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Preface

Welcome to the IJCNLP Workshop on South and Southeast Asian Natural Language Processing
(WSSANLP). South Asia comprises of the countries, Afghanistan, Bangladesh, Bhutan, India, Maldives,
Nepal, Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists of Brunei, Burma, Cambodia,
East Timor, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand and Vietnam.

This area is the home to thousands of languages that belong to different language families like Indo-
Aryan, Indo-Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai, Hmong-Mien, etc. In terms of
population, South Asian and Southeast Asia represent 35 percent of the total population of the world
which means as much as 2.5 billion speakers. Some of the languages of these regions have a large
number of native speakers: Hindi (5th largest according to number of its native speakers), Bengali (6th),
Punjabi (12th), Tamil(18th), Urdu (20th), etc.

As internet and electronic devices including PCs and hand held devices including mobile phones have
spread far and wide in the region, it has become imperative to develop language technology for these
languages. It is important for economic development as well as for social and individual progress.

A characteristic of these languages is that they are under-resourced. The words of these languages show
rich variations in morphology. Moreover they are often heavily agglutinated and synthetic, making
segmentation an important issue. The intellectual motivation for this workshop comes from the need to
explore ways of harnessing the morphology of these languages for higher level processing. The task of
morphology, however, in South and Southeast Asian Languages is intimately linked with segmentation
for these languages.

The goal of WSSANLP is:

e Providing a platform to linguistic and NLP communities for sharing and discussing ideas and work on
South and Southeast Asian languages and combining efforts.

e Development of useful and high quality computational resources for under resourced South and
Southeast Asian languages.

We are delighted to present to you this volume of proceedings of 2nd Workshop on South and Southeast
Asian NLP. We have received 15 long and short submissions. On the basis of our review process, we
have competitively selected 9 papers.

We look forward to an invigorating workshop.

Rajeev Sangal (Chair WSSANLP),
IIIT Hyderabad, India

M.G. Abbas Malik (Chair of Organizing Committee WSSANLP),
Faculty of Computing and Information Technology (North Branch),
King Abdulaziz University, Saudi Arabia
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Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer
for Gujarati

Kartik Suba Dipti Jiandani
Department of Computer Engineering
Dharmsinh Desai University
suba.kartik@gmail.com

Jjiandani.dipti@gmail.com

Abstract

In this paper we present two stemmers for
Gujarati- a lightweight inflectional
stemmer based on a hybrid approach and a
heavyweight derivational stemmer based
on a rule-based approach. Besides using a

module for  unsupervised learning of
stems and suffixes for lightweight
stemming, we have also included a

module performing POS (Part Of Speech)
based stemming and a module using a set
of substitution rules, in order to improve
the quality of these stems and suffixes.
The inclusion of these modules boosted
the accuracy of the inflectional stemmer
by 9.6% and 12.7% respectively, helping
us achieve an accuracy of 90.7%. The
maximum index compression obtained for
the inflectional stemmer is about 95%. On
the other hand, the derivational stemmer is
completely rule-based, for which, we
attained an accuracy of 70.7% with the
help of suffix-stripping, substitution and
orthographic rules. Both these systems
were developed to be useful in
applications such as  Information
Retrieval, corpus compression, dictionary
search and as pre-processing modules in
other NLP problems such as WSD.

1. Introduction

Stemming is a process of conflating related
words to a common stem by chopping off the
inflectional and derivational endings.
Stemming plays a vital role in Information
Retrieval systems by reducing the index size
and increasing the recall by retrieving results
that contain any of the possible forms of a
word present in the query (Harman, 1991).
This is especially true in case of a
morphologically rich language like Gujarati.
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The aim is to ensure that all the related
words map to common stem, wherein, the
stem may or may not be a meaningful word in
the vocabulary of the language.

Current state of the art approaches to
stemming can be classified into three
categories, viz., rule-based, unsupervised and
hybrid (Smirnov, 2008). In case of inflectional
stemmer, building a completely rule-based
system is non-trivial for a language like
Guijarati. On the other hand, adopting a purely
unsupervised approach, such as take-all-splits
discussed in section 4, may fail to take
advantage of some language phenomena, such
as, the suffixes in a language like Guijarati, are
separable based on their parts of speech. For

example, the suffix <\ (-) should be stripped
off for verbs (as in case of 53| kar7 “did’), but

not for nouns (as in case of SHIAEIZl imandarr
‘honesty”). Such characteristics can be easily
represented in the form of substitution rules.
So, we follow a hybrid approach for the
inflectional stemmer taking advantage of both
rule-based and unsupervised phenomena.

However, in case of derivational
stemming, words that are derived, either by
adding affixes to the stems or by performing
changes at the morpheme boundary, are
reduced to their stem forms. To accomplish
this task of derivational stemming, we have
adopted a completely rule-based approach.

The remainder of this paper is organized
as follows. We describe the related work in
section 2. Next, section 3 explains the
morphological structure of Gujarati. We
describe our approach to inflectional stemmer
in section 4 and to derivational stemmer in
section 5. Experiments and results are
presented in section 6. Section 7 concludes the
paper, pointing also to future work.

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 1-8,
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2. Background and Related Work

The earliest English stemmer was developed
by Julie Beth Lovins (1968). The Porter
stemming algorithm (Martin Porter, 1980),
which was published later, is perhaps the most
widely used algorithm for stemming in case of
English language. Both of these stemmers are
rule-based and are best suited for less
inflectional languages like English.

A lot of work has been done in the field of
unsupervised  learning of  morphology.
Goldsmith (2001) proposed an unsupervised
approach for learning the morphology of a
language based on the Minimum Description
Length (MDL) framework which focuses on
representing the data in as compact manner as
possible.

Not much work has been reported for
stemming for Indian languages compared to
English and other European languages. The
earliest work reported by Ramanathan and Rao
(2003) used a hand crafted suffix list and
performed longest match stripping for building
a Hindi stemmer. Majumder et al. (2007)
developed YASS: Yet Another Suffix Stripper
which uses a clustering-based approach based
on string distance measures and requires no
linguistic knowledge. Pandey and Siddiqui
(2008) proposed an unsupervised stemming
algorithm for Hindi based on Goldsmith's
(2001) approach.

Work has also been done for Gujarati.
Inspired by Goldsmith (2001), a lightweight
statistical stemmer was built for Gujarati
(Patel et al., 2010) which gave an accuracy of
68%. But no work was done so far in the area
of derivational stemming for Gujarati.

3. Gujarati Morphology

The Gujarati phoneme set consists of eight
vowels and twenty-four consonants. Guijarati
is rich in its morphology, which means,
grammatical information is encoded by the
way of affixation rather than independent free-
standing morphemes.

The Gujarati nouns inflect for number
(singular,  plural), gender  (masculine,
feminine, neuter), and declension class
(absolute, oblique). The absolute form of a
noun is its default or uninflected form. This
form is used as the object of the verb, typically
when inanimate as well as in measure or
temporal construction. There are seven oblique

forms in Gujarati corresponding more or less
to the case forms- nominative, dative,
instrumental, ablative, genitive, locative and
vocative. All cases, except for the vocative,
are distinguished by means of postpositions.
The Gujarati adjectives are of two types —
declinable and indeclinable. The declinable
adjectives have the termination -4 (29) in
neuter absolute. The masculine absolute of
these adjectives ends in -0 (¢l) and the
feminine absolute in -7 (¢1). For example, the
adjective 41> sarii ‘good’ takes the form 41z

sarii, W12l saro and 12l sa@r7 when used for a
neuter, masculine and feminine object
respectively. These adjectives agree with the
noun they qualify in gender, number and case.
Adjectives that do not end in -& in neuter
absolute singular are classified as indeclinable
and remain unaltered when affixed to a noun.

The Gujarati verbs are inflected based on a
combination of gender, number, person,
aspect, tense and mood. There are several
postpositions in Gujarati which get bound to
the nouns or verbs which they postposition.
For example, -nii (< : genitive marker), -ma
(Hi : in), -e (¢ : ergative marker), etc. These
postpositions get agglutinated to nouns or
verbs and do not merely follow them. For
example, the phrase ‘in water’ is expressed in
Gujarati as a single word W1l papimd,
wherein, 4L m4 is agglutinated to the noun
uLeil pant.

We created four lists of Gujarati suffixes
which contain postpositions and inflectional
suffixes respectively for nouns, verbs,
adjectives and adverbs for use in our approach
for the inflectional stemmer. Similar lists have
been used for the derivational stemmer, in the
form of orthographic, suffix-stripping and
substitution rules.

4. Our Approach for Inflectional
Stemmer

We have been inspired by Goldsmith (2001).
Goldsmith’s  approach was based on
unsupervised learning of stems and suffixes,
and he proposed a take-all-splits method.
Besides this, we have incorporated two more
modules, one performing POS-based
stemming and the other doing suffix-stripping
based on linguistic rules. During the training
phase of our approach, the Gujarati words



extracted from EMILLE corpus® are used in
order to learn the probable stems and suffixes.
This information is used in order to stem any
unseen data. We describe the approach in
detail below.

4.1 Training phase

As mentioned earlier, the input to the training
phase is a list of Gujarati words. During this
phase, the aim is to obtain optimal split
position for each word in the corpus. The
optimal split position for each word is
obtained by systematic traversal of various
modules.

In the first module, a check is performed
to see if the input word is already in its stem
form. This is accomplished by using a list of
stems. Besides being used in training the
stemmer, this list of stems is also updated with
the new stems learnt correctly at the end of
training phase. For the first time that the
stemmer is trained, this list is empty. If the
word exists in the above mentioned list, the
optimal split position will be at the end of the
word with suffix as NULL.

In the second module, POS-based
stemming is performed. As Gujarati does not
have a POS tagger, there had to be some
method to determine the POS of a word. Since
we had the files which shall be used in the
development of the Gujarati WordNet and
since they also contained POS information, we
created a set of files (hereafter referred to as
POS-based files), each containing words of a
specific POS. We used these files to decide the
POS of the word. Also, as mentioned in
section 3, we made files (hereafter referred to
as suffix files), each containing suffix list for a
specific POS. Thus POS-based stemming i.e.,
stripping of the corresponding suffixes is
performed if the word is found in any of the
POS-based files.

In the third module, linguistic rules are
applied in order to determine the optimal split
position. Each such rule is expressed as a pair
of precedent and antecedent, both of which are
regular expressions. If any part of the word
matches any of the precedents, that part is
replaced by the corresponding antecedent and
the split position is returned as the length of
the new word.

! http:/Aww.lancs.ac.uk/fass/projects/corpus/emille/

If all the previous module checks fail, as a
final resort, take-all-splits of the word is
performed (see Figure 1) considering all cuts
of the word of length L into stem + suffix, i.e.,
Wi + Wi, Where 1 < i < L. The ranking
function that can be used to decide the optimal
split position can be derived from Eqn 1.

+ Hi, wieili + 019, wielul + 9, wiegflui + NULL}

{stemy+suffix,, stemy+suffix,, ..., stem +suffix, }
weflHi={u + cveilni, e+ ellud, we+ 4, vl

Figure 1. All possible word segmentations for

the word We{l4i papima ‘in_water” which has

Wil pant “water” as its stem and ¥i ma ‘in’ as
its suffix

The function used for finding the optimal
split position must reflect the probability of a
particular split since the probability of any
split is determined by frequencies of the stem
and suffix generated by that split. Hence,
probability of a split can be given by Eqgn 1
below.

P(Split)) = P(stem = wy ;) * P(Suffix = Wi+1,)
(Eqn1)
i: split position (varies from 1 to L)
L: length of the word

Taking log on both sides of Eqn 1 and
ignoring the constant terms, we get,

log(P(Split;))
= log(freg(stem)) + log(freq(suffix))
(Egn 2)

The frequency of shorter stems and
suffixes is very high when compared to the
slightly longer ones. Thus, Eqn 3 is obtained
from Egn 2 by introducing the multipliers i
(length of stem) and L-i (length of suffix) in
the function in order to compensate for this
disparity.

f(i) = i * log(freg(stem))
+ (L-i) * log(freq(suffix))
(Egn 3)

Finally, a split position which maximizes
the ranking function given by Eqgn 3 is chosen
as the optimal split position. Once the optimal
split of any word is obtained, the frequencies
of the stem and the suffix generated by that



split are updated. The word list is then iterated
and the optimal split position is recomputed
until the optimal split positions of all the
words do not change any more. The training
phase was observed to take four iterations
typically. At the end of the training phase, a
list of stems and suffixes along with their
frequencies is obtained. A list of signatures
(see Figure 2) is also obtained, where a
signature is a data-structure that provides a
mapping between the stem and the suffixes
with which that stem appears in the corpus.
This list of signatures provides a compact
representation of the corpus and can be used in
case of a need to retrieve the original corpus.

Signature 1:
~ ptr(iﬁ)
{ptr(9is2)} {ptr(@ L)}
Signature 2:
{ptr(GiRd)} {ptr(NULL)}
ptr(6izs) ptr(¥i)
Signature 3:
ptr(NULL)
werewy {7 )

Figure 2. A sample signature-list for the words
- 991521 chokro ‘boy’, 9152l chokrd ‘boys’,
M12d  bharat ‘India’, MIAHL  bharatma
‘in_India’, o125 baraf ‘ice’, ois4l barafma
‘in_ice’, Yl kha ‘eat’, W\d khavii ‘to_eat’

Based on the approach discussed above,
an overview of the training algorithm is shown
in Figure 3 below.

Step 1.Check if the word is already in its stem
form, if yes, return it as it is, else
proceed to Step 2.

Step 2.Check if the word is in any POS-based
file, if yes, perform POS-based
stemming and return, else proceed to
Step 3.

Step 3.Check if a match occurs with any of the
linguistic rules, if yes, apply the rule
and return, else proceed to Step 4.

Step 4.Perform take-all-splits on the word and
obtain the optimal split position based
on Egn 3.

Step 5.Perform Step 4 through several
iterations until optimal split position of
all the words remain unchanged.

Figure 3. Overview of training algorithm

4.2 Stemming of any unknown word

For the stemming of any unknown word, a
similar set of steps is followed as in the
training phase, with the only change in the
take-all-splits module, wherein, for any given
word, the function given by Eqgn 3 is evaluated
for each possible split using the frequencies of
the stems and the suffixes learnt during the
training phase.

Consider that the words $39 karvii ‘to_do’,

534 karine ‘after_doing’ and s<lo karish
‘will_do’ existed in the training set, then the
frequency of the stem 52 kar ‘do’ will be high.
Now if the unknown word szalsl karvathi
‘by_doing’ appears in the test set, it will be
stemmed as 52 + 14l due to the frequencies
learnt during training. In contrast to this, if the
training set contained the words ULl
panima  ‘in_water’ and 434l gharmg
‘in_house’, the unknown word zl4lHi fopima
‘in_hat’ will be split as 21Ul + 4i, due to the

high frequency of the suffix Hi ma ‘in’ learnt
during training.

5. Our Approach for Derivational
Stemmer

Derivation is a process of combining a word
stem with grammatical morphemes usually
resulting in a word of different class, not
necessarily  different POS. Derivational
morphology deals with derivation of the words
either by affixation (For e.g., oyaloielzl
javabdari  ‘responsibility’ derived from
sydleAel  javabdar  ‘responsible’) or by
performing changes at the morpheme
boundary (For e.g., “l[®s dharmik ‘religious’

derived from 4% dharm ‘religion’).

The task of derivational stemming is that
of reducing the derived word to its derivational
stem form. The approach for derivational
stemming is inspired from the chapter on
morphology by Jurafsky and Martin (2009).

Their approach consisted of the following
components. However, only two of them were
useful in our case.

1. Lexicon: It is a list of stems and suffixes
together with some basic information
such as POS. The importance of a lexicon
is to determine whether the resultant stem
is correct or not. But, as there is no



lexicon for Gujarati, the validation of the
stem form cannot be accomplished.

2. Morph-tactics: It is a model that explains
morpheme ordering i.e., it explains which
class of morphemes can follow which
other class of morphemes.

E.g.: cudlHidl barimarhi ‘from window’
indicates that %l 47 can follow Hi md but
the other way round is not possible.

In order to model morph-tactics, Finite
State Automata (FSA) accepting different
transitions within words are usually used.

3. Orthographic or spelling rules: These are

the rules used to handle changes in the
words at the morpheme boundary.
E.g.0 Waslag khavdawi ‘to_make eat’
has its stem as v\ kha ‘eat’, but there is
no direct way to reflect this transition. So
there is a need of spelling or orthographic
rule for such words. Example of such a
rule is: 44 — <l The way it is
applicable in the system is discussed after
the algorithm. We have 73 such hand-
crafted rules.

The algorithm steps are shown in Figure 4.

Step 1. Check if any of the orthographic
rules match, if yes, apply the rule and
proceed, else proceed to step 2.

Step 2. Check if any substitution rule is
matched, if yes, apply the rule and
proceed, else proceed to step 3.

Step 3. Check if any suffix-stripping rule is
matched, if yes, apply the rule and
proceed, else proceed to step 4.

Step 4. Check if the resultant word gets
accepted by any FSA, if yes, return
the word as the stem, else return the
word obtained from the previous
module as the stem.

