
IJCNLP 2011
Proceedings of

the 2nd Workshop on
South and Southeast Asian

Natural Language Processing
(WSSANLP 2011)

November 8, 2011
Shangri-La Hotel

Chiang Mai, Thailand

IJCNLP 2011

Proceedings of
the 2nd Workshop on South and Southeast

Asian Natural Language Processing
(WSSANLP 2011)

Collocated event at
the 5th International Joint Conference on Natural Language

Processing

November 8, 2011
Chiang Mai, Thailand

We wish to thank our sponsors

Gold Sponsors

www.google.com www.baidu.com The Office of Naval Research (ONR)

The Asian Office of Aerospace Research and Devel-
opment (AOARD)

Department of Systems Engineering and
Engineering Managment, The Chinese Uni-
versity of Hong Kong

Silver Sponsors

Microsoft Corporation

Bronze Sponsors

Chinese and Oriental Languages Information Processing Society (COLIPS)

Supporter

Thailand Convention and Exhibition Bureau (TCEB)

We wish to thank our sponsors

Organizers

Asian Federation of Natural Language
Processing (AFNLP)

National Electronics and Computer Technolo-
gy Center (NECTEC), Thailand

Sirindhorn International Institute of Technology
(SIIT), Thailand

Rajamangala University of Technology Lanna
(RMUTL), Thailand

Maejo University, Thailand

Chiang Mai University (CMU), Thailand

c©2011 Asian Federation of Natural Language Proceesing

vii

Preface

Welcome to the IJCNLP Workshop on South and Southeast Asian Natural Language Processing
(WSSANLP). South Asia comprises of the countries, Afghanistan, Bangladesh, Bhutan, India, Maldives,
Nepal, Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists of Brunei, Burma, Cambodia,
East Timor, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand and Vietnam.

This area is the home to thousands of languages that belong to different language families like Indo-
Aryan, Indo-Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai, Hmong-Mien, etc. In terms of
population, South Asian and Southeast Asia represent 35 percent of the total population of the world
which means as much as 2.5 billion speakers. Some of the languages of these regions have a large
number of native speakers: Hindi (5th largest according to number of its native speakers), Bengali (6th),
Punjabi (12th), Tamil(18th), Urdu (20th), etc.

As internet and electronic devices including PCs and hand held devices including mobile phones have
spread far and wide in the region, it has become imperative to develop language technology for these
languages. It is important for economic development as well as for social and individual progress.

A characteristic of these languages is that they are under-resourced. The words of these languages show
rich variations in morphology. Moreover they are often heavily agglutinated and synthetic, making
segmentation an important issue. The intellectual motivation for this workshop comes from the need to
explore ways of harnessing the morphology of these languages for higher level processing. The task of
morphology, however, in South and Southeast Asian Languages is intimately linked with segmentation
for these languages.

The goal of WSSANLP is:

• Providing a platform to linguistic and NLP communities for sharing and discussing ideas and work on
South and Southeast Asian languages and combining efforts.
• Development of useful and high quality computational resources for under resourced South and
Southeast Asian languages.

We are delighted to present to you this volume of proceedings of 2nd Workshop on South and Southeast
Asian NLP. We have received 15 long and short submissions. On the basis of our review process, we
have competitively selected 9 papers.

We look forward to an invigorating workshop.

Rajeev Sangal (Chair WSSANLP),
IIIT Hyderabad, India

M.G. Abbas Malik (Chair of Organizing Committee WSSANLP),
Faculty of Computing and Information Technology (North Branch),
King Abdulaziz University, Saudi Arabia

viii

2nd Workshop on South and Southeast Asian Natural Language
processing

Workshop Chair:

Rajeev Sangal, IIIT Hyderabad, India

Workshop Organization Co-chair:

M. G. Abbas Malik, Faculty of Computing and Information Technology (North Branch), King
Abdulaziz University, Saudi Arabia

Invited Speaker:

Pushpak Bhattacharyya, IIT Bombay, India

Organizers:

Aasim Ali, Punjab University College of Information Technology, University of the Punjab, Pak-
istan
Amitava Das, Jadavpur Univeristy, India
Fahad Iqbal Khan, COMSATS IIT Lahore, Pakistan
M. G. Abbas Malik, King Abdulaziz University, Saudi Arabia
Smriti Singh, Indian Institute of Technology Bombay (IITB), India

Program Committee:

Sivaji Bandyopadhyay, Jadavpur University, India
Vincent Berment, GETALP-LIG / INALCO, France
Laurent Besacier, GETALP-LIG, Université de Grenoble, France
Pushpak Bhattacharyya, IIT Bombay, India
Hervé Blanchon, GETALP-LIG, Université de Grenoble, France
Christian Boitet, GETALP-LIG, Université de Grenoble, France
Miriam Butt, University of Konstanz, Germany
Nicola Cancedda, Xerox Research Center Europe (XRCE), France
Eric Castelli, International Research Center MICA, Vietnam
Laurence Danlos, University of Paris 7, France
Georges Fafiotte, GETALP-LIG, Université de Grenoble, France
Zulfiqar HabibCOMSATS Institute of Information Technology, Pakistan
Sarmad Hussain, Al-Khawarizmi Institute of Computer Science, University of Engineering and
Technology, Pakistan
Aravind K. Joshi, University of Pennsylvania, USA
Abid Khan, University of Peshawar, Pakistan
Krit KOSAWAT, Human Language Technology Laboratory (HLT) National Electronics and Com-
puter Technology Center (NECTEC), Thailand
Bal Krishna Bal, University of Kathmandu, Nepal
A. Kumaran, Microsoft Research, India
Gurpreet Singh Lehal, Punjabi University Patiala, India
Haizhou Li, Institute for Infocomm Research, Singapore
M. G. Abbas Malik, King Abdulaziz University, Saudi Arabia
Bali Ranaivo-Malançon, Multimedia University, Malaysia

ix

Hammam Riza, Agency for the Assessment and Application of Technology (BPPT), Indonesia
Rajeev Sangal, IIIT Hyderabad, India
L. Sobha, AU-KBC Research Centre, Chennai, India
Ruvan Weerasinghe, University of Colombo School of Computing, Sri Lanka

x

Table of Contents

Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer for Gujarati
Kartik Suba, Dipti Jiandani and Pushpak Bhattacharyya . 1

Improving Persian-English Statistical Machine Translation:Experiments in Domain Adaptation
Mahsa Mohaghegh, Abdolhossein Sarrafzadeh and Tom Moir . 9

Thai Word Segmentation Verification Tool
Supon Klaithin, Kanyanut Kriengket, Sitthaa Phaholphinyo and Krit Kosawat16

The Semi-Automatic Construction of Part-Of-Speech Taggers for Specific Languages by Statistical Meth-
ods

Tomohiro YAMASAKI, Hiromi WAKAKI and Masaru SUZUKI . 23

Towards a Malay Derivational Lexicon: Learning Affixes Using Expectation Maximization
Suriani Sulaiman, Michael Gasser and Sandra Kuebler . 30

Punjabi Language Stemmer for nouns and proper names
Vishal Gupta and Gurpreet Singh Lehal . 35

Challenges in Urdu Text Tokenization and Sentence Boundary Disambiguation
Zobia Rehman, Waqas Anwar and Usama Ijaz Bajwa . 40

Challenges in Developing a Rule based Urdu Stemmer
Sajjad Ahmad Khan, Waqas Anwar and Usama Ijaz Bajwa . 46

Developing a New System for Arabic Morphological Analysis and Generation
Mourad Gridach and Noureddine Chenfour . 52

xi

Program the 2nd Workshop on South and Southeast Asian Natural
Language Processing

Tuesday, November 8, 2011

8:30–8:45 Opening Remarks

8:45–10:00 Invited Talk by Pushpak Bhattacharyya

10:00–10:30 Break

WSSANLP Session I

10:30–11:00 Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer for Gujarati
Kartik Suba, Dipti Jiandani and Pushpak Bhattacharyya

11:00–11:30 Improving Persian-English Statistical Machine Translation:Experiments in Domain
Adaptation
Mahsa Mohaghegh, Abdolhossein Sarrafzadeh and Tom Moir

11:30–12:00 Thai Word Segmentation Verification Tool
Supon Klaithin, Kanyanut Kriengket, Sitthaa Phaholphinyo and Krit Kosawat

12:00–12:30 The Semi-Automatic Construction of Part-Of-Speech Taggers for Specific Lan-
guages by Statistical Methods
Tomohiro YAMASAKI, Hiromi WAKAKI and Masaru SUZUKI

12:30–14:00 Lunch Break

WSSANLP Session II

14:00–14:30 Towards a Malay Derivational Lexicon: Learning Affixes Using Expectation Maxi-
mization
Suriani Sulaiman, Michael Gasser and Sandra Kuebler

14:30–15:00 Punjabi Language Stemmer for nouns and proper names
Vishal Gupta and Gurpreet Singh Lehal

15:00–15:30 Challenges in Urdu Text Tokenization and Sentence Boundary Disambiguation
Zobia Rehman, Waqas Anwar and Usama Ijaz Bajwa

15:30–16:00 Break

xiii

Tuesday, November 8, 2011 (continued)

WSSANLP Session III

16:00–16:30 Challenges in Developing a Rule based Urdu Stemmer
Sajjad Ahmad Khan, Waqas Anwar and Usama Ijaz Bajwa

16:30–17:00 Developing a New System for Arabic Morphological Analysis and Generation
Mourad Gridach and Noureddine Chenfour

17:00–17:15 Closing Remarks

xiv

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 1–8,
Chiang Mai, Thailand, November 8, 2011.

Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer

for Gujarati

 Kartik Suba Dipti Jiandani

Department of Computer Engineering

Dharmsinh Desai University

suba.kartik@gmail.com

jiandani.dipti@gmail.com

Pushpak Bhattacharyya

Department of Computer Science and

Engineering

Indian Institute of Technology Bombay

pb@cse.iitb.ac.in

Abstract

In this paper we present two stemmers for

Gujarati- a lightweight inflectional

stemmer based on a hybrid approach and a

heavyweight derivational stemmer based

on a rule-based approach. Besides using a

module for unsupervised learning of

stems and suffixes for lightweight

stemming, we have also included a

module performing POS (Part Of Speech)

based stemming and a module using a set

of substitution rules, in order to improve
the quality of these stems and suffixes.

The inclusion of these modules boosted

the accuracy of the inflectional stemmer

by 9.6% and 12.7% respectively, helping

us achieve an accuracy of 90.7%. The

maximum index compression obtained for

the inflectional stemmer is about 95%. On

the other hand, the derivational stemmer is

completely rule-based, for which, we

attained an accuracy of 70.7% with the

help of suffix-stripping, substitution and

orthographic rules. Both these systems
were developed to be useful in

applications such as Information

Retrieval, corpus compression, dictionary

search and as pre-processing modules in

other NLP problems such as WSD.

1. Introduction

Stemming is a process of conflating related

words to a common stem by chopping off the

inflectional and derivational endings.
Stemming plays a vital role in Information

Retrieval systems by reducing the index size

and increasing the recall by retrieving results
that contain any of the possible forms of a

word present in the query (Harman, 1991).

This is especially true in case of a

morphologically rich language like Gujarati.

The aim is to ensure that all the related

words map to common stem, wherein, the

stem may or may not be a meaningful word in
the vocabulary of the language.

Current state of the art approaches to

stemming can be classified into three

categories, viz., rule-based, unsupervised and
hybrid (Smirnov, 2008). In case of inflectional

stemmer, building a completely rule-based

system is non-trivial for a language like
Gujarati. On the other hand, adopting a purely

unsupervised approach, such as take-all-splits

discussed in section 4, may fail to take
advantage of some language phenomena, such

as, the suffixes in a language like Gujarati, are

separable based on their parts of speech. For

example, the suffix ી (-ī) should be stripped

off for verbs (as in case of કર karī ‘did’), but

not for nouns (as in case of ઈભાનદાર īmāndārī
‘honesty’). Such characteristics can be easily
represented in the form of substitution rules.

So, we follow a hybrid approach for the

inflectional stemmer taking advantage of both

rule-based and unsupervised phenomena.
However, in case of derivational

stemming, words that are derived, either by

adding affixes to the stems or by performing
changes at the morpheme boundary, are

reduced to their stem forms. To accomplish

this task of derivational stemming, we have

adopted a completely rule-based approach.
The remainder of this paper is organized

as follows. We describe the related work in

section 2. Next, section 3 explains the
morphological structure of Gujarati. We

describe our approach to inflectional stemmer

in section 4 and to derivational stemmer in
section 5. Experiments and results are

presented in section 6. Section 7 concludes the

paper, pointing also to future work.

1

2. Background and Related Work

The earliest English stemmer was developed

by Julie Beth Lovins (1968). The Porter

stemming algorithm (Martin Porter, 1980),
which was published later, is perhaps the most

widely used algorithm for stemming in case of

English language. Both of these stemmers are
rule-based and are best suited for less

inflectional languages like English.

A lot of work has been done in the field of
unsupervised learning of morphology.

Goldsmith (2001) proposed an unsupervised

approach for learning the morphology of a

language based on the Minimum Description
Length (MDL) framework which focuses on

representing the data in as compact manner as

possible.
Not much work has been reported for

stemming for Indian languages compared to

English and other European languages. The

earliest work reported by Ramanathan and Rao
(2003) used a hand crafted suffix list and

performed longest match stripping for building

a Hindi stemmer. Majumder et al. (2007)
developed YASS: Yet Another Suffix Stripper

which uses a clustering-based approach based

on string distance measures and requires no
linguistic knowledge. Pandey and Siddiqui

(2008) proposed an unsupervised stemming

algorithm for Hindi based on Goldsmith's

(2001) approach.
Work has also been done for Gujarati.

Inspired by Goldsmith (2001), a lightweight

statistical stemmer was built for Gujarati
(Patel et al., 2010) which gave an accuracy of

68%. But no work was done so far in the area

of derivational stemming for Gujarati.

3. Gujarati Morphology

The Gujarati phoneme set consists of eight
vowels and twenty-four consonants. Gujarati

is rich in its morphology, which means,

grammatical information is encoded by the
way of affixation rather than independent free-

standing morphemes.

The Gujarati nouns inflect for number

(singular, plural), gender (masculine,
feminine, neuter), and declension class

(absolute, oblique). The absolute form of a

noun is its default or uninflected form. This
form is used as the object of the verb, typically

when inanimate as well as in measure or

temporal construction. There are seven oblique

forms in Gujarati corresponding more or less

to the case forms- nominative, dative,
instrumental, ablative, genitive, locative and

vocative. All cases, except for the vocative,

are distinguished by means of postpositions.

The Gujarati adjectives are of two types –
declinable and indeclinable. The declinable

adjectives have the termination -ũ (ી ી) in

neuter absolute. The masculine absolute of

these adjectives ends in -o (ી) and the

feminine absolute in -ī (ી). For example, the

adjective સાર sārũ ‘good’ takes the form સાર

sārũ, સાર sāro and સાર sārī when used for a

neuter, masculine and feminine object
respectively. These adjectives agree with the

noun they qualify in gender, number and case.

Adjectives that do not end in -ũ in neuter
absolute singular are classified as indeclinable

and remain unaltered when affixed to a noun.

The Gujarati verbs are inflected based on a

combination of gender, number, person,
aspect, tense and mood. There are several

postpositions in Gujarati which get bound to

the nouns or verbs which they postposition.

For example, -nũ (ન : genitive marker), -mā̃

(ભા : in), -e (ી : ergative marker), etc. These

postpositions get agglutinated to nouns or

verbs and do not merely follow them. For

example, the phrase ‘in water’ is expressed in

Gujarati as a single word ઩ાણ ભા pāṇīmā̃,

wherein, ભા mā̃ is agglutinated to the noun

઩ાણ pāṇī.

We created four lists of Gujarati suffixes
which contain postpositions and inflectional

suffixes respectively for nouns, verbs,

adjectives and adverbs for use in our approach
for the inflectional stemmer. Similar lists have

been used for the derivational stemmer, in the

form of orthographic, suffix-stripping and

substitution rules.

4. Our Approach for Inflectional

Stemmer

We have been inspired by Goldsmith (2001).

Goldsmith’s approach was based on
unsupervised learning of stems and suffixes,

and he proposed a take-all-splits method.

Besides this, we have incorporated two more
modules, one performing POS-based

stemming and the other doing suffix-stripping

based on linguistic rules. During the training
phase of our approach, the Gujarati words

2

extracted from EMILLE corpus
1
 are used in

order to learn the probable stems and suffixes.
This information is used in order to stem any

unseen data. We describe the approach in

detail below.

4.1 Training phase

As mentioned earlier, the input to the training
phase is a list of Gujarati words. During this

phase, the aim is to obtain optimal split

position for each word in the corpus. The
optimal split position for each word is

obtained by systematic traversal of various

modules.
In the first module, a check is performed

to see if the input word is already in its stem

form. This is accomplished by using a list of

stems. Besides being used in training the
stemmer, this list of stems is also updated with

the new stems learnt correctly at the end of

training phase. For the first time that the
stemmer is trained, this list is empty. If the

word exists in the above mentioned list, the

optimal split position will be at the end of the

word with suffix as NULL.
In the second module, POS-based

stemming is performed. As Gujarati does not

have a POS tagger, there had to be some
method to determine the POS of a word. Since

we had the files which shall be used in the

development of the Gujarati WordNet and
since they also contained POS information, we

created a set of files (hereafter referred to as

POS-based files), each containing words of a

specific POS. We used these files to decide the
POS of the word. Also, as mentioned in

section 3, we made files (hereafter referred to

as suffix files), each containing suffix list for a
specific POS. Thus POS-based stemming i.e.,

stripping of the corresponding suffixes is

performed if the word is found in any of the
POS-based files.

In the third module, linguistic rules are

applied in order to determine the optimal split

position. Each such rule is expressed as a pair
of precedent and antecedent, both of which are

regular expressions. If any part of the word

matches any of the precedents, that part is
replaced by the corresponding antecedent and

the split position is returned as the length of

the new word.

1 http://www.lancs.ac.uk/fass/projects/corpus/emille/

If all the previous module checks fail, as a

final resort, take-all-splits of the word is
performed (see Figure 1) considering all cuts

of the word of length L into stem + suffix, i.e.,

w1,i + wi+1,L, where 1 ≤ i < L. The ranking

function that can be used to decide the optimal
split position can be derived from Eqn 1.

Figure 1. All possible word segmentations for

the word ઩ાણ ભા pāṇīmā̃ ‘in_water’ which has

઩ાણ pāṇī ‘water’ as its stem and ભા mā̃ ‘in’ as

its suffix

The function used for finding the optimal

split position must reflect the probability of a
particular split since the probability of any

split is determined by frequencies of the stem

and suffix generated by that split. Hence,

probability of a split can be given by Eqn 1
below.

P(Spliti) = P(stem = w1,i) * P(suffix = wi+1,L)
(Eqn 1)

i: split position (varies from 1 to L)

L: length of the word

Taking log on both sides of Eqn 1 and

ignoring the constant terms, we get,

log(P(Spliti))

= log(freq(stem)) + log(freq(suffix))

(Eqn 2)

The frequency of shorter stems and

suffixes is very high when compared to the

slightly longer ones. Thus, Eqn 3 is obtained
from Eqn 2 by introducing the multipliers i

(length of stem) and L-i (length of suffix) in

the function in order to compensate for this
disparity.

f(i) = i * log(freq(stem))
+ (L-i) * log(freq(suffix))

(Eqn 3)

Finally, a split position which maximizes

the ranking function given by Eqn 3 is chosen
as the optimal split position. Once the optimal

split of any word is obtained, the frequencies

of the stem and the suffix generated by that

{stem1+suffix1, stem2+suffix2, …, stemL+suffixL}

઩ાણ ભા ={઩ + ીાણ ભા , ઩ા + ણ ભા , ઩ાણ + ી ભા , ઩ાણ

+ ભા , ઩ાણ ભ + ીાી , ઩ાણ ભા + ી , ઩ાણ ભા + NULL}

3

split are updated. The word list is then iterated

and the optimal split position is recomputed
until the optimal split positions of all the

words do not change any more. The training

phase was observed to take four iterations

typically. At the end of the training phase, a
list of stems and suffixes along with their

frequencies is obtained. A list of signatures

(see Figure 2) is also obtained, where a
signature is a data-structure that provides a

mapping between the stem and the suffixes

with which that stem appears in the corpus.
This list of signatures provides a compact

representation of the corpus and can be used in

case of a need to retrieve the original corpus.

Signature 1:

 𝑝𝑡𝑟(છ કર)
𝑝𝑡𝑟 ી

𝑝𝑡𝑟(ીા)

Signature 2:

𝑝𝑡𝑟 બારત

𝑝𝑡𝑟 ફરપ

𝑝𝑡𝑟 NULL

𝑝𝑡𝑟 ભા

Signature 3:

 𝑝𝑡𝑟(ખા)
𝑝𝑡𝑟 NULL

𝑝𝑡𝑟 વ

Figure 2. A sample signature-list for the words

- છ કર chokro ‘boy’, છ કરા chokrā ‘boys’,

બારત bhārat ‘India’, બારતભા bhāratmā̃

‘in_India’, ફરપ baraf ‘ice’, ફરપભા barafmā̃

‘in_ice’, ખા khā ‘eat’, ખાવ khāvũ ‘to_eat’

Based on the approach discussed above,

an overview of the training algorithm is shown

in Figure 3 below.

Step 1. Check if the word is already in its stem

form, if yes, return it as it is, else
proceed to Step 2.

Step 2. Check if the word is in any POS-based

file, if yes, perform POS-based

stemming and return, else proceed to
Step 3.

Step 3. Check if a match occurs with any of the

linguistic rules, if yes, apply the rule
and return, else proceed to Step 4.

Step 4. Perform take-all-splits on the word and

obtain the optimal split position based
on Eqn 3.

Step 5. Perform Step 4 through several

iterations until optimal split position of

all the words remain unchanged.

Figure 3. Overview of training algorithm

4.2 Stemming of any unknown word

For the stemming of any unknown word, a

similar set of steps is followed as in the

training phase, with the only change in the
take-all-splits module, wherein, for any given

word, the function given by Eqn 3 is evaluated

for each possible split using the frequencies of

the stems and the suffixes learnt during the
training phase.

Consider that the words કરવ karvũ ‘to_do’,

કર ન karīne ‘after_doing’ and કર શ karīsh

‘will_do’ existed in the training set, then the

frequency of the stem કર kar ‘do’ will be high.

Now if the unknown word કરવાથ karvāthī

‘by_doing’ appears in the test set, it will be

stemmed as કર + વાથ due to the frequencies

learnt during training. In contrast to this, if the

training set contained the words ઩ાણ ભા

pāṇīmā̃ ‘in_water’ and ઘરભા gharmā̃

‘in_house’, the unknown word ટ ઩ ભા ṭopīmā̃
‘in_hat’ will be split as ટ ઩ + ભા , due to the

high frequency of the suffix ભા mā̃ ‘in’ learnt

during training.

5. Our Approach for Derivational

Stemmer

Derivation is a process of combining a word
stem with grammatical morphemes usually

resulting in a word of different class, not

necessarily different POS. Derivational
morphology deals with derivation of the words

either by affixation (For e.g., જવાફદાર
javābdārī ‘responsibility’ derived from

જવાફદાર javābdār ‘responsible’) or by

performing changes at the morpheme

boundary (For e.g., ધાર્મભક dhārmik ‘religious’

derived from ધભમ dhārm ‘religion’).

The task of derivational stemming is that

of reducing the derived word to its derivational

stem form. The approach for derivational
stemming is inspired from the chapter on

morphology by Jurafsky and Martin (2009).

Their approach consisted of the following
components. However, only two of them were

useful in our case.

1. Lexicon: It is a list of stems and suffixes

together with some basic information

such as POS. The importance of a lexicon

is to determine whether the resultant stem
is correct or not. But, as there is no

4

lexicon for Gujarati, the validation of the

stem form cannot be accomplished.
2. Morph-tactics: It is a model that explains

morpheme ordering i.e., it explains which

class of morphemes can follow which

other class of morphemes.

E.g.: ફાર ભા થ bārīmā̃thī ‘from_window’

indicates that થ thī can follow ભા mā̃ but
the other way round is not possible.

In order to model morph-tactics, Finite
State Automata (FSA) accepting different

transitions within words are usually used.

3. Orthographic or spelling rules: These are

the rules used to handle changes in the
words at the morpheme boundary.

E.g.: ખવડાવવ khavḍāvvũ ‘to_make_eat’

has its stem as ખા khā ‘eat’, but there is

no direct way to reflect this transition. So
there is a need of spelling or orthographic

rule for such words. Example of such a

rule is: વડાવ → ીા. The way it is
applicable in the system is discussed after

the algorithm. We have 73 such hand-

crafted rules.

The algorithm steps are shown in Figure 4.

Step 1. Check if any of the orthographic
rules match, if yes, apply the rule and

proceed, else proceed to step 2.

Step 2. Check if any substitution rule is
matched, if yes, apply the rule and

proceed, else proceed to step 3.

Step 3. Check if any suffix-stripping rule is

matched, if yes, apply the rule and
proceed, else proceed to step 4.

Step 4. Check if the resultant word gets

accepted by any FSA, if yes, return
the word as the stem, else return the

word obtained from the previous

module as the stem.

