and 13, 2011.

Error Detection for Treebank Validation

Bharat Ram Ambati

LTRC, IIIT-Hyderabad

ambati@research.iiit.ac.in

Rahul Agarwal

LTRC, IIIT-Hyderabad

rahul.agarwal@research.iiit.ac.in

Mridul Gupta

LTRC, IIIT-Hyderabad

mridulgp@gmail.com

Samar Husain

LTRC, IIIT-Hyderabad

samar@research.iiit.ac.in

Dipti Misra Sharma

LTRC, IIIT-Hyderabad

dipti@iiit.ac.in

Abstract

This paper describes an error detection mech-

anism which helps in validation of dependency

treebank annotation. Consistency in treebank

annotation is a must for making data as error-

free as possible and for assuring the usefulness

of treebank. This work is aimed at ensuring

this consistency and to make the task of vali-

dation cost effective by detecting major errors

induced during completely manual annotation.

We evaluated our system on the Hindi de-

pendency treebank which is currently under

development. We could detect 76.63% of er-

rors at dependency level. Results show that

our system performs well even when the train-

ing data is low.

1 Introduction

For effective processing of text, tools at different

conceptual levels, say from letter/syllable level

to discourse level are needed. Output of these

tools can then be used in different NLP based

applications, beginning with simple spell check-

ers to sophisticated machine translation systems.

These tools could be completely rule-based, sta-

tistical or hybrid systems. To build such tools,

manually annotated gold standard corpora are

required. Annotated corpora are mostly obtained

by either manual or semi-automated processes.

Hence, there are chances that errors are intro-

duced either by human annotators or by the pre-

processed output of automated tools. It is crucial

that the annotated corpora are free of anomalies

(errors) and inconsistencies. In the process of

making these corpora error free, experts need to

validate them. As the data is already annotated

carefully (which is a time-consuming task), we

need tools that can supplement the validators‟

task with a view of making the overall task fast,

without compromising on reliability. With the

help of such a tool, a validator can directly go to

error instances and correct them. Therefore, we

need the tool to have high recall. It is easy to see

that a human validator can reject unintuitive er-

rors (false positives) without much effort; one

can therefore compromise a little bit on preci-

sion.

In this paper, we propose an error detection

mechanism to detect dependency errors in the

Hindi treebank (Bhatt et al., 2009) annotation.

We classify the identified errors under specific

categories for the benefit of the validators, who

may choose to correct a specific type of error at

one time. Though we did experiments on Hindi

treebank, our approach can be applied to any un-

der developing treebank with minimal effort.

The paper is arranged as follows. Section 2

gives a brief overview of the Hindi dependency

treebank. Details of the information annotated,

annotation procedure and types of possible errors

in the treebank are discussed in section 3. We

present the related work in section 4. In section

5, we describe our approach. Results of our ap-

proach are presented in section 6. Section 7 fo-

cuses on a general discussion about the results

and approach and proposes a future direction to

our work. We conclude our paper in section 8.

23

2 Hindi Dependency Treebank

A multi-layered and multi-representational tree-

bank for Hindi (Bhatt et al., 2009; Xia et al.,

2009) is being developed. The treebank will have

dependency, verb-argument (PropBank, Palmer

et al., 2005) and phrase structure (PS) representa-

tion. Automatic conversion from dependency

structure (DS) to phrase structure (PS) is

planned. Hence, it is important to have a high

quality version of the dependency treebank so

that the process of automated conversion to PS

does not induce errors in PS. The dependency

treebank contains information encoded at the

morpho-syntactic (morphological, part-of-speech

and chunk information) and syntactico-semantic

(dependency) levels.

3 Dependency Representation

In this section we first describe the information

encoded in the dependency representation of the

treebank. We then briefly describe the annotation

procedure for encoding this information. We also

describe the possible errors at each level of anno-

tation.