Figure 4. Derivational stemming algorithm

For example, the word “aslad khavdavvii
‘to_make eat’ is to be stemmed. In the first
step, an orthographic rule matches, which
specifies that, if $14 appears between 4 and 4,
ail4 vdav should be replaced by <1 a, resulting
into the intermediate form vu4 khavi ‘to_eat’.
Next, step 2 is not applicable. In step 3, the
suffix 4 vii is a valid suffix for verbs; hence it
is stripped off; resulting into “L kha ‘eat’,
which gets accepted by the FSA for verbs in

the final step. Thus, "\ kha ‘eat’ is returned as
the derivational stem of “aslad khavdavvi
‘to_make eat’.

6. Experiments and Results

We performed various experiments to evaluate
the performance of both the inflectional and
derivational stemmer using EMILLE Corpus
for Gujarati. We extracted around ten million
words from the corpus. We obtained 8,525,649
words after filtering out the wrongly spelt
words. In order to create the test set, each time
we randomly extracted thousand words from
the corpus.

6.1 Performance of the inflectional stemmer

The performance of the inflectional
stemmer is evaluated based on three factors.
The first factor is the accuracy based on the
gold standard data, where the gold standard
data contains the ideal stems of all the words
in the test set manually tagged by us. Accuracy
is defined as the percentage of words stemmed
correctly. The second factor is the Index
Compression Factor (Fox and Frakes, 2003)
that shows the extent to which a collection of
words is reduced by stemming. ICF is defined
as the ratio of difference in number of unique
words and number of unique stems to the
number of unique words. Finally, the third
factor is mean number of words per signature
(MW,) (Fox and Frakes, 2003) that indicates
the strength of the stemmer. MW._ is defined as
the ratio of the number of unique words to the
number of unique stems.

The experiments were aimed at studying
the impact of three heuristics: (i) fixing the
minimum permissible stem size, (ii) provide
unequal weightage to the stem and suffix and
(iii) introduce a threshold as a restriction on
the minimum number of stems and suffixes to
qualify as a signature, known as the stem filter
threshold and the suffix filter threshold
respectively.

Various experiments were done to study
the impact of different combination of these
heuristics. This impact is studied in terms of
comparison of various factors as discussed
above. The results of such experiments are
described in the following subsections.



Varying Minimum Stem Size:

Minimum stem size was varied from 1 to 7
and its impact was observed on performance
of the lightweight stemmer. The results of this
experiment are shown in Table 1.

Min Stem | Accuracy
Size (%) ICF MW,
1 90.7 053 | 211
2 89.9 053 | 211
3 84.8 052 | 2.00
4 74.2 0.49 1.90
5 63.5 0.47 1.92
6 52.1 0.49 1.96
7 44.6 055 | 2.22

Table 1. Effect of minimum stem size on
performance of the inflectional stemmer

It can be observed that maximum accuracy
of 90.7% is obtained by neglecting the
restriction on the minimum stem size and the
average index compression is 52% which is
considerable as far as IR application is
concerned.

The results also show that the performance
degrades if a restriction is placed on the
minimum stem size. The reason may be that
when the minimum stem size is increased lots
of genuine, but small stems are neglected,
leading to a decline in accuracy.

Providing unequal weightage to stem
and suffix along-with minimum stem size:

Initially an equal weightage was provided
to stem and suffix in Egn 3 which is
responsible for determining the optimal split
position of any word. Then Egn 4 was
obtained from Egn 3 by introducing a
parameter ‘e’ in order to provide unequal
weightage to stem and suffix and its effect was
observed on performance of the lightweight
stemmer.

We used Eqgn 4 and varied a along-with
varying the minimum stem size. The results
are shown in Table 2.

i) = a* i * log(freq(stem)) + (I - @) * (L-i) *
log(freq(suffix))
(Ean 4)

Min Stem Accuracy
Size o (%) ICF | MW,
0.3 90.0 0.51 | 2.04
1 0.5 90.7 053 | 211

0.7 87.0 0.51 | 2.04

0.3 89.2 0.51 | 2.08

2 0.5 89.9 053 | 2.11

0.7 86.6 0.51 | 2.04

0.3 84.7 0.51 | 2.05

3 0.5 84.8 0.52 | 2.00

0.7 82.9 0.50 | 2.03

0.3 74.0 0.49 | 1.96

4 0.5 74.2 0.49 | 1.90

0.7 73.2 0.48 | 1.95

0.3 63.2 0.46 | 1.88

5 0.5 63.5 047 | 1.92

0.7 62.5 0.47 | 1.90

Table 2. Effect of o along with min. stem size
on performance of the inflectional stemmer

It can be observed that the maximum
accuracy of 90.7% is obtained by neglecting
the restriction on the minimum stem size and
providing equal weightage to stem and suffix
by keeping a = 0.5. Even for this combination
of heuristics, the average index compression of
52% is obtained.

Introducing restriction on the number
of stems and suffixes to qualify as a
signature:

A restriction was placed on the minimum
number of stems and the minimum number of
suffixes needed in a signature. These numbers
are called stem filter threshold and suffix filter
threshold respectively.

We varied all the parameters, Vviz.,
minimum stem size, a, stem filter threshold
and suffix filter threshold. There were two
important observations that will be stated
below. The results of this experiment are
shown in Table 3 below.

The results show how this combination of
heuristics improves the quality of stems and
suffixes, as well it brings big boost in the
Index Compression Factor.




Min Accu-
Stem | @ | Thres- | racy | ICF | MW,
Size hold | (%)
0 90.0 | 051 | 20
1 0.3 1 858 | 0.88 | 9.0
2 87.1 | 095 | 20.3
0 90.7 | 0.52 2.1
1 0.5 1 88.3 | 0.89 | 9.9
2 87.7 | 095 | 224
0 87.0 | 0.51 2.0
1 0.7 1 849 | 095 | 22.2
2 848 | 095 | 222
0 89.2 | 051 | 21
2 0.3 1 85.1 | 0.88 | 9.0
2 86.5 | 0.95 | 20.3
0 89.9 | 052 | 20
2 0.5 1 87.6 | 0.89 | 9.9
2 86.7 | 0.95 | 224
0 86.6 | 0.51 | 2.0
2 0.7 1 87.6 | 0.94 | 19.2
2 84.1 | 095 | 222

Table 3. Effect of varying all three parameters,
viz., min. stem size, o and filter threshold on
performance of the inflectional stemmer

It can be observed that the maximum
accuracy of 90.7% is obtained by neglecting
the restriction on the minimum stem size,
providing equal weightage to stem and suffix
by keeping o = 0.5 and ignoring the restriction
on the minimum number of stems and suffixes
to form a signature.

Another important observation in this
experiment was that by restricting the filter
threshold to two, we obtain the highest index
compression of 95% with a slight decrease in
accuracy. This is an excellent result for
applications like corpus compression.

6.2 Performance of the derivational
stemmer

The performance of the derivational
stemmer was evaluated by direct comparison
of the stems generated by the system with the
ideal stems present in the gold standard data
which gave an accuracy of 70.7%.

7. Conclusions and Future Work

We developed two systems for Gujarati
language, one performing inflectional
stemming and the other performing
derivational stemming.

The inflectional stemmer has an average
accuracy of about 90.7% which is considerable
as far as IR is concerned. Boost in accuracy
due to POS based stemming was 9.6% and due
to inclusion of the language characteristics it
was further boosted by 12.7%. Heuristic with
filter threshold set to 2 gives highest index
compression of 95% which is extremely good
for applications like compression of data.

The derivational stemmer has an average
accuracy of 70.7% which can act as a good
baseline and can be useful in tasks such as
dictionary search or data compression.

The systems possess potential to be used
as pre-processing modules for NLP problems
other than IR, such as Word Sense
Disambiguation, similarity measure, etc.

The limitations of inflectional stemmer
can be easily overcome if modules like Named
Entity Recognizer are integrated with the
system.

In order to elevate the accuracy of the
derivational stemmer, the list of substitution,
orthographic or suffix-stripping rules can be
improved further if needed.
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Abstract

This paper documents recent work carried
out for PeEn-SMT, our Statistical Machine
Translation system for translation between
the English-Persian language pair. We give
details of our previous SMT system, and
present our current development of signifi-
cantly larger corpora. We explain how re-
cent tests using much larger corpora helped
to evaluate problems in parallel corpus
alignment, corpus content, and how match-
ing the domains of PeEn-SMT’s compo-
nents affect translation output. We then fo-
cus on combining corpora and approaches to
improve test data, showing details of expe-
rimental setup, together with a number of
experiment results and comparisons between
them. We show how one combination of
corpora gave us a metric score outperform-
ing Google Translate for the English-to-
Persian translation. Finally, we outline areas
of our intended future work, and how we
plan to improve the performance of our sys-
tem to achieve higher metric scores, and ul-
timately to provide accurate, reliable lan-
guage translation.

1 Introduction

Machine Translation is one of the earliest areas of
research in Natural Language Processing. Research
work in this field dates as far back as the 1950’s.
Several different translation methods have been
explored to date, the oldest and perhaps the sim-
plest being rule-based translation, which is in reali-
ty transliteration, or translating each word in the
source language with its equivalent counterpart in
the target language. This method is very limited in
the accuracy it can give. A method known as

Auckland, New Zealand
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Statistical Machine Translation (SMT) seems to be
the preferred approach of many industrial and aca-
demic research laboratories, due to its recent suc-
cess (Lopez, 2008). Different evaluation metrics
generally show SMT approaches to yield higher
scores.

The SMT system itself is a phrase-based transla-
tion approach, and operates using a parallel or bi-
lingual corpus — a huge database of corresponding
sentences in two languages.

The system is programmed to employ statistics and
probability to learn by example which translation
of a word or phrase is most likely to be correct. For
more accurate translation results, it is generally
necessary to have a large parallel corpus of aligned
phrases and sentences from the source and target
languages.

Our work is focussed on implementing a SMT for
the Persian-English language pair. SMT has only
been employed in several experimental translation
attempts for this language pair, and is still largely
undeveloped. This is due to several difficulties
specific to this particular language pair. Firstly,
several characteristics of the Persian language
cause issues with translation into English, and sec-
ondly, effective SMT systems generally rely on
large amounts of parallel text to produce decent
results, and there are no parallel corpora of appro-
priate size currently available for this language
pair. These factors are prime reasons why there is a
distinct shortage of research work aimed at SMT
of this particular language pair.

This paper firstly gives a brief background to the
Persian language, focusing on its differences to
English, and how this affects translation between
the two languages. Next, we give details of our
PeEn-SMT system, how we developed and mani-
pulated the data, and aligned our parallel corpora
using a hybrid sentence aligning method. We give
a brief overview of previous tests with the earlier
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version of the system, and then show our latest
experiments with a considerably larger corpus. We
show how increasing the size of the bilingual cor-
pus (training model), and using different sizes of
monolingual data to build a language model affects
the output of PeEn-SMT system. We focus on the
aim for a general purpose translator, and whether
or not the increase in corpora size will give accu-
rate results. Next we show that with the PeEn-
SMT system equipped with different language
models and corpora sizes in different arrange-
ments, different test results are presented. We ex-
plain that the improved result variations are due to
two main factors: firstly, using an in-domain cor-
pus even of smaller size than a mixed-domain cor-
pus of larger scale; secondly, spending much focus
on stringent alignment of the parallel corpus. We
give an overview of the evaluation metrics used for
our test results. Finally, we draw conclusions on
our results, and detail our plan for future work.

2 Persian Language Characteristics

Persian is an Indo-European language, spoken
mostly in Iran, but also parts of Afghanistan, India,
Tajikistan, the United Arab Emirates, and also in
large communities in the United States. Persian is
also known as Farsi, or Parsi. These names are all
interchangeable, and all refer to the one language.
The written Persian language uses an extended
Arabic alphabet, and is written from right to left.
There are numerous different regional dialects of
the language in Iran, however nearly all writing is
in standard Persian.

There are several grammatical characteristics in
written Persian which differ to English. There is no
use of articles in Persian, as the context shows
where these would be present. There is no capital
or lowercase letters, and symbols and abbrevia-
tions are rarely used.

The subject in a Persian sentence is not always
placed at the beginning of the sentence as a sepa-
rate word. Instead, it is denoted by the ending of
the verb in that sentence. Adverbs are usually
found before verbs, but may also appear in other
locations in the sentence. In the case of adjectives,
these usually proceed after the nouns they modify,
unlike English where they are usually found before
the nouns.

Persian is a morphologically rich language, with
many characteristics not shared by other languages
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(Megerdoomian & Laboratory, 2000). This can
present some complications when it is involved
with translation into any other language, not only
English.

As soon as Persian is involved with statistical ma-
chine translation, a number of difficulties are en-
countered. Firstly, statistical machine translation of
the Persian language is only recently being ex-
ploited. Probably the largest difficulty encountered
in this task is the fact that there is very limited data
available in the form of bilingual corpora.

The best language to pair with Persian for machine
translation is English, since this language is best
supported by resources such as large corpora, lan-
guage processing tools, and syntactic tree banks,
not to mention it is the most widely used language
online, and in the electronic world in general.
When compared to English however, Persian has
many differing characteristics, some of which pose
significantly difficult problems for the task of
translation. Firstly, compared to English, the basic
sentence structure is generally different in terms of
syntax. In English, we usually find sentence struc-
ture in its most basic form following the pattern of
“subject — verb — object”, whereas in Persian it is
usually “subject — object — verb”. Secondly, spo-
ken Persian differs significantly from its written
form, being heavily colloquial, to a much greater
degree than English is. Thirdly, many Persian
words are spelled in a number of different ways,
yet all being correct. This in particular poses
trouble for translation, since if one version of the
spelling is not found in a bilingual corpus, such a
word may be incorrectly translated, or remain as
an OOV (out of vocabulary) word. Any SMT sys-
tem designed for this language pair needs to take
these details into consideration, and specifics of
the system developed to cater for these differences.

3 PeEn-SMT Compositions
3.1 SMT System Architecture

The goal of a statistical machine translation system
is to produce a target sentence e from a source sen-
tence f. It is common practice today to use phrases
as translation units (Koehn et al., 2003; Och and
Ney 2003) in the log-linear frame in order to intro-
duce several models explaining the translation
process.



The SMT paradigm relies on the probabilities of
source and target words to find the best translation.
The statistical translation process is given as:

e” = argmax Pr(elf)
e

= argmax Z Pr(e, Alf) (1)
© A
~ argmax max Pr(e, Alf) (2)

In the above equations, (A) denotes the corres-
pondence between source and target words, and is
called an alignment.

The Pr(e, A If) probability is modeled by combina-
tion of feature functions, according to maximum
entropy framework (Berger, Pietra, & Pietra, 1996)

Pr(e, A|f) ~x exp Z Aifile, Alf) (3)

The translation process involves segmenting the
source sentence into source phrases f; translating
each source phrase into a target phrase e, and reor-
dering these target phrases to yield the target sen-
tence e*. In this case a phrase is defined as a group
of words that are to be translated (Koehn, Och, &
Marcu, 2003; Och & Ney, 2003) A phrase table
provides several scores that quantize the relevance
of translating f'to e.

The PeEn-SMT system is based on the Moses
SMT toolkit, by (Koehn, et al., 2007). The decoder
includes a log-linear model comprising a phrase-
based translation model, language model, a lexica-
lized distortion model, and word and phrase penal-
ties. The weights of the log-linear interpolation
were optimized by means of MERT(Och & Ney,
2003). In addition, a 5-gram LM with Kneser-Ney
(Kneser & Ney, 2002) smoothing and interpolation
was built using the SRILM toolkit (Stolcke, 2002).
Our baseline English-Persian system was con-
structed as follows: first word alignments in both
directions are calculated with the help of a hybrid
sentence alignment method. This speeds up the
process and improves the efficiency of GIZA++
(Och & Ney, 2000), removing certain errors that
can appear with rare words. In addition, all the ex-
periments in the next section were performed using
a corpus in lowercase and tokenized conditions.
For the final testing, statistics are reported on the
tokenized and lower-cased corpora.
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3.2 Data Development

For optimum operation, a statistical language
model requires a significant amount of data that
must be trained to obtain proper probabilities. We
had several Persian monolingual corpora available
completely adapted to news stories, originating
from three different news sources — Hamshahri
(AleAhmad, Amiri, Darrudi, Rahgozar, & Oroum-
chian, 2009), IRNA' and BBC Persian” — Hamsha-
hri contains around 7.3 million sentences, IRNA
has almost 5.6 million, and the BBC corpus con-
tains 7,005 sentences.

It is currently common to use huge bilingual cor-
pora with statistical machine translation. Certain
common language pairs have many millions of
sentences available. Unfortunately for Per-
sian/English , there is a significant shortage of di-
gitally stored bilingual texts, and finding a corpus
of decent size is a critical problem.

One English-Persian parallel text corpus we ob-
tained consisted of almost 100,000 sentence pairs
of 1.6 million words, and was mostly from bilin-
gual news websites. There were a number of dif-
ferent domains covered in the corpus, but the ma-
jority of the text was in literature, politics, culture
and science. Figure.l shows the corpus divided
into separate domains. To the best of our know-
ledge, the only freely available corpus for the Eng-
lish-Persian language pair is the TEP corpus,
which is a collection of movie subtitles consisting
of almost 3 million sentences - 7.8 million words.
These two corpora were concatenated together to
form News Subtitle Persian English Corpus
(NSPEC) a single corpus of 3,100,000 sentences
for use in one test, and will also be used in the fu-
ture for further experiments.