Figure 4. Derivational stemming algorithm

For example, the word ખવડાવવ khavḍāvvũ

‘to_make_eat’ is to be stemmed. In the first

step, an orthographic rule matches, which

specifies that, if ડાવ appears between વ and વ ,

વડાવ vḍāv should be replaced by ીા ā, resulting

into the intermediate form ખાવ khāvũ ‘to_eat’.

Next, step 2 is not applicable. In step 3, the

suffix વ vũ is a valid suffix for verbs; hence it

is stripped off; resulting into ખા khā ‘eat’,

which gets accepted by the FSA for verbs in

the final step. Thus, ખા khā ‘eat’ is returned as

the derivational stem of ખવડાવવ khavḍāvvũ

‘to_make_eat’.

6. Experiments and Results

We performed various experiments to evaluate

the performance of both the inflectional and
derivational stemmer using EMILLE Corpus

for Gujarati. We extracted around ten million

words from the corpus. We obtained 8,525,649

words after filtering out the wrongly spelt
words. In order to create the test set, each time

we randomly extracted thousand words from

the corpus.

6.1 Performance of the inflectional stemmer

The performance of the inflectional

stemmer is evaluated based on three factors.

The first factor is the accuracy based on the

gold standard data, where the gold standard
data contains the ideal stems of all the words

in the test set manually tagged by us. Accuracy

is defined as the percentage of words stemmed
correctly. The second factor is the Index

Compression Factor (Fox and Frakes, 2003)

that shows the extent to which a collection of
words is reduced by stemming. ICF is defined

as the ratio of difference in number of unique

words and number of unique stems to the

number of unique words. Finally, the third
factor is mean number of words per signature

(MWc) (Fox and Frakes, 2003) that indicates

the strength of the stemmer. MWc is defined as
the ratio of the number of unique words to the

number of unique stems.

The experiments were aimed at studying

the impact of three heuristics: (i) fixing the
minimum permissible stem size, (ii) provide

unequal weightage to the stem and suffix and

(iii) introduce a threshold as a restriction on
the minimum number of stems and suffixes to

qualify as a signature, known as the stem filter

threshold and the suffix filter threshold
respectively.

Various experiments were done to study

the impact of different combination of these

heuristics. This impact is studied in terms of
comparison of various factors as discussed

above. The results of such experiments are

described in the following subsections.

5

Varying Minimum Stem Size:

Minimum stem size was varied from 1 to 7

and its impact was observed on performance

of the lightweight stemmer. The results of this
experiment are shown in Table 1.

Min Stem

Size

Accuracy

(%) ICF MWc

1 90.7 0.53 2.11

2 89.9 0.53 2.11

3 84.8 0.52 2.00

4 74.2 0.49 1.90

5 63.5 0.47 1.92

6 52.1 0.49 1.96

7 44.6 0.55 2.22

Table 1. Effect of minimum stem size on

performance of the inflectional stemmer

It can be observed that maximum accuracy

of 90.7% is obtained by neglecting the

restriction on the minimum stem size and the
average index compression is 52% which is

considerable as far as IR application is

concerned.
The results also show that the performance

degrades if a restriction is placed on the

minimum stem size. The reason may be that

when the minimum stem size is increased lots
of genuine, but small stems are neglected,

leading to a decline in accuracy.

Providing unequal weightage to stem

and suffix along-with minimum stem size:

Initially an equal weightage was provided

to stem and suffix in Eqn 3 which is
responsible for determining the optimal split

position of any word. Then Eqn 4 was

obtained from Eqn 3 by introducing a

parameter ‘α’ in order to provide unequal
weightage to stem and suffix and its effect was

observed on performance of the lightweight

stemmer.
We used Eqn 4 and varied α along-with

varying the minimum stem size. The results

are shown in Table 2.

f(i) = α* i * log(freq(stem)) + (1 - α) * (L-i) *

log(freq(suffix))

(Eqn 4)

Min Stem

Size α
Accuracy

(%) ICF MWc

1

0.3 90.0 0.51 2.04

0.5 90.7 0.53 2.11

0.7 87.0 0.51 2.04

2

0.3 89.2 0.51 2.08

0.5 89.9 0.53 2.11

0.7 86.6 0.51 2.04

3

0.3 84.7 0.51 2.05

0.5 84.8 0.52 2.00

0.7 82.9 0.50 2.03

4

0.3 74.0 0.49 1.96

0.5 74.2 0.49 1.90

0.7 73.2 0.48 1.95

5

0.3 63.2 0.46 1.88

0.5 63.5 0.47 1.92

0.7 62.5 0.47 1.90

Table 2. Effect of α along with min. stem size
on performance of the inflectional stemmer

It can be observed that the maximum

accuracy of 90.7% is obtained by neglecting

the restriction on the minimum stem size and
providing equal weightage to stem and suffix

by keeping α = 0.5. Even for this combination

of heuristics, the average index compression of
52% is obtained.

Introducing restriction on the number

of stems and suffixes to qualify as a

signature:

A restriction was placed on the minimum

number of stems and the minimum number of

suffixes needed in a signature. These numbers
are called stem filter threshold and suffix filter

threshold respectively.

We varied all the parameters, viz.,
minimum stem size, α, stem filter threshold

and suffix filter threshold. There were two

important observations that will be stated

below. The results of this experiment are
shown in Table 3 below.

The results show how this combination of

heuristics improves the quality of stems and
suffixes, as well it brings big boost in the

Index Compression Factor.

6

Min

Stem

Size

α Thres-

hold

Accu-

racy

(%)

ICF MWc

1

0.3

0 90.0 0.51 2.0

1 85.8 0.88 9.0

2 87.1 0.95 20.3

1

0.5

0 90.7 0.52 2.1

1 88.3 0.89 9.9

2 87.7 0.95 22.4

1

0.7

0 87.0 0.51 2.0

1 84.9 0.95 22.2

2 84.8 0.95 22.2

2

0.3

0 89.2 0.51 2.1

1 85.1 0.88 9.0

2 86.5 0.95 20.3

2

0.5

0 89.9 0.52 2.0

1 87.6 0.89 9.9

2 86.7 0.95 22.4

2

0.7

0 86.6 0.51 2.0

1 87.6 0.94 19.2

2 84.1 0.95 22.2

Table 3. Effect of varying all three parameters,
viz., min. stem size, α and filter threshold on

performance of the inflectional stemmer

It can be observed that the maximum

accuracy of 90.7% is obtained by neglecting
the restriction on the minimum stem size,

providing equal weightage to stem and suffix

by keeping α = 0.5 and ignoring the restriction
on the minimum number of stems and suffixes

to form a signature.

Another important observation in this

experiment was that by restricting the filter
threshold to two, we obtain the highest index

compression of 95% with a slight decrease in

accuracy. This is an excellent result for
applications like corpus compression.

6.2 Performance of the derivational

stemmer

The performance of the derivational
stemmer was evaluated by direct comparison

of the stems generated by the system with the

ideal stems present in the gold standard data

which gave an accuracy of 70.7%.

7. Conclusions and Future Work

We developed two systems for Gujarati

language, one performing inflectional

stemming and the other performing

derivational stemming.
The inflectional stemmer has an average

accuracy of about 90.7% which is considerable

as far as IR is concerned. Boost in accuracy
due to POS based stemming was 9.6% and due

to inclusion of the language characteristics it

was further boosted by 12.7%. Heuristic with

filter threshold set to 2 gives highest index
compression of 95% which is extremely good

for applications like compression of data.

The derivational stemmer has an average
accuracy of 70.7% which can act as a good

baseline and can be useful in tasks such as

dictionary search or data compression.
The systems possess potential to be used

as pre-processing modules for NLP problems

other than IR, such as Word Sense

Disambiguation, similarity measure, etc.
The limitations of inflectional stemmer

can be easily overcome if modules like Named

Entity Recognizer are integrated with the
system.

In order to elevate the accuracy of the

derivational stemmer, the list of substitution,
orthographic or suffix-stripping rules can be

improved further if needed.

References

Amaresh K. Pandey and Tanveer J. Siddiqui. 2008.

An unsupervised Hindi stemmer with heuristic

improvements. Proceedings of the Second

Workshop on Analytics for Noisy

Unstructured Text Data, 303:99-105.

Ananthakrishnan Ramanathan and Durgesh D. Rao.

2003. A Lightweight Stemmer for Hindi.

Workshop on Computational Linguistics for
South-Asian Languages, EACL.

Christopher J. Fox and William B. Frakes. 2003.

Strength and Similarity of Affix Removal

Stemming Algorithms. Special Interest Group
on Information Retrieval Forum, 37(1):26-30.

Daniel Jurafsky and James H. Martin. 2009.

Speech and Language Processing: An
Introduction to Natural Language

Processing, Speech Recognition, and

Computational Linguistics. 2nd edition.

Prentice-Hall, Englewood Cliffs, NJ.

7

Donna Harman. 1991. How effective is suffixing?

Journal of the American Society for

Information Science, 42(1):7-15.

Ilia Smirnov. 2008. Overview of Stemming

Algorithms. Mechanical Translation.

John A. Goldsmith. 2001. Unsupervised learning of

the morphology of a natural language.

Computational Linguistics, 27(2):153-198.

Julie B. Lovins. 1968. Development of a stemming

algorithm. Mechanical Translation and

Computational Linguistics, 11:22-31.

Martin F. Porter. 1980. An algorithm for suffix

stripping. Program, 14(3):130-137.

Prasenjit Majumder, Mandar Mitra, Swapan K.

Parui, Gobinda Kole, Pabitra Mitra, and

Kalyankumar Datta. 2007. YASS: Yet another

suffix stripper. Association for Computing

Machinery Transactions on Information

Systems, 25(4):18-38.

Pratikkumar Patel, Kashyap Popat and Pushpak

Bhattacharyya. 2010. Hybrid Stemmer for

Gujarati. Proceedings of the 1
st
 Workshop on

South and Southeast Asian Natural
Languages Processing (WSSANLP), the 23

rd

International Conference on Computational

Linguistics (COLING), Beijing, 51-55.

William St. Clair Tisdall. 1892. A simplified

grammar of the Gujarati language: together

with A short reading book and vocabulary.

D. B. Taraporevala Sons & Company, Bombay

8

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 9–15,
Chiang Mai, Thailand, November 8, 2011.

Abstract

This paper documents recent work carried

out for PeEn-SMT, our Statistical Machine

Translation system for translation between

the English-Persian language pair. We give

details of our previous SMT system, and

present our current development of signifi-

cantly larger corpora. We explain how re-

cent tests using much larger corpora helped

to evaluate problems in parallel corpus

alignment, corpus content, and how match-

ing the domains of PeEn-SMT’s compo-

nents affect translation output. We then fo-

cus on combining corpora and approaches to

improve test data, showing details of expe-

rimental setup, together with a number of

experiment results and comparisons between

them. We show how one combination of

corpora gave us a metric score outperform-

ing Google Translate for the English-to-

Persian translation. Finally, we outline areas

of our intended future work, and how we

plan to improve the performance of our sys-

tem to achieve higher metric scores, and ul-

timately to provide accurate, reliable lan-

guage translation.

1 Introduction

Machine Translation is one of the earliest areas of

research in Natural Language Processing. Research

work in this field dates as far back as the 1950’s.

Several different translation methods have been

explored to date, the oldest and perhaps the sim-

plest being rule-based translation, which is in reali-

ty transliteration, or translating each word in the

source language with its equivalent counterpart in

the target language. This method is very limited in

the accuracy it can give. A method known as

Statistical Machine Translation (SMT) seems to be

the preferred approach of many industrial and aca-

demic research laboratories, due to its recent suc-

cess (Lopez, 2008). Different evaluation metrics

generally show SMT approaches to yield higher

scores.

The SMT system itself is a phrase-based transla-

tion approach, and operates using a parallel or bi-

lingual corpus – a huge database of corresponding

sentences in two languages.

The system is programmed to employ statistics and

probability to learn by example which translation

of a word or phrase is most likely to be correct. For

more accurate translation results, it is generally

necessary to have a large parallel corpus of aligned

phrases and sentences from the source and target

languages.

Our work is focussed on implementing a SMT for

the Persian-English language pair. SMT has only

been employed in several experimental translation

attempts for this language pair, and is still largely

undeveloped. This is due to several difficulties

specific to this particular language pair. Firstly,

several characteristics of the Persian language

cause issues with translation into English, and sec-

ondly, effective SMT systems generally rely on

large amounts of parallel text to produce decent

results, and there are no parallel corpora of appro-

priate size currently available for this language

pair. These factors are prime reasons why there is a

distinct shortage of research work aimed at SMT

of this particular language pair.

This paper firstly gives a brief background to the

Persian language, focusing on its differences to

English, and how this affects translation between

the two languages. Next, we give details of our

PeEn-SMT system, how we developed and mani-

pulated the data, and aligned our parallel corpora

using a hybrid sentence aligning method. We give

a brief overview of previous tests with the earlier

Improving Persian-English Statistical Machine Translation:

Experiments in Domain Adaptation

Mahsa Mohaghegh
Massey University

School of Engineering and Advanced

Technology

Auckland, New Zealand
M.Mohaghegh@massey.ac.nz

Abdolhossein Sarrafzadeh
Unitec

Department of Computing

Auckland, New Zealand
Hsarrafzadeh@unitec.ac.nz

Tom Moir
AUT University

School of Engineering

Auckland, New Zealand
Tom.moir@aut.ac.nz

9

version of the system, and then show our latest

experiments with a considerably larger corpus. We

show how increasing the size of the bilingual cor-

pus (training model), and using different sizes of

monolingual data to build a language model affects

the output of PeEn-SMT system. We focus on the

aim for a general purpose translator, and whether

or not the increase in corpora size will give accu-

rate results. Next we show that with the PeEn-

SMT system equipped with different language

models and corpora sizes in different arrange-

ments, different test results are presented. We ex-

plain that the improved result variations are due to

two main factors: firstly, using an in-domain cor-

pus even of smaller size than a mixed-domain cor-

pus of larger scale; secondly, spending much focus

on stringent alignment of the parallel corpus. We

give an overview of the evaluation metrics used for

our test results. Finally, we draw conclusions on

our results, and detail our plan for future work.

2 Persian Language Characteristics

Persian is an Indo-European language, spoken

mostly in Iran, but also parts of Afghanistan, India,

Tajikistan, the United Arab Emirates, and also in

large communities in the United States. Persian is

also known as Farsi, or Parsi. These names are all

interchangeable, and all refer to the one language.

The written Persian language uses an extended

Arabic alphabet, and is written from right to left.

There are numerous different regional dialects of

the language in Iran, however nearly all writing is

in standard Persian.

There are several grammatical characteristics in

written Persian which differ to English. There is no

use of articles in Persian, as the context shows

where these would be present. There is no capital

or lowercase letters, and symbols and abbrevia-

tions are rarely used.

The subject in a Persian sentence is not always

placed at the beginning of the sentence as a sepa-

rate word. Instead, it is denoted by the ending of

the verb in that sentence. Adverbs are usually

found before verbs, but may also appear in other

locations in the sentence. In the case of adjectives,

these usually proceed after the nouns they modify,

unlike English where they are usually found before

the nouns.

Persian is a morphologically rich language, with

many characteristics not shared by other languages

(Megerdoomian & Laboratory, 2000). This can

present some complications when it is involved

with translation into any other language, not only

English.

As soon as Persian is involved with statistical ma-

chine translation, a number of difficulties are en-

countered. Firstly, statistical machine translation of

the Persian language is only recently being ex-

ploited. Probably the largest difficulty encountered

in this task is the fact that there is very limited data

available in the form of bilingual corpora.

The best language to pair with Persian for machine

translation is English, since this language is best

supported by resources such as large corpora, lan-

guage processing tools, and syntactic tree banks,

not to mention it is the most widely used language

online, and in the electronic world in general.

When compared to English however, Persian has

many differing characteristics, some of which pose

significantly difficult problems for the task of

translation. Firstly, compared to English, the basic

sentence structure is generally different in terms of

syntax. In English, we usually find sentence struc-

ture in its most basic form following the pattern of

“subject – verb – object”, whereas in Persian it is

usually “subject – object – verb”. Secondly, spo-

ken Persian differs significantly from its written

form, being heavily colloquial, to a much greater

degree than English is. Thirdly, many Persian

words are spelled in a number of different ways,

yet all being correct. This in particular poses

trouble for translation, since if one version of the

spelling is not found in a bilingual corpus, such a

word may be incorrectly translated, or remain as

an OOV (out of vocabulary) word. Any SMT sys-

tem designed for this language pair needs to take

these details into consideration, and specifics of

the system developed to cater for these differences.

3 PeEn-SMT Compositions

3.1 SMT System Architecture

The goal of a statistical machine translation system

is to produce a target sentence e from a source sen-

tence f. It is common practice today to use phrases

as translation units (Koehn et al., 2003; Och and

Ney 2003) in the log-linear frame in order to intro-

duce several models explaining the translation

process.

10

The SMT paradigm relies on the probabilities of

source and target words to find the best translation.

The statistical translation process is given as:

In the above equations, (�) denotes the corres-

pondence between source and target words, and is

called an alignment.

The Pr(e, � |f) probability is modeled by combina-

tion of feature functions, according to maximum

entropy framework (Berger, Pietra, & Pietra, 1996)

The translation process involves segmenting the

source sentence into source phrases f; translating

each source phrase into a target phrase e, and reor-

dering these target phrases to yield the target sen-

tence e*. In this case a phrase is defined as a group

of words that are to be translated (Koehn, Och, &

Marcu, 2003; Och & Ney, 2003) A phrase table

provides several scores that quantize the relevance

of translating f to e.

The PeEn-SMT system is based on the Moses

SMT toolkit, by (Koehn, et al., 2007). The decoder

includes a log-linear model comprising a phrase-

based translation model, language model, a lexica-

lized distortion model, and word and phrase penal-

ties. The weights of the log-linear interpolation

were optimized by means of MERT(Och & Ney,

2003). In addition, a 5-gram LM with Kneser-Ney

(Kneser & Ney, 2002) smoothing and interpolation

was built using the SRILM toolkit (Stolcke, 2002).

Our baseline English-Persian system was con-

structed as follows: first word alignments in both

directions are calculated with the help of a hybrid

sentence alignment method. This speeds up the

process and improves the efficiency of GIZA++

(Och & Ney, 2000), removing certain errors that

can appear with rare words. In addition, all the ex-

periments in the next section were performed using

a corpus in lowercase and tokenized conditions.

For the final testing, statistics are reported on the

tokenized and lower-cased corpora.

3.2 Data Development

 For optimum operation, a statistical language

model requires a significant amount of data that

must be trained to obtain proper probabilities. We

had several Persian monolingual corpora available

completely adapted to news stories, originating

from three different news sources – Hamshahri

(AleAhmad, Amiri, Darrudi, Rahgozar, & Oroum-

chian, 2009), IRNA
1
 and BBC Persian

2
 – Hamsha-

hri contains around 7.3 million sentences, IRNA

has almost 5.6 million, and the BBC corpus con-

tains 7,005 sentences.

It is currently common to use huge bilingual cor-

pora with statistical machine translation. Certain

common language pairs have many millions of

sentences available. Unfortunately for Per-

sian/English , there is a significant shortage of di-

gitally stored bilingual texts, and finding a corpus

of decent size is a critical problem.

One English-Persian parallel text corpus we ob-

tained consisted of almost 100,000 sentence pairs

of 1.6 million words, and was mostly from bilin-

gual news websites. There were a number of dif-

ferent domains covered in the corpus, but the ma-

jority of the text was in literature, politics, culture

and science. Figure.1 shows the corpus divided

into separate domains. To the best of our know-

ledge, the only freely available corpus for the Eng-

lish-Persian language pair is the TEP corpus,

which is a collection of movie subtitles consisting

of almost 3 million sentences - 7.8 million words.

These two corpora were concatenated together to

form News Subtitle Persian English Corpus

(NSPEC) a single corpus of 3,100,000 sentences

for use in one test, and will also be used in the fu-

ture for further experiments.

Art , 3.23
Culture, 12.91

Idioms, 0.35

Law, 4.15Literature,

26.25

Medicine, 1.15
Poetry, 1.42

Subtitle, 16.92

Politics, 25.28

Proverb,

0.58

Religion,

2.1

Science, 5.51
Others, 0.15

Figure 1. Domain percentages for NSPEC corpus

1 http://www.irna.ir/ENIndex.htm
2 http://www.bbc.co.uk/persian/

11

3.3 Alignment

The issue of word alignment in parallel corpora

has been the subject of much attention. It has been

shown that sentence-aligned parallel corpora are

useful for the application of machine learning to

machine translation, however unfortunately it is

not usual for parallel corpora to originate in this

form. The alignment of the corpus became a task

of paramount importance, especially due to the

shortage of bilingual text for English-Persian in the

first place. There are several methods available to

perform this task. Characteristics of an efficient

sentence alignment method include speed, accura-

cy and also no need for prior knowledge of the

corpus or the two languages. For the experiments

presented in this paper, we used a hybrid sentence

alignment method using sentence-length based and

word-correspondence based models that covered

all these areas, only requiring the corpus to be se-

parated into word and sentence. In each of our ex-

periments we firstly aligned the corpus manually

using this hybrid method, and then later using GI-

ZA++ when the data was put through Moses.

4 Experiments and Results

4.1 Overview of Previous Experiments

The original tests performed using PeEn-SMT as

shown in some of previous papers produced unsa-

tisfactory results (Mohaghegh, Sarrafzadeh, &

Moir, 2010). It was initially thought that this was

due to the small corpora and training models used.

As detailed in these papers, a number of prelimi-

nary tests were carried out, and each time the lan-

guage model was increased in size to a maximum

of 7005 sentences. The training model at its largest

consisted of 2343 sentences. The language model

in these tests consisted of text collected from BBC

news stories, and the training model consisted of a

bilingual corpus of mostly UN news. It was

thought that the unsatisfactory test results achieved

could be remedied by enlarging the language mod-

el and corpus, since the amounts of data in each

model were far too small to achieve any decent

success in SMT.

4.2 Experiments

In order to develop the translation model, an Eng-

lish-Persian parallel corpus was built as explained

in the Data Development section. We divided the

parallel corpus into different sized groups for each

test system. The details of the corpus size for each

test are shown in Table 1. Table 2 shows the size

of each test’s corpus after the text was tokenized,

converted to lowercase, and stripped of blank lines

and their correspondences in the corpora. This data

was obtained after applying the hybrid sentence

alignment method.

Table 1: Bilingual Corpora Used to Train the

Translation Model

Table 2: Bilingual Corpora after Hybrid Alignment

Method

We divided the corpus to construct five different

systems, beginning from 10,000 sentences in the

smallest corpus, and increasing in steps of approx-

imately 10,000 sentences each time up to the 5
th

test system, with a corpus of almost 53,000 sen-

tences. In addition to the news stories corpus as

shown earlier, we only had access to one freely

available corpus, and this consisted of movie sub-

titles in Persian and English. This was shown to be

in a completely different domain to our main cor-

pus, so for most cases we preferred to run tests

separately when using these corpora. Finally in

NSPEC, we concatenated these two corpora, to

ascertain the potential output with a combined cor-

pus. We tested the subtitle corpus separately be-

cause we wished to see how an out-of-domain cor-

Language
Pair
En-Pe

Data
Genre

English
Sentences

English
words

Persian
sentences

Persian
Words

System1 Newswire 10874 227055 10095 238277

System2 Newswire 20121 353703 20615 364967

System3 Newswire 30593 465977 30993 482959

System 4 Newswire 40701 537336 41112 560276

System 5 Newswire 52922 785725 51313 836709

TEP Subtitle 612086 3920549 612086 3810734

NSPEC Newswire
-Subtitle

678695 5596447 665678 5371799

Language
Pair
En-Pe

Data
Genre

English
Sentences

English
Words

Persian
sentences

Persian
Words

System1 Newswire 9351 208961 9351 226759

System2 Newswire 18277 334440 18277 362326

System3 Newswire 27737 437871 27737 472679

System 4 Newswire 37560 506972 37560 548038

System 5 Newswire 46759 708801 46759 776154

TEP Subtitles 612086 3920549 612086 3810734

NSPEC Newswire
Subtitle

618039 5370426 618039 5137925

12

pus affected the result. In all cases, the test set con-

sisted of a news article covering a variety of dif-

ferent domains showing various grammatical as-

pects of each language. In order to construct a lan-

guage model, we used the transcriptions and news

paper stories corpora. One source we used was the

Hamshahri corpus, extracted from the Hamshahri

newspaper, one of the most popular daily newspa-

pers in Iran in publication for more than 20 years.

Hamshahri corpus is a Persian text collection that

consists of 700Mb of news text from 1996 to 2003.

This corpus is basically designed for the classifica-

tion task and contains more than 160,000 news

articles on a variety of topics. Another source used

was the IRNA corpus, consisting of almost 6 mil-

lion sentences collected from IRNA (Islamic Re-

public News Agency). Table 3 summarizes the

monolingual corpora used for the construction of

the language model. SRILM toolkit (Stolcke,

2002)was used to create up to 5-gram language

models using the mentioned resources. We tested

the baseline PeEn-SMT system against different

sizes of aligned corpora and different sized lan-

guage models. Tables 4, 5 and 6 show the results

obtained using the BBC, Hamshahri, and IRNA

language models respectively.