3.1 Information encoded in dependency

representation

During dependency annotation, Part-Of-speech

(POS), morph, chunk and inter-chunk dependen-

cy relations are annotated. Some special features

are also annotated for some specific nodes. De-

tails can be seen in this section.

Part-Of-Speech (POS) Information: POS tags

are annotated for each node following the POS

and chunk annotation guidelines (Bharati et al.,

2006).

Morph Information: Information pertaining to

the morphological features of the nodes is also

encoded using the Shakti standard format (SSF)

(refer, Bharati et al., 2007). These morphological

features have eight mandatory feature attributes

for each node. These features are classified as

root, category, gender, number, person, case,

post position (for a noun) or tense aspect modali-

ty (for a verb) and suffix.

Chunk Information: After annotation of POS

tags, chunk boundaries are marked with appro-

priate assignment of chunk labels (Bharati et al.,

2006). This information is also stored in SSF

(Bharati et al., 2007).

Dependency Relations: After POS, morph and

chunk annotation, inter-chunk dependency anno-

tation
1
 is done following the set of dependency

guidelines in Bharati et al. (2009). This infor-

mation is encoded at the syntactico-semantic lev-

el following the Paninian dependency framework

(Begum et al., 2008; Bharati et al., 1995). After

inter-chunk annotation, plan is to use a high ac-

curacy intra-chunk expander, which marks the

intra-chunk dependencies
2

 and expands the

chunks arriving at sentence level dependency

tree.

Other Features: In the dependency treebank,

apart from POS, morph, chunk and inter-chunk

dependency annotations, some special features

for some specific nodes are marked. For exam-

ple, for the main verb of a sentential clause, in-

formation about whether the clause is declara-

tive, interrogative or imperative is marked. Simi-

larly, whether the sentence is in active or passive

voice is also marked.

3.2 Annotation Procedure

At POS, chunk and morphological levels, corre-

sponding state-of-the-art tools are run as a first

step. An annotator then checks each node and

corrects the tool‟s output. Another annotator

(validator) takes the annotated data and validates

it. At dependency level, due to unavailability of

high accuracy parser, manual annotation fol-

lowed by validation is done.

Annotation is being done using a tool called

Sanchay
3
. Sanchay is an open source platform

for working on languages, especially South

Asian languages, using computers and also for

developing Natural Language Processing (NLP)

or other text processing applications. Apart from

syntactic annotation interface (used for Hindi

dependency annotation), it has several other use-

ful functionalities as well. Font conversion, lan-

guage and encoding detection, n-gram generation

are a few of them.

3.3 Types of possible errors at various lev-

els

In this section we describe the types of annota-

tion errors at each level and provide examples for

some specific types of errors.

1 Inter-chunk dependencies are the dependency relations

marked between the chunks, chunk heads to be specific.
2 Intra-chunk dependencies are the dependency relations

marked with in the chunk.
3 http://sanchay.co.in/.

24

POS Errors: In POS errors we try to identify

whether the Part-Of-Speech (POS) tag is correct

or not for each lexical item. For example, in the

example sentence given below „chalaa‟ should

be the main verb (VM) instead of an auxiliary

verb (VAUX).

raama ghara chalaa gayaa.

NNP NN VAUX VAUX

‘Ram’ ‘home’ ‘walk’ ‘went’.

 “Ram went home”.

Morph Errors: Errors in the eight attribute val-

ues as mentioned in the previous section are clas-

sified as morph errors.

Chunk Errors: There can be two types of chunk

errors. One is chunk type and the other is chunk

boundary. In chunk type we identify whether the

chunk label is correct or not. In chunk boundary

we identify whether the node should belong to

the same chunk or different chunk. For example,

consider the following chunk,

 ((NP

 meraa „my‟ PRP

 bhaaii „brother‟ NN

))

In Hindi, „meraa‟ and „bhaaii‟ should be in

two separate noun chunks (refer Bharati et al.,

2006). So, in the above example, the chunk label

of „bhaaii‟ is correct, but the boundary is wrong.