Religion Science, 5.51 \Others, 0.15
! [}
21 Pruverb,/

0-58/
Politics, 25.28

Subtitle, 16.92

Art, 3.23

Culture, 12.91

Idioms, 0.35
Law, 4.15

Poetry, 1.42 Medicine, 1.15

Figure 1. Domain percentages for NSPEC corpus

! http://www.irna.ir/ENIndex.htm
2 http://www.bbc.co.uk/persian/



3.3 Alignment

The issue of word alignment in parallel corpora
has been the subject of much attention. It has been
shown that sentence-aligned parallel corpora are
useful for the application of machine learning to
machine translation, however unfortunately it is
not usual for parallel corpora to originate in this
form. The alignment of the corpus became a task
of paramount importance, especially due to the
shortage of bilingual text for English-Persian in the
first place. There are several methods available to
perform this task. Characteristics of an efficient
sentence alignment method include speed, accura-
cy and also no need for prior knowledge of the
corpus or the two languages. For the experiments
presented in this paper, we used a hybrid sentence
alignment method using sentence-length based and
word-correspondence based models that covered
all these areas, only requiring the corpus to be se-
parated into word and sentence. In each of our ex-
periments we firstly aligned the corpus manually
using this hybrid method, and then later using GI-
ZA++ when the data was put through Moses.

4  Experiments and Results

4.1 Overview of Previous Experiments

The original tests performed using PeEn-SMT as
shown in some of previous papers produced unsa-
tisfactory results (Mohaghegh, Sarrafzadeh, &
Moir, 2010). It was initially thought that this was
due to the small corpora and training models used.
As detailed in these papers, a number of prelimi-
nary tests were carried out, and each time the lan-
guage model was increased in size to a maximum
of 7005 sentences. The training model at its largest
consisted of 2343 sentences. The language model
in these tests consisted of text collected from BBC
news stories, and the training model consisted of a
bilingual corpus of mostly UN news. It was
thought that the unsatisfactory test results achieved
could be remedied by enlarging the language mod-
el and corpus, since the amounts of data in each
model were far too small to achieve any decent
success in SMT.

4.2 Experiments

In order to develop the translation model, an Eng-
lish-Persian parallel corpus was built as explained
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in the Data Development section. We divided the
parallel corpus into different sized groups for each
test system. The details of the corpus size for each
test are shown in Table 1. Table 2 shows the size
of each test’s corpus after the text was tokenized,
converted to lowercase, and stripped of blank lines
and their correspondences in the corpora. This data
was obtained after applying the hybrid sentence
alignment method.

Language Data English English Persian Persian
Pair Genre Sentences words sentences Words
En-Pe
System1 Newswire 10874 227055 10095 238277
System2 | Newswire 20121 353703 20615 364967
System3 | Newswire 30593 465977 30993 482959
System 4 | Newswite 40701 537336 41112 560276
System 5 | Newswire 52922 785725 51313 836709
TEP Subtitle 612086 3920549 612086 3810734
NSPEC | Newswire 678695 5596447 665678 5371799
-Subtitle

Table 1: Bilingual Corpora Used to Train the
Translation Model

Language Data English English Persian Persian
Pair Genre Sentences Words sentences | Words
En-Pe
Systeml | Newswire 9351 208961 9351 226759
System?2 Newswire 18277 334440 18277 362326
System3 Newswire 27737 437871 27737 472679
System 4 | Newswite 37560 506972 37560 548038
System 5 | Newswire 46759 708801 46759 776154
TEP Subtitles 612086 3920549 612086 3810734
NSPEC | Newswitre 618039 5370426 618039 5137925
Subtitle
Table 2: Bilingual Corpora after Hybrid Alignment
Method

We divided the corpus to construct five different
systems, beginning from 10,000 sentences in the
smallest corpus, and increasing in steps of approx-
imately 10,000 sentences each time up to the 5t
test system, with a corpus of almost 53,000 sen-
tences. In addition to the news stories corpus as
shown earlier, we only had access to one freely
available corpus, and this consisted of movie sub-
titles in Persian and English. This was shown to be
in a completely different domain to our main cor-
pus, so for most cases we preferred to run tests
separately when using these corpora. Finally in
NSPEC, we concatenated these two corpora, to
ascertain the potential output with a combined cor-
pus. We tested the subtitle corpus separately be-
cause we wished to see how an out-of-domain cor-



pus affected the result. In all cases, the test set con-
sisted of a news article covering a variety of dif-
ferent domains showing various grammatical as-
pects of each language. In order to construct a lan-
guage model, we used the transcriptions and news
paper stories corpora. One source we used was the
Hamshahri corpus, extracted from the Hamshahri
newspaper, one of the most popular daily newspa-
pers in Iran in publication for more than 20 years.
Hamshahri corpus is a Persian text collection that
consists of 700Mb of news text from 1996 to 2003.
This corpus is basically designed for the classifica-
tion task and contains more than 160,000 news
articles on a variety of topics. Another source used
was the IRNA corpus, consisting of almost 6 mil-
lion sentences collected from IRNA (Islamic Re-
public News Agency). Table 3 summarizes the
monolingual corpora used for the construction of
the language model. SRILM toolkit (Stolcke,
2002)was used to create up to 5-gram language
models using the mentioned resources. We tested
the baseline PeEn-SMT system against different
sizes of aligned corpora and different sized lan-
guage models. Tables 4, 5 and 6 show the results
obtained using the BBC, Hamshahri, and IRNA
language models respectively.

Monolingual Data Genre Sentences Words

BBC News 7005 623953
Hamshahri (V.1) News 7288643 65937456
IRNA News 5852532 66331086

Table 3: Monolingual Corpora Used to Train the
Language Model

4.3 Evaluation Metrics

One aspect of Machine Translation that poses a
challenge is developing an effective automated
metric for evaluating machine translation. This is
because each output sentence has a number of ac-
ceptable translations. Most popular metrics yield
scores primarily based on matching phrases in the
translation produced by the system to those in sev-
eral reference translations. The metric scores most-
ly differ in how they show reordering and syn-
onyms.

In general, BLEU is the most popular metric used
for both comparison of Translation systems and
tuning of machine translation models (Papineni,
Roukos, Ward, & Zhu, 2002); most systems are
trained to optimize BLEU scoring. Many alterna-
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tive metrics are also available however. In this pa-
per we explore how optimizing a selection of dif-
ferent evaluation metrics effect the resulting mod-
el. The metrics we chose to work with were
BLEU, IBM-BLEU, METEOR, NIST, and TER.
While BLEU is a relatively simple metric, it has a
number of shortcomings.

There have been several recent developments in
evaluation metrics, such as TER (Translation Error
Rate). TER operates by measuring the amount of
editing that a human would have to undertake to
produce a translation so that it forms an exact
match with a reference translation (Snover, Dorr,
Schwartz, Micciulla, & Makhoul, 2006). METEOR
(Denkowski & Lavie, 2010; Lavie & Denkowski,
2009) is a metric for evaluating translations with
explicit ordering, and performs a more in-depth
analysis of the translations under evaluation. The
scores they yield tend to achieve a better correla-
tion with human judgments than those given by
BLEU (Snover, et al., 2006).

Another metric used was IBM-BLEU (Papineni, et
al., 2002) , which performs case-insensitive match-
ing of n-grams up to n=4.

BLEU and NIST (Zhang, Vogel, & Waibel, 2004)
both produce models that are more robust than that
of other metrics, and because of this, we still con-
sider them the optimum choice for training.

4.4 Evaluation of the Results

Our first experiment was carried out with 10,000
sentences (Systeml) in the English-to-Persian
translation direction. For comparison we tested the
SMT model on different language models. As
shown in Tables 4, 5, and 6, the best result was
achieved when we trained the machine on the IR-
NA language model. We gradually increased the
size of the corpora to the next test set (System 2),
which was almost 21,000 sentences, and we re-
peated the test for different language models.
Again the result showed that using IRNA resulted
in the best translation, followed by BBC, then
Hamshahri. We observed almost identical trends
with each test set; up to the set with the largest
corpus (53,000 sentences, System 5). It was origi-
nally thought that the dramatic increase in the size
of both models would yield a much higher metric
score, since it gave the translation program more
data to work with. However, these new tests
proved that this was not necessarily always true,



and corpus size alone was not synonymous with
improved translation. For instance, in the case
where the Hamshahri corpus was used for the lan-
guage model, the output result was even worse
than the original tests with a far smaller corpus like
BBC. The IRNA corpus, larger than the original
BBC corpus (7005 sentences) but still smaller than
Hamshahri, yielded the best result of the two.

To establish a reason for the apparently illogical
test results, the characteristics of each corpus were
examined, together with their combinations in each
test. After analysis, it was seen that there were a
number of likely factors contributing to the poor
results.

Language Model =BBC news
Evaluation

Svstem | PLEUS# | MULTLBLEU | oo SR — TER
System 1 0.1417 10.96 0.0083 24803 0.3104 0.7500
System 2 0.1700 12.63 0.0172 2.5258 0.3347 0.6287
System 3 0.2385 24.66 0.0242 3.4394 0.3654 0.6312
System 4 | 0.2645 25.45 0.0274 3.6466 0.4466 0.6515
System 5 0.2865 26.88 0.0467 3.8441 0.4479 0.8181

TEP 0.1312 10.56 0.0095 2.6552 0.2372 0.8333
NSPEC 0.2152 19.94 0.0453 3.2643 0.3929 0.6824

Table 4: Automatic Evaluation Metrics of PeEn-

SMT
Language Model =Hamshahri
Evaluation

System | BV | MULTUBLEU | g NIST METEOR TER
System 1 0.1081 7.60 0.0246 2.1453 0.2526 0.8106
System 2 0.1229 8.77 0.0300 24721 0.3078 0.7196
System 3 0.1325 10.73 0.0149 1.2080 0.2215 0.7236
System 4 | 0.1945 10.87 0.0303 2.4804 0.2970 0.7500
System 5 0.2127 11.25 0.0288 3.6452 0.3040 0.8863

TEP 0.0127 1.05 0.0219 1.2547 0.1377 0.9015
NSPEC 0.0856 7.15 0.0499 1.9871 0.2313 0.7825

Table 5: Automatic Evaluation Metrics of PeEn-
SMT System
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Language Model =IRNA
Evaluation

System BLEU4 | MULTLBLEU | oo NIST METEOR TER
System 1 0.2472 19.98 0.0256 3.5099 0.4106 0.6969
System 2 0.3287 29.47 0.0636 4.0985 0.4858 0.5833
System 3 0.3215 29.37 0.0565 4.1409 0.4838 0.5606
System 4 0.3401 30.99 0.0565 4.2090 0.4833 0.5833
System 5 | 0.3496 29.25 0.0635 | 4.4925 | 0.5151 | 0.5236

TEP 0.0535 3.98 0.0301 1.8830 0.2021 0.8787
NSPEC 0.1838 12.87 0.0366 3.0264 0.3380 0.7234

Table 6: Automatic Evaluation Metrics of PeEn-
SMT System

One such factor involved the nature of the data
comprising each corpus, and how this affected the
match between the language model and the train-
ing model. For instance, in the case where we
achieved an even lower score than the original
tests, it was noted that the training model consisted
of a bilingual corpus based mainly on movie sub-
titles, yet the Hamshahri corpus was a collection of
news stories. For the most part, movies consist of
spoken, natural language in everyday situations,
filled with idioms, colloquial expressions and
terms, and often incorrect grammar and sentence
structure. These characteristics were heavily
present in the training model. News stories on the
other hand not only ideally consist of well-
structured sentences, with correct grammar and
little presence of colloquialism, but the very nature
of this kind of literature is unique, and rarely found
in natural language.

Another example showing this involved the sub-
title corpus (TEP) that we had access to. This cor-
pus was significantly larger in size (612,000 sen-
tences) when compared to the other corpora that
we had available to us. However, when we per-
formed the same experiment against different lan-
guage models, the result was quite unsatisfactory.
We believe that this was due to our test sets being
in a different domain than that of the movie sub-
titles.

These results led us to conclude that using larger
language and training models alone was not a reli-
able determining factor in satisfactory output.

For the sake of comparison, Google Translator was
tested on the same test data and results are in-



cluded in Tables 7. We compared our system to
Google’s SMT for this language pair, and com-
pared to the evaluation metric score released by
Google. Our PeEn-SMT system outperforms the
Google translator in the English-to-Persian transla-
tion direction.

Google (English — Persian)

BLEU_4 MULTI_BLEU IBM-

BLEU

System NIST METEOR

Google | 0.2611 21.46 0.0411 | 3.7803 | 0.5008 | 0.7272

Table 7: Automatic Evaluation Metric of Google
Translator Output

5 Conclusion and Future Work

In this paper we presented the development of our
English/Persian system PeEn-SMT. This system is
actually a standard phrase-based SMT system
based on the Moses decoder. The originality of our
system lies mostly in the extraction of selected
monolingual data for the language model. We used
manual alignment of the parallel corpus, which
was a hybrid sentence alignment method using
both sentence length-based and word correspon-
dence-based models, the results of which prove
this method to be invaluable in obtaining a more
accurate result from the system. We showed that
increasing the size of the corpus alone cannot nec-
essarily lead to better results. Instead, more atten-
tion must be given to the domain of the corpus.
There is no doubt that the parallel corpora used in
our experiments are small when compared to other
corpora used in training SMT systems for other
languages, such as German and Chinese, etc, or
with Google, which has access to extensive re-
sources. However we believe that the results from
our system compare quite favorably, despite these
shortcomings which we intend to address in our
future work.

In the future we plan to develop a technique to find
the most appropriate corpus and language model
for PeEn-SMT system by detecting the domain of
the input. We intend to perform tests using the
matched-domain input, corpus and language mod-
els in an attempt to achieve even better translation
results.
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Abstract

Since Thai has no explicit word boundary,
word segmentation is the first thing to do be-
fore developing any Thai NLP applications.
In order to create large Thai word-segmented
corpora to train a word segmentation model,
an efficient verification tool is needed to help
linguists work more conveniently to check
the accuracy and consistency of the corpora.
This paper proposes Thai Word Segmentation
Verification Tool Version 2.0, which has sig-
nificantly been improved from the version 1.0
in many aspects. By using hash table in its
data structures, the new version works more
rapidly and stably. In addition, the new user
interfaces have been ameliorated to be more
user-friendly too. The description on the new
data structures is explained, while the modi-
fication of the new user interfaces is de-
scribed. An experimental evaluation, in com-
paring with the previous version, shows the
improvement in every aspect.

1 Introduction

Thai is an isolating language; each word form
consists typically of a single morpheme. There
are no clearly defined boundaries of words and

sentences; for example, “Audu3sn” /kh-o-n*-0/

kh-a-p”-1/r-o-t*-3/ can refer to two references:
“a driver” or “a man drives a car”, which may be
considered as a compound word or a sentence,
depending on its context. Therefore, creating an
NLP application that involves Thai language pro-
cessing is more complicated than many other
languages, such as English, Malay, Vietnamese,
etc., in which word boundaries are clearly
defined.

Moreover, Thai word segmentation research
has been separately conducted in many academic
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institutes for more than 20 years without com-
mon standard. Their word boundary definitions,
segmentation methods and training/test data, etc.
are usually incompatible and nonexchangeable.
That is why a benchmark on their works is rather
difficult. As a result, the research in Thai NLP
has progressed more slowly than what it should
be.

Furthermore, the trend in language processing
research has now changed from rule-based ap-
proaches to statistical-based ones, which need
very large scale annotated corpora to train the
system by means of a machine learning tech-
nique. Unfortunately, none of such huge re-
sources has been built for Thai (Kosawat et al.,
2009).

1.1  BEST Project on Thai word segmenta-

tion

BEST project was set up in 2009 to smooth out
these problems. BEST or “Benchmark for En-
hancing the Standard of Thai language pro-
cessing” aims to establish useful common stand-
ards for Thai language processing in various top-
ics, to organize several contests in order to find
the best algorithms by means of benchmarking
them under the same criteria and test data, as
well as to share knowledge and data among re-
searchers. This strategy is expected to help accel-
erate the growth of the NLP researches in Thail-
and (Kosawat et al., 2009; Boriboon et al.,
2009).

The BEST project was started with Thai word
segmentation (BEST Academy, 2009), in which
Thai word-segmented corpora of 8.7 million
words had been developed as a training set in 12
balanced genres. The BEST corpora were origin-
ally segmented by SWATH (Smart Word Ana-
lysis for THai) (Meknavin et al., 1997), applica-
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tion of which word segmentation criteria differed
from our BEST segmentation guidelines (BEST
Academy, 2008). Therefore, it was the laborious
works of our linguists to correct any wrongly
segmented words, as well as any spelling errors,
by hand.

1.2  Previous work

In order to facilitate our linguists to edit the
BEST Corpora more conveniently, Word Seg-
mentation Verification Tool Version 1.0 had
been created. The program was written in Java
language and had many useful features as follow:

* It could open simultaneously many text
files, so we could work with several texts
in the same time.

e It could accept text encoding both in
UTF-8 and TIS-620 (Thai ASCII).

*  Word list with word frequency was
provided, as well as word concordance.

*  Search and replace functions were avail-
able.

*  Content editor was provided.

However, the version 1.0 had some disadvant-
ages, such as:

* Itneeded a powerful PC with a large size
memory.

*  Opening many files still caused a very
long delay and sometimes a system halt.

*  Its interface was not user-friendly.

*  Quite a few bugs were reported.

That is why we decided to develop a new ver-
sion of Word Segmentation Verification Tool.
This new program has been changed in many
fields, which will be described in the next sec-
tion.