Monolingual Data Genre Sentences Words

BBC News 7005 623953

Hamshahri (V.1) News 7288643 65937456

IRNA News 5852532 66331086

Table 3: Monolingual Corpora Used to Train the

Language Model

4.3 Evaluation Metrics

One aspect of Machine Translation that poses a

challenge is developing an effective automated

metric for evaluating machine translation. This is

because each output sentence has a number of ac-

ceptable translations. Most popular metrics yield

scores primarily based on matching phrases in the

translation produced by the system to those in sev-

eral reference translations. The metric scores most-

ly differ in how they show reordering and syn-

onyms.

In general, BLEU is the most popular metric used

for both comparison of Translation systems and

tuning of machine translation models (Papineni,

Roukos, Ward, & Zhu, 2002); most systems are

trained to optimize BLEU scoring. Many alterna-

tive metrics are also available however. In this pa-

per we explore how optimizing a selection of dif-

ferent evaluation metrics effect the resulting mod-

el. The metrics we chose to work with were

BLEU, IBM-BLEU, METEOR, NIST, and TER.

While BLEU is a relatively simple metric, it has a

number of shortcomings.

There have been several recent developments in

evaluation metrics, such as TER (Translation Error

Rate). TER operates by measuring the amount of

editing that a human would have to undertake to

produce a translation so that it forms an exact

match with a reference translation (Snover, Dorr,

Schwartz, Micciulla, & Makhoul, 2006).METEOR

(Denkowski & Lavie, 2010; Lavie & Denkowski,

2009) is a metric for evaluating translations with

explicit ordering, and performs a more in-depth

analysis of the translations under evaluation. The

scores they yield tend to achieve a better correla-

tion with human judgments than those given by

BLEU (Snover, et al., 2006).

Another metric used was IBM-BLEU (Papineni, et

al., 2002) , which performs case-insensitive match-

ing of n-grams up to n=4.

BLEU and NIST (Zhang, Vogel, & Waibel, 2004)

both produce models that are more robust than that

of other metrics, and because of this, we still con-

sider them the optimum choice for training.

4.4 Evaluation of the Results

Our first experiment was carried out with 10,000

sentences (System1) in the English-to-Persian

translation direction. For comparison we tested the

SMT model on different language models. As

shown in Tables 4, 5, and 6, the best result was

achieved when we trained the machine on the IR-

NA language model. We gradually increased the

size of the corpora to the next test set (System 2),

which was almost 21,000 sentences, and we re-

peated the test for different language models.

Again the result showed that using IRNA resulted

in the best translation, followed by BBC, then

Hamshahri. We observed almost identical trends

with each test set; up to the set with the largest

corpus (53,000 sentences, System 5). It was origi-

nally thought that the dramatic increase in the size

of both models would yield a much higher metric

score, since it gave the translation program more

data to work with. However, these new tests

proved that this was not necessarily always true,

13

and corpus size alone was not synonymous with

improved translation. For instance, in the case

where the Hamshahri corpus was used for the lan-

guage model, the output result was even worse

than the original tests with a far smaller corpus like

BBC. The IRNA corpus, larger than the original

BBC corpus (7005 sentences) but still smaller than

Hamshahri, yielded the best result of the two.

To establish a reason for the apparently illogical

test results, the characteristics of each corpus were

examined, together with their combinations in each

test. After analysis, it was seen that there were a

number of likely factors contributing to the poor

results.

Table 4: Automatic Evaluation Metrics of PeEn-

SMT

Table 5: Automatic Evaluation Metrics of PeEn-

SMT System

Table 6: Automatic Evaluation Metrics of PeEn-

SMT System

One such factor involved the nature of the data

comprising each corpus, and how this affected the

match between the language model and the train-

ing model. For instance, in the case where we

achieved an even lower score than the original

tests, it was noted that the training model consisted

of a bilingual corpus based mainly on movie sub-

titles, yet the Hamshahri corpus was a collection of

news stories. For the most part, movies consist of

spoken, natural language in everyday situations,

filled with idioms, colloquial expressions and

terms, and often incorrect grammar and sentence

structure. These characteristics were heavily

present in the training model. News stories on the

other hand not only ideally consist of well-

structured sentences, with correct grammar and

little presence of colloquialism, but the very nature

of this kind of literature is unique, and rarely found

in natural language.

Another example showing this involved the sub-

title corpus (TEP) that we had access to. This cor-

pus was significantly larger in size (612,000 sen-

tences) when compared to the other corpora that

we had available to us. However, when we per-

formed the same experiment against different lan-

guage models, the result was quite unsatisfactory.

We believe that this was due to our test sets being

in a different domain than that of the movie sub-

titles.

These results led us to conclude that using larger

language and training models alone was not a reli-

able determining factor in satisfactory output.

For the sake of comparison, Google Translator was

tested on the same test data and results are in-

 Language Model =BBC news

Evaluation

System
BLEU_4

MULTI_BLEU

IBM-BLEU

NIST

METEOR
TER

System 1 0.1417 10.96 0.0083 2.4803 0.3104 0.7500

System 2 0.1700 12.63 0.0172 2.5258 0.3347 0.6287

System 3 0.2385 24.66 0.0242 3.4394 0.3654 0.6312

System 4 0.2645 25.45 0.0274 3.6466 0.4466 0.6515

System 5 0.2865 26.88 0.0467 3.8441 0.4479 0.8181

TEP 0.1312 10.56 0.0095 2.6552 0.2372 0.8333

NSPEC 0.2152 19.94 0.0453 3.2643 0.3929 0.6824

 Language Model =Hamshahri

Evaluation

System
BLEU_4

MULTI_BLEU

IBM-BLEU

NIST

METEOR
TER

System 1 0.1081 7.60 0.0246 2.1453 0.2526 0.8106

System 2 0.1229 8.77 0.0300 2.4721 0.3078 0.7196

System 3 0.1325 10.73 0.0149 1.2080 0.2215 0.7236

System 4 0.1945 10.87 0.0303 2.4804 0.2970 0.7500

System 5 0.2127 11.25 0.0288 3.6452 0.3040 0.8863

TEP 0.0127 1.05 0.0219 1.2547 0.1377 0.9015

NSPEC 0.0856 7.15 0.0499 1.9871 0.2313 0.7825

 Language Model =IRNA

Evaluation

System
BLEU_4

MULTI_BLEU

IBM-BLEU

NIST

METEOR
TER

System 1 0.2472 19.98 0.0256 3.5099 0.4106 0.6969

System 2 0.3287 29.47 0.0636 4.0985 0.4858 0.5833

System 3 0.3215 29.37 0.0565 4.1409 0.4838 0.5606

System 4 0.3401 30.99 0.0565 4.2090 0.4833 0.5833

System 5 0.3496 29.25 0.0635 4.4925 0.5151 0.5236

TEP 0.0535 3.98 0.0301 1.8830 0.2021 0.8787

NSPEC 0.1838 12.87 0.0366 3.0264 0.3380 0.7234

14

cluded in Tables 7. We compared our system to

Google’s SMT for this language pair, and com-

pared to the evaluation metric score released by

Google. Our PeEn-SMT system outperforms the

Google translator in the English-to-Persian transla-

tion direction.

Table 7: Automatic Evaluation Metric of Google

Translator Output

5 Conclusion and Future Work

In this paper we presented the development of our

English/Persian system PeEn-SMT. This system is

actually a standard phrase-based SMT system

based on the Moses decoder. The originality of our

system lies mostly in the extraction of selected

monolingual data for the language model. We used

manual alignment of the parallel corpus, which

was a hybrid sentence alignment method using

both sentence length-based and word correspon-

dence-based models, the results of which prove

this method to be invaluable in obtaining a more

accurate result from the system. We showed that

increasing the size of the corpus alone cannot nec-

essarily lead to better results. Instead, more atten-

tion must be given to the domain of the corpus.

There is no doubt that the parallel corpora used in

our experiments are small when compared to other

corpora used in training SMT systems for other

languages, such as German and Chinese, etc, or

with Google, which has access to extensive re-

sources. However we believe that the results from

our system compare quite favorably, despite these

shortcomings which we intend to address in our

future work.

In the future we plan to develop a technique to find

the most appropriate corpus and language model

for PeEn-SMT system by detecting the domain of

the input. We intend to perform tests using the

matched-domain input, corpus and language mod-

els in an attempt to achieve even better translation

results.

References

AleAhmad, A., Amiri, H., Darrudi, E., Rahgozar, M., &

Oroumchian, F. (2009). Hamshahri: A standard

Persian text collection. Knowledge-Based Sys-

tems, 22(5), 382-387.

Berger, A., Pietra, V., & Pietra, S. (1996). A maximum

entropy approach to natural language processing. Com-

putational Linguistics, 22(1), 39-71.

Denkowski, M., & Lavie, A. (2010). Meteor-next and

the meteor paraphrase tables: Improved evaluation sup-

port for five target languages.

Kneser, R., & Ney, H. (2002). Improved backing-off for

m-gram language modeling.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C.,

Federico, M., Bertoldi, N., et al. (2007). Mos-

es: Open source toolkit for statistical machine

translation.

Koehn, P., Och, F., & Marcu, D. (2003). Statistical

phrase-based translation.

Lavie, A., & Denkowski, M. (2009). The METEOR

metric for automatic evaluation of machine

translation. Machine translation, 23(2), 105-

115.

Lopez, A. (2008). Statistical machine translation.

Megerdoomian, K., & Laboratory, N. M. S. U. C. R.

(2000). Persian Computational Morphology: A

unification-based approach: Computing Re-

search Laboratory, New Mexico State Univer-

sity.

Mohaghegh, M., Sarrafzadeh, A., & Moir, T. (2010,

2010). Improved Language Modeling for Eng-

lish-Persian Statistical Machine Translation.

Paper presented at the Proceedings of SSST-4,

Fourth Workshop on Syntax and Structure in

Statistical Translation,Coling, Beijing.

Och, F., & Ney, H. (2000). Improved statistical align-

ment models.

Och, F., & Ney, H. (2003). A systematic comparison of

various statistical alignment models. Computa-

tional Linguistics, 29(1), 19-51.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. (2002).

BLEU: a method for automatic evaluation of

machine translation.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., &

Makhoul, J. (2006). A study of translation edit

rate with targeted human annotation.

Stolcke, A. (2002). SRILM-an extensible language

modeling toolkit.

Zhang, Y., Vogel, S., & Waibel, A. (2004). Interpreting

BLEU/NIST scores: How much improvement

do we need to have a better system.

Google (English – Persian)

System
BLEU_4

MULTI_BLEU

IBM-
BLEU

NIST

METEOR
TER

Google 0.2611 21.46 0.0411 3.7803 0.5008 0.7272

15

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 16–22,
Chiang Mai, Thailand, November 8, 2011.

Thai Word Segmentation Verification Tool

Supon Klaithin Kanyanut Kriengket Sitthaa Phaholphinyo Krit Kosawat
Human Language Technology Laboratory, National Electronics and Computer
Technology Center, National Science and Technology Development Agency

112 Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
{supon.kla, kanyanut.kri, sitthaa.pha,

krit.kos}@nectec.or.th

Abstract

Since Thai has no explicit word boundary,
word segmentation is the first thing to do be-
fore developing any Thai NLP applications.
In order to create large Thai word-segmented
corpora to train a word segmentation model,
an efficient verification tool is needed to help
linguists work more conveniently to check
the accuracy and consistency of the corpora.
This paper proposes Thai Word Segmentation
Verification Tool Version 2.0, which has sig-
nificantly been improved from the version 1.0
in many aspects. By using hash table in its
data structures, the new version works more
rapidly and stably. In addition, the new user
interfaces have been ameliorated to be more
user-friendly too. The description on the new
data structures is explained, while the modi-
fication of the new user interfaces is de-
scribed. An experimental evaluation, in com-
paring with the previous version, shows the
improvement in every aspect.

1 Introduction

Thai is an isolating language; each word form
consists typically of a single morpheme. There
are no clearly defined boundaries of words and
sentences; for example, “คนข�บรถ” /kh-o-n^-0/
kh-a-p^-1/r-o-t^-3/ can refer to two references:
“a driver” or “a man drives a car”, which may be
considered as a compound word or a sentence,
depending on its context. Therefore, creating an
NLP application that involves Thai language pro-
cessing is more complicated than many other
languages, such as English, Malay, Vietnamese,
etc., in which word boundaries are clearly
defined.

Moreover, Thai word segmentation research
has been separately conducted in many academic

institutes for more than 20 years without com-
mon standard. Their word boundary definitions,
segmentation methods and training/test data, etc.
are usually incompatible and nonexchangeable.
That is why a benchmark on their works is rather
difficult. As a result, the research in Thai NLP
has progressed more slowly than what it should
be.

Furthermore, the trend in language processing
research has now changed from rule-based ap-
proaches to statistical-based ones, which need
very large scale annotated corpora to train the
system by means of a machine learning tech-
nique. Unfortunately, none of such huge re-
sources has been built for Thai (Kosawat et al.,
2009).

1.1 BEST Project on Thai word segmenta-
tion

BEST project was set up in 2009 to smooth out
these problems. BEST or “Benchmark for En-
hancing the Standard of Thai language pro-
cessing” aims to establish useful common stand-
ards for Thai language processing in various top-
ics, to organize several contests in order to find
the best algorithms by means of benchmarking
them under the same criteria and test data, as
well as to share knowledge and data among re-
searchers. This strategy is expected to help accel-
erate the growth of the NLP researches in Thail-
and (Kosawat et al., 2009; Boriboon et al.,
2009).

The BEST project was started with Thai word
segmentation (BEST Academy, 2009), in which
Thai word-segmented corpora of 8.7 million
words had been developed as a training set in 12
balanced genres. The BEST corpora were origin-
ally segmented by SWATH (Smart Word Ana-
lysis for THai) (Meknavin et al., 1997), applica-

16

tion of which word segmentation criteria differed
from our BEST segmentation guidelines (BEST
Academy, 2008). Therefore, it was the laborious
works of our linguists to correct any wrongly
segmented words, as well as any spelling errors,
by hand.

1.2 Previous work

In order to facilitate our linguists to edit the
BEST Corpora more conveniently, Word Seg-
mentation Verification Tool Version 1.0 had
been created. The program was written in Java
language and had many useful features as follow:

• It could open simultaneously many text
files, so we could work with several texts
in the same time.

• It could accept text encoding both in
UTF-8 and TIS-620 (Thai ASCII).

• Word list with word frequency was
provided, as well as word concordance.

• Search and replace functions were avail-
able.

• Content editor was provided.

However, the version 1.0 had some disadvant-
ages, such as:

• It needed a powerful PC with a large size
memory.

• Opening many files still caused a very
long delay and sometimes a system halt.

• Its interface was not user-friendly.

• Quite a few bugs were reported.

That is why we decided to develop a new ver-
sion of Word Segmentation Verification Tool.
This new program has been changed in many
fields, which will be described in the next sec-
tion.

2 Word Segmentation Verification Tool
Version 2.0

To verify the accuracy and consistency of the
BEST corpora, we need an efficient program that
works fast and is easy to use. So, we have de-
veloped “Word Segmentation Verification Tool
Version 2.0” to reduce the time to work with a
lot of files.

2.1 System architecture overview

The new tool is composed of three main com-
ponents: File manipulation, Word list manipula-
tion and Content manipulation, as shown in Fig-
ure 1.

• File manipulation: the module that
handles text files. It can handle one or
multiple files. The program begins by
reading files and storing them in the data
structure. It also includes related works,
such as creating files, finding and repla-
cing words in files.

• Word list manipulation: a word fre-
quency analysis on text files. This module
counts the frequency of words and dis-
plays the list of words sorted by alphabet
or frequency in ascending or descending
order.

• Content manipulation: responsible for
content and tag modification in text files.
This module contains several functions
such as add, remove and edit tag. The res-
ult of these modifications will immedi-
ately effect the content of the file. But the
original file is saved as a backup before.

2.2 Work flow

Word Segmentation Verification Tool V2.0 ac-
cepts an input text file in TIS-620 or UTF-8 en-
coding. This program can read multiple files. Be-
cause the program is a tool to validate Thai word
segmentation, the input files must be word-separ-
ated by pipe symbol “|”, as shown in Figure 2.

Figure 2. Word boundaries with pipe symbol

Figure 1. System architecture

17

After successfully reading input files, the tool
will count all words, calculate word frequencies
and store the full path of the file names and line
numbers of words in a data structure. The in-
formation, containing word position, line number
and file name, will be displayed on the main in-
terface, along with word concordance, when a
word is selected from the word list. When user
selects a line from the concordance, another win-
dow will appear and allow user to edit its con-
tent. A backup file (.info) is created before sav-
ing the new content in the original file. The oper-
ation's work flow is shown in Figure 3.

Other significant functions in the main inter-
face are search and replace functions. These
functions find the word positions in every
opened file. All search results are displayed to
user to select a replacement. There are two types
of replacement: replace only selected line, or re-
place all (every word in all opened files).

2.3 Data structure

A hash table is a data structure that uses a hash
function to identify the values in array elements
(buckets). The advantage of hash table is the
ability to fast access the data in the large scale of
corpus (Wikipedia, 2011). So, we have decided
to use the hash table in our new application.

The data structure of “Word Segmentation
Verification Tool V2.0” is stored in the hash
table format. The file path is stored as a key in
the hash table to identify its value. The content of
the file is stored in a vector, which is the value of
the hash table. The vector stores the content by
sorting it from the first line to the last line. For
example, Figure 4 shows that “C:/input/file1” is
stored as a key and Vector1, which contains all
lines of file1, is stored as a value in Hashtable1.

In addition, the frequency of each word is col-
lected in another hash table as shown in Figure 5.
Hashtable2 stores the word as a key and the ad-
dress of its child hash table as a value. The data
structure of the child hash table is similar to the
data structure of Figure 4 but different in vector
elements, since the actual vector elements con-
tain line number and frequency of word in that
line.

Figure 5. Data structure of word frequency
counter

Figure 4. Data structure of input files

Figure 3. Work flow

18

2.4 Program interfaces

Main interface

We have developed a new main interface to be
easy to use. This interface consists of four main
components as follows:

• Word list - this section is quite useful to
quickly explore words, frequency of
words, and word segmentation's correct-
ness. It counts the frequency of words
from all opened files. The result displayed
in this section can be sorted by alphabet or
by frequency in ascending or descending
order.

• Concordance display - this section is
very important and helpful for linguists to
immediately judge which words are cor-
rectly segmented by glancing over their
contexts, so it is not necessary to open
every file to examine each line thoroughly.
When a word is selected from the word list
or user enters a keyword in the search
function, the program will display the res-
ult in this section. This section shows the
word positions in all opened files by high-
lighting the target word apart from its con-
texts. The line numbers and file names of
that word are also shown. By double-
clicking at the content of each line, anoth-
er window will appear to edit data, as will
be described in the next section.

• Search and Replace - this operation is
the most frequently used function in our
tool. It is an important component of the
main interface. This function allows user
to easily search and replace words. The
result of each search is displayed in the
concordance table. There are two options
for replacement; the first is replacing only
in the selected line(s), and the second op-
tion is replacing in all opened files. For
adding a tag into the data, there are three
options: merge, split and none.

• Finally, Tag history - it displays tag list
that has been modified in the data. It
shows which words were edited by mer-
ging, splitting, or tagging any special sym-
bols. This history can help users remind
any former word segmentation modifica-
tions in order not to commit the same er-
rors again.

Particular interface

The particular interface is the second part of the
software interfaces for editing misspelled and
wrongly segmented words or texts thoroughly,
and also marking words or texts with some tags
to notify some particular structures or word am-
biguities. An example of the particular interface's
dialog box is shown below.

According to the above figure, the window has
four parts: Toolbar, Selected-line detail, Selec-
ted-line description, and Selected-file detail. The
first part is the toolbar consisting of several edit-
ing and tagging menus: Save, Undo, Redo, Re-
move tag, and nine symbols of tagging, which
will be explained in the part of tag editor. The
second part is the selected-line detail showing all
words and tags which appear in the selected line.
In this part, all words can be manually edited and
tagged with symbols. The third part is the selec-
ted-line description showing the line number and
the keyword of the selected line. Moreover, in

Figure 7. Particular interface

Figure 6. Main interface

19

this part, users can change the selected line by
filling any line number in the box on the right
side. Finally, the last part is the selected-file de-
tail showing all words and tags which appear in
the file of the selected line. Each line in the file is
highlighted differently to show the line status.
Any lines without editing are not highlighted.
The selected line is highlighted in yellow. Any
lines having the keyword are highlighted in blue.
Lastly, any edited lines are highlighted in pink
with italic characters. The particular interface is
very useful for editing texts more correctly.

Tag editor

Tag editor is the last part of the software inter-
faces to notify any special structures of words or
texts. Due to the fact that BEST corpora are com-
posed of several text genres with various word
structures inside, the tag editor is used to mark
any words or texts having particular structures or
ambiguities. Since the corpora, which were ori-
ginally segmented by machine, have some mis-
takes, the tag editor is used to edit the corpora
correctly, as well. There are nine symbols to use
for the mentioned purposes.

Firstly, the symbol <QUESTION>...</QUES-
TION> is used to mark any ambiguous words or
texts which have various meanings or are still in
discussion. When linguists analyze them with
their contexts to clarify the appropriate mean-
ings, then the symbols will be removed, and the
words will be segmented, split, or tagged with
other symbols as the experts have already con-
sidered.

Secondly, the symbols <MERGE>...
</MERGE> and <SPLIT>...</SPLIT> are used
to mark any words edited by being merged or
split in order not to segment them wrongly again.
The first one is used to tag the words that are
correctly edited by being merged together be-
cause, originally, at least two words were auto-
matically segmented despite having to be com-
bined1. The next one is used to tag the words that
are correctly edited by being split because,
formerly, at least two words were automatically
combined together despite having to be divided.

Lastly, six symbols are used to mark any
words or texts having particular structures, which
are quite different from general word formation,
in order to manage them extraordinarily. These
symbols are <AB>...</AB> for abbreviations,
<ANL>...</ANL> for animal names and breeds,
<IDM>...</IDM> for idioms, aphorisms, pro-
1 Any words being merged or split depend on the linguistic
rules in the BEST guidelines.

verbs and sayings, <NE>...</NE> for named en-
tities, <PLT>...</PLT> for plant names and
breeds, and <POEM>...</POEM> for poems,
verses and poetry. Some examples are shown in
the table below.

Words Word tagging
400 ก.ม.
(400 km.)

400 <AB>ก.ม.</AB>

ปลาก�ด
(fighting fish)

<ANL>ปลาก�ด</ANL>

ถ�านไฟเก�า
(old lover)

<IDM>ถ�านไฟเก�า</IDM>

ก ร� ง เ ท พ ม ห า น ค ร
(Bangkok)

<NE>กร�งเทพมหานคร</NE>

พร�กช��ฟ�า
(goat pepper)

<PLT>พร�กช��ฟ�า</PLT>

อ�ายเข�อ�ายโขง
อย"�ในโพรงไม�ส�ก

<POEM>อ�ายเข�อ�ายโขง
อย"�ในโพรงไม�ส�ก</POEM>

Table 1. Examples of word tagging

3 Experimental evaluation

According to the development of Word Segment-
ation Verification Tool, the performance of the
latest version is evaluated by doing an experi-
ment on both previous and latest versions of the
tools. They are tested on a desktop computer2

with 113-MB corpora, containing 880 files or
8,778,357 words in total. The corpora are com-
posed of general words, abbreviations, animal
names and breeds, idioms, named entities, plant
names and breeds, poems, numbers and punctu-
ation marks. It is found that the latest version is
mainly improved in two aspects: time and user
friendly.

The first aspect is time usage. The latest ver-
sion of the software spends less time opening the
software, files and keywords. In general, both
versions spend almost equal time opening the
software for the first time. However, for the
latest version, every time opening the software is
faster because it will open only the software, and
then, users have to open files; on the contrary,
for the previous version, if it is not the first time
opening the software, it will take much time to
open the software together with any files which
were opened before closing the software.

2 The test computer is a Personal Computer (PC) with Intel
Core 2 Duo 3.0 GHz. processor and 2 GB RAM, and using
Microsoft Windows XP operating system.

20

Round Previous version
(min:sec:ms3)

Latest version
(min:sec:ms)

1 01:15:01 00:56:04
2 01:15:06 00:57:04
3 01:14:04 00:56:04
4 01:15:08 00:57:00
5 01:14:08 00:57:00

Table 2. Time usage of opening files after firstly
opening the software

According to the above table, the latest ver-
sion works faster. To open the test corpus files
(880 files containing 8,778,357 words), it took
almost 1 minute; on the contrary, the previous
version spent about 1 minute 15 seconds doing it.
Furthermore, the latest version is also much
quicker than the previous one to show the lines
containing the selected keywords with contexts,
as shown in the table below. The latest version
could immediately display the lines of the re-
quired keyword while the previous one had to
spend several seconds doing it. Also, more often
the keywords were chosen to display, more
slowly the previous version worked. In conclu-
sion, the software's latest version works much
quicker than the old one.