Dependency Errors: In dependency errors we

try to identify whether a node is attached to its

correct parent and whether its dependency label

is correct or not. In addition to dependency rela-

tion errors, we also identify errors in general lin-

guistic constraints and framework specific errors,

for example, the tree well-formedness assump-

tion in dependency analysis. Framework specific

example would be that children of a conjunct

should be of similar type (Bharati et al., 2009).

For example, a conjunct can have two nouns as

its children but not a noun and a verb as its chil-

dren.

Other Feature Errors: Errors in the special fea-

tures discussed above are classified under other

feature errors.

Focus of the current paper is to describe the

methodology employed to detect errors in the

dependency level (inter-chunk dependencies) of

the DS representation. Error detection at intra-

chunk dependencies is out of scope of this paper.

In the rest of the paper, by dependency level, we

mean inter-chunk dependencies unless explicitly

stated. In the following section, we first describe

the related work in the area of detecting errors in

treebanks, in general. Then, we present the work

on Hindi in particular.

4 Related Work:

Validation and correction tools are an important

part for making treebanks error-free and con-

sistent. With an increase in demand for high

quality annotated corpora over the last decade,

major research works in the field of developing

lexical resources have focused on detection of

errors.

One such approach for treebank error detec-

tion has been employed by Dickinson and

Meurers (2003a; 2003b; 2005) and Boyd et al.

(2008). The underlying principle in these works

is to detect “variation n-grams” in syntactic an-

notation across large corpora. These variations

could be present for a continuous sequence of

words (POS and chunks) or for a non-continuous

sequence of words (dependency structures), more

the number of variation for a particular contigu-

ous or non-contiguous sequence of tokens (or

words), greater the chance of the particular varia-

tion being an error. They use these statistical pat-

terns (n-grams) to detect anomalies in POS anno-

tation in corpora such as the Penn treebank

(Marcus et al., 1993), TIGER corpus (Brants et

al., 2002) etc. For discontinuous patterns as

found most commonly in dependency annotation

(Boyd et al., 2008), they tested their strategy on

Talbanken05 (Nivre et al., 2006) apart from the

corpora mentioned above. This we believe was

the first mainstream work on error detection in

dependency annotation.

Some other earlier methods employed for er-

ror detection in syntactic annotation (mainly POS

and chunk), are by Eskin (2000) and van Hal-

teren (2000). Based on large corpora, van Noord

(2004) and de Kok et al. (2009) employed error

mining techniques. The basic underlying strategy

was to obtain a set of parsed and un-parsed sen-

tences using a wide-coverage parser and compute

suspicion ratio for detecting errors. Other exam-

ples of detection of annotation errors in tree-

banks include Kaljurand (2004) and Kordoni

(2003).

Most of the aforementioned techniques work

well with large corpora in which the frequency of

occurrence of words is very high. Hence, none of

them account for data sparsity except for de Kok

et al. (2009). Moreover, the techniques employed

25

by van Noord (2004) and de Kok et al. (2009)

rely on the output of a reliable state-of-the-art

parser which may not be available for many lan-

guages just as in the case of Hindi, the language

in question for our work.

It becomes a challenge to develop error detec-

tion tools for small treebanks like Hindi. There is

an effort by Ambati et al. (2010) in this direction

for Hindi treebank validation. They used a com-

bination of a rule-based and hybrid system to

detect treebank errors. Rule-based system works

on the development of robust (high precision)

rules which are formed using the annotation

guidelines and the framework, whereas the hy-

brid system is a combination of statistical mod-

ule with a rule-based post-processing module.

The statistical module helps in detecting a wide

array of potential errors and suspect cases. The

rule-based post-processing module then prunes

out the false positives, with the help of robust

and efficient rules thereby ensuring higher preci-

sion value.