2 Word Segmentation Verification Tool

Version 2.0

To verify the accuracy and consistency of the
BEST corpora, we need an efficient program that
works fast and is easy to use. So, we have de-
veloped “Word Segmentation Verification Tool
Version 2.0” to reduce the time to work with a
lot of files.
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2.1 System architecture overview

The new tool is composed of three main com-
ponents: File manipulation, Word list manipula-
tion and Content manipulation, as shown in Fig-
ure 1.

Word segmentation verification Tool

Content manipulation
(Word and Tag)
-Add

File manipulation
= N

- Open

- Save

- Create File(.info) - Remove
S - Edit

- Sear
- Replace (All, selected)

e Input file |

E—— —

w Word list manipulation
C—— p- ~
- Frequency counting I
User - Sorting (Word, frequency)
- Ascending
Output file - Descending
2

Figure 1. System architecture

* File manipulation: the module that
handles text files. It can handle one or
multiple files. The program begins by
reading files and storing them in the data
structure. It also includes related works,
such as creating files, finding and repla-
cing words in files.

e Word list manipulation: a word fre-
quency analysis on text files. This module
counts the frequency of words and dis-
plays the list of words sorted by alphabet
or frequency in ascending or descending
order.

*  Content manipulation: responsible for
content and tag modification in text files.
This module contains several functions
such as add, remove and edit tag. The res-
ult of these modifications will immedi-
ately effect the content of the file. But the
original file is saved as a backup before.

2.2 Work flow

Word Segmentation Verification Tool V2.0 ac-
cepts an input text file in TIS-620 or UTF-8 en-
coding. This program can read multiple files. Be-
cause the program is a tool to validate Thai word
segmentation, the input files must be word-separ-
ated by pipe symbol “|”, as shown in Figure 2.

<NE>Tunussn/NE> [dadulalnploss] ] . L. .
* | s glgag i ] fu [voya| i mendnus] [ova) ) Anen|nlau sl u uaualfafw | ia lu[la]
|ﬂ!mw]g\ym\mu\Tmmni’l \Tﬂnlmww:l'lulm\iﬂwﬂnlwaﬂuml |'l:||1n|mmmi| |ma|...|xﬁn|'|| [sn | sou]uz] 8]
dnasienefin| [ws|au|

Figure 2. Word boundaries with pipe symbol



After successfully reading input files, the tool
will count all words, calculate word frequencies
and store the full path of the file names and line
numbers of words in a data structure. The in-
formation, containing word position, line number
and file name, will be displayed on the main in-
terface, along with word concordance, when a
word is selected from the word list. When user
selects a line from the concordance, another win-
dow will appear and allow user to edit its con-
tent. A backup file (.info) is created before sav-
ing the new content in the original file. The oper-
ation's work flow is shown in Figure 3.

Select source files/
Read input files
=
1
pu .

Word frequency

e Display word list

&
&

Input files Select word

Display
concordance

Exit program

Select line needed
to be edited

Content and Tag

Save file modification

&

Output files

Figure 3. Work flow

Other significant functions in the main inter-
face are search and replace functions. These
functions find the word positions in every
opened file. All search results are displayed to
user to select a replacement. There are two types
of replacement: replace only selected line, or re-
place all (every word in all opened files).

2.3

A hash table is a data structure that uses a hash
function to identify the values in array elements
(buckets). The advantage of hash table is the
ability to fast access the data in the large scale of
corpus (Wikipedia, 2011). So, we have decided
to use the hash table in our new application.

The data structure of “Word Segmentation
Verification Tool V2.0” is stored in the hash
table format. The file path is stored as a key in
the hash table to identify its value. The content of
the file is stored in a vector, which is the value of
the hash table. The vector stores the content by
sorting it from the first line to the last line. For
example, Figure 4 shows that “C:/input/filel” is
stored as a key and Vectorl, which contains all
lines of filel, is stored as a value in Hashtablel.

Data structure
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Input files
Hashtable1

| File path(string), Vector |
C/input/filel, Vector1

C:/input/file2, Vector2

Vgctor3 {String1, String2, ..., String n}

| Line1 Content

File path(String), Vector
C:/input/file3, Vector3

File path(String), Vector ]

Line2 Content | ... Line n Content

‘ector? {String1, String2, ..., String n}

Linel Content Line2 Content ... Line n Content

Vector1 {String1, String2, ..., String n}
\§

Line1 Content | Line2 Content ... Line n Content

Figure 4. Data structure of input files

In addition, the frequency of each word is col-
lected in another hash table as shown in Figure 5.
Hashtable2 stores the word as a key and the ad-
dress of its child hash table as a value. The data
structure of the child hash table is similar to the
data structure of Figure 4 but different in vector
elements, since the actual vector elements con-
tain line number and frequency of word in that
line.

Word frequency counter

Hashtable2

Word (Smng) Hesmnble wom (smng) Hashtable
(Word, Hashtable)

", Hashtable A

Hashtable A
Cllnput/ﬁm Vectnﬂ

ector2 {Object1, Object2, ..., Object n}

Line Number,
frequency
(7.3)

#93, Hashtable B

Hashtable B

RIS | Gy | Ry |

Cllnwt/ﬁlez Vectorz ' C:/input/file3, VectorG '

@torf& {Object1, Object2, ..., Object n}

Line Number, Line Number, .. Line Number, I

frequency frequency frequency
(5,5) (20,1) ...(n,m)

Line Number,
frequency
(10,5)

frequency

... Line Number,
...(n,m)

Vector1 (Objecn ObjeCZ ..., Object n}

Line Number,
frequency
(12,2)

Line Number,
frequency
1,5)

" frequency

. Line Number,
...(n,m)

Figure 5. Data structure of word frequency
counter



2.4 Program interfaces

Main interface

We have developed a new main interface to be
easy to use. This interface consists of four main
components as follows:

*  Word list - this section is quite useful to
quickly explore words, frequency of
words, and word segmentation's correct-
ness. It counts the frequency of words
from all opened files. The result displayed
in this section can be sorted by alphabet or
by frequency in ascending or descending
order.

* Concordance display - this section is
very important and helpful for linguists to
immediately judge which words are cor-
rectly segmented by glancing over their
contexts, so it is not necessary to open
every file to examine each line thoroughly.
When a word is selected from the word list
or user enters a keyword in the search
function, the program will display the res-
ult in this section. This section shows the
word positions in all opened files by high-
lighting the target word apart from its con-
texts. The line numbers and file names of
that word are also shown. By double-
clicking at the content of each line, anoth-
er window will appear to edit data, as will
be described in the next section.

*  Search and Replace - this operation is
the most frequently used function in our
tool. It is an important component of the
main interface. This function allows user
to easily search and replace words. The
result of each search is displayed in the
concordance table. There are two options
for replacement; the first is replacing only
in the selected line(s), and the second op-
tion is replacing in all opened files. For
adding a tag into the data, there are three
options: merge, split and none.

*  Finally, Tag history - it displays tag list
that has been modified in the data. It
shows which words were edited by mer-
ging, splitting, or tagging any special sym-
bols. This history can help users remind
any former word segmentation modifica-
tions in order not to commit the same er-
rors again.

19

Tag history
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Figure 6. Main interface

Particular interface

The particular interface is the second part of the
software interfaces for editing misspelled and
wrongly segmented words or texts thoroughly,
and also marking words or texts with some tags
to notify some particular structures or word am-
biguities. An example of the particular interface's
dialog box is shown below.
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Figure 7. Particular interface

According to the above figure, the window has
four parts: Toolbar, Selected-line detail, Selec-
ted-line description, and Selected-file detail. The
first part is the toolbar consisting of several edit-
ing and tagging menus: Save, Undo, Redo, Re-
move tag, and nine symbols of tagging, which
will be explained in the part of tag editor. The
second part is the selected-line detail showing all
words and tags which appear in the selected line.
In this part, all words can be manually edited and
tagged with symbols. The third part is the selec-
ted-line description showing the line number and
the keyword of the selected line. Moreover, in



this part, users can change the selected line by
filling any line number in the box on the right
side. Finally, the last part is the selected-file de-
tail showing all words and tags which appear in
the file of the selected line. Each line in the file is
highlighted differently to show the line status.
Any lines without editing are not highlighted.
The selected line is highlighted in yellow. Any
lines having the keyword are highlighted in blue.
Lastly, any edited lines are highlighted in pink
with italic characters. The particular interface is
very useful for editing texts more correctly.

Tag editor

Tag editor is the last part of the software inter-
faces to notify any special structures of words or
texts. Due to the fact that BEST corpora are com-
posed of several text genres with various word
structures inside, the tag editor is used to mark
any words or texts having particular structures or
ambiguities. Since the corpora, which were ori-
ginally segmented by machine, have some mis-
takes, the tag editor is used to edit the corpora
correctly, as well. There are nine symbols to use
for the mentioned purposes.

Firstly, the symbol <QUESTION>...</QUES-
TION> is used to mark any ambiguous words or
texts which have various meanings or are still in
discussion. When linguists analyze them with
their contexts to clarify the appropriate mean-
ings, then the symbols will be removed, and the
words will be segmented, split, or tagged with
other symbols as the experts have already con-
sidered.

Secondly, the symbols <MERGE>...
</MERGE> and <SPLIT>...</SPLIT> are used
to mark any words edited by being merged or
split in order not to segment them wrongly again.
The first one is used to tag the words that are
correctly edited by being merged together be-
cause, originally, at least two words were auto-
matically segmented despite having to be com-
bined'. The next one is used to tag the words that
are correctly edited by being split because,
formerly, at least two words were automatically
combined together despite having to be divided.

Lastly, six symbols are used to mark any
words or texts having particular structures, which
are quite different from general word formation,
in order to manage them extraordinarily. These
symbols are <AB>...</AB> for abbreviations,
<ANL>...</ANL> for animal names and breeds,
<IDM>..</IDM> for idioms, aphorisms, pro-

! Any words being merged or split depend on the linguistic
rules in the BEST guidelines.
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verbs and sayings, <NE>...</NE> for named en-
tities, <PLT>..</PLT> for plant names and
breeds, and <POEM>...</POEM> for poems,
verses and poetry. Some examples are shown in
the table below.

Words Word tagging
400 n.u. 400 <AB>n.u.</AB>
(400 km.)
aria <ANL>1lana</ANL>
(fighting fish)

ol <IDM>gu lWhim</IDM>
(old lover)

agunwuniuns | <NE>njumwunuas</NE>
(Bangkok)

wsnih <PLT>windih</PLT>
(goat pepper)

Sendionelus <POEM>teididra s
agluTnsalifdn ogluInslfidn</POEM>

Table 1. Examples of word tagging

3 Experimental evaluation

According to the development of Word Segment-
ation Verification Tool, the performance of the
latest version is evaluated by doing an experi-
ment on both previous and latest versions of the
tools. They are tested on a desktop computer?
with 113-MB corpora, containing 880 files or
8,778,357 words in total. The corpora are com-
posed of general words, abbreviations, animal
names and breeds, idioms, named entities, plant
names and breeds, poems, numbers and punctu-
ation marks. It is found that the latest version is
mainly improved in two aspects: time and user
friendly.

The first aspect is time usage. The latest ver-
sion of the software spends less time opening the
software, files and keywords. In general, both
versions spend almost equal time opening the
software for the first time. However, for the
latest version, every time opening the software is
faster because it will open only the software, and
then, users have to open files; on the contrary,
for the previous version, if it is not the first time
opening the software, it will take much time to
open the software together with any files which
were opened before closing the software.

2 The test computer is a Personal Computer (PC) with Intel
Core 2 Duo 3.0 GHz. processor and 2 GB RAM, and using
Microsoft Windows XP operating system.




| 2] Word Segmentation Verfication Tool Staff Version 10

Saniome 2871455 B

ol son

Round | Previous version | Latest version 7
(min:sec:ms?) (min:sec:ms) Co )
1 01:15:01 00:56:04 | Lo Bt G| e e
2 01:15:06 00:57:04
3 01:14:04 00:56:04
4 01:15:08 00:57:00
5 01:14:08 00:57:00

Table 2. Time usage of opening files after firstly
opening the software

According to the above table, the latest ver-
sion works faster. To open the test corpus files
(880 files containing 8,778,357 words), it took
almost 1 minute; on the contrary, the previous
version spent about 1 minute 15 seconds doing it.
Furthermore, the latest version is also much
quicker than the previous one to show the lines
containing the selected keywords with contexts,
as shown in the table below. The latest version
could immediately display the lines of the re-
quired keyword while the previous one had to
spend several seconds doing it. Also, more often
the keywords were chosen to display, more
slowly the previous version worked. In conclu-
sion, the software's latest version works much
quicker than the old one.

Round | Previous version | Latest version
(sec:ms) (sec:ms)
1 15:02 immediately
2 16:09 immediately
3 15:03 immediately
4 17:09 immediately
5 18:00 immediately

Table 3. Time usage of showing lines containing
the selected keywords with contexts

The second aspect is user friendly. The latest
version of the software is easier and more con-
venient. Firstly, it can work faster because it is
not necessary to spend much time opening the
files which is used to open before closing the
program like the previous version, as told in the
first aspect. Secondly, the function of asking to
segment any long lines, which is a function of
the previous version (as shown in Figure 8 be-
low), is not necessary for this latest version any-
more because the new version can completely
manage any long lines without problem.

3 min = minute; sec = second; ms = millisecond

|
,\

|
|

Figure 8. Function of asking to segment any long
lines in the previous version

Thirdly, the main interface of the latest ver-
sion looks easier to use because it contains only
essential and necessary components: word list,
concordance display, search and replace, and tag
history (as explained in the main interface part).
In contrast, the main interface of the previous
one contained a useless component (shown in the
bold square). It presented file names and lines of
selected words, both of which also occurred in
the concordance component. Moreover, the use-
less component caused fewer space to display the
word contexts in the concordance component.
Therefore, it was inconvenient for linguists to
quickly know which words were segmented cor-
rectly. The useless component of the main inter-
face of the previous version is shown in Figure 9
below.
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Figure 9. Useless component of the main inter-
face of the previous software version

Fourthly, it is easier to approach the data by
one click; in contrast, double click is used for
reaching the data in the previous software ver-
sion.



Lastly, user knows the status of the software.
During the software's execution, every button,
such as editing, searching and saving buttons is
inactive, and a pop-up message and status-bar
message show the software's working status. It is
quite safe and useful for users not to edit or
search other words during this time because they
know that the software has not finished working
yet and is not ready to do other functions. On the
other hand, when it finishes working, every but-
ton is active and ready to use again, and the pop-
up message displays the number of edited words.
It is very helpful for users because they will
know when to be able to edit words, and not to
correct the corpus during the software's execu-
tion. If not, the corpus will have full of errors,
and it will waste plenty of time to revise the cor-
pus again and again. Therefore, the software's
latest version has much improvement and is quite
appropriate to the linguists' usage.

4 Conclusion and future works

We showed that our new tool, with its new data
structures in the form of hash table, worked more
rapidly than the previous version, both for open-
ing files and for responding to users. Moreover,
finding and replacing function were very quick
and stable too, for it never caused a system halt
again. The new interface was more user-friendly.
We can say that the overall improvement of the
new program can help our linguists work more
happily. In consequence, the BEST Corpora can
be enlarged in a shorter period while their data
follow better to the word segmentation standard
guidelines too.

In the near future, we plan to integrate Thai
spelling checker in our tool to detect automatic-
ally any misspelled words. Moreover, making
use of word statistics to decide how to segment
words, especially words still in discussion
(marked with <QUESTION> tag), may be anoth-
er interesting function to help our linguists pass
their stressful days.
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Abstract

Economic activities now keep being
globalized more and more. Thus we
are driven to deal with not only the
documents written in English but also
those written in other languages. In
order to enable us to develop proces-
sors of any language quickly, we have
been making a framework based on sta-
tistical processing and machine learn-
ing. At present, we confirmed that
part-of-speech (POS) taggers of some
target languages can be built by us-
ing this framework and the information
of source languages. In this paper, we
describe the method of acquiring POS
lexicons and that of generating supervi-
sors of POS sequences, which are used
to learn grammatical models of target
languages. We also explain the experi-
mental results of building POS taggers
of Portuguese and Indonesian by using
some source languages.

1 Introduction

The natural language processing, for example,
part-of-speech (POS) tagging, syntactic pars-
ing, and named entity extraction, is the fun-
damental technology for information extrac-
tion from text documents. This means that
the preparation of processors of a specific lan-
guage enables us to develop various applica-
tions for that language such as keyword ex-
traction, document classification, and machine
translation. However, most parts of the pro-
cessors we have already built are dependent on
the characteristics of each language since we
have developed lexicons and grammars man-
ually according to those of target languages
such as Japanese and English. This means
that we have to spend much time and effort
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when we try to prepare processors of a new
language in the similar way before.

On the other hand, economic activities keep
being globalized and thus we should provide
people all over the world with appropriate ser-
vices and products. In particular, the follow-
ing needs are increasing;:

e to estimate customers’ concerns and in-
tentions in order to provide the best ser-
vice,

e to grasp customers’ reputations and com-
plaints in order to avoid troubles,

e and to analyze the documents written in
local languages in order to achieve two
above-mentioned statements.

We have mainly worked on processing of
English until now, since many people tend to
consider to be international as to use English
much. After now, however, we must work on
not only English but also other languages all
over the world in order to be truly interna-
tional.