Round Previous version
(sec:ms)

Latest version
(sec:ms)

1 15:02 immediately
2 16:09 immediately
3 15:03 immediately
4 17:09 immediately
5 18:00 immediately

Table 3. Time usage of showing lines containing
the selected keywords with contexts

The second aspect is user friendly. The latest
version of the software is easier and more con-
venient. Firstly, it can work faster because it is
not necessary to spend much time opening the
files which is used to open before closing the
program like the previous version, as told in the
first aspect. Secondly, the function of asking to
segment any long lines, which is a function of
the previous version (as shown in Figure 8 be-
low), is not necessary for this latest version any-
more because the new version can completely
manage any long lines without problem.

3 min = minute; sec = second; ms = millisecond

Figure 8. Function of asking to segment any long
lines in the previous version

Thirdly, the main interface of the latest ver-
sion looks easier to use because it contains only
essential and necessary components: word list,
concordance display, search and replace, and tag
history (as explained in the main interface part).
In contrast, the main interface of the previous
one contained a useless component (shown in the
bold square). It presented file names and lines of
selected words, both of which also occurred in
the concordance component. Moreover, the use-
less component caused fewer space to display the
word contexts in the concordance component.
Therefore, it was inconvenient for linguists to
quickly know which words were segmented cor-
rectly. The useless component of the main inter-
face of the previous version is shown in Figure 9
below.

Fourthly, it is easier to approach the data by
one click; in contrast, double click is used for
reaching the data in the previous software ver-
sion.

Figure 9. Useless component of the main inter-
face of the previous software version

21

Lastly, user knows the status of the software.
During the software's execution, every button,
such as editing, searching and saving buttons is
inactive, and a pop-up message and status-bar
message show the software's working status. It is
quite safe and useful for users not to edit or
search other words during this time because they
know that the software has not finished working
yet and is not ready to do other functions. On the
other hand, when it finishes working, every but-
ton is active and ready to use again, and the pop-
up message displays the number of edited words.
It is very helpful for users because they will
know when to be able to edit words, and not to
correct the corpus during the software's execu-
tion. If not, the corpus will have full of errors,
and it will waste plenty of time to revise the cor-
pus again and again. Therefore, the software's
latest version has much improvement and is quite
appropriate to the linguists' usage.

4 Conclusion and future works

We showed that our new tool, with its new data
structures in the form of hash table, worked more
rapidly than the previous version, both for open-
ing files and for responding to users. Moreover,
finding and replacing function were very quick
and stable too, for it never caused a system halt
again. The new interface was more user-friendly.
We can say that the overall improvement of the
new program can help our linguists work more
happily. In consequence, the BEST Corpora can
be enlarged in a shorter period while their data
follow better to the word segmentation standard
guidelines too.

In the near future, we plan to integrate Thai
spelling checker in our tool to detect automatic-
ally any misspelled words. Moreover, making
use of word statistics to decide how to segment
words, especially words still in discussion
(marked with <QUESTION> tag), may be anoth-
er interesting function to help our linguists pass
their stressful days.

References
BEST Academy. 2008. “Guidelines for BEST 2009 :

Thai Word Segmentation Software Contest (Re-
lease4) (in Thai).” [online]. Available at:
http://thailang.nectec.or.th/2009/

BEST Academy. 2009. “BEST 2009 : Thai Word
Segmentation Software Contest.” [online]. Avail-
able at: http://thailang.nectec.or.th/2009/

Monthika Boriboon, Kanyanut Kriengket, Patcharika
Chootrakool, Sitthaa Phaholphinyo, Sumonmas

Purodakananda, Tipraporn Thanakulwarapas, and
Krit Kosawat. 2009. “BEST Corpus Development
and Analysis.” In Proceedings of the 2nd Interna-
tional Conference on Asian Language Processing,
IALP 2009. the IEEE Computer Society, Singa-
pore:323-327.

Krit Kosawat, Monthika Boriboon, Patcharika
Chootrakool, Ananlada Chotimongkol, Supon
Klaithin, Sarawoot Kongyoung, Kanyanut Kri-
engket, Sitthaa Phaholphinyo, Sumonmas
Purodakananda, Tipraporn Thanakulwarapas, and
Chai Wutiwiwatchai. 2009. “BEST 2009 : Thai
Word Segmentation Software Contest.” In Pro-
ceedings of the 8th International Symposium on
Natural Language Processing, SNLP 2009.
Dhurakij Pundit University, Thailand:83-88.

Surapant Meknavin, Paisarn Charoenpornsawat, and
Boonserm Kijsirikul, 1997. “Feature-based Thai
Word Segmentation.” In Proceedings of the Natur-
al Language Processing Pacific Rim Symposium
1997(NLPRS’97), Phuket, Thailand.

Wikipedia. 2011. “Hash table.” [online]. Available at:
http://en.wikipedia.org/wiki/Hash_table

22

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 23–29,
Chiang Mai, Thailand, November 8, 2011.

The Semi-Automatic Construction of Part-Of-Speech Taggers
for Specific Languages by Statistical Methods

Tomohiro YAMASAKI Hiromi WAKAKI
Toshiba Corp., Corporate Research & Development Center, Knowledge Media Laboratory

1. Komukai Toshiba-cho, Saiwai-ku, Kawasaki, JAPAN
{tomohiro2.yamasaki, hiromi.wakaki, masaru1.suzuki}@toshiba.co.jp

Masaru SUZUKI

Abstract

Economic activities now keep being
globalized more and more. Thus we
are driven to deal with not only the
documents written in English but also
those written in other languages. In
order to enable us to develop proces-
sors of any language quickly, we have
been making a framework based on sta-
tistical processing and machine learn-
ing. At present, we confirmed that
part-of-speech (POS) taggers of some
target languages can be built by us-
ing this framework and the information
of source languages. In this paper, we
describe the method of acquiring POS
lexicons and that of generating supervi-
sors of POS sequences, which are used
to learn grammatical models of target
languages. We also explain the experi-
mental results of building POS taggers
of Portuguese and Indonesian by using
some source languages.

1 Introduction

The natural language processing, for example,
part-of-speech (POS) tagging, syntactic pars-
ing, and named entity extraction, is the fun-
damental technology for information extrac-
tion from text documents. This means that
the preparation of processors of a specific lan-
guage enables us to develop various applica-
tions for that language such as keyword ex-
traction, document classification, and machine
translation. However, most parts of the pro-
cessors we have already built are dependent on
the characteristics of each language since we
have developed lexicons and grammars man-
ually according to those of target languages
such as Japanese and English. This means
that we have to spend much time and effort

when we try to prepare processors of a new
language in the similar way before.

On the other hand, economic activities keep
being globalized and thus we should provide
people all over the world with appropriate ser-
vices and products. In particular, the follow-
ing needs are increasing:

• to estimate customers’ concerns and in-
tentions in order to provide the best ser-
vice,

• to grasp customers’ reputations and com-
plaints in order to avoid troubles,

• and to analyze the documents written in
local languages in order to achieve two
above-mentioned statements.

We have mainly worked on processing of
English until now, since many people tend to
consider to be international as to use English
much. After now, however, we must work on
not only English but also other languages all
over the world in order to be truly interna-
tional.

Therefore, we have been working on the es-
tablishment of the framework that enables us
to develop processors of any language quickly.
Concretely speaking, we aim to build lexicons
and grammatical models semi-automatically
by using statistical processing. We also aim to
achieve processors for POS tagging and more
advanced language processing by using only
the combination of surface and statistical in-
formation of documents given. However, we
make it a condition that the documents writ-
ten in target languages have many translations
with source languages because it is difficult to
build processors without any clue at all.

Roughly speaking, the technical points of
our research are divided into the development
of lexicons and that of grammatical models. In

23

this paper, we choose POS taggers as an ex-
ample of processors and describe the method
of the following processes:

• to acquire POS lexicons that are com-
posed of [word, POS] pairs,

• to generate supervisors of POS sequences,

• and to learn grammatical models by using
the above-mentioned lexicons and super-
visors.

As a result of these processes, we can obtain
the POS tagger of the target language semi-
automatically. Finally, we do the experiment
of building POS taggers by using some source
languages and evaluate the accuracy of those
taggers.

1.1 Related Work

Recently, it has been found that various prob-
lems of tasks in the natural language pro-
cessing can often be solved easily by machine
learning if we can prepare a large amount of
tagged corpora. However, it is a large problem
to prepare tagged corpora that can be used as
supervisors of each task.

On the other hand, it is easy to obtain raw
corpora from the Internet and so on. There-
fore, there are some studies about the meth-
ods for building processors by using not tagged
corpora but only raw ones. (Goldsmith, 2001)
acquires the inflections of each word on the
basis of Minimum Description Length (MDL)
model. However, in order to use the method
of (Goldsmith, 2001), we first have to generate
probabilistic grammars manually, because this
method is to distinguish the ones acceptable
and the ones not acceptable. This means that
we have to know the characteristics of the tar-
get language well to some degree, and that it
is difficult to build processors of the language
we hardly know by this method.

In addition, semi-supervised learning is re-
ceiving much attention as the method for solv-
ing the problem of preparing a large amount
of tagged corpora in these days. This is a
method aiming to obtain the same effect as
the case where we prepare a large amount of
tagged corpora by giving only a small amount
of tagged data to a large amount of raw cor-
pora. (Niu et al., 2003) learns the extraction
rules from the seed words given first, gener-
ates the corpora of named entities by those

rules, and finally builds a named entity ex-
tractor. As to semi-supervised learning, how-
ever, it is known that if tagged data include
errors even a little, errors increase rapidly in
the phase of automatic generation of supervi-
sors and thus it is difficult to achieve enough
accuracy. It is also difficult to give data with
accurate tags when we hardly know the target
language. Therefore, we have to do trial and
error so as not to cause the error propagation.

1.2 Policy

When we use translations with some specific
languages, the degree of difficulty of obtain-
ing them has a big influence on us. Generally
speaking, major news websites often deliver
not only articles written in local languages but
also those written in English. In other words,
there is a large probability that the documents
written in local languages have the English
translations, which we can use as parallel cor-
pora. However, we note that even if we can
obtain the translations with languages X and
Y, the sentences within the translations do not
always have one-to-one relations. Generally
speaking, it is difficult to associate the sen-
tences of language X with the sentences of lan-
guage Y with high accuracy when we hardly
know the relations of words of both languages.
Much less, it is almost impossible when we
hardly know the target languages.

Therefore, we decided to use the transla-
tions of the Bible as our experimental corpora.
The Bible is one of the most familiar docu-
ments that are read all over the world and
the translations with many languages are open
to the public on the Internet ((The Unbound
Bible,)). In addition, the number of chap-
ters and sections are the same in any language
though each translation of the Bible is parti-
tioned into many chapters and sections. This
means that the sentences have almost one-to-
one relations because each section has few sen-
tences.

On the other hand, as we described above,
we aim to achieve processors for advanced lan-
guage processing by using only the combina-
tion of surface and statistical information of
documents given. As the first approach, we
decided not to target the languages as follows:

• the languages whose character system has
not been digitalized yet,

24

• the languages whose words are not writ-
ten with a space between them,

• and the languages whose orthographies do
not distinguish common nouns and proper
nouns.

Not only the languages that have very few
users but also some of those that are used
in India are known that their character sys-
tems have not been digitalized yet. We can-
not disregard those Indian languages because
they have many users, but we cannot perform
the computer statistics if there is no digital-
ized corpora. Next, Thai, Cambodian, and
Laotian languages are known that their words
are not written with a space between them.
These languages, similar to Japanese, have a
large problem that it is very difficult for com-
puters to divide a sentence into words. Then,
Arabic, Hebrew, and Hindi languages have no
case sensitivity. These languages, similar to
German whose nouns always start with capi-
tal letters, have difficulties to extract the rela-
tions of words of other languages because it is
not easy to determine proper nouns.

For these reasons, we mainly target the lan-
guages that use Latin characters. Particu-
larly in this paper, we consider Portuguese and
Indonesian as major targets. However, our
method can be applied also to other languages
like French and Italian.

2 Extracting the relations of words

Our method for acquiring POS lexicons is
composed of two processes. One is a process
of extracting useful words by using statistics
of only one language. The other is a process
of extracting the relations of words of two lan-
guages by using statistics of both languages.
In this section, we describe both processes.

2.1 Extracting useful words on the
basis of statistical information of a
single language

Here, we describe the process of extracting the
words whose surfaces are similar to one an-
other (say sim-set), proper nouns, and word
collocations on the basis of statistical infor-
mation of a single language. The purpose of
extracting sim-sets is to presume the inflec-
tions/derivations of each word at the next pro-
cess.

As we described in Section 1.2, we con-
sider Portuguese and Indonesian as major tar-
gets. This means that the words that al-
ways start with capital letters must be proper
nouns, though we have to take into account
the words that appear at the beginning of sen-
tences. Therefore, we partition all sentences
with spaces and symbols into words and ex-
tract each word w that satisfies the following
conditions from them:

• csmall (w), which is the count that w has
only small letters, is equal to 0.

• ccapital (w), which is the count that w
starts with capital letters, is greater than
or equal to 5.

The probability that a word that is not a
proper noun satisfies the condition csmall (w) =
0 and ccapital(w) ≥ 5, is less than (1/2)5 =
1/32 even if we assume that the probability
that it appears at the beginning of sentences
is 1/2. It follows that we can decide whether
a word is a proper noun with significance level
of 5%.

Next, C-value (Frantzi and Ananiadou,
1996) is known well as a method for extracting
word collocations from the text documents.
This method calculates the connectivity be-
tween the words, defined as C − value(w) =
(l − 1)(n − t/c), where w is a word colloca-
tion w1 . . . wl, t and c are the total count and
the distinct count of word collocations that in-
clude w and that are longer than w.

When the connectivity between some words
is strong, these words often appear composing
a group and C-value tends to be large because
t tend to be small in comparison with n. How-
ever, when the word collocations is short, C-
value tends to be unreasonably large because
c tends to be very large in comparison with n.
Therefore, we use not only C-value but also
C’-value (Yamasaki, 2008) in order to extract
word collocations. In other words, we extract
the word collocations whose C-value and C’-
value are larger than a threshold given.

Here, Portuguese is classified into the inflec-
tional language grammatically as well as other
European languages. The inflectional lan-
guages have the property that the elements of
grammatical functions are embedded in each
word and thus each word changes its form ac-
cording to the case, the gender, and the num-
ber. This means that we must have the means

25

Table 1: Example of french words extracted from the French Bible
Proper nouns Word collocations Sim-sets

Jubal en paix {répara,réparer,réparé,réparât,
Assyrie le livre réparent,réparèrent},
Jébusien car vous {sanctifie,sanctifie-la,sanctifier,sanctifié,
Guérar nos pères sanctifieras,sanctifiée,anctifiez-vous,
Nimrod l’autel sanctifierai,sanctifierez,sanctification,
Calakh de guerre sanctifiés,ssanctifièrent,sanctifiez-le,
Gaza sa femme sanctifiez,sanctifiaient,sanctifient,

Dikla d’Égypte sanctifiait,sanctifieront,sanctifiât}

by which we can determine inflection forms of
each word. Indonesian is classified into the ag-
glutinative language as well as Japanese. The
agglutinative languages have the property that
most words are formed with the joint of the el-
ements of grammatical functions. This means
that we must have the means by which we can
determine the stem of derivation words.

In most languages, it is known that the be-
ginning or the end of each word change its
form, though the middle does in Arabic and
Hebrew. Therefore, we formally define a sim-
set as the words whose common affix is longer
than a threshold given. Now, we partition all
sentences with spaces and symbols into words
and perform the following process for each pair
of words (w1, w2):

• let L, l be max,min of (|w1|, |w2|), respec-
tively.

• define w1 ∼ w2 if and only if l ≥
L/2 and the length of common prefix
pre(w1, w2) ≥ L/2 or the length of com-
mon suffix suf (w1, w2) ≥ L/2.

• partition all words into equivalence class
based on ∼∗, which is defined as the re-
flexive transitive closure of ∼.

We note that the definition of ∼∗ does not
depend on the definition of ∼. This means
that if we define ∼ by using common subse-
quence instead of common affix, we may apply
the same method to the languages where the
middle of each word changes.

2.2 Extracting the relations of words
on the basis of statistical
information of two languages

Here, we describe the process of extracting the
relations of words of two languages on the basis
of statistical information of both languages.

We expect that when a word wx of language
X corresponds to a word wy of language Y, the
positions of wx in corpora are related to those
of wy. Here, we note that it is not easy to de-
cide whether the positions have any relations
because the sentences within the translations
do not always have one-to-one relations. How-
ever, it is easy to do it when we use the trans-
lations of the Bible because the sentences are
almost parallel. Assume that an X–Y paral-
lel corpus has n corresponding sentences and
that the numbers of sentences where wx and
wy appear are shown in Table 2. For example,
both appear in a sentences, only wx (wy) in b
(c), and neither in d.

For such a table, it is known that χ2-value,
defined as χ2 = n(ad−bc)2/efgh, follows a χ2

distribution. On the basis of this value, we can
decide whether the words correspond to each
other. In addition, we can also decide the rela-
tions of 2-grams and those of word collocations
in the same way, because this test uses only the
number of sentences and does not depend on
the characteristics of languages and the length
of each sentence. On the other hand, because
this test does not use the information where
the word appears in a sentence, we sometimes
obtain two or more words that correspond to
a word given. This does not matter so much if
we can finally acquire POS lexicons composed
of [word, POS] pairs. However, in order to ex-
tract one-to-one relations in any case, we make
it a condition that we select the most similar
one in the similarity of surfaces. This is be-
cause a proper noun is probably pronounced
similarly in any language. In that sense, it is
more general to calculate the similarity after
we convert the surface into the pronunciation.

Now, we have described the method of ex-
tracting words and their relations by using
not language dependent information but sta-

26

Table 2: The number of sentences where wx and wy appear
wy appears wy does not appear sum

wx appears a b e = a + b
wx does not appear c d f = c + d

sum g = a + c h = b + d n = a + b + c + d

tistical information. From here, on the as-
sumption that we know language X well (=
we have a POS tagger of language X), we
describe the method of extracting the inflec-
tions/derivations of words of language Y we
hardly know.

As we described in the previous sec-
tion, a sim-set includes candidates of inflec-
tion/derivation forms of a word. Because we
have a POS tagger of language X, we can de-
cide whether some different words are in truth
the same by restoring each word to its stan-
dard form. In other words, we can extract
inflection/derivation forms of language Y that
correspond to a standard form of language X
by finding the subset that is contained in a
sim-set of language Y and is the most relevant
to the standard form of language X. Therefore,
we perform the following processes:

• choose a standard form of language X
wx and a sim-set of language Y simy =
{wy

1 , w
y
2 , . . .}.

• calculate χ2-value for each subset simy,
which is contained in simy.

• find the subset whose χ2-value is maxi-
mum.

3 Acquiring POS lexicons and
generating supervisors of POS
sequences

In the previous section, we explained the
method of extracting the relations of words
of languages X and Y on the basis of statis-
tical information obtained from X–Y parallel
corpora. In order to acquire POS lexicons of
language Y finally, it is necessary to estimate
the POS of each word wy of language Y. Be-
cause we can know the POS of each word wx

of language X on the assumption that we have
a POS tagger of language X, we consider the
POS of wx corresponding to wy as that of wy.

Here, we note that we may not be able to
decide the unique POS of wx. For example, it
is known that many English words are used as

Table 3: List of part-of-speeches
A ADJECTIVE P PRONOUN
C CONJUNCTION R ADVERB
D DETERMINER S PREPOSITION
I INTERJECTION V VERB
M NUMERAL 0 DIGIT
N NOUN SYMBOL

a NOUN and a VERB. In other words, most
of English words have two or more POSes.
While the English word “name” can be used
as a NOUN and a VERB, the Portuguese word
“nome” is used as a NOUN only. Therefore,
from the viewpoint of the relevance ratio, it is
thought to be better that we estimate POSes
on the basis of the context. However, in order
to make our method simple, we consider all
possible POSes of wx as those of wy.

It is known well that most of European
languages belong to Indo-European languages
and there are few differences in the fun-
damental grammars between them. Con-
versely speaking, this means that the differ-
ence of languages does not affect so much the
POS sequences of the corresponding sentences.
Though Indonesian does not belong to Indo-
European languages, we generate the supervi-
sors of POS sequences of language Y on the
basis of POS sequences of language X by solv-
ing the Minimum Cost Matching Problem that
has the following conditions:

• the POSes of D, P, S, 0 and can match
the same POSes only, which is because
these POSes are thought to be the same
POSes for other languages,

• the skip cost is cskip ,

• the match cost is 0 if cand(wy) = ∅ or
pos(wx) ∈ cand(wy), otherwise cdiff ,

where pos(wx) is the POS of a word wx of lan-
guage X and cand(wy) is the POS candidates
of a word wy of language Y.

For example, Figure 3 shows that the French
word “commencement” matches the English
word “ beginning” and thus is estimated to

27

Au commencement Dieu créa les cieux et la terre .

In

the

beginning

God

created

the

heavens

and

the

earth

.

S

D

N

N

V

D

N

C

D

N

_

{S} {N,V} {N} {D,P} {D,P}{} {N} {C} {N} {_}

N

V

D

D

Au commencement Dieu créa les cieux et la terre .

In

the

beginning

God

created

the

heavens

and

the

earth

.

Au commencement Dieu créa les cieux et la terre .

In

the

beginning

God

created

the

heavens

and

the

earth

.

S

D

N

N

V

D

N

C

D

N

_

{S} {N,V} {N} {D,P} {D,P}{} {N} {C} {N} {_}

N

V

D

D

Figure 1: A solution of Minimum Cost Match-
ing Problem solved by Dynamic Programing

be a NOUN. It also shows that “créa” matches
“created” and thus is estimated to be a VERB.
In order to make our method simple, we do not
use the relations of words this time. However,
we may make the condition that the match
cost reflects the relations of words.

4 Experimental results

We have already built the POS taggers of En-
glish, Spanish and Esperanto manually. In this
section, we explain the experimental results
of building POS taggers of some target lan-
guages semi-automatically on the assumption
that English, Spanish and Esperanto are used
as the source languages. While there are some
versions of the Bible by different translators in
some languages, we used the following versions
shown in Table 4 on this experiment.

First, we show the covering ratios in Figure
2. The total and distinct covering ratios are
defined as the ratios of total and distinct words
with one or more estimated POSes by using
our method, respectively. Though there are a
few differences, as you can see, the covering
ratios in Figure 2 are almost the same degree
even if the source language is English, Spanish
or Esperanto.

This means that our method is stable and
is independent of the characteristics of source
languages. In addition, we confirmed that we
acquired the POSes to almost all words by us-
ing statistical processing because the total cov-
ering ratio exceeds 0.8. However, the distinct
covering ratio of Indonesian is about 0.25 and
is lower than expected. There is still room for
improvement.

Next, we generated the supervisors of POS

Figure 2: Total and distinct covering ratios

sequences based on the above-mentioned POS
lexicons and performed the machine learning
of grammatical models by using CRF (Laf-
fert, 2001). After that, we obtained the
POS taggers of the target languages semi-
automatically. We show the accuracy ratio
in Figure 3. The accuracy ratio is defined
as the ratio of correct POSes that the tag-
gers tagged onto words of sentences given. As
you can see, POS information is not attached
to the Bible. In order to evaluate the accu-
racy ratio, we extracted about 60 sentences
(about 900 words) from the Bible and made
the POS answers manually. Figure 3 shows
that the Portuguese tagger achieved high ac-
curacy of about 0.9 even though they are built
semi-automatically. Figure 3 also shows that
the accuracy of the Indonesian tagger is about
0.6. This is probably because the differences
between Indonesian and source languages are
large.

On the other hand, we analyzed failure cases
and confirmed that one of the causes of incor-
rect POSes that the taggers tagged is to reflect
grammatical features of source languages. For
one example, the word “there” in English is
ADVERB but is often expletive. For this rea-

Figure 3: The accuracy ratios of POS taggers

28

Table 4: List of languages and versions of the Bible
Language Version Sections Total words Distinct words
English American Standard 31103 918287 13256
Spanish Reina-Valera 31103 824760 28874
Esperanto British and Foreign Bible Society 31103 796700 30760
Portuguese João Ferreira de Almeida 31103 828352 29306
Indonesian Bahasa Indonesia Sehari-hari 31103 765810 47947

son, our taggers sometimes predicted by mis-
take some words as ADVERB, though those
words should be NOUN in Portuguese and In-
donesian. For another example, ADJECTIVE
comes ahead of NOUN in English although
ADJECTIVE comes behind NOUN in Por-
tuguese and Indonesian. For this reason, at
the sequences of words with the possibility of
being ADJECTIVE and NOUN, our taggers
sometimes predicted the previous word as AD-
JECTIVE as if the English tagger does.

Well, as you can easily see, many words that
do not appear in the Bible appear in modern
documents. This brings us a worry that the
accuracy ratio might drop in proportion to the
drop of the covering ratios, because as to the
words that do not appear in the POS lexicons,
our taggers must predict POSes from only pe-
ripheral words. Therefore, it will be important
to develop the method of extracting modern
words and estimating their POSes from large
corpora such as Wikipedia documents, for ex-
ample, by using grammatical knowledge of tar-
get languages given by hand at the minimum.

5 Conclusion

In this paper, we described our method that
is composed of two following processes. One is
the process of acquiring POS lexicons that are
composed of [word, POS] pairs by using par-
allel corpora of source languages and target
languages. The other is the process of gen-
erating supervisors that are used for machine
learning of grammatical models. And we con-
firmed that Portuguese and Indonesian POS
taggers are built semi-automatically by using
the Bible as parallel corpora and by using En-
glish, Spanish and Esperanto as the source lan-
guages. In addition, we confirmed that the
Portuguese tagger achieved high accuracy of
about 0.9 while the accuracy of the Indone-
sian tagger is about 0.6.