Note that both “Rule-Based Approach” and

“Rule-based post-processing” modules have sep-

arate goals. Goal of “Rule-Based Approach” is to

detect errors using high precision rules. Whereas

goal for the later, is to prune the false positives

given by the statistical approach. Former one

tries to increase the precision of the system,

whereas the later tries to increase the recall of the

system. Rules used in “Rule-Based Approach”

can be used in post-processing module, but vice

versa is not true. The entire framework is

sketched in Figure 1.

Figure 1. Error detection framework by Am-

bati et al. (2010)

 Ambati et al. (2010) could detect errors in POS

and chunk annotations with reasonable accura-

cies. But at dependency level recall of overall

system (combination of rule-based and hybrid

approaches) is 40.33% only. This is mainly due

to low performance of the statistical module. In

statistical module, they extracted frequencies of

child and parent node bi-grams in the dependen-

cy tree. To handle scarcity issues, they explored

different similarity measures and merged similar

patterns. We call this as “Frequency Based Sta-

tistical Module (FBSM)”. Major limitation of

this approach is that one cannot give richer con-

text due to the problem of scarcity. To find

whether the dependency label is correct or not,

apart from node and its parent information, con-

textual features like sibling and child information

is also helpful. Current state-of-the-art depend-

ency parsers like MSTParser
4
 and MaltParser

5

use these features for dependency labeling

(McDonald et al., 2006; Nivre et al., 2007;

Kosaraju et al., 2010). Finding similarity be-

tween patterns and merging similar patterns

would not help when we wish to take a much

richer context.

In this paper, we propose a probability based

statistical module (PBSM) to overcome this

problem of FBSM. With this approach, we eval-

uate and compare the performance of PBSM and

FBSM. Now in place of FBSM, we integrate

PBSM into overall system of Ambati et al.

(2010) and compare the results.

5 Our Approach: Probability Based

Statistical Module (PBSM):

In this probability based statistical module, we

first extract the contextual features which help in

identifying the correct tag. For example, at the

dependency level, apart from node and its parent

features, sibling and child features with their re-

spective dependency labels are very useful in

predicting the correct dependency label. Using

these contextual features from the training data,

we create a model using maximum entropy clas-

sification algorithm
6

 (MAXENT). This model

gives the probabilities of all possible output tags

(here dependency labels) for a given context. For

each node in the test data, we first extract the

context information and the input tag of that

node. We then extract the list of all possible de-

pendency tags with their probabilities for this

4 http://sourceforge.net/projects/mstparser/
5 http://maltparser.org/
6 http://maxent.sourceforge.net/

Dependency

Treebank

Rule-Based

Approach

Hybrid Approach

Statistical Approach

Rule-Based post-

processing

Errors

26

context using the trained model. From this list

we extract first best and second best tags and

their corresponding probabilities.

If the input tag doesn't match with the first

best tag, and if the probability of the first best tag

is greater than a particular threshold, we then

consider it as a possible error node. These could

be valid errors or the cases which require much

richer context to find the correct tag.

If both the input tag and the first best tag given

by the model match, we then fix a maximum and

minimum threshold on the probability values. If

the probability of the first best tag is greater than

the maximum threshold, we do not consider it as

a potential error. The chance of it being an error

is very low as the system is very confident about

its decision. If the probability of the first best tag

is less than the minimum threshold, it is consid-

ered as a possible error. This could either be the

case of an error pattern or a correct but less fre-

quent pattern. If it is the latter, then the rule-

based post-processing tool will remove this false

positive.