Therefore, we have been working on the es-
tablishment of the framework that enables us
to develop processors of any language quickly.
Concretely speaking, we aim to build lexicons
and grammatical models semi-automatically
by using statistical processing. We also aim to
achieve processors for POS tagging and more
advanced language processing by using only
the combination of surface and statistical in-
formation of documents given. However, we
make it a condition that the documents writ-
ten in target languages have many translations
with source languages because it is difficult to
build processors without any clue at all.

Roughly speaking, the technical points of
our research are divided into the development
of lexicons and that of grammatical models. In

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 23-29,
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this paper, we choose POS taggers as an ex-
ample of processors and describe the method
of the following processes:

e to acquire POS lexicons that are com-
posed of [word, POS] pairs,

e to generate supervisors of POS sequences,

e and to learn grammatical models by using
the above-mentioned lexicons and super-
visors.

As a result of these processes, we can obtain
the POS tagger of the target language semi-
automatically. Finally, we do the experiment
of building POS taggers by using some source
languages and evaluate the accuracy of those
taggers.

1.1 Related Work

Recently, it has been found that various prob-
lems of tasks in the natural language pro-
cessing can often be solved easily by machine
learning if we can prepare a large amount of
tagged corpora. However, it is a large problem
to prepare tagged corpora that can be used as
supervisors of each task.

On the other hand, it is easy to obtain raw
corpora from the Internet and so on. There-
fore, there are some studies about the meth-
ods for building processors by using not tagged
corpora but only raw ones. (Goldsmith, 2001)
acquires the inflections of each word on the
basis of Minimum Description Length (MDL)
model. However, in order to use the method
of (Goldsmith, 2001), we first have to generate
probabilistic grammars manually, because this
method is to distinguish the ones acceptable
and the ones not acceptable. This means that
we have to know the characteristics of the tar-
get language well to some degree, and that it
is difficult to build processors of the language
we hardly know by this method.

In addition, semi-supervised learning is re-
ceiving much attention as the method for solv-
ing the problem of preparing a large amount
of tagged corpora in these days. This is a
method aiming to obtain the same effect as
the case where we prepare a large amount of
tagged corpora by giving only a small amount
of tagged data to a large amount of raw cor-
pora. (Niu et al., 2003) learns the extraction
rules from the seed words given first, gener-
ates the corpora of named entities by those
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rules, and finally builds a named entity ex-
tractor. As to semi-supervised learning, how-
ever, it is known that if tagged data include
errors even a little, errors increase rapidly in
the phase of automatic generation of supervi-
sors and thus it is difficult to achieve enough
accuracy. It is also difficult to give data with
accurate tags when we hardly know the target
language. Therefore, we have to do trial and
error so as not to cause the error propagation.

1.2 Policy

When we use translations with some specific
languages, the degree of difficulty of obtain-
ing them has a big influence on us. Generally
speaking, major news websites often deliver
not only articles written in local languages but
also those written in English. In other words,
there is a large probability that the documents
written in local languages have the English
translations, which we can use as parallel cor-
pora. However, we note that even if we can
obtain the translations with languages X and
Y, the sentences within the translations do not
always have one-to-one relations. Generally
speaking, it is difficult to associate the sen-
tences of language X with the sentences of lan-
guage Y with high accuracy when we hardly
know the relations of words of both languages.
Much less, it is almost impossible when we
hardly know the target languages.

Therefore, we decided to use the transla-
tions of the Bible as our experimental corpora.
The Bible is one of the most familiar docu-
ments that are read all over the world and
the translations with many languages are open
to the public on the Internet ((The Unbound
Bible, )). In addition, the number of chap-
ters and sections are the same in any language
though each translation of the Bible is parti-
tioned into many chapters and sections. This
means that the sentences have almost one-to-
one relations because each section has few sen-
tences.

On the other hand, as we described above,
we aim to achieve processors for advanced lan-
guage processing by using only the combina-
tion of surface and statistical information of
documents given. As the first approach, we
decided not to target the languages as follows:

e the languages whose character system has
not been digitalized yet,



e the languages whose words are not writ-
ten with a space between them,

e and the languages whose orthographies do
not distinguish common nouns and proper
nouns.

Not only the languages that have very few
users but also some of those that are used
in India are known that their character sys-
tems have not been digitalized yet. We can-
not disregard those Indian languages because
they have many users, but we cannot perform
the computer statistics if there is no digital-
ized corpora. Next, Thai, Cambodian, and
Laotian languages are known that their words
are not written with a space between them.
These languages, similar to Japanese, have a
large problem that it is very difficult for com-
puters to divide a sentence into words. Then,
Arabic, Hebrew, and Hindi languages have no
case sensitivity. These languages, similar to
German whose nouns always start with capi-
tal letters, have difficulties to extract the rela-
tions of words of other languages because it is
not easy to determine proper nouns.

For these reasons, we mainly target the lan-
guages that use Latin characters. Particu-
larly in this paper, we consider Portuguese and
Indonesian as major targets. However, our
method can be applied also to other languages
like French and Italian.

2 Extracting the relations of words

Our method for acquiring POS lexicons is
composed of two processes. One is a process
of extracting useful words by using statistics
of only one language. The other is a process
of extracting the relations of words of two lan-
guages by using statistics of both languages.
In this section, we describe both processes.

2.1 Extracting useful words on the
basis of statistical information of a
single language

Here, we describe the process of extracting the
words whose surfaces are similar to one an-
other (say sim-set), proper nouns, and word
collocations on the basis of statistical infor-
mation of a single language. The purpose of
extracting sim-sets is to presume the inflec-
tions/derivations of each word at the next pro-
cess.
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As we described in Section 1.2, we con-
sider Portuguese and Indonesian as major tar-
gets. This means that the words that al-
ways start with capital letters must be proper
nouns, though we have to take into account
the words that appear at the beginning of sen-
tences. Therefore, we partition all sentences
with spaces and symbols into words and ex-
tract each word w that satisfies the following
conditions from them:

® Cimqu(w), which is the count that w has
only small letters, is equal to 0.

® Cegpital(w), which is the count that w
starts with capital letters, is greater than
or equal to 5.

The probability that a word that is not a
proper noun satisfies the condition cgpqu(w) =
0 and cegpitar(w) > 5, is less than (1/2)° =
1/32 even if we assume that the probability
that it appears at the beginning of sentences
is 1/2. It follows that we can decide whether
a word is a proper noun with significance level
of 5%.

Next, C-value (Frantzi and Ananiadou,
1996) is known well as a method for extracting
word collocations from the text documents.
This method calculates the connectivity be-
tween the words, defined as C' — value(w)
(Il = 1)(n —t/c), where w is a word colloca-
tion wy ...wy, t and ¢ are the total count and
the distinct count of word collocations that in-
clude w and that are longer than w.

When the connectivity between some words
is strong, these words often appear composing
a group and C-value tends to be large because
t tend to be small in comparison with n. How-
ever, when the word collocations is short, C-
value tends to be unreasonably large because
c tends to be very large in comparison with n.
Therefore, we use not only C-value but also
C’-value (Yamasaki, 2008) in order to extract
word collocations. In other words, we extract
the word collocations whose C-value and C’-
value are larger than a threshold given.

Here, Portuguese is classified into the inflec-
tional language grammatically as well as other
European languages. The inflectional lan-
guages have the property that the elements of
grammatical functions are embedded in each
word and thus each word changes its form ac-
cording to the case, the gender, and the num-
ber. This means that we must have the means



Table 1: Example of french words extracted from the French Bible

Sim-sets

Proper nouns | Word collocations
Jubal en paix
Assyrie le livre
Jébusien car vous
Guérar nos peres
Nimrod I'autel
Calakh de guerre
Gaza sa femme
Dikla d’Egypte

{sanctifie,sanctifie-la,sanctifier,sanctifié,
sanctifieras,sanctifiée,anctifiez-vous,
sanctifierai,sanctifierez,sanctification,
sanctifiés,ssanctifierent,sanctifiez-le,

{répara,réparer,réparé,réparat,
réparent,réparérent },

sanctifiez,sanctifiaient,sanctifient,
sanctifiait,sanctifieront,sanctifiat }

by which we can determine inflection forms of
each word. Indonesian is classified into the ag-
glutinative language as well as Japanese. The
agglutinative languages have the property that
most words are formed with the joint of the el-
ements of grammatical functions. This means
that we must have the means by which we can
determine the stem of derivation words.

In most languages, it is known that the be-
ginning or the end of each word change its
form, though the middle does in Arabic and
Hebrew. Therefore, we formally define a sim-
set as the words whose common affix is longer
than a threshold given. Now, we partition all
sentences with spaces and symbols into words
and perform the following process for each pair
of words (wq,ws):

e let L, be max, min of (|wi], |w2|), respec-
tively.

e define w; ~ wo if and only if [ >
L/2 and the length of common prefix
pre(wy,we) > L/2 or the length of com-
mon suffix suf(wy,wy) > L/2.

e partition all words into equivalence class
based on ~*, which is defined as the re-
flexive transitive closure of ~.

We note that the definition of ~* does not
depend on the definition of ~. This means
that if we define ~ by using common subse-
quence instead of common affix, we may apply
the same method to the languages where the
middle of each word changes.

2.2 Extracting the relations of words
on the basis of statistical

information of two languages

Here, we describe the process of extracting the
relations of words of two languages on the basis
of statistical information of both languages.
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We expect that when a word w® of language
X corresponds to a word w? of language Y, the
positions of w® in corpora are related to those
of wY. Here, we note that it is not easy to de-
cide whether the positions have any relations
because the sentences within the translations
do not always have one-to-one relations. How-
ever, it is easy to do it when we use the trans-
lations of the Bible because the sentences are
almost parallel. Assume that an X-Y paral-
lel corpus has n corresponding sentences and
that the numbers of sentences where w* and
wY appear are shown in Table 2. For example,
both appear in a sentences, only w?® (wY) in b
(¢), and neither in d.

For such a table, it is known that y?-value,
defined as x% = n(ad —bc)?/efgh, follows a x?
distribution. On the basis of this value, we can
decide whether the words correspond to each
other. In addition, we can also decide the rela-
tions of 2-grams and those of word collocations
in the same way, because this test uses only the
number of sentences and does not depend on
the characteristics of languages and the length
of each sentence. On the other hand, because
this test does not use the information where
the word appears in a sentence, we sometimes
obtain two or more words that correspond to
a word given. This does not matter so much if
we can finally acquire POS lexicons composed
of [word, POS] pairs. However, in order to ex-
tract one-to-one relations in any case, we make
it a condition that we select the most similar
one in the similarity of surfaces. This is be-
cause a proper noun is probably pronounced
similarly in any language. In that sense, it is
more general to calculate the similarity after
we convert the surface into the pronunciation.

Now, we have described the method of ex-
tracting words and their relations by using
not language dependent information but sta-



Table 2: The number of sentences where w® and wY appear

wY appears | wY does not appear sum
w” appears a b e=a+b
w?® does not appear c d f=c+d
sum g=a+c h=b+d n=a+b+c+d

tistical information. From here, on the as-
sumption that we know language X well (=
we have a POS tagger of language X), we
describe the method of extracting the inflec-
tions/derivations of words of language Y we
hardly know.

As we described in the previous sec-
tion, a sim-set includes candidates of inflec-
tion/derivation forms of a word. Because we
have a POS tagger of language X, we can de-
cide whether some different words are in truth
the same by restoring each word to its stan-
dard form. In other words, we can extract
inflection/derivation forms of language Y that
correspond to a standard form of language X
by finding the subset that is contained in a
sim-set of language Y and is the most relevant
to the standard form of language X. Therefore,
we perform the following processes:

e choose a standard form of language X
w” and a sim-set of language Y sim¥ =

{w{,wl,...}.

e calculate x?-value for each subset sim?,
which is contained in simY.

e find the subset whose y2-value is maxi-
mum.

3 Acquiring POS lexicons and
generating supervisors of POS
sequences

In the previous section, we explained the
method of extracting the relations of words
of languages X and Y on the basis of statis-
tical information obtained from X-Y parallel
corpora. In order to acquire POS lexicons of
language Y finally, it is necessary to estimate
the POS of each word w¥ of language Y. Be-
cause we can know the POS of each word w®
of language X on the assumption that we have
a POS tagger of language X, we consider the
POS of w”® corresponding to wY as that of wY.

Here, we note that we may not be able to
decide the unique POS of w*. For example, it
is known that many English words are used as
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Table 3: List of part-of-speeches

A | ADJECTIVE P | PRONOUN

C | CONJUNCTION | R | ADVERB

D | DETERMINER S | PREPOSITION
I | INTERJECTION | V | VERB

M | NUMERAL 0 | DIGIT

N | NOUN _ | SYMBOL

a NOUN and a VERB. In other words, most
of English words have two or more POSes.
While the English word “name” can be used
as a NOUN and a VERB, the Portuguese word
“nome” is used as a NOUN only. Therefore,
from the viewpoint of the relevance ratio, it is
thought to be better that we estimate POSes
on the basis of the context. However, in order
to make our method simple, we consider all
possible POSes of w® as those of wY.

It is known well that most of European
languages belong to Indo-European languages
and there are few differences in the fun-
damental grammars between them. Con-
versely speaking, this means that the differ-
ence of languages does not affect so much the
POS sequences of the corresponding sentences.
Though Indonesian does not belong to Indo-
European languages, we generate the supervi-
sors of POS sequences of language Y on the
basis of POS sequences of language X by solv-
ing the Minimum Cost Matching Problem that
has the following conditions:

e the POSes of D, P, S, 0 and _ can match
the same POSes only, which is because
these POSes are thought to be the same
POSes for other languages,

e the skip cost is cgpip,

e the match cost is 0 if cand(w¥) = 0 or
pos(w®) € cand(wY), otherwise cq;f,

where pos(w?) is the POS of a word w” of lan-
guage X and cand(wY) is the POS candidates
of a word wY of language Y.

For example, Figure 3 shows that the French
word “commencement” matches the English
word “ beginning” and thus is estimated to



st iNvE NP3 (DR} {N} {C} D} (N} {3

09 r
08
07
06
05
04
03 r
02
01

[ Portuguese (total)
B Portuguese (distinct)
O Indonesian (total)
O Indonesian (distinct)

W

Esperanto

|

Spanish

Ii

English

Z U 0O zZz0 < zZ2 zZ2 0O 0w

Figure 1: A solution of Minimum Cost Match-
ing Problem solved by Dynamic Programing

be a NOUN. It also shows that “créa” matches
“created” and thus is estimated to be a VERB.
In order to make our method simple, we do not
use the relations of words this time. However,
we may make the condition that the match
cost reflects the relations of words.

4 Experimental results

We have already built the POS taggers of En-
glish, Spanish and Esperanto manually. In this
section, we explain the experimental results
of building POS taggers of some target lan-
guages semi-automatically on the assumption
that English, Spanish and Esperanto are used
as the source languages. While there are some
versions of the Bible by different translators in
some languages, we used the following versions
shown in Table 4 on this experiment.

First, we show the covering ratios in Figure
2. The total and distinct covering ratios are
defined as the ratios of total and distinct words
with one or more estimated POSes by using
our method, respectively. Though there are a
few differences, as you can see, the covering
ratios in Figure 2 are almost the same degree
even if the source language is English, Spanish
or Esperanto.

This means that our method is stable and
is independent of the characteristics of source
languages. In addition, we confirmed that we
acquired the POSes to almost all words by us-
ing statistical processing because the total cov-
ering ratio exceeds 0.8. However, the distinct
covering ratio of Indonesian is about 0.25 and
is lower than expected. There is still room for
improvement.

Next, we generated the supervisors of POS
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Figure 2: Total and distinct covering ratios

sequences based on the above-mentioned POS
lexicons and performed the machine learning
of grammatical models by using CRF (Laf-
fert, 2001). After that, we obtained the
POS taggers of the target languages semi-
automatically. We show the accuracy ratio
in Figure 3. The accuracy ratio is defined
as the ratio of correct POSes that the tag-
gers tagged onto words of sentences given. As
you can see, POS information is not attached
to the Bible. In order to evaluate the accu-
racy ratio, we extracted about 60 sentences
(about 900 words) from the Bible and made
the POS answers manually. Figure 3 shows
that the Portuguese tagger achieved high ac-
curacy of about 0.9 even though they are built
semi-automatically. Figure 3 also shows that
the accuracy of the Indonesian tagger is about
0.6. This is probably because the differences
between Indonesian and source languages are
large.

On the other hand, we analyzed failure cases
and confirmed that one of the causes of incor-
rect POSes that the taggers tagged is to reflect
grammatical features of source languages. For
one example, the word “there” in English is
ADVERB but is often expletive. For this rea-
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Figure 3: The accuracy ratios of POS taggers



Table 4: List of languages and versions of the Bible

Language | Version Sections | Total words | Distinct words
English American Standard 31103 918287 13256
Spanish Reina-Valera 31103 824760 28874
Esperanto | British and Foreign Bible Society | 31103 796700 30760
Portuguese | Joao Ferreira de Almeida 31103 828352 29306
Indonesian | Bahasa Indonesia Sehari-hari 31103 765810 47947

son, our taggers sometimes predicted by mis-
take some words as ADVERB, though those
words should be NOUN in Portuguese and In-
donesian. For another example, ADJECTIVE
comes ahead of NOUN in English although
ADJECTIVE comes behind NOUN in Por-
tuguese and Indonesian. For this reason, at
the sequences of words with the possibility of
being ADJECTIVE and NOUN, our taggers
sometimes predicted the previous word as AD-
JECTIVE as if the English tagger does.