Although we did not target the languages
that use Cyrillic characters and Greek charac-

ters in this paper, we have a mind to expand
the coverage of our method to such languages
as Russian, Ukrainian and Greek in the fu-
ture. On the other hand, a method (Mochi-
hashi et al., 2009) has attracted a great deal
of attention from many researchers in these
years. This method partitions each sentence
into words by using only statistical informa-
tion of the documents given. We will work on
word segmentation and will expand the cover-
age of our method to the languages which are
not written with a space between words.

References

Biora University. 2005. The Unbound Bible.
http://unbound.biola.edu/.

C. Niu, W. Li, J. Ding, R.K. Srihari. 2003. A boot-
strapping approach to named entity classification
using successive learners. Proc. of 41st Annual
Meeting of ACL, pp.335–342, July 2003.

J. Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Journal of
Computational Linguistics (2001), vol.27, no.2,
pp.153–198.

K.T. Frantzi and S. Ananiadou. 1996. Extracting
nested collocations. COLING-96, pp.41–46.

T. Yamasaki. 2008. Topic extraction from Elec-
tronic Program Guides by using decomposition
of the co-occurrence graph into strongly con-
nected components. Journal of Computational
Linguistics (2001), vol.27, no.2, pp.153–198.

J. Laffert. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. Proc. of Machine Learning (2001),
pp.282–289.

D. Mochihashi, T. Yamada, N. Ueda. 2009.
Bayesian unsupervised word segmentation with
nested Pitman-Yor language modeling. ACL ’09
Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language
Processing of the AFNLP, vol.1, pp.100-108.

29

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 30–34,
Chiang Mai, Thailand, November 8, 2011.

Towards a Malay Derivational Lexicon: Learning Affixes Using
Expectation Maximization

Suriani Sulaiman, Michael Gasser, Sandra K̈ubler
Indiana University

{ss23,gasser,skuebler }@indiana.edu

Abstract

We propose an unsupervised training
method to guide the learning of Malay
derivational morphology from a set of
morphological segmentations produced by
a naı̈ve morphological analyzer. Using
a morphology-based language model, we
first estimate the probability of a given
segmentation. We train the model with
EM to find the segmentation that maxi-
mizes the probability of each morpheme.
We extract the set of affix patterns pro-
duced by our algorithm and evaluate them
against two references: a list of affix pat-
terns extracted from our hand-segmented
derivational wordlist and a derivational
history produced by a stemmer.

1 Introduction

For languages with complex morphology, mor-
phological analysis is a crucial step. In most lan-
guages, morphological analyzers built with com-
prehensive morpho-phonological rules are used to
predict properties of words such as part-of-speech
(POS) or morpho-syntactic features on the basis of
affixes. Designing a morphological analyzer capa-
ble of producing a complete analysis requires ex-
tensive human effort and there is therefore consid-
erable interest in machine learning of morphology.

In languages where words are not separated
by spaces, such as Chinese and Japanese, statis-
tical language modeling and unsupervised learn-
ing are the preferred methods of learning seg-
mentation of sentences into words (Ge et al.,
1999; Peng and Schuurmans, 2001; Kit et al.,
2003). For morphological segmentation, unsuper-
vised methods include the use of minimum de-
scription length (Goldsmith, 2001; Creutz and La-
gus, 2005), the learning of suffixation operations
and derivational rules from an inflectional lexicon

(Gaussier, 1999), the application of minimum edit
distance and mutual information (Baroni et al.,
2002), and the mutation of virtual morphs (Koho-
nen et al., 2008). Most of these studies focus on
well-resourced languages with mostly inflectional
morphology such as English, German, and French
that usually take no more than one prefix or suffix;
the techniques have not been proven to work on
an under-resourced language like Malay. The only
effort to learn Malay morphology through a corpus
based approach that we are aware of is the work of
Knowles and Mohd Don (2006) who discovered
Malay word classes using a stemmer. Unfortu-
nately, their work lacks a technical discussion of
the learning approach, and the origin of the stem-
mer remains unclear.

In this paper, we adopt a modified version of the
unsupervised technique from Chinese word seg-
mentation (Ge et al., 1999; Peng and Schuurmans,
2001; Kit et al., 2003) to learn the derivational
morphology of Malay, a language with hardly any
inflectional morphology, by manipulating the out-
put of a naı̈ve morphological analyzer. Given a
Malay word, the analyzer guesses all its possible
morphological segmentations, producing a list of
potential hypotheses. We then use the EM algo-
rithm to find the segmentation that maximizes the
probability of each morpheme. Finally, we extract
the set of all possible affix patterns from the best
segmentations and evaluate them against our gold
standard. Our task is not to evaluate the perfor-
mance of the analyzer per se but to collect as many
reliable affix patterns as possible with the help of
language modeling and EM in an effort to build a
Malay derivational morphological lexicon.

The remainder of the paper is organized as fol-
lows: Sec. 2 describes the basics of Malay deriva-
tional morphology. Sec. 3 presents an overview of
the unsupervised learning of morphological seg-
mentation. Sec. 4 discusses results and evaluation
and Sec. 5 concludes.

30

Figure 1: Nested structure of Malay morphology

English: Malay:
use-ful-ness per-se-faham-an
*help-ness-ful se-per-juang-an

Figure 2: English versus Malay morphotactics

2 Malay Derivational Morphology

Malay is an Austronesian language with rich con-
catenative word structure and productive deriva-
tional morphology. A Malay word can be divided
into discrete morphemes with clearly defined
boundaries, including roots, prefixes, suffixes, in-
fixes, and circumfixes (Knowles and Mohd Don,
2006). In Malay morphology, affixes can be
nested, as shown in Figure 1.

The loose restriction on word formation and the
productive nature of certain affixes in Malay re-
sults in a large number of possible affix patterns,
and the nested structures impose complex con-
straints on how affixes are combined. Unlike in
English, some affixes in Malay can be combined
in different orders, depending on the roots, to pro-
duce derived words with distinct parts-of-speech
(Figure 2).

Malay derivational morphology also makes
use of reduplication, which is the only non-
concatenative feature in Malay for which mor-
pheme boundaries are difficult to handle (Beesley
and Karttunen, 2003). In this experiment, we ex-
clude reduplication for the sake of simplicity.

3 Unsupervised Learning of Derivational
Morphology

We first extract unique word types from our train-
ing corpora and feed them into the Malay morpho-
logical analyzer. We then build ann-gram model
from the output of the analyzer. For each derived
word type, the analyzer provides a list of possi-
ble morphological segmentations. However, these
are unreliable because of the limitations of the an-
alyzer (see next section). In order to get a bet-
ter estimate of the probability of each morpheme,
we train then-gram model with EM on a new list
of pre-segmented derived word types produced by

Malay word: diketahui (Eng.: “know”)
Hypothesis : {di-ketahu-i, di-ketahui, di-ke-

tahu-i, diketahui, di-ke-tahui,
diketahu-i}

Figure 3: Sample analysis from Malay analyzer

the same analyzer using larger corpora from a dif-
ferent domain. Finally, the best segmentations are
chosen, and unique affix patterns are extracted as
initial steps in developing a derivational lexicon.

3.1 MorfoMelayu

We use a finite-state Malay morphological ana-
lyzer, MorfoMelayu,1 provided with an undiffer-
entiated list of about 5000 Malay roots, a list of
prefixes, and a list of suffixes. The analyzer is
naı̈ve in the sense that it knows no constraints on
the order or co-occurrence of affixes. Given an in-
put Malay word, it produces all possible segmen-
tations of the word based on its limited knowledge
of the language (Figure 3).

Although this list should include the correct
segmentation, it will normally also include an av-
erage of five incorrect ones for every word ana-
lyzed. It is the task of our machine learning algo-
rithm to learn the precise morphotactics of Malay
derivational morphology.

3.2 Morphology-based Language Model

n-gram models are widely used in statistical lan-
guage modeling to estimate the probability of a
character or word sequence. They can be utilized
to find the most probable segmentation of a word
or sentence. In morphology-based language mod-
eling, morphemes are treated as the modeling unit
(Tachbelie, 2010) instead of characters or words.
Since Malay morphology is mostly concatenative,
it is reasonable to use morphemes asn-gram units.
Given a Malay wordw = m1m2 . . . mk, where
k represents the number of morphemes, its most
likely segmentation into a morpheme sequence
can be determined according to maximum likeli-
hood estimation (MLE) as:

s(w) = argmax
k∏

i

pML(m | mi−1
i−n+1) (1)

where mi−1
i−n+1 is the context of morphememi

andn the order of then-gram model. We choose
1MorfoMelayu can be downloaded fromhttps:

//www.cs.indiana.edu/ ˜ gasser/Research/
software.html .

31

a bigram model for this experiment because it is
less likely for a sequence of morphemes than for
a single morpheme to coincide with a root. As
an example, the Malay prefix sequencemeN-teR
is very likely to be part of a derived word, e.g.,
meN-teR-tawa (laugh), while the prefixteR alone
can easily be part of the root, e.g.,terbang (fly)
or terjun (jump). Given a list of pre-segmented
Malay derived words from the output of the Malay
morphological analyzer, which we refer to asL-
model-news, we collect the frequency counts of
bigram morphemes from each word and estimate
their probability:

pML(mi | mi−1) =
f(mi−1,mi)

f(mi−1)
(2)

For smoothing, we apply Jelinek-Mercer linear
interpolation, which has been shown to perform
well on smaller training sets (Chen and Goodman,
1998) on ourn-gram model. We reserve a section
of the training corpus for heldout data,L-heldout-
news, containing 1,303 pre-segmented words con-
taining 2,347 unique bigrams. The bigrams are
partitioned into 4 different buckets according to
their frequencies and independently trained with
the parameter valueλ, tuned between 0.1 and 0.9.
We linearly interpolate the bigram and unigram
model:

pitp(mi | mi−1) = λpML(mi | mi−1) + (1− λ)pML(mi)
(3)

whereλ is set to 0.1 for low frequency bigrams
(0-2 counts), 0.5 for high frequency bigrams (>10
counts) and 0.9 for bigrams of intermediate fre-
quency (3-10 counts). Given that the output of the
Malay morphological analyzer is only partially re-
liable to begin with, we train the bigram model
with EM on a different pre-segmented wordlistL-
train-lit produced by the same analyzer. This step
ensures a more reliablepML(mi) by minimizing
the bias towards the performance of the language
model, forcing EM to learn to generalize from the
model.

3.3 EM Training

EM is favored mainly due to its guaranteed con-
vergence to a good probability model that locally
maximizes the likelihood or posterior probability
of the training data (Dempster et al., 1977). In
this experiment, given a set of hypotheses for all
possible segmentations of a particular wordw,
s(w) = {w′

1, w
′
2, . . . , w

′
j}, we use EM to find

the most probable segmentation that maximizes
s(w). Instead of initializing with uniform distri-
bution across the training data, we use the initial
probability estimation from the bigram model to
boost the slow convergence of EM and perform 10
iterations to produce a more reliablef(m) for es-
timatingp(m) using (4):

f t+1 =
∑

w∈L−tr

∑

w′∈S(w)

pt(w′)
α

f t(m ∈ w′) (4)

wherem now represents a sequence of two mor-
phemes,t the current iteration andf t(m ∈ w′) the
number of times a morpheme sequence m occurs
in segmentationw′. Since maximum likelihood
training is known to penalize longer sequences,
we add the normalization factorα in (4), which
is the sum of the probabilities of all possible seg-
mentations for a particular wordw. We assume
a uniform distribution for each unique morpheme
in the training listL-train-lit and assignf0(m) a
frequency of 1. We adjust (2) as (5) for simplicity,
wheref(m) is the sum of frequency of all bigrams
in L-model-news. We derivep0(m) and its subse-
quent values from (5).

p(mi) =
f(mi)∑

w∈L−model f(m)
(5)

We update the count of each morpheme through
(4) for an optimum value ofp(mi). The updated
value ofp(mi) is then used to re-calculates(w)
through (1) at the end of each iteration. Note that
this differs slightly from the normal implementa-
tion of EM in which s(w) is re-estimated at each
step. We find that this method speeds up the con-
vergence process and improves the overall perfor-
mance of EM for our tasks.

3.4 Derivational Lexicon of Affix Patterns

Based on the best segmentations produced by our
EM algorithm, we extract all unique affix patterns
by combining over possible roots. We then con-
struct a lexicon consisting of unique affix patterns
(e.g., meN-X-kan, ber-ke-X-an, where X repre-
sents a possible root) for Malay derivational mor-
phology. We evaluate the validity of the affix pat-
terns produced by our algorithm by comparing
them with a list of affix patterns extracted from
a hand-segmented list of derived words produced
by a native speaker of Malay and an automatically
derived list produced by a stemmer (Knowles and
Mohd Don, 2006).

32

Hand Segmented Stemmer
LH-eval-news LH-eval-lit LS-eval-lit

Precision 33.17 27.14 40.7
Recall 61.11 58.06 36.16
F-Score 42.99 36.99 38.29
Lex. size 108 93 224
Pat. not recov. 42 39 143

Table 1: Experimental results

3.5 Datasets

Four different corpora are used for training and
evaluation. The first training corpus, used to build
the morphology-based bigram model, consists of
14,869 word types compiled from Malay news
articles. The pre-segmented list,L-model-news,
contains 8,563 derived words (13,514 unique bi-
grams). The second corpus, used for EM train-
ing, consists of 18,438 word types collected from
Malay literature. After post-processing, the pre-
segmented list,L-train-lit, contains 15,916 de-
rived words producing 215 unique affix patterns.
For evaluation, two separate corpora are col-
lected from Malay news articles and literature.
The news articles contain 5,797 word types with
2,584 derived words (LH -eval-news), producing
108 unique affix patterns, while the literature has
2,832 word types with 1,439 derived words (LH -
eval-lit), producing 93 unique affix patterns. Fi-
nally, we use a reference list of derivational history
(LS-eval-lit) collected by Knowles and Mohd Don
(2006) from 4 Malay texts (119,471 words) and
generated by a stemmer (224 affix patterns).

4 Results and Evaluation

To evaluate the lexicon we extracted from the
training data, we compared the affix patterns ex-
tracted from the evaluation corpora, by hand or us-
ing the stemmer, with the patterns in the lexicon.
The results are shown in Table 1.

There are a few observations to be made from
these results. Firstly, our implementation of EM is
still biased towards shorter morpheme sequences
despite the added normalizing factorα, failing
to choose correct segmentations with longer se-
quences. Secondly, a large amount of data is cru-
cial to extract as many unique affix patterns as
possible (an average of 4 unique affix patterns per
100 derived words). The limited amount of hand-
segmented data used as the gold standard and the
tendency of our algorithm to choose words with
fewer morphemes represent major weaknesses in
our evaluation, resulting in very low precision val-

Error type Analyzer Out-
put

Hand-
segment

Pattern error

Root-Pref. meN-teR-nak meN-ternak meN-teR-X
Root-Suf. beR-nila-i beR-nilai beR-X-i
Suffix Re-
cursion

peN-tah-an-
an

peN-tahan-
an

X-an-an

All affix peN-di-di-kan peN-didik-an peN-di-di-kan
OOV beR-se-belah-an - ber-se-X-an

Table 2: Typical errors of affix patterns

ues (33.17% and 27.14%). Thirdly, the use of dif-
ferent domains for evaluation does not seem to
affect the results, suggesting that domain is not
a critical factor in collecting diversified affix pat-
terns. Finally, we find that most affix patterns not
recovered from the training corpus are either out
of the vocabulary or result from ambiguous af-
fixes that also exist as parts of roots (affix-like syl-
lables). These ambiguous affixes occur so often
that our algorithm fails to tell them apart. Table 2
shows typical errors produced by the analyzer.

5 Conclusion and Future Work

We have explored the feasibility of using a naı̈ve
morphological analyzer, a morphology-based lan-
guage model, and EM training for learning the
derivational morphology of an under-resourced
language like Malay. As far as we know, this is
the first attempt to combine these three methods in
the learning of morphology. Our low precision and
F-score indicate that our algorithm suffers from
over-segmentation, which we believe is due to the
small reference sets used for evaluation. Despite
the discouraging overall results, our promising re-
call values (61.11% and 58.06%) show that most
of the frequent affix patterns from our gold stan-
dard are recognized from the analysis. Eventu-
ally, the error analysis can serve as a guideline to
improve the performance of the Malay morpho-
logical analyzer. In future, we will compare the
performance of our algorithm with Morfessor 1.0
for unsupervised morphology learning (Creutz and
Lagus, 2005). Our ultimate goal is to construct a
hierarchical lexicon for Malay derivational mor-
phology by clustering affixes based on their posi-
tions, precedence and lexical classes with the help
of the improved analyzer.

Acknowledgments

The first author is funded by the Ministry of
Higher Education of Malaysia.

33

References

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically
related words based on orthographic and seman-tic
similarity. In Proceedings of the ACL Workshop on
Morphological and Phonological Learning, pages
48–57, Philadelphia, PA.

Kenneth Beesley and Lauri Karttunen. 2003.Finite-
State Morphology. CSLI Publications.

Stanley Chen and Joshua Goodman. 1998. An em-
pirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard
University.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using morfessor 1.0. Technical
Report A81, Publications in Computer and Informa-
tion Science, Helsinki, Finland.

Arthur Dempster, Nan Laird, and Donald Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, Series B(34):1–38.

Eric Gaussier. 1999. Unsupervised learning of deriva-
tional morphology from inflectional lexicons. In
Proceedings of the ACL Workshop on Unsupervised
Learning in Natural Language Processing, pages
24–30, College Park, MD.

Xianping Ge, Wanda Prat, and Padhraic Smyth. 1999.
Discovering Chinese words from unsegmented text.
In Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 271–272,
Berkeley, CA.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language.Computational
Linguistics, 27(2):153–198.

Chunyu Kit, Zhiming Xu, and Jonathan Webster. 2003.
Integratingngram model and case-based learning
for Chinese word segmentation. InProceedings
of the Second SIGHAN Workshop on Chinese Lan-
guage Processing, pages 160–163, Sapporo, Japan.

Gerald Knowles and Zuraidah Mohd Don. 2006.Word
Class in Malay: A Corpus Based Approach. Dewan
Bahasa dan Pustaka, Kuala Lumpur, Malaysia.

Oskar Kohonen, Sami Virpioja, and Mikaela Klami.
2008. Allomorfessor: Towards unsupervised mor-
pheme analysis. InProceedings of the 9th Cross-
language Evaluation Forum Conference on Evaluat-
ing Systems for Multilingual and Multimodal Infor-
mation Access, pages 975–982, Aarhus, Denmark.

Fuchun Peng and Dale Schuurmans. 2001. Self-
supervised Chinese word segmentation. InPro-
ceedings of the 4th International Conference on Ad-
vances in Intelligent Data Analysis, pages 238–247,
Cascais, Portugal.

Martha Y. Tachbelie. 2010.Morphology-Based Lan-
guage Modeling for Amharic. Ph.D. thesis, Univer-
sity of Hamburg, Hamburg, Germany.

34

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 35–39,
Chiang Mai, Thailand, November 8, 2011.

Punjabi Language Stemmer for nouns and proper names

Vishal Gupta

Assistant Professor, UIET

Panjab University Chandigarh

Vishal_gupta100@yahoo.co.in

Gurpreet Singh Lehal

Professor, Department of Computer Science,

Punjabi University Patiala

gslehal@yahoo.com

Abstract

This paper concentrates on Punjabi language

noun and proper name stemming. The purpose

of stemming is to obtain the stem or radix of

those words which are not found in dictionary.

If stemmed word is present in dictionary, then

that is a genuine word, otherwise it may be

proper name or some invalid word. In Punjabi

language stemming for nouns and proper

names, an attempt is made to obtain stem or

radix of a Punjabi word and then stem or radix

is checked against Punjabi noun and proper

name dictionary. An in depth analysis of Pun-

jabi news corpus was made and various possi-

ble noun suffixes were identified like ੀ ਆਂ
īāṃ, ਿੀਆਂ iāṃ, ੀ ਆਂ ūāṃ, ੀ ੀ ਂāṃ, ੀ ਏ īē etc.

and the various rules for noun and proper

name stemming have been generated. Punjabi

language stemmer for nouns and proper names

is applied for Punjabi Text Summarization.

The efficiency of Punjabi language noun and

Proper name stemmer is 87.37%.

1 Introduction

stemming is the process for reducing inflected or

sometimes derived words to their stem, base or

root form, generally a written word form. The

stem need not be identical to the morphological

root of the word, it is usually sufficient that relat-

ed words map to the same stem, even if this stem

is not in itself a valid root. A stemmer for Eng-

lish, for example, should identify the string cats

and possibly catlike, catty etc. as based on the

root cat, and stemmer, stemming, stemmed as

based on stem. A stemming algorithm reduces

the words fishing, fished, fish, and fisher to the

root word, fish. Stemming is an operation that

conflates morphologically similar terms into a

single term without doing complete morphologi-

cal analysis. Stemming (Haidar et al., 2006) is

used in information retrieval systems to improve

performance. Additionally, this operation reduc-

es the number of terms in the information re-

trieval system, thus decreasing the size of the

index files.

 In Punjabi language stemming (Mandeep et

al.,2009) for nouns and proper names, an attempt

is made to obtain stem or radix of a Punjabi word

and then stem or radix is checked against Punjabi

noun morph and proper names list. An in depth

analysis of Punjabi news corpus was made and

various possible noun suffixes were identified

like ੀ ਆ ਂīāṃ, ਿੀਆ ਂiāṃ, ੀ ਆ ਂūāṃ, ੀ ੀ ਂāṃ, ੀ ਏ

īē etc. and the various rules for noun and proper

name stemming have been generated. Punjabi

language stemmer for nouns and proper names is

applied for Punjabi Text Summarization. Text

Summarization is the process of condensing the

source text into shorter version. Those sentences

containing Punjabi language nouns or proper

names are important.

2 Background and Related Work

The earliest English stemmer was developed by

Julie Beth Lovins in 1968. The Porter stemming

algorithm (Martin Porter, 1980), which was pub-

lished later, is perhaps the most widely used al-

gorithm for English stemming. Both of these

stemmers are rule based and are best suited for

less inflectional languages like English. (Gold-

smith, 2001) proposed an algorithm for the mor-

phology of a language based on the minimum

description length (MDL) framework which fo-

cuses on representing the data in as compact

manner as possible. (Creutz, 2005) uses probabil-

istic maximum a posteriori (MAP) formulation

for morpheme segmentation.

 Not much work has been reported for stem-

ming for Indian languages compared to English

and other European languages. The earliest work

reported by (Ramanathan and Rao, 2003) used a

hand crafted suffix list and performed longest

match stripping for building a Hindi stemmer.

(Majumder et al., 2007) developed statistical ap-

proach YASS: Yet Another Suffix Stripper

which uses a clustering based approach based on

string distance measures and requires no linguis-

35

tic knowledge. They concluded that stemming

improves recall of IR systems for Indian lan-

guages like Bengali. (Dasgupta and Ng, 2007)

worked on morphological parsing for Bengali.

(Pandey and Siddiqui, 2008) proposed an unsu-

pervised stemming algorithm for Hindi based on

(Goldsmith, 2001) approach.

3 Punjabi Language stemmer for Nouns

and Proper names

In Punjabi language stemming (Md. et al., 2007)

for nouns and proper names, an attempt is made

to obtain stem or radix of a Punjabi word and

then stem or radix is checked against Punjabi

noun morph and Proper names list. An in depth

analysis of corpus was made and the possible

noun and proper name suffixes (Praveen et

al.,2003) were identified (Table1) and the vari-

ous rules for Punjabi word noun stemming have

been generated.

Table 1. Punjabi language noun/Proper name

suffix list

ੀ ਆ ਂ

īāṃ

ਿੀਆ ਂ

iāṃ

ੀ ਆ ਂ

ūāṃ

ੀ ੀਂ
āṃ

ੀ ਏ

īē

ੀ
ē

ੀ ਓ

Īō

ਿੀਓ

iō

ੀ
ō

ੀ ਆ

īā

ਿੀਆ

Iā

ੀ ੀਂ
īṃ

ਈ

ī

ੀ ੀ ਂ

ōṃ

ਵਾਂ
vāṃ

ਿੀਉਂ

iuṃ
ਈਆ

īā

ਜ/ਜ਼/ਸ
ja/z/s

 Proper names are the names of person, place

and concept etc. not occurring in Punjabi Dic-

tionary. Proper Names play an important role in

deciding a sentence’s importance. From the Pun-

jabi corpus, 17598 words have been identified as

proper names. The percentage of these proper

names words in the Punjabi corpus is about

13.84 %. Some of Punjabi language proper

names are given in Table2.

Table 2. Some of Punjabi language proper

names

ਅਕ ਲ
akālī

ਲੁਿਿਆਣ
ludhiāṇā

ਬ ਦਲ

bādal

ਪਿਿਆਲ
paṭiālā

ਜਲੰਿਰ

jalndhar

ਭ ਜਪ
bhājapā

 Algorithm of Punjabi language stemmer for

nouns and proper names is given below:

Stemming Algorithm

 The algorithm of Punjabi language stemmer for

nouns and proper names proceeds by segmenting

the source Punjabi text into sentences and words.