If the probability value lies between the maxi-

mum and minimum thresholds, we calculate the

difference between the probabilities of the first

and second best tags. If the difference is less than

a particular value, it means that there is high am-

biguity between these two tags. As there is high

ambiguity there is a greater chance of making an

error. Hence, we identify this case as a possible

error. In this way using the probabilistic ap-

proach, we not only detect the possible errors,

but also classify them into different categories.

find_errors (input)

 for each sentence in the input:

 for each node in the sentence:

1. Get the node's context

2. Get the input_tag

3. tags_probs = get_probabilities(context);

4. 1stBestTag = tags_probs[0][0];

5. 1stBestProb = tags_probs[0][1];

6. 2ndBestTag = tags_probs[1][0];

7. 2ndBestProb = tags_probs[1][1];

8. if input_tag != 1stBestTag:

 if 1stBestProb > thres_minX:

 mark node as error node (less context);

9. else:

 if 1stBestProb < thres_max:

 if 1stBestProb < thres_min:

 mark node as error node (less frequent);

 else if 1stBestProb-2ndBestProb < thres_dif:

 mark node as error node (ambiguous);

get_probabilities(context)

1. Load the trained maxent model

2. Predict probabilities of all tags for the context.

3. Store the tags and their probabilities in an array.

4. Return the array.

Figure 2. Algorithm employed for PBSM

Figure 2 shows the algorithm of probability

based statistical module (PBSM). Use of richer

contextual information and probabilities to detect

errors makes this approach more effective from

the previous approaches employed for error de-

tection (Dickinson and Meurers, 2003a; 2003b;

2005; Boyd et al., 2008; Ambati et al., 2010).

Using this approach, not only can one detect

errors but also classify them under specific cate-

gories like less context, less frequent and ambig-

uous cases, which will help the validation pro-

cess. This helps the validators to correct the er-

rors in a focused way. For example, a validator

can check and correct all the error in “less fre-

27

quent” category first and then start correcting

“ambiguous cases”. It also helps validator to de-

cide the amount of energy he/she needs to spend.

For example, correcting “ambiguous cases”

would require more time compared to other cate-

gories. This could be because the validator might

look for sentence or sometimes discourse level

information to resolve the ambiguity. He/she

could also contact peers or an expert to resolve it.

Hence, more time might be required to resolve

“ambiguous cases” compared to others.

6 Experiments and Results

We used same data used by Ambati et al. (2010)

for evaluation. This is a 65k-token manually an-

notated and validated sample of data (2694 sen-

tences) derived from the Hindi dependency tree-

bank. The data is divided into 40k, 10k and 15k

for training, development and testing respective-

ly. We used training data to train the model and

development data to tune the parameters like

threshold values. For our experiments,

thres_max= 0.8, thres_min = 0.2, thres_minX =

0.25 and thres_dif = 0.25 gave the best perfor-

mance.

Table 1 shows the performance of PBSM and

compares it with FBSM. FBSM of Ambati et al.

(2010) could identify only 18.74% of the de-

pendency errors. The precision recorded for this

approach was also quite low. But with our

PBSM, we could detect 57.06% of the depend-

ency errors with a reasonable precision value.

Note that, our main aim is to achieve a high re-

call value. The false positives can be easily dis-

carded by the validators.

Approach Total

Errors

(Total

instances)

System

output

Correct

Errors

Recall

FBSM of

Ambati et al.

(2010)

843

(7113)

2546 158 18.74%

PBSM: Our

Approach

843

(7113)

2000

481 57.06%

Table 1. Error detection at dependency level us-

ing FBSM of Ambati et al. (2010) and our PBSM

Overall system recall of Ambati et al. (2010)

for error detection at dependency level is

40.33%. This system uses FBSM in hybrid ap-

proach. We replaced FBSM with our PBSM and

re-evaluated the overall system of Ambati et al.

(2010). The modified system could achieve a

recall of 76.63% with reasonable precision of

29.84%. Results are shown in Table 2.

Approach Total

Errors

System

output

Correct

Errors
Recall

Ambati et al.

(2010) overall

system with FBSM

843 2728 340 40.33%

Ambati et al.