Well, as you can easily see, many words that
do not appear in the Bible appear in modern
documents. This brings us a worry that the
accuracy ratio might drop in proportion to the
drop of the covering ratios, because as to the
words that do not appear in the POS lexicons,
our taggers must predict POSes from only pe-
ripheral words. Therefore, it will be important
to develop the method of extracting modern
words and estimating their POSes from large
corpora such as Wikipedia documents, for ex-
ample, by using grammatical knowledge of tar-
get languages given by hand at the minimum.

5 Conclusion

In this paper, we described our method that
is composed of two following processes. One is
the process of acquiring POS lexicons that are
composed of [word, POS] pairs by using par-
allel corpora of source languages and target
languages. The other is the process of gen-
erating supervisors that are used for machine
learning of grammatical models. And we con-
firmed that Portuguese and Indonesian POS
taggers are built semi-automatically by using
the Bible as parallel corpora and by using En-
glish, Spanish and Esperanto as the source lan-
guages. In addition, we confirmed that the
Portuguese tagger achieved high accuracy of
about 0.9 while the accuracy of the Indone-
sian tagger is about 0.6.

Although we did not target the languages
that use Cyrillic characters and Greek charac-
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ters in this paper, we have a mind to expand
the coverage of our method to such languages
as Russian, Ukrainian and Greek in the fu-
ture. On the other hand, a method (Mochi-
hashi et al., 2009) has attracted a great deal
of attention from many researchers in these
years. This method partitions each sentence
into words by using only statistical informa-
tion of the documents given. We will work on
word segmentation and will expand the cover-
age of our method to the languages which are
not written with a space between words.
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Abstract

We propose an unsupervised training
method to guide the learning of Malay
derivational morphology from a set of
morphological segmentations produced by
a naive morphological analyzer. Using
a morphology-based language model, we
first estimate the probability of a given
segmentation. We train the model with
EM to find the segmentation that maxi-
mizes the probability of each morpheme.
We extract the set of affix patterns pro-
duced by our algorithm and evaluate them
against two references: a list of affix pat-
terns extracted from our hand-segmented
derivational wordlist and a derivational

}@indiana.edu

(Gaussier, 1999), the application of minimum edit
distance and mutual information (Baroni et al.,
2002), and the mutation of virtual morphs (Koho-
nen et al., 2008). Most of these studies focus on
well-resourced languages with mostly inflectional
morphology such as English, German, and French
that usually take no more than one prefix or suffix;
the techniques have not been proven to work on
an under-resourced language like Malay. The only
effort to learn Malay morphology through a corpus
based approach that we are aware of is the work of
Knowles and Mohd Don (2006) who discovered
Malay word classes using a stemmer. Unfortu-
nately, their work lacks a technical discussion of
the learning approach, and the origin of the stem-
mer remains unclear.

In this paper, we adopt a modified version of the

history produced by a stemmer. unsupervised technique from Chinese word seg-

mentation (Ge et al., 1999; Peng and Schuurmans,
2001; Kit et al., 2003) to learn the derivational
For languages with complex morphology, mor-morphology of Malay, a language with hardly any
phological analysis is a crucial step. In most lan-inflectional morphology, by manipulating the out-
guages, morphological analyzers built with com-put of a naive morphological analyzer. Given a
prehensive morpho-phonological rules are used tdlalay word, the analyzer guesses all its possible
predict properties of words such as part-of-speeciorphological segmentations, producing a list of
(POS) or morpho-syntactic features on the basis apotential hypotheses. We then use the EM algo-
affixes. Designing a morphological analyzer capatithm to find the segmentation that maximizes the
ble of producing a complete analysis requires exprobability of each morpheme. Finally, we extract
tensive human effort and there is therefore considthe set of all possible affix patterns from the best
erable interest in machine learning of morphology.segmentations and evaluate them against our gold
In languages where words are not separateatandal‘d. Our task is not to evaluate the perfor-
by spaces, such as Chinese and Japanese, stafi@ance of the analyzer per se but to collect as many
tical language modeling and unsupervised learnteliable affix patterns as possible with the help of
ing are the preferred methods of learning seglanguage modeling and EM in an effort to build a
mentation of sentences into words (Ge et al.Malay derivational morphological lexicon.
1999; Peng and Schuurmans, 2001; Kit et al., The remainder of the paper is organized as fol-
2003). For morphological segmentation, unsuperfows: Sec. 2 describes the basics of Malay deriva-
vised methods include the use of minimum de-ional morphology. Sec. 3 presents an overview of
scription length (Goldsmith, 2001; Creutz and La-the unsupervised learning of morphological seg-
gus, 2005), the learning of suffixation operationsmentation. Sec. 4 discusses results and evaluation
and derivational rules from an inflectional lexicon and Sec. 5 concludes.

1 Introduction
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Malay word: diketahui (Eng.: “know”)

ber+ ke+ se+ orang || +an Hypothesis : {di-ketahu-i, di-ketahui, di-ke-
e | v <apy> | <N tahu-i, diketahui, di-ke-tahui,

diketahu-i}

) Figure 3: Sample analysis from Malay analyzer
Figure 1: Nested structure of Malay morphology g P y y y

English: Malay: the same analyzer using larger corpora from a dif-
use-ful-ness per-sefaham-an ferent domain. Finally, the best segmentations are
*help-ness-ful  se-pefjuang-an chosen, and unique affix patterns are extracted as

, _ _initial steps in developing a derivational lexicon.
Figure 2: English versus Malay morphotactics

3.1 MorfoMelayu

2 Malay Derivational Morphology We use a finite-state Malay morphological ana-
' ' o lyzer, MorfoMelayu! provided with an undiffer-

Malay is an Austronesian language with rich con-gptiated list of about 5000 Malay roots, a list of
catenative word structure and productive deriva-preﬁxes, and a list of suffixes. The analyzer is
tional morphology. A Malay word can be divided paijye in the sense that it knows no constraints on
intodiscrete morphemes  with clearly definedng order or co-occurrence of affixes. Given an in-
poundanes,_mclu@ng roots, prefixes, suffixes, INyut Malay word, it produces all possible segmen-
fixes, and circumfixes (Knowles and Mohd Don, tations of the word based on its limited knowledge
2006). In Malay morphology, affixes can be g the language (Figure 3).

nested, as shown in Figure 1. Although this list should include the correct

The loose restriction on word formation and thesegmentation, it will normally also include an av-
productive nature of certain affixes in Malay ré- erage of five incorrect ones for every word ana-
sults in a large number of possible affix patternsyyzed. It is the task of our machine learning algo-

and the nested structures impose complex COrithm to learn the precise morphotactics of Malay
straints on how affixes are combined. Unlike ingerivational morphology.

English, some affixes in Malay can be combined
in different orders, depending on the roots, to pro3.2 Morphology-based Language Model

duce derived words with distinct parts-of-speech,,-gram models are widely used in statistical lan-
(Figure 2). guage modeling to estimate the probability of a
Malay derivational morphology also makes character or word sequence. They can be utilized
use of reduplication, which is the only non- to find the most probable segmentation of a word
concatenative feature in Malay for which mor- or sentence. In morph0|ogy_based |a_nguage mod-
pheme boundaries are difficult to handle (Beesley|ing, morphemes are treated as the modeling unit
and Karttunen, 2003). In this experiment, we eX-(Tachbelie, 2010) instead of characters or words.
clude reduplication for the sake of simplicity. Since Malay morphology is mostly concatenative,
it is reasonable to use morphemesiagram units.
Given a Malay wordw = myms...mg, Where
k represents the number of morphemes, its most
We first extract unique word types from our train- likely segmentation into a morpheme sequence
ing corpora and feed them into the Malay morpho-can be determined according to maximum likeli-
logical analyzer. We then build asrgram model hood estimation (MLE) as:

3 Unsupervised Learning of Derivational
Morphology

from the output of the analyzer. For each derived K
word type, the analyzer provides a list of possi- s(w) = argmaprML(m ‘ m;ﬁ:}lﬂ) (1)
ble morphological segmentations. However, these i
are unreliable because of the limitations of the anyhere m;ﬁ:}lﬂ is the context of morphemen;

alyzer (see next section). In order to get a betandn, the order of the:-gram model. We choose

ter estimate of the probability of each morpheme;—/————
MorfoMelayu can be downloaded fromhttps:

we train then-gram model with EM on a new list /lwww.cs.indiana.edu/ ~ gasser/Research/

of pre-segmented derived word types produced byoftware.html
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a bigram model for this experiment because it ishe most probable segmentation that maximizes
less likely for a sequence of morphemes than for(w). Instead of initializing with uniform distri-

a single morpheme to coincide with a root. Asbution across the training data, we use the initial
an example, the Malay prefix sequenoeN-teR  probability estimation from the bigram model to
is very likely to be part of a derived word, e.g., boost the slow convergence of EM and perform 10
meN-teR-tawa (laugh), while the prefixeR alone iterations to produce a more reliabfém) for es-
can easily be part of the root, e.gerbang (fly)  timatingp(m) using (4):

or terjun (jump). Given a list of pre-segmented e

Malay derived words from the output of the Malay  f**1 = 3~} pw )ft(m cw') (4)
morphological analyzer, which we refer to bs weL—trw'eS(w)

model-news, we collect the frequency counts of

bigram morphemes from each word and estimaté/herem now represents a sequence of two mor-
their probability: phemest the current iteration angd’(m € w’) the

Flmi_1,m;) number of times a morpheme sequence m occurs
R AL (2) in segmentations’. Since maximum likelihood
f(mi-1) training is known to penalize longer sequences,
For smoothing, we apply Jelinek-Mercer linearwe add the normalization factar in (4), which
interpolation, which has been shown to performis the sum of the probabilities of all possible seg-
well on smaller training sets (Chen and Goodmanmentations for a particular word. We assume
1998) on oum-gram model. We reserve a sectiona uniform distribution for each uniqgue morpheme
of the training corpus for heldout datasheldout-  in the training listL-train-lit and assigfi®(m) a
news, containing 1,303 pre-segmented words confrequency of 1. We adjust (2) as (5) for simplicity,
taining 2,347 unique bigrams. The bigrams arewvheref(m) is the sum of frequency of all bigrams
partitioned into 4 different buckets according toin L-model-news. We derivep®(m) and its subse-
their frequencies and independently trained withquent values from (5).
the parameter valug, tuned between 0.1 and 0.9.
We linearly interpolate the bigram and unigram p(my;) =
model: 2

pyvrn(m; | mi—y) =

f(mi)

we€ L—model f(m)

®)

We update the count of each morpheme through

pitp(mi | mi-1) = Apars(mi | mia) + (1 - A)pML(”zg)) (4) for an optimum value of(m;). The updated
value of p(m;) is then used to re-calculatgw)
where ) is set to 0.1 for low frequency bigrams through (1) at the end of each iteration. Note that
(0-2 counts), 0.5 for high frequency bigramsl0 this differs slightly from the normal implementa-
counts) and 0.9 for bigrams of intermediate fre-tion of EM in which s(w) is re-estimated at each
quency (3-10 counts). Given that the output of thestep. We find that this method speeds up the con-
Malay morphological analyzer is only partially re- vergence process and improves the overall perfor-
liable to begin with, we train the bigram model mance of EM for our tasks.
with EM on a different pre-segmented wordlist
train-lit produced by the same analyzer. This step3-4 Derivational Lexicon of Affix Patterns
ensures a more reliabje,r,(m;) by minimizing  Based on the best segmentations produced by our
the bias towards the performance of the languagem algorithm, we extract all unique affix patterns
model, forcing EM to learn to generalize from the by combining over possible roots. We then con-
model. struct a lexicon consisting of unique affix patterns
o (e.g., meN-X-kan, ber-ke-X-an, where X repre-

3.3 EMTraining sents a possible root) for Malay derivational mor-
EM is favored mainly due to its guaranteed con-phology. We evaluate the validity of the affix pat-
vergence to a good probability model that locallyterns produced by our algorithm by comparing
maximizes the likelihood or posterior probability them with a list of affix patterns extracted from
of the training data (Dempster et al., 1977). Ina hand-segmented list of derived words produced
this experiment, given a set of hypotheses for alby a native speaker of Malay and an automatically
possible segmentations of a particular ward  derived list produced by a stemmer (Knowles and
s(w) = {wy,wy,...,w;}, we use EM to find Mohd Don, 2006).
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Hand Segmented Stemmer Error type | Analyzer Out- Hand- Pattern error
Lg-eval-news Ly-eval-lit Lg-eval-lit put segment

Precision 33.17 27.14 40.7 Root-Pref.| meN-teR-nak meN-ternak  meN-teR-X

Recall 61.11 58.06 36.16 Root-Suf. | beR-nila-i beR-nilai beR-X-i

F-Score 42.99 36.99 38.29 Suffix Re-| peN-tah-an- peN-tahan-  X-an-an

Lex. size 108 93 224 cursion an an

Pat. not recov, 42 39 143 All affix peN-di-di-kan  peN-didik-an  peN-di-di-kan
ooV beR-se-belah-an - ber-se-X-an

Table 1: Experimental results . .
Table 2: Typical errors of affix patterns

3.5 Datasets

Four different corpora are used for training and
evaluation. The first training corpus, used to build
the morphology-based bigram model, consists og

14,869 word types compiled from Malay NEWS terns. Finally, we find that most affix patterns not

articles. - The pre-segmented liskmodel-news, 0. areq from the training corpus are either out

contains 8,563 derived words (13,514 unique .b"of the vocabulary or result from ambiguous af-
grams). The second corpus, used for EM train

; ) fixes that also exist as parts of roots (affix-like syl-
ing, consists of 18,438 word types collected fromIables). These ambiguous affixes occur so often
Malay literature. After post-processing, the pre

. o . “that our algorithm fails to tell them apart. Table 2
segmented listL-train-lit, contains 15,916 de-

shows typical errors produced by the analyzer.
rived words producing 215 unique affix patterns. yP P y y

For evaluation, two separate corpora are cols Conclusion and Future Work

lected from Malay news articles and literature.

The news articles contain 5,797 word types with"e have explored the feasibility of using a naive

2,584 derived wordsL(;-eval-news), producing Morphological analyzer, a morphology-based lan-
108 unique affix patterns, while the literature hasguage model, and EM training for learning the

2,832 word types with 1,439 derived words;(- derivational morphology of an under-resourced

eval-lit), producing 93 unique affix patterns. Fi- language like Malay. As far as we know, this is

nally, we use a reference list of derivational historythe first attempt to combine these three methods in
(Lg-eval-lit) collected by Knowles and Mohd Don the learning of morphology. Our low precision and

(2006) from 4 Malay texts (119,471 words) andF-score indicate that our algorithm suffers from

ues (33.17% and 27.14%). Thirdly, the use of dif-
ferent domains for evaluation does not seem to
ffect the results, suggesting that domain is not
critical factor in collecting diversified affix pat-

generated by a stemmer (224 affix patterns). Over—Segmentation, which we believe is due to the
small reference sets used for evaluation. Despite
4 Results and Evaluation the discouraging overall results, our promising re-

call values (61.11% and 58.06%) show that most

To evaluate the lexicon we extracted from theOf the frequent affix patterns from our gold stan-

training data, we compared the affix patterns X dard are recognized from the analysis. Eventu-

tracted from the evaluation corpora, by hand or us- . .
ally, the error analysis can serve as a guideline to

ing the stemmer, with the patterns in the Iexicon.im rove the performance of the Malay moroho-
The results are shown in Table 1. b P y P

. logical analyzer. In future, we will compare the
There are a few observations to be made from . .

. . . ._performance of our algorithm with Morfessor 1.0
these results. Firstly, our implementation of EM is

. f [ hol I i

still biased towards shorter morpheme sequencel_gr unsupervised morphology fearhing (Creutzand
. . - agus, 2005). Our ultimate goal is to construct a

despite the added normalizing factot failing

. . hierarchical lexicon for Malay derivational mor-
to choose correct segmentations with longer se- . ) . .
hology by clustering affixes based on their posi-

quences. Secondly, a large amount of data is CI’LF ) .
, . . ions, precedence and lexical classes with the help
cial to extract as many unique affix patterns as

possible (an average of 4 unique affix patterns pe?f the improved analyzer.
100 derived words). The limited amount of hand-acknowledgments

segmented data used as the gold standard and the

tendency of our algorithm to choose words withThe first author is funded by the Ministry of
fewer morphemes represent major weaknesses fHigher Education of Malaysia.

our evaluation, resulting in very low precision val-
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Abstract

This paper concentrates on Punjabi language
noun and proper name stemming. The purpose
of stemming is to obtain the stem or radix of
those words which are not found in dictionary.
If stemmed word is present in dictionary, then
that is a genuine word, otherwise it may be
proper name or some invalid word. In Punjabi
language stemming for nouns and proper
names, an attempt is made to obtain stem or
radix of a Punjabi word and then stem or radix
is checked against Punjabi noun and proper
name dictionary. An in depth analysis of Pun-
jabi news corpus was made and various possi-

ble noun suffixes were identified like <Mt
1am, fonff iam, o aam, o' am, <18 1@ ete.
and the various rules for noun and proper
name stemming have been generated. Punjabi
language stemmer for nouns and proper names
is applied for Punjabi Text Summarization.
The efficiency of Punjabi language noun and
Proper name stemmer is 87.37%.