For each word of every sentence follow follow-

ing steps:

 Step 1 : If current Punjabi word ends with

ੀ ਆ ਂīāṃ then remove ਆ ਂāṃ from end.

 Step 2 : Else If current Punjabi word ends

with ਿੀਆ ਂiāṃ then remove ਆ ਂāṃ from end.

 Step 3 : Else If current Punjabi word ends

with ੀ ਆ ਂūāṃ then remove ਆ ਂāṃ from end.

 Step 4 : Else If current Punjabi word ends

with ੀ ਏ īē then remove ਏ ē from end.

 Step 5 : Else If current Punjabi word ends

with ਈ ī then remove ਈ ī from end.

 Step 6 : Else If current Punjabi word ends

with ੀ ē then remove ੀ ē from end and add

kunna at the end

 Step 7 : Else If current Punjabi word ends

with ੀ ਓ Īō then remove ਓ ō from end.

 Step 8 : Else If current Punjabi word ends

with ਿੀਓ iō then remove ਿੀਓ iō from end

and add kunna at the end

 Step 9 : Else If current Punjabi word ends

with ਵਾਂ vāṃ then remove ਵਾਂ vāṃ from end.

 Step 10 : Else If current Punjabi word ends

with ੀ ੀ ਂāṃ then remove ੀ ੀਂ āṃ from end.

 Step 11 : Else If current Punjabi word ends

with ੀ ੀ ਂōṃ then remove ੀ ੀਂ ōṃ from end.

 Step 12 : Else If current Punjabi word ends

with ੀ ō then remove ੀ ō from end and add

kunna at the end

 Step 13 : Else If current Punjabi word ends

with ੀ ੀਂ īṃ then remove ੀ ੀਂ īṃ from end.

 Step 14 : Else If current Punjabi word ends

with ਿੀਉਂ iuṃ then remove ਿੀਉਂ iuṃ from

end and add kunna at the end.

36

 Step 15: Else If current Punjabi word ends

with ੀ ਆ ā then remove ਆ ā from end.

 Step 16: Else If current Punjabi word ends

with ਿੀਆ ā then remove ਿੀਆ ā from end

and add kunna at the end.

 Step 17: Else If current Punjabi word ends

with ਈਆ īā then remove ਆ ā from end.

 Step 18: Else If current Punjabi word ends

with ਜ/ਜ਼/ਸ ja/z/s then remove ਜ/ਜ਼/ਸ
ja/z/s from end.

 Step 19: Current Punjabi Stemmed word is

checked against Punjabi noun morph or

Proper names list. If found, It is Punjabi

noun or Punjabi Proper name.

Algorithm Input: ਫੁੱਲਂ phullāṃ (Flowers) and

ਲੜਕ ਆ ਂlaṛkīāṃ (Girls)

Algorithm Output: ਫੁੱਲ phull (Flower) and

ਲੜਕ laṛkī (Girl)

Some results of Punjabi language stemmer for

nouns and Proper names for various possible suf-

fixes are given in table3.

Table3.Results of Punjabi language Noun/Proper

name stemmer

Punjabi

Noun/Proper

Name word

Stem word suffix

ਕਸ ਈਆ

Kasāīā

ਕਸ ਈ

kasāī

ਈਆ

īā

ਿਫਰ ਜ਼ਪੁਰਂ

phirōzpurōṃ

ਿਫਰ ਜ਼ਪੁਰ

phirōzpur

ੀ ੀ ਂ

ōṃ

ਲੜਕ ਆ ਂ

laṛkīāṃ

ਲੜਕ
laṛkī

ੀ ਆ ਂ

īāṃ

ਫੁੱਲਂ
phullāṃ

ਫੁੱਲ

phull

ੀ ੀਂ
āṃ

ਲੜਿਕਆ ਂ

laṛkiāṃ

ਲੜਕ
laṛkā

ਿੀਆ ਂ

iāṃ

ਮੁੰ ਡ
muṇḍē

ਮੁੰ ਡ
muṇḍā

ੀ
ē

ਲੜਿਕਓ

laṛkīō

ਲੜਕ
laṛkā

ਿੀਓ

iō

ਘਰਂ
gharīṃ

ਘਰ

ghar

ੀ ੀ ਂ

īṃ

ਪਰਂਦ ਪਰਂਦ ੀ

parāndē parāndā ē

ਮ ਹ ਆ

māhīā

ਮ ਹ
Māhī

ੀ ਆ

Īā

ਭ ਸ਼ ਵਾਂ
bhāshāvāṃ

ਭ ਸ਼
bhāshā

ਵਾਂ
vāṃ

ਆਗ ਆ ਂ

āgūāṃ

ਆਗ
āgū

ੀ ਆ ਂ

ūāṃ

ਲੜਕ
laṛkō

ਲੜਕ
laṛkā

ੀ
ō

ਲੜਕ ਏ

laṛkīē

ਲੜਕ
laṛkī

ੀ ਏ

īē

ਲੜਕ ਓ

laṛkīō

ਲੜਕ
laṛkī

ੀ ਓ

Īō

ਲੜਿਕਆ

laṛkiā

ਲੜਕ
laṛkā

ਿੀਆ

iā

ਮ ਿਗਉਂ
mōgiuṃ

ਮ ਗ
mōgā

ਿੀਉਂ

iuṃ

ਭ ਸ਼ ਈ

bhāshāī

ਭ ਸ਼
bhāshā

ਈ

Ī

ਸਿ ਡਂਿਸ

saṭūḍaiṇṭas
ਸਿ ਡਂਿ

saṭūḍaiṇṭa
ਸ

s

4 Results and Discussions

An In depth analysis of output of Punjabi lan-

guage stemmer for nouns and proper names has

been done over 50 Punjabi documents of Punjabi

news corpus of 11.29 million words. The effi-

ciency of Punjabi language noun and Proper

name stemmer is 87.37%, which is tested over 50

Punjabi news documents of corpus and is ratio of

actual correct results to total produced results by

stemmer. Table4 gives accuracy percentage of

various rules of stemmer which is ratio of correct

results to total results produced under that rule,

tested over 50 news documents. Table5 gives the

error percentage analysis of various rules of Pun-

jabi language stemmer. Errors are due to rules

violation or dictionary errors or due to syntax

mistakes. Dictionary errors are those errors in

which, after stemming, stem word is not present

in noun morph or Proper names list, but actually

it is noun. Syntax errors are those errors, in

which input Punjabi word is having some syntax

mistake, but actually that word falls under any of

stemming rules. Overall error percentage, due to

rules violation is 9.78%, due to dictionary mis-

takes is 2.4% and due to spelling mistakes is

37

0.45%. Some of rules have not been taken in the-

se table as we have not detected any accurate or

in accurate words for those rules in the input

Punjabi text.

Table 4. Accuracy %age analysis of rules of

Punjabi stemmer for Nouns and Proper names

Punjabi

Noun Suffix

Rules

Accuracy Per-

centage

of Correct words

detected

Rule1 ੀ ਆ ਂ

 īāṃ

86.81%

Rule2 ਿੀਆ ਂ

 iāṃ

95.91%

Rule3 ੀ ਆ ਂ

 ūāṃ

94.44%

Rule4 ੀ ੀ ਂ

 āṃ

92.55%

Rule5 ੀ
 ē

57.43%

Rule6 ੀ ੀ ਂ

 īṃ

100%

Rule7 ੀ ੀ ਂ

 ōṃ

100%

Rule8 ਵਾਂ
 vāṃ

79.16%

Table 5. Error %age analysis of various rules of

Punjabi stemmer for nouns and proper names

Punjabi

Noun Suf-

fix Rules

% age of

In Cor-

rect

words

due to

rules

Violation

% age of

In Cor-

rect

words

due to

dictionary

mistakes

% age of

In Cor-

rect

words

due to

spelling

mistakes

Rule1 ੀ ਆ ਂ

 īāṃ

79.7% 20.30% 0%

Rule2 ਿੀਆ ਂ

 iāṃ

86.65% 13.35% 0%

Rule3 ੀ ਆ ਂ

ūāṃ

0% 100% 0%

Rule4 ੀ ੀ ਂ

 āṃ

68.71% 18.25% 13.04%

Rule5 ੀ
 ē

82.21% 17.79% 0%

Rule6 ੀ ੀ ਂ

 īṃ

0% 0% 0%

Rule7 ੀ ੀ ਂ

 ōṃ

0% 0% 0%

Rule8 ਵਾਂ
 vāṃ

89% 11% 0%

0

10

20

30

40

50

R1 R2 R3 R4 R5 R6 R7 R8

% Usage each stemming

Rule

Graph 1 Percentage Frequency of Various

Stemming Rules

Graph1 depicts the percentage usage of the

stemming rules. As can be seen, Rule 4 and Rule

5 are the most frequently used stemming rules.

Unfortunately Rule 5 has a low accuracy with

42.57% of words being wrongly stemmed by this

rule. Actually some of Punjabi words like ਹੱਸ
hassē (laugh), ਹਲਕ halkē (area), ਮੌਕ moukē

(oppurtinity) and ਬਦਲ badlē (revenge) are not

nouns and are not present in noun morph, but

they fall under Rule5 of stemmer which makes

them noun after stemming, which is not true.If

after stemming, root word is still not present in

dictionary then, that word may be a proper name

or may be syntactically wrong word which can

be ignored.

38

4 Conclusions

In this paper, we have discussed the Punjabi lan-

guage stemmer for nouns and proper names.

Most of the lexical resources used such as Pun-

jabi proper names list, Punjabi noun morph etc.

had to be developed from scratch as no work had

been done in that direction. For developing these

resources an in depth analysis of Punjabi corpus,

Punjabi dictionary (Gurmukh et al.,1999) and Pun-

jabi morph had to be carried out using manual

and automatic tools. This the first time some of

these resources have been developed for Punjabi

and they can be beneficial for developing other

Natural Language Processing applications in

Punjabi. Punjabi language stemmer for nouns

and proper names is successfully used in Punjabi

language Text Summarization.

References

Creutz, Mathis, and Krista Lagus. 2005. Unsu

 pervised morpheme segmentation and mor

 phology induction from text corpora using Mor

 fessor 1.0. Technical Report A81, Publications

 in Computer and Information Science, Helsinki

 University of Technology.

Dasgupta, Sajib, and Vincent Ng. 2006. Unsupervised

 Morphological Parsing of Bengali. Language

 Resources and Evaluation, 40(3-4):311-330.

Haidar Harmani, Walid Keirouz, & Saeed Raheel.

2006. A rule base extensible stemmer for Informa

tion retrieval with application to Arabic, The

international Arab journal of information technol

ogy, Vol No.3, Issue No.3, pp 265-272.

Goldsmith, John A. 2001.learning of the morphology

 of a natural language, Computational Linguistics,

 27(2):153-198.

Gurmukh Singh, Mukhtiar Singh Gill and S.S. Joshi.

1999. Punjabi to English Bilingual Dictionary.

Punjabi University Patiala.

Majumder, Prasenjit, Mandar Mitra, Swapan K. Parui,

 Gobinda Kole, Pabitra Mitra, and Kalyankumar

 Datta. 2007. YASS: Yet another suffix stripper.

 Association for Computing Machinery Transac

 tions on Information Systems, 25(4):18-38.

Mandeep Singh Gill, G.S. Lehal and S.S. Joshi. 2009.

Part of Speech Tagging for Grammar Checking of

Punjabi. The Linguistic Journal Volume 4 Issue 1,

6-21.

Md. Zahurul Islam, Md. Nizam Uddin and Mumit

 Khan. 2007. A light weight stemmer for Bengali

 and its Use in spelling Checker. Proc. 1st Intl.

Conf. on Digital Comm. and Computer Applica

tions (DCCA07), Irbid, Jordan, March 19-23.

Pandey, Amaresh K., and Tanveer J. Siddiqui. 2008.

 An unsupervised Hindi stemmer with heuristic im-

 provements. In Proceedings of the Second

 Workshop on Analytics For Noisy Unstructured

 Text Data, 303:99-105.

Porter, Martin F. 1980. An algorithm for suffix strip

 ping Program, 14(3):130-137.

Praveen Kumar, Shrikant Kashyap, Ankush Mittal

and Sumit Gupta. 2003. A query answering system

for E learning Hindi documents. South Asian

Language Review,

 VOL.XIII, Nos 1&2.

Ramanathan, Ananthakrishnan, and Durgesh D. Rao.

 2003. A Lightweight Stemmer for Hindi, Workshop

 on Computational Linguistics for South-Asian Lan

 guages, EACL.

39

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 40–45,
Chiang Mai, Thailand, November 8, 2011.

Challenges in Urdu Text Tokenization and Sentence Boundary
Disambiguation

Zobia Rehman, Waqas Anwar, Usama Ijaz Bajwa
Department of Computer Science

COMSATS Institute of Information Technology, Abbottabad, Pakistan
{zobiarehman,waqas,usama}@ciit.net.pk

Abstract

Urdu is morphologically rich language with
different nature of its characters. Urdu text
tokenization and sentence boundary
disambiguation is difficult as compared to the
language like English. Major hurdle for
tokenization is improper use of space between
words, where as absence of case discrimination
makes the sentence boundary detection a difficult
task. In this paper some issues regarding both of
these language processing tasks have been
identified.

1 Introduction

Urdu is morphologically rich language, spoken
by more than 150 million people of the world;
either as their mother tongue or as their second
language. This language is composed of many
different languages, e.g. Arabic, Persian,
Turkish, Hindi, Sanskrit, and English. Moreover
it adopts new words from other languages. It is a
bidirectional language and uses Arabic based
orthography. Morphology of Urdu language is
influenced by all the languages mentioned above
(Riaz, 2007) (Waqas et al., 2006).
Text tokenization is the process of identifying
word peripheries in written text. It divides the
text into its constituent words (Kaplan, 2005)
(Manning et al., 1999). It is a preliminary task
for all language processing systems, e.g.,
machine translation, part of speech tagging,
information retrieval, information extraction,
grammar checker, and spell checker. All these
language processing systems need their input text
with definite word boundaries.
Sentence boundary disambiguation is the process
of identifying sentence terminating punctuations
in written text. It divides the text into its
component sentences. Sentence boundary has its
own importance in above mentioned language
processing systems as well as it is equally

important for; text summarization, text
paragraphing, parsing, and chunking. These
systems need their input text properly alienated
into sentences. Tokenization and sentence
boundary disambiguation are not easy tasks for
Urdu language. Urdu is a complex language with
respect to its morphology and nature of its
characters. In hand written Urdu text there is no
convention to use space for the isolation of
words from one another. The native speaker of
the language decides about the word boundary by
just looking at the shape of characters.
Tokenization becomes easy, if there is use of
space between words but in the computer typed
Urdu text the use of space is extremely uneven;
as it is used in some specific situations and this
conditional use of spaces makes tokenization
even more complex (Lehal, 2010). English also
has another advantage of case discrimination in
characters. This case discrimination is helpful in
identifying sentence boundaries. But Urdu also
lacks the case discrimination, which is the only
hint to know the starting point of a sentence.

2 Literature review

2.1 Segmentation techniques

Numerous tokenization techniques are used for
various languages of the world, e.g., rule based
techniques (Kaplan, 2005) , statistical techniques
(Lehal, 2010) , fuzzy techniques (Shahabi et al,
2007), lexical techniques (Wu et al., 1994)
(Xing et al., 2008) , and feature based techniques
(Meknavin, 1997). Significant work has been
done for Arabic (Attia, 2007) and Persian
language (Shamsford et al., 2009) also. In (Lehal,
2010) Space omission issues of Urdu script have
been addressed and resolved using bilingual
corpora and statistical word disambiguation
techniques.

40

2.2 Techniques for sentence boundary
detection

The task of sentence boundary disambiguation is
performed for numerous languages. Although
few of them are Arabic script languages, written
from right to left, but still no significant work has
been done for Urdu sentence boundary
disambiguation.
Various techniques have been used for different
languages, e.g., rule based techniques (Dincer et
al., 2004), collocation identification (Kiss et al.,
2006), regular expressions (Walker et al., 2001),
finite state models (Rezaei, 2001), heuristic rules,
artificial neural network models (Palmer et al.,
1994) and part of speech tagging (Mikheev,
2000).

3 Issues of text tokenization in Urdu

There is no concept of the space in hand written
Urdu text. A native speaker of this language can
understand and identify where a word ends and
from where a new word starts. But a machine can
not behave like a native speaker of the language
and can not interpret a text without obvious
boundaries of words. If there are two words “آبی”
(water) and “پرندے” (birds), in hand written text a
speaker can distinguish between the two words
but if these two words are written in any
computer application then they must be separated
with space so that machine can understand them
as two different words, e.g., “ ےدپرن آبی ” (water
birds). To avoid space character, a unique Urdu
character known as Zero Width Non-Joiner is
used. It just separates the two words without any
space between them, e.g., “ پرندے آبی ” (water
birds). If space or zero width non joiner are not
used then it will consider them a single word,
e.g., “آبيپرندے” (water birds), which is not
understandable even for the native speaker of the
language.
 There are two types of characters in Urdu;
Joiner and non joiner characters. Inter word
space is only used when a word ends with a
joiner character. If the word ends with a non
joiner character then this space is rarely used. So
to properly tokenize the Urdu text, it is needed to
manipulate space between words.
 Tokenization issues can be mainly divided into
following two categories;

• Space inclusion issues
• Space exclusion issues

3.1 Space inclusion issues

When words are written in a way without space
between them, then it is needed to insert space
between them, so that machine can understand
their boundaries. There are many languages in
the world, in which words are written without
any space. This issue is not easy to resolve as
there are numerous ways to insert space between
the words. Moreover every way conveys
different context of the text.
 In Urdu, space insertion is needed in following
two cases:

• When word ends with non joiner
character.

• When zero width non joiner (ZWNJ)
is used between two words.

3.1.1 Word ending at non joiner

Characters given in following table are known as
non joiner or separator characters in Urdu.

 ا د ڈ ذ ر ز ڑ ژ و ے

Table 1. Non joiner characters in Urdu

These characters have the specialty that they can
only acquire final shape and can not adopt initial
or medial shapes. Any joiner character can be
attached at their start but they can not be attached
at the start of the joiner character. When a word
ends with such a non joiner then space is not
inserted after it, as for a native speaker there will
be no ambiguity to distinguish it from other
words (Naim, 1999) (Siddiqi, 1971). Consult
Table 2. for such examples

 اسدشہرسےباہرجاپہنچا
(I)

 اسد شہر سے باہر جا پہنچا
(II)

Asad reached out of the city.

Table 2. Words ending at non joiners

In example (I) words are written without inter
word space and in (II) words are written with
space at the end of each word. It is obvious that
all the words end at non joiner that’s why in
examples, I and II the sentence gives the same
meanings. Native speaker can understand that
both of the examples have same words but
example (I) is considered by machine as a single
vague word.
 It is a major issue how to tokenize a string if
it has more than one possible combination.
Native speaker can identify the discrete words in

41

this case also by looking at surrounding words
but for machine it is impossible.

3.1.2 Use of ZWNJ between two words

Zero width non joiner is used between two words
when it is needed to separate them from each
other. But ZWNJ does not help to distinguish
between word boundaries. It just helps to
separate them visually. For example “ سڑکپرانی ”
(old track), in it both words are separated by an
additional ZWNJ character.

(old track) سڑکپراني
(Words without space or ZWNJ)

 (old track) سڑک پرانی
(Words separated by space)

(old track) سڑکپرانی
(Words separated by ZWNJ)

Table 3. ZWNJ between words

 Tokenizer is also responsible to remove this
ZWNJ and insert space instead of it so words can
be literally separated.
3.2 Space exclusion issues
Space exclusion is another issue of text
tokenization. The space that is used to separate
the words, some times occurs between words,
collectively giving the single meaning. During
tokenization these words need to be assigned
single boundary. Therefore the space between
such words is needed to be excluded.
 In following cases this space should be
neglected while assigning boundaries to words:

• Compound words
• Reduplication
• Affixation
• Proper nouns
• English words
• Abbreviations and Acronyms

3.2.1 Compound words

In Urdu there are following categories of
compound words with respect to their formation
(Sproat, 1992) (Schmidt, 1999) (Javed, 1985):

• AB formation
• A-o-B formation
• A-e-B formation

It is needed to treat them as a single word as
these different combinations form a single word.

3.2.1.1 AB formation

In AB formation two roots or stems join together
to form a semantically single word. When first

word in the compound unit, ends with a non
joiner then it is rare to have a space between
them, e.g., “کهاتاپيتا” (well-off) but if it ends with
a joiner then space is inserted after it. During
tokenization this space must be neglected and
these words should be assigned a single
boundary (Sproat, 1992). See Table 2. for such
examples

(hard work) محنت مشقت
 (basic needs of life)روٹی کپڑا

(parents) ماں باپ

Table 4. AB formation of compound words

3.2.1.2 A-o-B formation

In A-o-B formation two roots or stems are linked
to each other with the help of a linking
morpheme ‘و’ and make a single semantic unit. If
the first morpheme ends at a non joiner then
there is no need to insert space between it and
linking morpheme, e.g., “دروديوار” (boundary).
But if the first morpheme ends with joiner then
space is used between it and the linking
morpheme. So the tokenizer must neglect this
space and consider the compound unit as a single
token (Sproat, 1992).
Consider the following examples in Table 5. In it
space is used before and after the linking
morpheme. Without the space these words will
not be understandable even for the native speaker
but use of the space brings hurdle, if it is needed
to assign a single boundary to these words.

(honor) عزت و حرمت
(discipline) نظم و ضبط

(law and order) امن و امان

Table 5. A-o-B formation of compound words

3.2.1.3 A-e-B formation

In A-e-B formation “e” is the linking morpheme
which shows the relation between A and B.
morpheme “e” is represented in Urdu by diacritic
“”ِ. But before tokenization all diacritics are
removed and “”ِ is replaced by space (Sproat,
1992). See the examples in Table 6.

 (prime minister) وزير اعظم
(student) طالب علم

(scene limit) حد نظر

Table 6. A-e-B formation of compound words

42

Words of this type must be assigned a single
word boundary by excluding the inter word space
between them.

3.2.2 Reduplication

Reduplicated words must also be considered a
single semantic unit and if there is a space
between them, then it should be excluded in
order to assign a single boundary to reduplicated
words (Sproat, 1992).

 دن بدن
(day by day)

 دهوم دهام
(pomp & show)

 اٹه اٹه
(getup)

 حرف بحرف
(character by
character)

 صبح صبح
(early morning)

 روٹی ووٹی
(bread)

Table 7. Reduplication of words

In the examples in Table 7, all the reduplicated
words are separated by space. Tokenizer is
responsible to neglect this space and mark them
as a single word.

3.2.3 Affixation

Affixes are commonly used in Urdu. Both
prefixes and suffixes are used in it. Whenever
any affix (prefix or suffix) or stem are individual
morphemes and prefix ends with a joiner then
space is inserted between the prefix and the stem.
Similarly if the stem ends with a joiner then
space is inserted between stem and suffix. But
they are single semantic units so these must be
encapsulated in a single boundary by excluding
the space between stem and affix (Sproat, 1992)
(Platts, 2002). See the examples of prefixes in
Table 8.

 خوش اخلاق
(polite)

 خوش نصيب
(lucky)

 بيش قيمت
(expensive)

 ان تهک
(hard work)

Table 8. Prefixation

See the examples of suffixes given in Table 9.
 آلہ کار

(apparatus)
 حيرت انگيز
(amazing)

 سرمايہ کاری
(investment)

 شادی شدہ
(married)

 غلط فہمی
(misunderstanding)

 دہشت ناک
(fearful)

Table 9. Suffixation

3.2.4 Proper nouns

Most of the time proper names are divided
into first name and last name or into first
name,second name and last name (Schmidt,
1999). It is often seen that space is used
between these parts but this space should be
excluded, so that a name with all its parts can
become a single token (Sproat, 1992). Proper
noun examples are given in Table 10.

 سعودی عرب
(Saudi Arabia)

 حسن علی
(Hassan Ali)

 اسلام آباد
(Islamabad)

 صالح بانو
(Sawliha Bano)

 جنوبی افريقہ
(South Africa)

 زينب نور
(Zainab Noor)

Table 10. Proper nouns containing more than one
constituent

3.2.5 English words

Some of the English words are used in Urdu.
These words are often composed of more than
one morpheme. When first of these morphemes,
written in Urdu ends with a joiner character then
space is used between them. This space should
be neglected by the tokenizer to assign these
words a single boundary (Sproat, 1992). Such
examples are given in Table 11.

 ٹيلی کميونيکيشن

(telecommunication)
 ٹيسٹ ميچ

(test match)
 نيٹ ورک

(network)
 ميڈيکل سنٹر

(medical center)
 فٹ بال

(football)
 ايش ٹرے

(ash tray)

Table 11. Words of English language commonly
used in Urdu

3.2.6 Abbreviations and acronyms

English abbreviations are used in Urdu, in the
form of pronunciation of English characters,
written in Urdu, with space between each
character’s pronunciations. These abbreviations
behave as a single word. If these are followed by
any name then along with the name they form a
single unit (Sproat, 1992). Abbreviation and
acronym examples in Urdu are given in Table 12.