(2010) overall

system with PBSM

843 2165 646 76.63%

Table 2. Error Detection at dependency level us-

ing overall system of Ambati et al. (2010) with

FBSM and PBSM

7 Discussion and Future work

Proposed PBSM identifies 38% more errors than

the FBSM at dependency level. As we have less

data, hypothesis for FBSM, “Low frequency is a

possible sign of error”, didn't work. Unsurpris-

ingly, several valid patterns had low counts. Ma-

jor advantage of PBSM over FBSM is the use of

richer context. Richer context helped PBSM to

predict the errors more accurately. But in FBSM

we couldn't use it because of sparsity issues. Re-

sults show that our approach works well even

when the size of the data is low.

The tool is being constantly improved. We are

analyzing the errors which are missed out and

planning to improve. Currently, precision of the

system is low. Improving the “Rule-based post-

processing” step of hybrid approach can signifi-

cantly increase the precision. We can build an

interface where a validator while validating the

data can automatically add new rules to this post-

processing step. We would also like to evaluate

our system on the time taken for validation. That

is the reduction in the validation time using this

system. We are also planning to build a user-

friendly interface which helps validators in cor-

recting the errors.

This system can also help in improving the

guidelines which subsequently improves the an-

notation. While correcting the errors if the vali-

dator comes across some ambiguous decisions or

some common errors or comes up with new deci-

sions, guidelines can be modified accordingly to

reflect the changes. Data annotated based on new

guidelines will reduce the occurrence of these

errors and eventually the quality of annotation of

individual as well as entire data will improve.

28

Figure 3, shows the complete cycle of this pro-

cess.

Figure 3. Cycle for improving guidelines for an-

notation

Although we worked and presented our results

only on the Hindi Treebank, our approach can be

generalized to any language and to any frame-

work. Parameter tuning like the threshold values

is the only part which depend on the size of data,

language and the framework.

8 Conclusions

We proposed a novel approach to detect errors in

the treebanks. This approach can significantly

reduce the validation time. We tested it on Hindi

dependency treebank data and were able to de-

tect 76.63% of errors at dependency level. This

tool can be generalized to detect errors in annota-

tion of any language/framework. Results show

that the proposed approach works well even

when the size of the data is low.

References

B. R. Ambati, M. Gupta, S. Husain and D. M. Shar-

ma. 2010. A high recall error identification tool for

Hindi treebank validation. In Proceedings of The

7th International Conference on Language Re-

sources and Evaluation (LREC), Valleta, Malta.

R. Begum, S. Husain, A. Dhwaj, D. M. Sharma, L.

Bai, and R. Sangal. 2008. Dependency annotation

scheme for Indian languages. In Proceedings of

IJCNLP-2008.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natu-

ral Language Processing: A Paninian Perspective,

Prentice-Hall of India, New Delhi, pp. 65-106.

A. Bharati, R. Sangal, D. M. Sharma and L. Bai.

2006. AnnCorra: Annotating Corpora Guidelines

for POS and Chunk Annotation for Indian Lan-

guages. Technical Report (TR-LTRC-31), Lan-

guage Technologies Research Centre, IIIT-

Hyderabad.

A. Bharati, R. Sangal and D. M. Sharma. 2007. SSF:

Shakti Standard Format Guide. Technical Report

(TR-LTRC-33), LTRC, IIIT-Hyderabad.

A. Bharati, D. M. Sharma S. Husain, L. Bai, R. Be-

gam and R. Sangal. 2009. AnnCorra: TreeBanks

for Indian Languages, Guidelines for Annotating

Hindi TreeBank (version – 2.0).

 http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-

guidelines/DS-guidelines-ver2-28-05-09.pdf

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.

M. Sharma and F. Xia. 2009. Multi-

Representational and Multi-Layered Treebank for

Hindi/Urdu. In Proc. of the Third Linguistic Anno-

tation Workshop at 47th ACL and 4th IJCNLP.

A. Boyd, M. Dickinson, and W. D. Meurers. 2008. On

Detecting Errors in Dependency Treebanks. Re-

search on Language and Computation 6(2), pp.

113-137.