1 Introduction

stemming is the process for reducing inflected or
sometimes derived words to their stem, base or
root form, generally a written word form. The
stem need not be identical to the morphological
root of the word, it is usually sufficient that relat-
ed words map to the same stem, even if this stem
is not in itself a valid root. A stemmer for Eng-
lish, for example, should identify the string cats
and possibly catlike, catty etc. as based on the
root cat, and stemmer, stemming, stemmed as
based on stem. A stemming algorithm reduces
the words fishing, fished, fish, and fisher to the
root word, fish. Stemming is an operation that
conflates morphologically similar terms into a
single term without doing complete morphologi-
cal analysis. Stemming (Haidar et al., 2006) is
used in information retrieval systems to improve
performance. Additionally, this operation reduc-
es the number of terms in the information re-
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trieval system, thus decreasing the size of the
index files.

In Punjabi language stemming (Mandeep et
al.,2009) for nouns and proper names, an attempt
is made to obtain stem or radix of a Punjabi word
and then stem or radix is checked against Punjabi
noun morph and proper names list. An in depth
analysis of Punjabi news corpus was made and
various possible noun suffixes were identified
like <Poff Tam, ool iam, off aam, <7 am, <18
i€ etc. and the various rules for noun and proper
name stemming have been generated. Punjabi
language stemmer for nouns and proper names is
applied for Punjabi Text Summarization. Text
Summarization is the process of condensing the
source text into shorter version. Those sentences
containing Punjabi language nouns or proper
names are important.

2 Background and Related Work

The earliest English stemmer was developed by
Julie Beth Lovins in 1968. The Porter stemming
algorithm (Martin Porter, 1980), which was pub-
lished later, is perhaps the most widely used al-
gorithm for English stemming. Both of these
stemmers are rule based and are best suited for
less inflectional languages like English. (Gold-
smith, 2001) proposed an algorithm for the mor-
phology of a language based on the minimum
description length (MDL) framework which fo-
cuses on representing the data in as compact
manner as possible. (Creutz, 2005) uses probabil-
istic maximum a posteriori (MAP) formulation
for morpheme segmentation.

Not much work has been reported for stem-
ming for Indian languages compared to English
and other European languages. The earliest work
reported by (Ramanathan and Rao, 2003) used a
hand crafted suffix list and performed longest
match stripping for building a Hindi stemmer.
(Majumder et al., 2007) developed statistical ap-
proach YASS: Yet Another Suffix Stripper
which uses a clustering based approach based on
string distance measures and requires no linguis-
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tic knowledge. They concluded that stemming
improves recall of IR systems for Indian lan-
guages like Bengali. (Dasgupta and Ng, 2007)
worked on morphological parsing for Bengali.
(Pandey and Siddiqui, 2008) proposed an unsu-
pervised stemming algorithm for Hindi based on
(Goldsmith, 2001) approach.

3 Punjabi Language stemmer for Nouns
and Proper names

In Punjabi language stemming (Md. et al., 2007)
for nouns and proper names, an attempt is made
to obtain stem or radix of a Punjabi word and
then stem or radix is checked against Punjabi
noun morph and Proper names list. An in depth
analysis of corpus was made and the possible
noun and proper name suffixes (Praveen et
al.,2003) were identified (Tablel) and the vari-
ous rules for Punjabi word noun stemming have
been generated.

Table 1. Punjabi language noun/Proper name

suffix list
gt foongt oyt T
am iam aam am
Sg 3 154 o8
ic g o i0
3 o fonyr &
0 13 la m
S| 318 <t g
1 om vam ium
g H/H/H
ia jalzls

Proper names are the names of person, place
and concept etc. not occurring in Punjabi Dic-
tionary. Proper Names play an important role in
deciding a sentence’s importance. From the Pun-
jabi corpus, 17598 words have been identified as
proper names. The percentage of these proper
names words in the Punjabi corpus is about
13.84 %. Some of Punjabi language proper
names are given in Table2.

Table 2. Some of Punjabi language proper

names
TS BT
akali ludhiana
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=L Yfenrsr
badal patiala
A80d iy
jalndhar bhajapa

Algorithm of Punjabi language stemmer for
nouns and proper names is given below:
Stemming Algorithm

The algorithm of Punjabi language stemmer for
nouns and proper names proceeds by segmenting
the source Punjabi text into sentences and words.
For each word of every sentence follow follow-
ing steps:

e Step 1 : If current Punjabi word ends with
<Poff 1am then remove Mt am from end.

e Step 2 : Else If current Punjabi word ends
with T iam then remove ™ am from end.

e Step 3 : Else If current Punjabi word ends
with < am then remove ™ am from end.

e Step 4 : Else If current Punjabi word ends
with <12 1& then remove 2 & from end.

e Step 5 : Else If current Punjabi word ends
with F 1 then remove & 1 from end.

e Step 6 : Else If current Punjabi word ends
with < & then remove < & from end and add
kunna at the end

e Step 7 : Else If current Punjabi word ends
with <16 1o then remove € 6 from end.

e Step 8 : Else If current Punjabi word ends
with € i then remove f:€ i5 from end
and add kunna at the end

e Step 9 : Else If current Punjabi word ends
with € vam then remove < vam from end.

e Step 10 : Else If current Punjabi word ends
with <7< am then remove <7< am from end.

e Step 11 : Else If current Punjabi word ends
with 3¢ om then remove << om from end.

e Step 12 : Else If current Punjabi word ends
with < 6 then remove < 6 from end and add
kunna at the end

e Step 13 : Else If current Punjabi word ends
with <t im then remove <3< im from end.

e Step 14 : Else If current Punjabi word ends
with € ium then remove € ium from
end and add kunna at the end.



Step 15: Else If current Punjabi word ends
with <M 3 then remove ™ a from end.

Step 16: Else If current Punjabi word ends
with oo a then remove T a from end
and add kunna at the end.

Step 17: Else If current Punjabi word ends
with M 13 then remove " a from end.

Step 18: Else If current Punjabi word ends
with #A/9/A ja/z/s then remove H/HA/A

jalz/s from end.

Step 19: Current Punjabi Stemmed word is
checked against Punjabi noun morph or
Proper names list. If found, It is Punjabi
noun or Punjabi Proper name.

Algorithm Input: €3 phullam (Flowers) and

ZFAMI larkiam (Girls)
Algorithm Output: @& phull (Flower) and
Zadl larki (Girl)

Some results of Punjabi language stemmer for
nouns and Proper names for various possible suf-
fixes are given in table3.

Table3.Results of Punjabi language Noun/Proper
name stemmer

Punjabi Stem word suffix
Noun/Proper

Name word

FHTEMT JATE gy
Kasaia kasai 1a
fadmud fadmue
phirdzpurom phirdzpur om
ISECIRY ZFa oyt
larktam larki 1am
g L) LS
phullam phull am
it ISECH fomyt
larkiam larka iam
munde munda g
B3fI8 IYECH G
larkio larka 10
gt wg e
gharim ghar m
yge ygrer
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parande paranda €
HIr Ht o
mahia Mahi Ia
bhashavam bhasha vam
agnam agi uam
TS I 3
larko larka 0
BIe B3I S
larkie larki [E
G It g
larkio larki Io
ZFfar ISECH fonp
larkia larka ia
g T 8
mogium moga ium
FHE I g
bhashat bhasha I
AgSTH Ag3e A
satudaintas satidainta S

4  Results and Discussions

An In depth analysis of output of Punjabi lan-
guage stemmer for nouns and proper names has
been done over 50 Punjabi documents of Punjabi
news corpus of 11.29 million words. The effi-
ciency of Punjabi language noun and Proper
name stemmer is 87.37%, which is tested over 50
Punjabi news documents of corpus and is ratio of
actual correct results to total produced results by
stemmer. Table4 gives accuracy percentage of
various rules of stemmer which is ratio of correct
results to total results produced under that rule,
tested over 50 news documents. Table5 gives the
error percentage analysis of various rules of Pun-
jabi language stemmer. Errors are due to rules
violation or dictionary errors or due to syntax
mistakes. Dictionary errors are those errors in
which, after stemming, stem word is not present
in noun morph or Proper names list, but actually
it is noun. Syntax errors are those errors, in
which input Punjabi word is having some syntax
mistake, but actually that word falls under any of
stemming rules. Overall error percentage, due to
rules violation is 9.78%, due to dictionary mis-
takes is 2.4% and due to spelling mistakes is



0.45%. Some of rules have not been taken in the-
se table as we have not detected any accurate or
in accurate words for those rules in the input
Punjabi text.

Table 4. Accuracy %age analysis of rules of
Punjabi stemmer for Nouns and Proper names

Punjabi Accuracy Per-
Noun Suffix centage
Rules of Correct words
detected
Rulel < 86.81%
1am
Rule2 fomf 95.91%
iam
Rule3 o 94.44%
fam
Rule4 < 92.55%
am
Rule5 & 57.43%
€
Rule6 <t 100%
m
Rule7 o 100%
om
Rule8 &f 79.16%
vam

Table 5. Error %age analysis of various rules of
Punjabi stemmer for nouns and proper names

Punjabi | % age of | % age of | % age of
Noun Suf- In Cor- In Cor- In Cor-
fix Rules rect rect rect

words words words
due to due to due to
rules dictionary | spelling
Violation | mistakes | mistakes
Rulel <oyt 79.7% 20.30% 0%
1am
Rule2 foni | 86.65% 13.35% 0%
1am
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Rule3 o 0% 100% 0%
fiam
Rule4 oms | 68.71% 18.25% 13.04%
am
Rule5 8221% | 17.79% 0%
€
Rule6 ¥ 0% 0% 0%
m
Rule7 3 0% 0% 0%
om
Rule8 g 89% 11% 0%
vam
40 I

30

0% Usage each stemming
Rule

20

10

i

R1 R2 R3 R4 R5 R6 R7 R8

Graph 1 Percentage Frequency of Various
Stemming Rules

Graphl depicts the percentage usage of the
stemming rules. As can be seen, Rule 4 and Rule
5 are the most frequently used stemming rules.
Unfortunately Rule 5 has a low accuracy with
42.57% of words being wrongly stemmed by this

rule. Actually some of Punjabi words like IH
hassé (laugh), I%a halke (area), Hal mouke

(oppurtinity) and ¥€& badlé (revenge) are not

nouns and are not present in noun morph, but
they fall under Rule5 of stemmer which makes
them noun after stemming, which is not true.If
after stemming, root word is still not present in
dictionary then, that word may be a proper name
or may be syntactically wrong word which can
be ignored.



4  Conclusions

In this paper, we have discussed the Punjabi lan-
guage stemmer for nouns and proper names.
Most of the lexical resources used such as Pun-
jabi proper names list, Punjabi noun morph etc.
had to be developed from scratch as no work had
been done in that direction. For developing these
resources an in depth analysis of Punjabi corpus,
Punjabi dictionary (Gurmukh et al.,1999) and Pun-
jabi morph had to be carried out using manual
and automatic tools. This the first time some of
these resources have been developed for Punjabi
and they can be beneficial for developing other
Natural Language Processing applications in
Punjabi. Punjabi language stemmer for nouns
and proper names is successfully used in Punjabi
language Text Summarization.
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Abstract

Urdu is morphologically rich language with
different nature of its characters. Urdu text
tokenization and sentence boundary
disambiguation is difficult as compared to the
language like English. Major hurdle for
tokenization is improper use of space between
words, where as absence of case discrimination
makes the sentence boundary detection a difficult
task. In this paper some issues regarding both of
these language processing tasks have been
identified.

1 Introduction

Urdu is morphologically rich language, spoken
by more than 150 million people of the world;
either as their mother tongue or as their second
language. This language is composed of many
different languages, e.g. Arabic, Persian,
Turkish, Hindi, Sanskrit, and English. Moreover
it adopts new words from other languages. It is a
bidirectional language and uses Arabic based
orthography. Morphology of Urdu language is
influenced by all the languages mentioned above
(Riaz, 2007) (Wagqas et al., 2006).

Text tokenization is the process of identifying
word peripheries in written text. It divides the
text into its constituent words (Kaplan, 2005)
(Manning et al., 1999). It is a preliminary task
for all language processing systems, e.g.,
machine translation, part of speech tagging,
information retrieval, information extraction,
grammar checker, and spell checker. All these
language processing systems need their input text
with definite word boundaries.

Sentence boundary disambiguation is the process
of identifying sentence terminating punctuations
in written text. It divides the text into its
component sentences. Sentence boundary has its
own importance in above mentioned language
processing systems as well as it is equally
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important for; text summarization, text
paragraphing, parsing, and chunking. These
systems need their input text properly alienated
into sentences. Tokenization and sentence
boundary disambiguation are not easy tasks for
Urdu language. Urdu is a complex language with
respect to its morphology and nature of its
characters. In hand written Urdu text there is no
convention to use space for the isolation of
words from one another. The native speaker of
the language decides about the word boundary by
just looking at the shape of characters.
Tokenization becomes easy, if there is use of
space between words but in the computer typed
Urdu text the use of space is extremely uneven;
as it is used in some specific situations and this
conditional use of spaces makes tokenization
even more complex (Lehal, 2010). English also
has another advantage of case discrimination in
characters. This case discrimination is helpful in
identifying sentence boundaries. But Urdu also
lacks the case discrimination, which is the only
hint to know the starting point of a sentence.

2
2.1

Literature review

Segmentation techniques

Numerous tokenization techniques are used for
various languages of the world, e.g., rule based
techniques (Kaplan, 2005) , statistical techniques
(Lehal, 2010) , fuzzy techniques (Shahabi et al,
2007), lexical techniques (Wu et al, 1994)
(Xing et al., 2008) , and feature based techniques
(Meknavin, 1997). Significant work has been
done for Arabic (Attia, 2007) and Persian
language (Shamsford et al., 2009) also. In (Lehal,
2010) Space omission issues of Urdu script have
been addressed and resolved using bilingual
corpora and statistical word disambiguation
techniques.

Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), IJCNLP 2011, , pages 40-45,

Chiang Mai, Thailand, November 8, 2011.



2.2 Techniques for sentence boundary

detection

The task of sentence boundary disambiguation is
performed for numerous languages. Although
few of them are Arabic script languages, written
from right to left, but still no significant work has
been done for Urdu sentence boundary
disambiguation.

Various techniques have been used for different
languages, e.g., rule based techniques (Dincer et
al., 2004), collocation identification (Kiss et al.,
2006), regular expressions (Walker et al., 2001),
finite state models (Rezaei, 2001), heuristic rules,
artificial neural network models (Palmer et al.,
1994) and part of speech tagging (Mikheev,
2000).

3 Issues of text tokenization in Urdu

There is no concept of the space in hand written
Urdu text. A native speaker of this language can
understand and identify where a word ends and
from where a new word starts. But a machine can
not behave like a native speaker of the language
and can not interpret a text without obvious
boundaries of words. If there are two words “”
(water) and “~ " (birds), in hand written text a
speaker can distinguish between the two words
but if these two words are written in any
computer application then they must be separated
with space so that machine can understand them
as two different words, e.g., “~n = (water
birds). To avoid space character, a unique Urdu
character known as Zero Width Non-Joiner is
used. It just separates the two words without any
space between them, e.g., “c =" (water
birds). If space or zero width non joiner are not
used then it will consider them a single word,
e.g., “cml” (water birds), which is not
understandable even for the native speaker of the
language.

There are two types of characters in Urdu;
Joiner and non joiner characters. Inter word
space is only used when a word ends with a
joiner character. If the word ends with a non
joiner character then this space is rarely used. So
to properly tokenize the Urdu text, it is needed to
manipulate space between words.

Tokenization issues can be mainly divided into
following two categories;

Space inclusion issues
Space exclusion issues
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3.1 Space inclusion issues

When words are written in a way without space
between them, then it is needed to insert space
between them, so that machine can understand
their boundaries. There are many languages in
the world, in which words are written without
any space. This issue is not easy to resolve as
there are numerous ways to insert space between
the words. Moreover every way conveys
different context of the text.
In Urdu, space insertion is needed in following
two cases:
e When word ends with non joiner
character.
When zero width non joiner (ZWNJ)
is used between two words.

3.11

Characters given in following table are known as
non joiner or separator characters in Urdu.

Word ending at non joiner

| ijjjjlﬂd\ |

Table 1. Non joiner characters in Urdu

These characters have the specialty that they can
only acquire final shape and can not adopt initial
or medial shapes. Any joiner character can be
attached at their start but they can not be attached
at the start of the joiner character. When a word
ends with such a non joiner then space is not
inserted after it, as for a native speaker there will
be no ambiguity to distinguish it from other
words (Naim, 1999) (Siddiqi, 1971). Consult
Table 2. for such examples

et | g s ol e el s

@ dn
Asad reached out of the city.

Table 2. Words ending at non joiners

In example (I) words are written without inter
word space and in (II) words are written with
space at the end of each word. It is obvious that
all the words end at non joiner that’s why in
examples, I and II the sentence gives the same
meanings. Native speaker can understand that
both of the examples have same words but
example (I) is considered by machine as a single
vague word.

It is a major issue how to tokenize a string if
it has more than one possible combination.
Native speaker can identify the discrete words in



this case also by looking at surrounding words
but for machine it is impossible.