(M.Qureshi) ايم قريشی (PhD) پی ايچ ڈی

(A.K. Shah) اے کے شاہ (NLP) اين ايل پی

Table 12. English abbreviations

43

4 Issues of Urdu sentence boundary
disambiguation

According to linguists a sentence is an
expression. It is a collection of words that
conveys a complete thought and contains a
subject and predicate. Subject is usually a single
word or several words; noun or pronoun. It tells
about what or whom the sentence is concerned.
Predicate is a verb; it tells what the subject is
doing or being in the sentence. In the simple
most Urdu sentence the subject comes first, then
predicate and finally the verb; whereas the object
and the predicative nouns come in the middle of
the sentence (Platts, 2002).
In Urdu language sentence boundary
disambiguation, challenges arise due to its
certain properties such as: absence of
capitalization and the use of punctuation marks
in abbreviations and acronyms. In English,
characters can be written in upper and lower case
and the difference in characters case is helpful in
identifying the sentence boundaries. There is a
convention in English language that if a period is
followed by a word starting with capital letter
then it has maximum probability to become a
sentence marker. But in Urdu there are no case
discriminations to indicate the start of the
sentence
Punctuations like ‘-’, ‘.’, ‘؟’ and ‘!’ are used as
sentence terminators and these can also be used
inside the sentence; e.g., in Urdu text ‘-’ is used
to describe range between two values, in dates,
part of abbreviation, and also as the line breaker.
Examples for such cases are given in Table 13.

روزگار کے -چه سال شہر سے باہر رہا –احمد پانچ
حصول کے ليے اسے دوردراز کے علاقوں کا سفر

 کرنا پڑا۔
(Ahmad was out of the city for five to six
years. For the sake of job he had to travel far
and wide.)

٢٠٠٥-١٠-٠٨ کی صبح پاکستان ميں زلزلے کے
 شديد جهٹکے محسوس ہوۓ ۔

On 08-10-2005, sever earthquake jolts had
been felt in Pakistan.

دو سالوں ميں بہتيو۔ ايس۔ اے۔ کی معيشت پچهلے
۔متاثر ہوئ طرح یبѧѧѧѧر

The economy of the U.S.A. has been badly
affected since previous two years.

Table 13. Use of (-) at different locations in an
Urdu sentence

Full stop or ‘.’ is also used as sentence terminator
in Urdu script as well as the decimal symbol as
shown in Table 14.

.يیريکاڈ کی گ ٧ .٨ ريکٹرسکيل پہ زلزلے کی شدت
Intensity of the earthquake was 7.8 on
Richter scale.

Table 14. Use of (.) at different locations

If there is punctuation inside the Urdu text then
by just considering the characters of its
surrounding words, it can not be decided that
either a given punctuation is sentence terminator
or not. Consult table 15. for such examples

-کيا کمال کی جگہ هے! واہ

Wow! What a wonderful place.)
"-ميری مدد کرو" وہ چلايا،

(He Screamed, “Help me.”)
 کيوں؟ اس نے ايسی کيا غلطی کر دی؟

(Why? What did he do wrong?)

Table 15. Ambiguity in sentence boundary due to
punctuations

Obviously in the above cases it is difficult for the
machine to isolate the punctuations from
sentence termination behavior.

5 Conclusion and Future work
In this paper issues are described for Urdu text
tokenization and sentence boundary
disambiguation. In hand written Urdu text, words
are written in continuation without any space
between them. But computer text files demand a
separator, whenever a word ends with joiner
character. Without any separator, word of this
sort will join itself to next word resulting into an
indefinite word that is not understandable even
for the native speaker of the language. Demand
of this separator is satisfied by inserting space
character or zero width non joiner after the words
ending with joiner characters. On the other hand
words ending at non joiners are not followed by
any space character or zero width non joiner. In
short this intricate job is concerned to manipulate
spaces between words, so that machine can
demarcate their boundaries. Different statistical
and rule based techniques have been applied on
the different languages of the word, which are
even much more complex than Urdu language, to
solve their segmentation issues. In future we will
target some of these techniques along with hand

44

crafted dictionaries of Urdu compound words,
affixations and some commonly used English
words in Urdu script.
Sentence boundary disambiguation has its own
challenges for Urdu. This task is easier to some
extent in the languages with upper and lower
case character discrimination. As in English there
is convention that a period followed by a word
starting with an upper case letter, has maximum
probability to be a boundary marker. But in
Urdu, the language without case discrimination,
it is difficult to find the punctuations showing the
behavior of sentence boundary. In future we are
aimed to solve these issues by using part of
speech information of each word followed by
any putative sentence boundary. This
information can be helpful to know that either
the current word should be followed by a
sentence terminator or not.

References
Attia, M. A. 2007. Arabic tokenization system,
Proceedings of the 2007 Workshop on Computational
Approaches to Semitic Language, 65 – 72.

Dincer B. and Karaoglan B. 2004. Sentence
Boundary Detection in Turkish, Advances in
Information Systems, Springer Berlin, pp. 255-262.

Javed I. 1985. New Urdu Grammar. Advance Urdu
Buru New Dehali.

Kaplan. 2005. Method of Tokenizing Text,
Inquiries into Words, Constraints And Contexts.

Kiss T. and Strunk J. 2006. Unsupervised
Multilingual Sentence Boundary Detection, MIT
press, Volume, 32, pp. 485-525.

Lehal G. 2010. A word segmentation system for
handling space omission problem in Urdu script,
WSSANLP, pp. 43-50.

Manning C. Schuetze H. 1999. Foundations of
Statistical Natural Language Processing. MIT
Press Massachusetts.

Meknavin, S. 1997.Feature-based Thai Word
Segmentation, Proceedings of Natural Language
Processing Pacific Rim Symposium, pp. 35 – 46.

Mikheev A. 2000. Tagging Sentence Boundaries,
Proceedings of the 1st North American chapter of the
Association for Computational Linguistics
conference, vol 4, pp. 264-271.

Naim C. 1999. Introductory Urdu. South Asian
Language & Area Center University of Chicago.

Palmer D. and Hearst M. 1994. Adaptive Sentence
Boundary Disambiguation, Proceedings of the

fourth conference on Applied natural language
processing, Stuttgart, Germany, pp. 73-83.
Platts, J. 2002. A Grammar of the Hindustani or
Urdu Language, Sang-e-Meel Publications, Lahore

Rezaei S. 2001. Tokenizing an Arabic Script
Language, Arabic NLP Workshop at ACL/EACL,
Toulouse, France.

Riaz K. 2007. Challenges in Urdu stemming- a
progress report, BCS IRSG Symposium.

Ruth L. Schmidt. 1999. Urdu, An Essential
Grammar, London: Routeledge Taylor & Francis
Group.

Shahabi, A. S., Kangaveri, M.R. 2007. Intelligent
processing system, IFIP International Federation of
Information Processing, Springer Boston 2007, Vol.
228/2007, pp. 411- 420

Shamsford, M., Kiani,S., Shahidi,Y. 2009. STeP-1:
Standard text preparation for Persian language,
CAASL3 Third Workshop on Computational
Approaches to Arabic Script- Languages.

Siddiqi. 1971. جامع القواعر. Markazi Urdu Board

Sproat, R. 1992. Morphology and Computation.
The MIT Press.

Walker et al. 2001. Sentence Boundary Detection:
A Comparison of Paradigms for Improving MT
Quality, Machine translation in the
information age”, pp. 369-372.

 Wu, D., Fung, P. 1994. Improving Chinese
Tokenization with Linguistic Filters on Statistical
Lexical Acquisition, Proceedings of the fourth
conference on Applied natural language processing,
pp. 180 – 181

Waqas A., Xuan W., Lu Li, Xiao-long W. 2006. A
Survey of Automatic Urdu Language Processing.
International Conference on Machine Learning and
Cybernetics, pp: 4489-4494

Xing, H. C., Zhang, X., Dalians, H. 2008. Using
parallel corpora and Uplug to create a
Chinease-English dictionary, Thesis from Royal
Institute of Technology.

45

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 46–51,
Chiang Mai, Thailand, November 8, 2011.

Challenges in Developing a Rule based Urdu Stemmer

Sajjad Ahmad Khan, Waqas Anwar, Usama Ijaz Bajwa

Department of Computer Science
COMSATS Institute of Information Technology, Abbottabad, Pakistan

sajjadkhan25@hotmail.com,waqas@ciit.net.pk,usama@ciit.net.pk

Abstract

Urdu language raises several challenges to Natu-
ral Language Processing (NLP) largely due to its
rich morphology. In this language, morphological
processing becomes particularly important for In-
formation Retrieval (IR). The core tool of IR is a
Stemmer which reduces a word to its stem form.
Due to the diverse nature of Urdu, developing
stemmer is a challenging task. In Urdu, there are
large numbers of variant forms (derivational and
inflectional forms) for a single word form. The
aim of this paper is to present issues pertaining to
the development of Urdu stemmer (rule based
stemmer).

1. Introduction

Urdu is an Indo-Aryan language. It is the nation-
al language of Pakistan and is one of the twenty-
three official languages of India. It is written in
Perso-Arabic script. The Urdu vocabulary con-
sists of several languages including Arabic, Eng-
lish, Turkish, Sanskrit and Farsi (Persian) etc.
Urdu’s script is right-to-left and form of a word’s
character is context sensitive, means the form of
a character is dissimilar in a word because of the
position of that character in the word (beginning,
centre, on the ending) (Waqas et al., 2006).
 In Urdu language, morphological processing
becomes particularly important for Information
Retrieval (IR). Information retrieval system is
used to ensure easy access to stored information.
It also deals with saving, representation and or-
ganization of information objects. Modules of an
IR system consist of a group of information ob-
jects, a group of requests and a method to decide
which information items are most possibly help-
ing to meet the requirements of the requests. In-
side IR, the information data which is stored and
receives search calls usually corresponds to the
lists of identifiers recognized as key terms, key-
words. One of the attempts to make the search
engines more efficient in information retrieval is
the use of stemmer. Stem is the base or root form
of a word. Stemmer is an algorithm that reduces

the word to their stem/root form e.g. tested, test-
ing, pretest and tester have the stem “test”. Simi-
larly the Urdu stemmer should stem the words کم
مند عقل ,(senseless) عقل (sensible), عقل مندی (sa-
gacity) to Urdu stem word عقل (sense). Stemming
is part of the complex process of taking out the
words from text and turning them into index
terms in an IR system. Indexing is the process of
selecting keywords for representing a document.
The smallest units of word which cannot be de-
composed further into smaller meaningful units
are called Morphemes.1 They are of two kinds:
free morphemes and bound morphemes. Mor-
phemes which exist freely (alone) are called free
morphemes whereas bound morphemes are made
as a result of combination with another mor-
pheme. For instance "flower" is a free mor-
pheme, while "s" is the example of a bound mor-
pheme.

The study of internal structure of words is
called Morphology.2 Deriving new words from
the existing ones is called derivational mor-
phemes e.g. Honour, Honourable, Honourably.
Examples in Urdu: The words چاہت (love), چاہتا
(to love) and چہيتا (lovely) are the derivatives of
word چاہ (love). Those morphemes that produce
the grammatical formation of a word is called
Inflectional morphemes e.g. Boys. Examples in
Urdu: The words سخت تر (harder) and سخت ترين
(hardest) are the inflected forms of word سخت
(hard).

The stemmer is also applicable to other natural
language processing applications needing mor-
phological analysis for example spell checkers,
word frequency count studies, word parsing etc.
The rest of the paper is organized as follows: In
section 2, different rule based stemming algo-
rithms are discussed. Section 3 gives an introduc-
tion regarding orthographic features. In section 4,
several issues pertaining to Urdu stemmer are

1 http://www.ielanguages.com/linguist.html
2 http://introling.ynada.com/session-6-types-of-
morphemes

46

discussed in detail. Conclusion of the study and
the future work is discussed in section 5.

2. Stemming Algorithms

There are four kinds of stemming approaches
(Frakes, R.Baeza-Yates, 1992): table lookup,
affix removal, successor variety and n-grams.
Table lookup method is also known as brute
force method, where every word and its respec-
tive stem are stored in table. The stemmer finds
the stem of the input word in the respective stem
table. This process is very fast, but it has severe
disadvantage i.e. large memory space required
for words and their stems and the difficulties in
creating such tables. This kind of stemming algo-
rithm might not be practical. The affix removal
stemmer eliminates affixes from words leaving a
stem. The successor variety stemmer is based on
the determination of morpheme borders, i.e., it
needs information from linguistics, and is more
complex than affix removal stemmer. The N-
grams stemmer is based on the detection of bi-
grams and trigrams.
The (J.B. Lovins, 1968) published the first Eng-
lish stemmer and used about 260 rules for stem-
ming the English language. She suggested a
stemmer consisting of two-phases. The first stage
removes the maximum possible ending which
matches one on a redefined suffix list. The spel-
ling exceptions are covered in the 2nd stage.
 The (M.F. Porter, 1980) developed the
stemmer on the truncation of suffixes, by means
of list of suffixes and some restric-
tions/conditions are placed to recognize the suf-
fix to be detached and generating a valid stem.
Porter Stemmer performs stemming process in
five steps. The Inflectional suffixes are handled
in the first step, derivational suffixes are han-
dling through the next three steps and the final
step is the recoding step. Porter simplified the
Lovin’s rules upto 60 rules.
 Different stemmers have also been developed
for Arabic language. The (S. Khoja and R. Gar-
side, 1999) developed an Arabic stemmer called
a superior root-based stemmer, developed by
Khoja and Garside. This stemming algorithm
truncates prefixes, suffixes and infixes and then
uses patterns for matching to pull out the roots.
The algorithm has to face many problems partic-
ularly with nouns. The (Thabet. N., 2004) created
a stemmer, which performs on classical Arabic in
Quran to produce stem. For each Surah, this
stemmer generates list of words. These words are
checked in stop word list, if they don’t exist in

this list then corresponding prefixes and suffixes
are removed from these words.
The (Eiman Tamah Al-Shammari, Jessica Lin,
2008) proposed the Educated Text Stemmer
(ETS). It is a simple, dictionary free and efficient
stemmer that decreases stemming errors and has
lesser storage and time required.
 Bon was the first stemmer developed for Per-
sian language (M. Tashakori, M. Meybodi & F.
Oroumchian, 2003). Bon is an iterative longest
matching stemmer. The iterative longest match-
ing stemmer truncates the longest possible mor-
pheme from a word according to a set of rules.
This procedure is repeated until no more charac-
ters can be eliminated. The (A. Mokhtaripour and
S. Jahanpour, 2006) proposed a Farsi stemmer
that works without dictionary. This stemmer first
removes the verb and noun suffixes from a word.
After that it starts truncation of prefixes from that
word.
 Till date only one stemmer i.e. Assas-Band,
developed for Urdu language (Q. Akram, A. Na-
seer and S. Hussain, 2009). This stemmer ex-
tracts the stem/root word of only Urdu words and
not of borrowed words i.e. words from Arabic,
Persian and English words. This algorithm re-
moves the prefix and suffix from a word and re-
turns the stem word. This stemmer does not han-
dle words having infixes.

3. Orthographic Features of Urdu

According to (Malik M G Abbas et al., 2008),
Urdu alphabet consists of 35 simple consonants,
15 aspired consonants, 10 vowels, 15 diacritical
marks, 10 digits and other symbols.

3.1 Consonants

Consonants are divided into two groups:
a. Aspirated Consonants

There are 15 aspirated consonants in Urdu lan-
guage. These consonants are shown by a group-
ing of a simple consonant to be aspirated. A spe-
cial letter called Heh Doachashmee (ه) is used to
mark the aspiration. Aspired Consonants are به,
ته ,په ده ,چه ,جه ,ٹه , ڈه , که , گه , ره , , ڑه ,
نه ,مه له ,

b. Non Aspirated Consonants
Urdu language consists of 35 non aspirated con-
sonant signs that represent 27 consonant sounds.
Various scripts are employed to show the similar
sound in Urdu, For example: Sad (ص), Seen (س)
and Seh (ث) represent the sound [s].

47

3.2 Vowels

Urdu has ten vowels. Seven of them contain na-
salized forms. Out of these seven, four long vo-
wels are represented by Alef Madda (آ), Alef (ا),
Choti Yeh (ی) and Vav (و) and three short vo-
wels are represented by Arabic Kasra (Zer),
Arabic Fatha (Zabar) and Arabic Damma (Pesh).
In Urdu language, the Vowel demonstration is
context sensitive. For example, the Urdu Choti
Yeh (ی) and Vav (و) can also be used as a conso-
nant (Malik M G Abbas et al., 2008).

3.3 Aerab Marks

The aerab marks are those marks that are added
to a letter to change the pronunciation of a word
or to differentiate among similar words. It is also
called as diacritical mark or diacritic.3
There are 15 accent marks in Urdu (Malik M G
Abbas et al., 2008). Accent marks (Zabar, Zer,
Pesh, Ulta Pesh, Do-Zabar, Do-Zer, Do-Pesh etc)
represent vowel sounds. These are placed above
or below of an Urdu word. The accent marks are
very rarely used by people in writing Urdu.
When the diacritic of a character in a word is
changed then it could entirely change its mean-
ing. These accent marks play a significant role in
the right pronunciation and recognition of mean-
ing of a sentence, such as:
 درخت پر انگور کی بيل ہے۔

(A vine is on the tree)
and س کها رہا ہے۔بيل گها

)The bull is eating grass(
In the first sentence, the word (بيل) means “a
creeping plant” or a “vine” while in the second
sentence it means a “bull”. To remove the doubt
between these two words, there should be Zabar
after Beh (ب) in the second sentence.

3.4 Special Characters

There are two special characters used in Urdu
which are discussed bellow:

a. Hamza (ء)
Hamza is used to separate two consecutive vo-
wels sounds. For example, in ءآو (come), Hamza
is separating two vowel sounds i.e. Alef Madda
 .(و) and Vav (آ)

b. Heh Doachashmee (ه)
Heh Doachashmee (ه) changes the action of a simple

3 http://www.the-comma.com/diacritics.php

 consonant and makes it aspired consonant. For exam-
ple, ه + پ , جه= ه + ج په =
Examples in words: پهل ,جهنڈا

 (Flag, Fruit)

4. Issues in developing an Urdu Stemmer

4.1 Morphological rich language

Urdu is morphologically rich language. It pro-
duces high number of derivational and inflec-
tional words for a single word form. There are 57
different forms that can be generated from a sin-
gle Urdu word (Rizvi, S. & Hussain, M., 2005).
For Example, some different forms of Urdu word
 :are (read) پڑه
پڑهنا،پڑها،پڑهے،پڑهيں،پڑهی،پڑهنی،پڑهو،پڑهوں،
 پڑها،پڑهانا،پڑهاتے،پڑهاتا،پڑهوا،پڑهواتا،پڑهوں

 Besides its own vocabulary, the Urdu vocabu-
lary also consists of large number of Arabic, Per-
sian, Hindi and English words etc. Thus Urdu
language inherits the characteristics of the above
mentioned languages too and as a result stem-
ming process becomes a challenging task. We
cannot achieve a good level of precision if a
stemmer of any borrowed language is used as a
stemmer on Urdu words. The reason is that, the
Arabic stemmer will just stem Arabic words that
are used in Urdu as borrowed words and a Per-
sian stemmer will just stem borrowed Persian
words etc.
By using traditional process of modeling every
form of a word as a unique word generates a lot
of problems for Natural Language Processing
applications such as growth of vocabulary, in-
flectional gaps, larger out-of-vocabulary rates
and poor language model probability estimation.

The relation among words in Urdu is found by
using inflecting nouns, postposition and pro-
nouns to state case information, number and
gender. Inflecting verbs to reproduce number,
gender and person information etc. Inflecting
adjectives are to agree with the noun in number,
gender and case. Thus, the standard stemmers
which are developed for English words are not
practically implementable for Urdu language.

4.2 Engineering issues

Urdu is bidirectional language and electronically
we cannot represent it in ASCII form. Such type
of language is represented by a special character

48

set called Unicode. The Arabic Orthography Un-
icode Standards are used to process Urdu.
Unicode is not supported by many programming
languages. The languages that support Unicode
include C#, Python and Java etc. Some pro-
gramming language support Unicode but the IDE
may not support it fully.

4.3 Diacritical Marks

Special attention should be given to the diacriti-
cal marks while developing an Urdu stemmer.
The stem of an Urdu word changes with the use
of these marks. For example عالم is used in two
senses, when Zabar is placed above the character
 then its meaning is people and its ,ل and on ع
stem is عالم (people). But when Zer is placed be-
low ل, then its meaning is scholar and its stem is
 .(knowledge) علم
Similarly رسل word has two meanings. One is
messengers when Pesh is used on ر and س with
stem رسول (messenger) and other is access when
Zabar is used on ر and س with stem ارسال (send-
ing). Another example is the word خاتم , which
has two meanings (The last/ring), the first one
has stem ختم (finish) and second has خاتم (ring).

4.4 Compound Words

For word formation, compounding is one of the
morphological procedures. The grouping of two
words which already exist is called a compound
word (Payne, Thomas E., 2006). When two or
more than two lexeme stems are merged together
to produce another lexeme, then it is called com-
pound word (Sproat. R., 1992). Examples are:
Firefighter, Blackbird, Water-hose, Hardhat,
Rubber-hose and Fire-hose in English.
It is very difficult to classify the compound
words as a single or multiple words. The (Durra-
ni N., 2007) discussed three schemes of com-
pound words in Urdu i.e. AB, A-o-B and A-e-B.

a. AB formation
This scheme involves only joining of two free
morphemes e.g. مرہم پٹی (Bandaging) , مياں بيوی
(husband wife), couple literally, حال احوال (condi-
tion). AB form of compounds is further classified
into Dvanda, Tatpurusa, Karmadharaya and Di-
vigu (Sabzwari S, 2002).

b. A-o-B formation
This formation of Urdu compounds contains a
linking morpheme “o” and is represented by a
character “و” , e.g. عجزوانکساری (soberness and
humility), خط وکتابت (correspondence), امن وامان
(law and order).

c. A-e-B formation
 In this formation constituent words are con-
nected with the help of one of the enclitic short
morphemes; zer-e-izafat or hamza-e-izafat e.g.
 is combined by a diacritical (president) صدرمملکت
mark “Zer” below ر called as zer-e-izafat while
in لد جذبہء (heart’s spirit) and مخلفائےاسلا (Islam-
ic caliphs), the diacritical mark hamza (ء) is used
as a hamza-e-izafat.
Some times the reduplication also produces am-
biguity; whether it is treated as single or double
word e.g. جگہ جگہ،آہستہ آہستہ،ساته ساته

(together, slowly, at every place)
Therefore there should be some rule for the
identification of compound words. Thus these
points should be considered while developing an
Urdu stemmer.

4.5 Tokenization

The natural language processing applications
need that the entered text should be tokenized for
further processing. English language generally
uses white spaces or punctuation marks for the
identification of word boundaries.
Although in Urdu, space character is not present
but with increasing usage of computer, it is now
being used, for generating right shaping and to
break up words.
Example: صدرنےدورسےوزیرکوآوازدی

 (The President called away the Minister)
In the above sentence there are eight words (to-
kens) but computer will consider the whole sen-
tence as a single word because the computer will
generate tokens on the basis of space occurrence.
As due to non-joiner characters (here ،و،زےر،) in
the words, no space occurs among words, so this
whole sentence is considered as a single word.
Therefore, during stemming, these non-joiner
characters wrongly generate tokens of input text,
stemmer will generate wrong resultantly stem.
Tokenization process should be error free, hence
producing correct tokens before applying an Ur-
du stemmer.

4.6 Affixes Removal

The word affix is used by the linguists for ex-
pressing that where a bound morpheme precisely
be joined to a word. The Prefix, Suffix and infix
are called affixes. Due to the use of affixes, a
single word may contain a lot of variants and by
removing these affixes (prefix and suffix) from a
word will result into a stem word e.g. بدگمانی (mis
presumption). After removing the Urdu prefix

49

and suffix from this word, produced a stem word
 .(presumption) گمان
A lot of stemmers (except for Urdu) were devel-
oped for stripping off prefixes & suffixes from a
word but there is little work done on infix strip-
ping from a word. We cannot get stem word of
an Urdu word by only stripping off prefixes and
(or) suffixes e.g. اقوام (nations) , مساجد (mos-
ques) , علوم (knowledge).
These words contain infixes and large amount of
such type of words are present in Urdu. Special
attention should be given to those Urdu words
having infixes. After studying the morphology of
Urdu words, it is noticed that if patterns for such
type of words (having infixes) are made, then a
correct stem could be achieved.

4.7 Exceptional Cases

a. Exceptional words

The removal of affixes (Prefixes and Suffixes)
from a word produces a stem word but some
times truncating these affixes leads to an errone-
ous stem e.g. نادار. Here نا is a prefix, where the
stemmer eliminates it by producing دار , which is
not a correct stem of the above stated word.
It means that in some words, the affixes play the
role of stem characters and should not be re-
moved. Such type of words should be treated as
an exceptional case. In Urdu, there are a lot of
words that can be treated as an exceptional case,
thus for a stemmer, such word lists should be
maintained in advance.

b. Urdu digits, Arithmetic Symbols and
Punctuations

Urdu is read and written from right to left but
when numbers are introduced, it is read and writ-
ten from left to right.