S. Brants, S. Dipper, S. Hansen, W. Lezius and G.

Smith, 2002. The TIGER Treebank. In Proceed-

ings of TLT-02. Sozopol, Bulgaria.

M. Dickinson and W. D. Meurers. 2003a. Detecting

Inconsistencies in Treebank. In Proc. of the Second

Workshop on Treebanks and Linguistic Theories

(TLT 2003).

M. Dickinson and W. D. Meurers. 2003b. Detecting

Errors in Part-of-Speech Annotation. In Proceed-

ings of the 10th Conference of the European Chap-

ter of the Association for Computational Linguis-

tics (EACL-03). Budapest, pp. 107–114.

M. Dickinson and W. D. Meurers. 2005. Detecting

Errors in Discontinuous Structural Annotation. In

Proc. of the 43rd Annual Meeting of the ACL, pp.

322–329.

E. Eskin. 2000. Automatic Corpus Correction with

Anomaly Detection. In Proceedings of the First

Conference of the North American Chapter of the-

Association for Computational Linguistics

(NAACL-00). Seattle, Washington.

Hans van Halteren. 2000. The Detection of Incon-

sistency in Manually Tagged Text. In Proceedings

of the 2ndWorkshop on Linguistically Interpreted

Corpora. Luxembourg.

K. Kaljurand. 2004. Checking treebank consistency to

find annotation errors.

http://math.ut.ee/˜kaarel/NLP/Programs/Treebank/

ConsistencyChecking/

Daniel de Kok, Jianqiang Ma and Gertjan van Noord.

2009. A generalized method for iterative error min-

ing in parsing results. In Proceedings of Workshop

on Grammar Engineering Across Frameworks

(GEAF 2009), 47th ACL – 4th IJCNLP, Singapore.

V. Kordoni. 2003. Strategies for annotation of large

corpora of multilingual spontaneous speech data. In

Proc. of Workshop on Multilingual Corpora: Lin-

Guidelines

Annotation Validation

Error

Detection

Tool

29

guistic Requirements and Technical Perspectives

held at Corpus Linguistics 2003.

P. Kosaraju, S. R. Kesidi, V. B. R. Ainavolu and P.

Kukkadapu. 2010. Experiments on Indian Lan-

guage Dependency Parsing. In Proceedings of the

ICON10 NLP Tools Contest: Indian Language De-

pendency Parsing.

M. P. Marcus, M. A. Marcinkiewicz, B. Santorini.

1993. Building a large annotated corpus of English:

the Penn treebank. Computational Linguistics,

Volume 19, Issue 2 (313 – 330).

R. McDonald, K. Lerman, and F. Pereira. 2006. Mul-

tilingual dependency analysis with a two-stage dis-

criminative parser. In Proceedings of the Tenth

Conference on Computational Natural Language

Learning (CoNLL-X), pp. 216–220.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007. Malt-

Parser: A language-independent system for data-

driven dependency parsing. Natural Language En-

gineering, 13(2), 95-135.

J. Nivre, J. Nilsson and J. Hall. 2006. Talbanken05: A

Swedish Treebank with Phrase Structure and De-

pendency Annotation. In Proceedings of the fifth

international conference on Language Resources

and Evaluation (LREC- 06). Genoa, Italy.

Gertjan van Noord. 2004. Error Mining for Wide-

Coverage Grammar Engineering. In Proceedings of

ACL 2004, Barcelona, Spain.

M. Palmer, D. Gildea, P. Kingsbury. 2005. The Prop-

osition Bank: An Annotated Corpus of Semantic

Roles. Computational Linguistics, 31(1):71-106.

F. Xia, O. Rambow, R. Bhatt, M. Palmer, and D. M.

Sharma. 2009. Towards a Multi-Representational

Treebank. In Proceedings of the 7th International

Workshop on Treebanks and Linguistic Theories

(TLT 2009), Groningen, Netherlands.

30