ہے٢٠٠٩فروری ٢حفصہ کی برته ڈے
(Hafsa’s birthday is 2nd February 2009)

The Urdu digits (٩-٠), Arithmetic Symbols (+,-
,*, /) and Punctuation marks (۔, ؟ (:, ؛, ",' , ، , ٫ ,
should be treated as an exceptional case during
developing Urdu stemmer.

4.8 Stem-word Dictionary

To check the accuracy of any stemmer, there
should be a stem word dictionary. After studying
relevant literature, it is noted that there is no stem
dictionary available for Urdu text. Therefore,
development of an Urdu stem dictionary is ne-
cessary for testing the accuracy of a stemmer on
huge corpus.

4.9 Different Urdu words having same stem

In Urdu, there are a lot of words that are different
in meaning but their stem is same e.g. تاثير (cha-
racteristic) and آثار (signs). As we mentioned that
the meaning of these two words are different
from each other but their stem is same i.e. اثر
Similarly the words ملوک (rulers) and ملايک (an-
gels) are two different words having single script
for their stem without diacritical marks i.e. ملک.
The word ملک has two meanings i.e. ruler or an-
gel. The word اصول (principles) and اصليت (facts)
have same stem i.e. اصل (principle/fact). Such
type of words needs attention while developing a
stemmer for Urdu language.

4.10 Code switching

Code switching, in linguistics, is the parallel use
of more than one languages during conversation.
The code switching in Urdu language is common
and it accepts foreign words especially from
English, e.g. کيمرہ يہ borrowed ہے (This Camera
is borrowed).
In this example the Urdu text is from right to
left-wards, while the English word “borrowed” is
from left to right. The tokenization of the above
sentence is performed in proper way electronical-
ly but Urdu stemmer will not stem the foreign
word “borrowed”, which is an issue.

5. Conclusion and Future Work

Stemmer is the core tool of any IR system. In this
paper we have discussed some rule based Eng-
lish, Arabic, Persian and Urdu stemmers. Very
less work has been done on Urdu stemmer due to
its complex and rich morphology. Besides its
own vocabulary, Urdu is also influenced by other
morphology such as Arabic, Persian, Hindi, Eng-
lish etc. We have pointed out some challenges
pertaining to the development of an Urdu stem-
mer. These issues should be considered while
developing a rule based Urdu stemmer.
After studying different stemmers developed for
Arabic, Persian and Urdu languages, we intend to
develop an efficient rule based Urdu stemmer
which will not only handle those Urdu words
having prefixes and suffixes but also infixes. We
will make patterns for handling infixes. For pre-
processing of the proposed Urdu stemmer, Urdu
stop word list will be maintained. An Urdu stem-
word dictionary will also be prepared for evalua-
tion purposes.

50

References

A. Mokhtaripour and S. Jahanpour, 2006. Introduc-
tion to a New Farsi Stemmer, CIKM’06, No-
vember 5–11, Arlington, Virginia, USA.

Durrani N. 2007. Typology of Word and Automat-

ic Word Segmentation in Urdu Text Corpus.
National University of Computer and Emerging
Sciences,Lahore, Pakistan.

Eiman Tamah Al-Shammari, Jessica Lin, October 30,

2008. Towards an Error-Free Arabic Stem-
ming, iNEWS’08, Napa Valley, California, USA.

Frakes, R.Baeza-Yates, 1992. Information Retriev-

al: Data Structures & Algorithms, New Jer-
sey: Prentice Hall PTR.

J.B. Lovins, 1968. Development of a stemming
algorithm. Mechanical Translation and
Computational Linguistics, 11, pp.22–31.

Javed I. 1985. New Urdu Grammar. Advance Urdu

Buru, New Dehali

Malik, M. G. Abbas. Boitet, Christian. Bhattcharyya,

Pushpak. 2008. Hindi Urdu Machine Transli-
teration using Finite-state Transducers, pro-
ceedings of COLING 2008, Manchester, UK.

M.F. Porter, 1980. An algorithm for suffix strip-
ping, Program, 14(3) pp. 130-137.

M Tashakori, MR Meybodi, F Oroumchian, 2003.

Bon: The Persian stemmer, in Proc. 1st EurA-
sian Conf. on Information.

Payne, Thomas E. 2006. Exploring Language
Structure, A Student’s Guide. Cambridge: Cam-
bridge University Press.

Q. Akram, A. Naseer and S. Hussain, 6-7 August
2009. Assas-Band, an Affix- Exception-List
Based Urdu Stemmer, Proceedings of the 7th
Workshop on Asian Language Resources, pp. 40–
47, Suntec, Singapore.

Rizvi, S. & Hussain, M. 2005, Analysis, Design
and Implementation of Urdu Morphological
Analyzer, Engineering Sciences and Technology,
SCONEST 2005. Student Conference, pp. 1-7

Sabzwari, S. 2002, Urdu Quwaid. Lahore: Sang-e-

Meel Publication

S. Khoja and R. Garside, 1999. Stemming Arabic

Text, Lancaster, UK, Computing Department,
Lancaster University.

Sproat, R. 1992. Morphology and Computation.
The MIT Press

Thabet, N. 2004. Stemming the Qur’an In the Pro-

ceedings of the Workshop on Computational Ap-
proaches to Arabic Script-based Languages.

Waqas A., Xuan W., Lu Li, Xiao-long W. 2006. A

Survey of Automatic Urdu Language Processing.
International Conference on Machine Learning
and Cybernetics, pp: 4489-4494

51

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 52–57,
Chiang Mai, Thailand, November 8, 2011.

Developing a New System for Arabic Morphological Analysis and
Generation

Mourad Gridach
Mathematics and Computer Science
Department Faculty of Science Dhar

El Mehraz Fez
Mourad_i4@yahoo.fr

Noureddine Chenfour
Mathematics and Computer Science
Department Faculty of Science Dhar

El Mehraz Fez
chenfour@yahoo.fr

Abstract

Arabic morphology poses special challenges
to computational natural language processing
systems. Its rich morphology and the highly
complex word formation process of roots and
patterns make computational approaches to
Arabic very challenging. In this paper we
present an approach for morphological
analysis and generation of Modern Standard
Arabic (MSA). Our approach is based on
Arabic morphological automaton technology.
We take the special representation of Arabic
morphology (root and scheme) to construct a
set of morphological automaton which will be
used directly in developing a system for
Arabic morphological analysis and
generation. Our approach for Arabic
morphological analysis and generation can be
used in different Arabic NLP applications
such as Machine Translation (MT) and
Information Retrieval (IR).

1 Introduction

Due to the rising importance of globalization and
multilingualism, there is a need to build natural
language processing (NLP) systems for an
increasingly wider range of languages, including
those languages that have traditionally not been
the focus of NLP research. The development of
NLP technologies for a new language is a
challenging task since one needs to deal not only
with language specific phenomena but also with a
potential lack of available resources (e.g.
lexicons, text, annotations).

Arabic is a language of rich morphology
compared to other language especially European
languages. It based on both derivational and
inflectional morphology. The richness of Arabic
morphology makes the analysis process difficult
to deal. On the one hand, morphological analysis
process is used in the most of the NLP
applications such as information retrieval, spell-
checking and machine translation. On the other

hand, morphological analysis is the first step
before syntactic analysis. Furthermore, it is an
essential step in semantic analysis.

There has been much work on Arabic
morphology. For an overview see (Al-Sughaiyer
and Al-Kharashi, 2004). Generally speaking,
morphological analysis of any word given
consists of determining the values of a large
number of features such as basic part-of-speech
(i.e., noun, verb, etc.), gender, person, number,
voice, information about the clitics, etc. (Habash,
2005). The most of the morphological analysis
systems don’t display the whole features of the
word analyzed and some of them are destined for
a special applications. We note that the
morphological analysis systems available now
have different aims, some of them have a
commercial purpose and the other systems are
available for research and evaluation (Attia,
2006).

In this paper we present an approach for
Arabic morphological analysis and generation
based on morphological automata and used a
morphological database constructed using
XMODEL (XML-base Morphological Definition
Language). To develop an Arabic morphological
automaton, we exploited particularities of Arabic
morphology. The Arabic verbs and nouns are
characterized by a special representation “root +
scheme”. Verbs and nouns are derived from roots
by applying schemes to these roots to generate
Arabic stems and then adding prefixes and
suffixes to the stems to form a correct word in
Arabic language. Table 1 show four schemes
applied to the root “cml” (the work notion) (عمل)
to generate four derived stems.

Scheme facal FAcil fuccAl Mafcal
Stem
generated مَل امِل عَ ال عَ مَّ مَل عُ عْ مَ

Transliteration camal CAmil cummAl macmal

Table 1 : Schemes generating stems from the root
“cml” (عمل)

52

2 Previous work

There has much been work on Arabic
morphological analysis and generation. In this
paragraph, we will present some of the most
work referenced in the literature and well
documented.

2.1 ElixirFM: an Arabic Morphological
Analyzer by Otakar Smrz

ElixirFM is an online Arabic Morphological
Analyzer for Modern Written Arabic developed
by Otakar Smrz available for evaluation and well
documented. This morphological analyzer is
written in Haskell, while the interfaces in Perl.
ElixirFM is inspired by the methodology of
Functional Morphology (Forsberg & Ranta,
2004) and initially relied on the re-processed
Buckwalter lexicon (Buckwalter, 2002). It
contains two main components: a multi- purpose
programming library and a linguistically
morphological lexicon (Smrz, 2007). The
advantage of this analyzer is that it gives to the
user four different modes of operation (Resolve,
Inflect, Derive and Lookup) for analyzing an
Arabic word or text. But the system is limited
coverage because it analyzes only words in the
Modern Written Arabic.

2.2 MAGEAD: A Morphological Analyzer
and Generator for Arabic Dialects

MAGEAD is one of the existing morphological
analyzers for the Arabic language available for
research. It’s a functional morphology systems
compared to Buckwalter morphological analyzer
which models form-based morphology (M.
Altantawy et al., 2010). To develop MAGEAD,
they use a morphemic representation for all
morphemes and explicitly define
morphophonemic and orthographic rules to
derive the allomorphs. The lexicon is developed
by extending Elixir-FM’s lexicon. The advantage
of this analyzer is that it processes words from
the morphology of the dialects which they
considered as a novel work in this domain, but
unfortunately this analyzer needs a complete
lexicon for the dialects to make the evaluation
more interesting and convincing, and to verify
these claims.

2.3 Buckwalter Arabic Morphological
Analyzer

This analyzer is considered as one of the most
referenced in the literature, well documented and
available for evaluation. It is also used by

Linguistic Data Consortium (LDC) for POS
tagging of Arabic texts, Penn Arabic Treebank,
and the Prague Arabic Dependency Treebank
(Atwell et al., 2004). It takes the stem as the base
form and root information is provided. This
analyzer contains over 77800 stem entries which
represent 45000 lexical items. However, the
number of lexical items and stems makes the
lexicon voluminous and as result the process of
analyzing an Arabic text becomes long.

2.4 Xerox Arabic Morphological Analysis
and Generation

Xerox Arabic morphological Analyzer is well
known in the literature and available for
evaluation and well documented. This analyzer is
constructed using Finite State Technology (FST)
(Beesley, 1996; Beesley, 2000). It adopts the root
and pattern approach. Besides this, it includes
4930 roots and 400 patterns, effectively
generating 90000 stems. The advantages of this
analyzer are, on the one hand, the ability of a
large coverage. On the other hand, it is based on
rules and also provides an English glossary for
each word. But the system fails because of some
problems such as the overgeneration in word
derivation, production of words that do not exist
in the traditional Arabic dictionaries (Darwish,
2002) and we can consider the volume of the
lexicon as another disadvantage of this analyzer
which could affect the analysis process.

3 Our approach

3.1 Lexicon

The lexicon of a language is the set of its valid
lexical forms. As in any morphological analysis
system, developing a high-quality lexicon is often
the first step towards building a robust
morphological analyzer, which is in turn the
front-end to many NLP systems. There are two
aspects that contribute to this enhancement level.
The first aspect concerns the number of lexicon
entries contained in the lexicon. Second aspect
concerns the richness in linguistics information
contained by the lexicon entries. BAMA lexicon
is the best know in the literature and well
documented. It used by large Arabic
morphological analyzers (Elixir-FM and
MAGEAD).For an overview of the existing
Arabic lexicon see (Al-Sughaiyer and Al-
Kharashi, 2004).

Nowadays, a new method was been
implemented to represent, design and implement
the lexicons. It is based on the Lexical Markup

53

Framework (LMF). LMF is the ISO-24613
standard for natural language processing (NLP)
and lexicons. The US delegation is the first which
started the work on LMF in 2003. In early 2004,
the ISO/TC37 committee decided to form a
common ISO project with Nicoletta Calzolari
(Italy) as convenor and Gil Francopoulo (France)
and Monte George (US) as editors. The aims of
LMF are to provide a common model for the
creation and use of lexical resources, to manage
the exchange of data between and among these
resources, and to enable the merging of large
number of individual electronic resources to form
extensive global electronic resources. This
method for representing lexical resource covers
all the natural languages. We note that for Arabic
language, lexicons based on LMF are still in
progress towards a standard for representing the
Arabic linguistic resource.

Our approach for representing the lexicon is
based on XMODEL (XML-based Morphological
Definition Language). In this approach, the
Arabic lexicon contains morphological classes,
morphological properties and morphological
rules. Morphological classes allow gathering a set
of morphological components having the same
nature, the same morphological characteristics
and the same semantic actions. For the
morphological properties, they allow
characterizing the different morphological
components represented by the morphological
classes; they contain morphological descriptors
(the features) that would be assigned to different
morphological components (the property
“Gender” distinguishes between masculine and
feminine components). Finally, morphological
rules allow combining the morphological
components to generate correct language words.
They are considered as a generator of language
words. We note that until now, our
morphological database contains 5970 entries.
The use of XMODEL allows representing the
morphological database independent of
processing which will be applied and allows a
considerable reduction of morphological entries.

3.2 System description
In this part we describe the Arabic morphological
analyzer. So as to develop this analyzer, first of
all, we developed an Arabic morphological
database using XMODEL language integrating
all the entries suitable for Arabic language. Then,
we generated a set of Arabic morphological
automata representing a specific morphological
category. Finally, a framework is developed to

handle the lexicon and the morphological
automata.

The presented work involves five steps. In this
paragraph, we provide a brief description of the
principles of this work. As input, the proposed
technique accepts an Arabic text. The first step is
to apply a tokenization process to the text given.
Then, a set of AMAUT (Arabic Morphological
AUTomata) are loaded, in a second step. The
part-of-speech is determined in the third step.
After that, the method determines all possible
affixes. Then the next step consists of extracting
the morpho-syntactic features according to the
valid affixes.

The tokenization process consists of extracting
all the words from the text given. A set of Arabic
morphological automata are loaded from a
package that contains all the implemented Arabic
morphological automata. Then, the approach
determines which AMAUT is suitable for that
word. The result may be one or more AMAUT
loaded. We note that the size of the final
AMAUT generated is about 120 MB. Then, the
method determines the part-of-speech. If the
word analyzed is a noun or a verb, the method
determines if it contains a scheme. Then, if it is a
verb, the method determines the type of the verb
(strong, weak, or incomplete), its tense (“mADI”
 its ,(/أمر/ ”or “eamr /مضارع/ ”muDAric“ ,/ماضي/
voice (active or passive), etc. If it is a noun, we
determine if it is a derived noun or particular
noun. If it is a particle, the method determines if
it is a preposition particle /حروف الجر/,
conjunction particle / حروف العطف /, etc. After
that, the method applied a process of extracting
the possible affixes attached to the word
analyzed. The next step consists of extracting the
morpho-syntactic features according to the valid
affixes and the scheme. Additional information is
extracted called in our approach morphological
descriptors. They describe the word analyzed and
they are very useful especially in Natural
Language Processing applications. Finally, the
morphological analyzer displays the results in a
table where each row contains the word analyzed
and all the data characterizing this word (see
Figure 1).

Generally speaking, morpho-syntactic features
displayed by the morphological analyzer are very
rich regarding the information given. It concerns
the morphological level; the syntactic and
semantic level which makes the richness of our
system compared to the others system. The utility
of this richness comes especially when the
system will be used in NLP applications. Here

54

are the most important features given by the
system.

• The word gender: masculine or feminine.

• The word person: first, second or third
person.

• The word number: singular, dual or
plural.

• The word case: “marfUc” (مرفوع),
“manSUb” (منصوب), “majrUr” (مجرور),
“majzUm” (مجزوم).

• The type of the word: verb, noun or
particle.

• If the word is a verb, we give its tense:
present (“ealmuDAric”: المضارع), past
(“ealmADI”: الماضي) or imperative
(“ealeamr”: الأمر). We also give its voice:
active or passive.

• The scheme of the word is given if
available.

Figure 1 shows the morphological analysis
results of some words analyzed using the
presented morphological analyzer. The displays
the Part-of-speech (verb, noun or particle), the
original scheme is displayed in column B because
Arabic has this particularity which is summarized
in that some words might be conjugated forms of
other words like “afcalu”, “afcilu “, “afculu”,
these three words are all conjugated forms of
“facala”. The gender (masculine or feminine) is
displayed in column D, the person (first, second
or third person) is displayed in column E, the
number (singular, dual or plural) is displayed in
column F. For the column G, it concerns some
properties that characterize the word analyzed
and they are very useful to the user. Some
morphological descriptors are displayed in
column H. Finally, the column I and J show the
affixes attached to the word.

Figure 1: A morphological analysis of some Arabic words using the presented system

It should be noted that the presented system
could be used in both analysis and generation
unlike some Arabic morphological analyzers
which cannot be converted to generators in a
straightforward manner (Cavalli-Sforza, 2000;
Buckwalter, 2004; Habash, 2004 ;).

4 Evaluation

To evaluate our system, we select two of the best
known morphological analyzers in the literature:
ElixirFM by Otakar Smrž (Otakar Smrž and
Viktor Bielický, 2010) and Xerox Arabic
Morphological Analyzer. We note that the corpus
used for the evaluation is taken from a standard

input text provided by ALECSO (Arab League,
Educational, Cultural and Scientific
Organization) which organized a competition in
April 2009 of the Arabic Morphological
Analyzers in Damascus.

The evaluation process shows that our
morphological analyzer is strong concerning the
features given by each analyzer which makes our
system useful for the most of NLP applications
unlike the others; they are destined for specific
applications. In addition, the presented
morphological analyzer gives more additional
information about each word analyzed and more
precision.

55

In the evaluation done we process words in a
corpus selected from ALECSO input text
containing different part-of-speech (verbs, nouns
and particles), then, we calculate accuracy of
each analyzer as: S = number of words with good
solutions / number of words. Table 2 provides the
evaluation results of the three analyzers. Note
that Table 2 contains in each column of the
analyzers the number of words (nouns, verbs and
particles) with no solution.

POS
The
number

Xerox
Morphological
Analyzer

ElixirFM
Our
System

Nouns 576 60 56 40

Verbs 457 31 24 19

Particles 167 42 45 -

Total 1200 133 125 59

Accuracy (%) 88.91% 89.58% 95.08%

Table 2: The evaluation process results

The analyzer presented in this paper reaches an
accuracy of 95.08% which will make it one of the
best existing morphological analyzers for Arabic
language and it will be very useful for the next
future works to be done in NLP applications such
as syntactic and semantic analysis, machine
translation, information retrieval, etc.

5 Conclusion
In this paper, we have discussed some previous
work in this area of research which is the most
referenced in the literature. Then, we have
outlined some challenges of computational
Arabic morphology. After that, we presented an
approach to develop a morphological analyzer
and generator for Arabic language. To develop
this system for Arabic morphological analysis,
the need to develop a lexicon is an essential
stage. So, we used a new language for
representing, designing and implementing the
linguistic resource. It is based on a reduced XML
lexicon and it can be used not only in
morphological level, but in the other levels such
as syntactic and semantic level. Finally, our
approach could be used in NLP applications such
as machine translation and information retrieval.

Appendix (1): Letter mappings

 k : ك S : س A : ا
 l : ل ^ : ش B : ب
 m : م S : ص T : ت
 n : ن D : ض ~ : ث
 h : ھـ T : ط J : ج
 w : و Z : ظ H : ح
 y : ي c : ع X : خ
 A : ى g : غ D : د
 t : ة f : ف V : ذ
 e : ء q : ق R : ر
 Z : ز

References
Al-Sughaiyer Imad A. and Al-Kharashi Ibrahim A.

2004. Arabic morphological analysis techniques: A
comprehensive survey. Journal of the American
Society for Information Science and Technology,
55(3):189–213

Altantawy Mohamed, Nizar Habash, Owen Rambow,
and Ibrahim Saleh. 2010. Morphological Analysis
and Generation of Arabic Nouns: A Morphemic
Functional Approach. In Proceedings of the
Language Resource and Evaluation Conference
(LREC-2010), Malta.

Attia, M. 2006. An Ambiguity-Controlled
Morphological Analyzer for Modern Standard
Arabic Modelling Finite State Networks. The
Challenge of Arabic for NLP/MT Conference, the
British Computer Society, London.

Atwell E., Al-Sulaiti L., Al-Osaimi S., Abu Shawar
B.. 2004. A Review of Arabic Corpus Analysis
Tools, JEP-TALN 04, Arabic Language Processing,
Fès, 19-22 April.

Beesley KR 1996. Arabic Finite-State Morphological
Analysis and Generation, Proceedings of the 16th
conference on Computational linguistics, Vol 1.
Copenhagen, Denmark: Association for
Computational Linguistics, pp 89-94.

Beesley KR. 2000. Finite-State Non-Concatenative
Morphotactics SIGPHON-2000, Proceedings of the
Fifth Workshop of the ACL Special Interest Group
in Computational Phonology, p. 1-12, August 6,
2000, Luxembourg.

Buckwalter T. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0. Linguistic
Data Consortium, University of Pennsylvania, LDC
Catalog No.: LDC2002L49.

Buckwalter, T. 2004. Buckwalter Arabic
Morphological Analyzer Version 2.0. Linguistic
Data Consortium, catalog number LDC2004L02
and ISBN 1-58563-324-0.

56

Cavalli-Sforza, V., Soudi. A, and Teruko M. 2000.
Arabic Morphology Generation Using a
Concatenative Strategy. In Proceedings of the 1st
Conference of the North American Chapter of the
Association for Computational Linguistics
(NAACL 2000), Seattle, USA.

Darwish K. (2002). Building a Shallow Morphological
Analyzer in One Day, Proceedings of the workshop
on Computational Approaches to Semitic
Languages in the 40th Annual Meeting of the
Association for Computational Linguistics (ACL-
02). Philadelphia, PA, USA.

Habash Nizar. 2004. Large scale lexeme based Arabic
orphological generation. In Proceedings of
Traitement Automatique du Langage Naturel
(TALN-04). Fez, Morocco.

Habash Nizar and Rambow Owen. 2005. Arabic
Tokenization, Part-of-Speech Tagging and
Morphological Disambiguation in One Fell Swoop.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics ACL,
pages 573–580, Ann Arbor.

Forsberg M. and Ranta A. 2004. Functional
Morphology ICFP'04, Proceedings of the Ninth
ACM SIGPLAN International Conference of
Functional Programming, September 19-21,
Snowbird, Utah

Ibrahim, K. 2002. Al-Murshid fi Qawa'id Al-Nahw wa
Al-Sarf [The Guide in Syntax and Morphology
Rules]. Amman, Jordan, Al-Ahliyyah for
Publishing and Distribution.

Otakar Smrz (2007). ElixirFM. Implementation of
Functional Arabic Morphology. In ACL
Proceedings of the Workshop on Computational
Approaches to Semitic Languages: Common Issues
and Resources, pages 1–8, Prague, Czech Republic.

Otakar Smrž and Viktor Bielický. 2010. ElixirFM.
Functional Arabic Morphology,
http://sourceforge.net/projects/elixir-fm/.

57

Author Index

Anwar, Waqas, 40, 46

Bajwa, Usama Ijaz, 40, 46
Bhattacharyya, Pushpak, 1

Chenfour, Noureddine, 52

Gasser, Michael, 30
Gridach, Mourad, 52
Gupta, Vishal, 35

Jiandani, Dipti, 1

Khan, Sajjad Ahmad, 46
Klaithin, Supon, 16
Kosawat, Krit, 16
Kriengket, Kanyanut, 16
Kuebler, Sandra, 30

Lehal, Gurpreet Singh, 35

Mohaghegh, Mahsa, 9
Moir, Tom, 9

Phaholphinyo, Sitthaa, 16

Rehman, Zobia, 40

Sarrafzadeh, Abdolhossein, 9
Suba, Kartik, 1
Sulaiman, Suriani, 30
SUZUKI, Masaru, 23

WAKAKI, Hiromi, 23

YAMASAKI, Tomohiro, 23

59

	Program
	Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer for Gujarati
	Improving Persian-English Statistical Machine Translation:Experiments in Domain Adaptation
	Thai Word Segmentation Verification Tool
	The Semi-Automatic Construction of Part-Of-Speech Taggers for Specific Languages by Statistical Methods
	Towards a Malay Derivational Lexicon: Learning Affixes Using Expectation Maximization
	Punjabi Language Stemmer for nouns and proper names
	Challenges in Urdu Text Tokenization and Sentence Boundary Disambiguation
	Challenges in Developing a Rule based Urdu Stemmer
	Developing a New System for Arabic Morphological Analysis and Generation