3.1.2 Use of ZWNJ between two words

Zero width non joiner is used between two words
when it is needed to separate them from each
other. But ZWNIJ does not help to distinguish
between word boundaries. It just helps to
separate them visually. For example “<S3«_sil,y”
(old track), in it both words are separated by an
additional ZWNJ character.

(old track) S5ausl
(Words without space or ZWNJ)
(old track) Shaw sl
(Words separated by space)
(old track) <S3w sl
(Words separated by ZWNJ)

Table 3. ZWNIJ between words

Tokenizer is also responsible to remove this
ZWNIJ and insert space instead of it so words can
be literally separated.

3.2 Space exclusion issues

Space exclusion is another issue of text
tokenization. The space that is used to separate
the words, some times occurs between words,
collectively giving the single meaning. During
tokenization these words need to be assigned
single boundary. Therefore the space between
such words is needed to be excluded.

In following cases this space should be
neglected while assigning boundaries to words:

e Compound words

Reduplication
Affixation
Proper nouns
English words
Abbreviations and Acronyms

3.2.1 Compound words

In Urdu there are following categories of
compound words with respect to their formation
(Sproat, 1992) (Schmidt, 1999) (Javed, 1985):

e AB formation
A-0-B formation
A-e-B formation
It is needed to treat them as a single word as
these different combinations form a single word.

3.2.1.1 AB formation

In AB formation two roots or stems join together
to form a semantically single word. When first
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word in the compound unit, ends with a non
joiner then it is rare to have a space between
them, e.g., “UnbilS” (well-off) but if it ends with
a joiner then space is inserted after it. During
tokenization this space must be neglected and
these words should be assigned a single
boundary (Sproat, 1992). See Table 2. for such
examples

(hard work) Cidse s
(basic needs of life)! 38 s
(parents) b U

Table 4. AB formation of compound words

3.2.1.2 A-0-B formation

In A-0-B formation two roots or stems are linked
to each other with the help of a linking
morpheme ‘5” and make a single semantic unit. If
the first morpheme ends at a non joiner then
there is no need to insert space between it and
linking morpheme, e.g., “Jls25,3” (boundary).
But if the first morpheme ends with joiner then
space is used between it and the linking
morpheme. So the tokenizer must neglect this
space and consider the compound unit as a single
token (Sproat, 1992).

Consider the following examples in Table 5. In it
space is used before and after the linking
morpheme. Without the space these words will
not be understandable even for the native speaker
but use of the space brings hurdle, if it is needed
to assign a single boundary to these words.

(honor) G a5 &y
(discipline) by 5 oL

(law and order) okl 5 ol

Table 5. A-o0-B formation of compound words

3.2.1.3 A-e-B formation

In A-e-B formation “e” is the linking morpheme
which shows the relation between A and B.
morpheme “e” is represented in Urdu by diacritic
“”. But before tokenization all diacritics are
removed and “” is replaced by space (Sproat,

1992). See the examples in Table 6.

(prime minister) aBe! )5
(student) ple Gl
(scene limit) ks 2

Table 6. A-e-B formation of compound words



Words of this type must be assigned a single
word boundary by excluding the inter word space
between them.

3.2.2 Reduplication

Reduplicated words must also be considered a
single semantic unit and if there is a space
between them, then it should be excluded in
order to assign a single boundary to reduplicated
words (Sproat, 1992).

BNIEY alas asan ) 45
(day by day) | (pomp & show) | (getup)
PP PN T e 55
(character by (early morning) | (bread)
character)

Table 7. Reduplication of words

In the examples in Table 7, all the reduplicated
words are separated by space. Tokenizer is
responsible to neglect this space and mark them
as a single word.

3.2.3 Affixation

Affixes are commonly used in Urdu. Both
prefixes and suffixes are used in it. Whenever
any affix (prefix or suffix) or stem are individual
morphemes and prefix ends with a joiner then
space is inserted between the prefix and the stem.
Similarly if the stem ends with a joiner then
space is inserted between stem and suffix. But
they are single semantic units so these must be
encapsulated in a single boundary by excluding
the space between stem and affix (Sproat, 1992)
(Platts, 2002). See the examples of prefixes in
Table 8.

R ENEToN Gl i A
(polite) (lucky)
Crad S

(expensive) (hard work)

Table 8. Prefixation

See the examples of suffixes given in Table 9.

Jls Al )'5\_'1\ [SEPTEN
(apparatus) (amazing)
] )15 /\.lLA P o qul...’z
(investment) (married)
o Ll Sb i
(misunderstanding) (fearful)

Table 9. Suffixation

43

3.2.4  Proper nouns

Most of the time proper names are divided
into first name and last name or into first
name,second name and last name (Schmidt,
1999). It is often seen that space is used
between these parts but this space should be
excluded, so that a name with all its parts can
become a single token (Sproat, 1992). Proper
noun examples are given in Table 10.

e s S Oma
(Saudi Arabia) (Hassan Ali)
RIS Sl s
(Islamabad) (Sawliha Bano)
~& A (o i B D)
(South Africa) (Zainab Noor)

Table 10. Proper nouns containing more than one
constituent

3.25 English words

Some of the English words are used in Urdu.
These words are often composed of more than
one morpheme. When first of these morphemes,
written in Urdu ends with a joiner character then
space is used between them. This space should
be neglected by the tokenizer to assign these
words a single boundary (Sproat, 1992). Such
examples are given in Table 11.

(telecommunication) (test match)
S i S5
(network) (medical center)
KIER PETEY
(football) (ash tray)

Table 11. Words of English language commonly
used in Urdu

3.2.6  Abbreviations and acronyms

English abbreviations are used in Urdu, in the
form of pronunciation of English characters,
written in Urdu, with space between each
character’s pronunciations. These abbreviations
behave as a single word. If these are followed by
any name then along with the name they form a
single unit (Sproat, 1992). Abbreviation and
acronym examples in Urdu are given in Table 12.

(PhD) 3 &l 2
(NLP) 2 i ¢n

(M.Qureshi) (= 8 a)
(AK. Shah) o= S .|

Table 12. English abbreviations



4 Issues of Urdu sentence boundary
disambiguation
According to linguists a sentence is an

expression. It is a collection of words that
conveys a complete thought and contains a
subject and predicate. Subject is usually a single
word or several words; noun or pronoun. It tells
about what or whom the sentence is concerned.
Predicate is a verb; it tells what the subject is
doing or being in the sentence. In the simple
most Urdu sentence the subject comes first, then
predicate and finally the verb; whereas the object
and the predicative nouns come in the middle of
the sentence (Platts, 2002).

In Urdu language sentence  boundary
disambiguation, challenges arise due to its
certain properties such as: absence of
capitalization and the use of punctuation marks
in abbreviations and acronyms. In English,
characters can be written in upper and lower case
and the difference in characters case is helpful in
identifying the sentence boundaries. There is a
convention in English language that if a period is
followed by a word starting with capital letter
then it has maximum probability to become a
sentence marker. But in Urdu there are no case
discriminations to indicate the start of the
sentence

Punctuations like -, <., ‘?” and ‘!’ are used as
sentence terminators and these can also be used
inside the sentence; e.g., in Urdu text ‘-’ is used
to describe range between two values, in dates,
part of abbreviation, and also as the line breaker.
Examples for such cases are given in Table 13.

P e
i S e S 55050 ol o S
I35 LS
(Ahmad was out of the city for five to six
years. For the sake of job he had to travel far
and wide.)
=S A0 o LSy e (S AT ev0
-5 e Sdga 3l
On 08-10-2005, sever earthquake jolts had
been felt in Pakistan.
G e gslbe 90 teay Gulima (S o oGl g
-G e zob s
The economy of the U.S.A. has been badly
affected since previous two years.

Table 13. Use of (-) at different locations in an
Urdu sentence
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Full stop or .’ is also used as sentence terminator
in Urdu script as well as the decimal symbol as
shown in Table 14.

RS, YAk (S 5 m dSe S
Intensity of the earthquake was 7.8 on
Richter scale.

Table 14. Use of (.) at different locations

If there is punctuation inside the Urdu text then
by just considering the characters of its
surrounding words, it can not be decided that
either a given punctuation is sentence terminator
or not. Consult table 15. for such examples

< A8 S WS LS ol
Wow! What a wonderful place.)
"5 S "Bl e
(He Screamed, “Help me.”)
o S hle LS ol 0l S0 S
(Why? What did he do wrong?)

Table 15. Ambiguity in sentence boundary due to
punctuations

Obviously in the above cases it is difficult for the
machine to isolate the punctuations from
sentence termination behavior.

5 Conclusion and Future work

In this paper issues are described for Urdu text
tokenization and sentence boundary
disambiguation. In hand written Urdu text, words
are written in continuation without any space
between them. But computer text files demand a
separator, whenever a word ends with joiner
character. Without any separator, word of this
sort will join itself to next word resulting into an
indefinite word that is not understandable even
for the native speaker of the language. Demand
of this separator is satisfied by inserting space
character or zero width non joiner after the words
ending with joiner characters. On the other hand
words ending at non joiners are not followed by
any space character or zero width non joiner. In
short this intricate job is concerned to manipulate
spaces between words, so that machine can
demarcate their boundaries. Different statistical
and rule based techniques have been applied on
the different languages of the word, which are
even much more complex than Urdu language, to
solve their segmentation issues. In future we will
target some of these techniques along with hand



crafted dictionaries of Urdu compound words,
affixations and some commonly used English
words in Urdu script.

Sentence boundary disambiguation has its own
challenges for Urdu. This task is easier to some
extent in the languages with upper and lower
case character discrimination. As in English there
is convention that a period followed by a word
starting with an upper case letter, has maximum
probability to be a boundary marker. But in
Urdu, the language without case discrimination,
it is difficult to find the punctuations showing the
behavior of sentence boundary. In future we are
aimed to solve these issues by using part of
speech information of each word followed by
any putative sentence boundary. This
information can be helpful to know that either
the current word should be followed by a
sentence terminator or not.
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Abstract

Urdu language raises several challenges to Natu-
ral Language Processing (NLP) largely due to its
rich morphology. In this language, morphological
processing becomes particularly important for In-
formation Retrieval (IR). The core tool of IR is a
Stemmer which reduces a word to its stem form.
Due to the diverse nature of Urdu, developing
stemmer is a challenging task. In Urdu, there are
large numbers of variant forms (derivational and
inflectional forms) for a single word form. The
aim of this paper is to present issues pertaining to
the development of Urdu stemmer (rule based
stemmer).

1. Introduction

Urdu is an Indo-Aryan language. It is the nation-
al language of Pakistan and is one of the twenty-
three official languages of India. It is written in
Perso-Arabic script. The Urdu vocabulary con-
sists of several languages including Arabic, Eng-
lish, Turkish, Sanskrit and Farsi (Persian) etc.
Urdu’s script is right-to-left and form of a word’s
character is context sensitive, means the form of
a character is dissimilar in a word because of the
position of that character in the word (beginning,
centre, on the ending) (Waqas et al., 2006).

In Urdu language, morphological processing
becomes particularly important for Information
Retrieval (IR). Information retrieval system is
used to ensure easy access to stored information.
It also deals with saving, representation and or-
ganization of information objects. Modules of an
IR system consist of a group of information ob-
jects, a group of requests and a method to decide
which information items are most possibly help-
ing to meet the requirements of the requests. In-
side IR, the information data which is stored and
receives search calls usually corresponds to the
lists of identifiers recognized as key terms, key-
words. One of the attempts to make the search
engines more efficient in information retrieval is
the use of stemmer. Stem is the base or root form
of a word. Stemmer is an algorithm that reduces
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the word to their stem/root form e.g. tested, test-
ing, pretest and tester have the stem “test”. Simi-
larly the Urdu stemmer should stem the words aS
Jie (senseless), e Jie (sensible), ¢ia J& (sa-
gacity) to Urdu stem word J& (sense). Stemming
is part of the complex process of taking out the
words from text and turning them into index
terms in an IR system. Indexing is the process of
selecting keywords for representing a document.
The smallest units of word which cannot be de-
composed further into smaller meaningful units
are called Morphemes.' They are of two kinds:
free morphemes and bound morphemes. Mor-
phemes which exist freely (alone) are called free
morphemes whereas bound morphemes are made
as a result of combination with another mor-
pheme. For instance "flower" is a free mor-
pheme, while "s" is the example of a bound mor-
pheme.

The study of internal structure of words is
called Morphology.” Deriving new words from
the existing ones is called derivational mor-
phemes e.g. Honour, Honourable, Honourably.
Examples in Urdu: The words <l (love), Uila
(to love) and Y (lovely) are the derivatives of
word ol> (love). Those morphemes that produce
the grammatical formation of a word is called
Inflectional morphemes e.g. Boys. Examples in
Urdu: The words »# < (harder) and (ns G
(hardest) are the inflected forms of word <
(hard).

The stemmer is also applicable to other natural
language processing applications needing mor-
phological analysis for example spell checkers,
word frequency count studies, word parsing etc.
The rest of the paper is organized as follows: In
section 2, different rule based stemming algo-
rithms are discussed. Section 3 gives an introduc-
tion regarding orthographic features. In section 4,
several issues pertaining to Urdu stemmer are

! http://www.ielanguages.com/linguist.html
? http://introling.ynada.com/session-6-types-of-
morphemes
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discussed in detail. Conclusion of the study and
the future work is discussed in section 5.

2. Stemming Algorithms

There are four kinds of stemming approaches
(Frakes, R.Baeza-Yates, 1992): table lookup,
affix removal, successor variety and n-grams.
Table lookup method is also known as brute
force method, where every word and its respec-
tive stem are stored in table. The stemmer finds
the stem of the input word in the respective stem
table. This process is very fast, but it has severe
disadvantage i.e. large memory space required
for words and their stems and the difficulties in
creating such tables. This kind of stemming algo-
rithm might not be practical. The affix removal
stemmer eliminates affixes from words leaving a
stem. The successor variety stemmer is based on
the determination of morpheme borders, i.e., it
needs information from linguistics, and is more
complex than affix removal stemmer. The N-
grams stemmer is based on the detection of bi-
grams and trigrams.

The (J.B. Lovins, 1968) published the first Eng-
lish stemmer and used about 260 rules for stem-
ming the English language. She suggested a
stemmer consisting of two-phases. The first stage
removes the maximum possible ending which
matches one on a redefined suffix list. The spel-
ling exceptions are covered in the 2™ stage.

The (M.F. Porter, 1980) developed the
stemmer on the truncation of suffixes, by means
of list of suffixes and some restric-
tions/conditions are placed to recognize the suf-
fix to be detached and generating a valid stem.
Porter Stemmer performs stemming process in
five steps. The Inflectional suffixes are handled
in the first step, derivational suffixes are han-
dling through the next three steps and the final
step is the recoding step. Porter simplified the
Lovin’s rules upto 60 rules.

Different stemmers have also been developed
for Arabic language. The (S. Khoja and R. Gar-
side, 1999) developed an Arabic stemmer called
a superior root-based stemmer, developed by
Khoja and Garside. This stemming algorithm
truncates prefixes, suffixes and infixes and then
uses patterns for matching to pull out the roots.
The algorithm has to face many problems partic-
ularly with nouns. The (Thabet. N., 2004) created
a stemmer, which performs on classical Arabic in
Quran to produce stem. For each Surah, this
stemmer generates list of words. These words are
checked in stop word list, if they don’t exist in

47

this list then corresponding prefixes and suffixes
are removed from these words.

The (Eiman Tamah Al-Shammari, Jessica Lin,
2008) proposed the Educated Text Stemmer
(ETS). It is a simple, dictionary free and efficient
stemmer that decreases stemming errors and has
lesser storage and time required.

Bon was the first stemmer developed for Per-
sian language (M. Tashakori, M. Meybodi & F.
Oroumchian, 2003). Bon is an iterative longest
matching stemmer. The iterative longest match-
ing stemmer truncates the longest possible mor-
pheme from a word according to a set of rules.
This procedure is repeated until no more charac-
ters can be eliminated. The (A. Mokhtaripour and
S. Jahanpour, 2006) proposed a Farsi stemmer
that works without dictionary. This stemmer first
removes the verb and noun suffixes from a word.
After that it starts truncation of prefixes from that
word.

Till date only one stemmer i.e. Assas-Band,
developed for Urdu language (Q. Akram, A. Na-
seer and S. Hussain, 2009). This stemmer ex-
tracts the stem/root word of only Urdu words and
not of borrowed words i.e. words from Arabic,
Persian and English words. This algorithm re-
moves the prefix and suffix from a word and re-
turns the stem word. This stemmer does not han-
dle words having infixes.

3. Orthographic Features of Urdu

According to (Malik M G Abbas et al., 2008),
Urdu alphabet consists of 35 simple consonants,
15 aspired consonants, 10 vowels, 15 diacritical
marks, 10 digits and other symbols.

3.1 Consonants

Consonants are divided into two groups:

a. Aspirated Consonants
There are 15 aspirated consonants in Urdu lan-
guage. These consonants are shown by a group-
ing of a simple consonant to be aspirated. A spe-
cial letter called Heh Doachashmee (&) is used to
mark the aspiration. Aspired Consonants are gy,
-HI-BJI-%J’"IPIRI-‘B)IE;I-BSI-Bgl@)I@)h ’
por 954 ¢

b. Non Aspirated Consonants
Urdu language consists of 35 non aspirated con-
sonant signs that represent 27 consonant sounds.
Various scripts are employed to show the similar
sound in Urdu, For example: Sad (u=), Seen ()
and Seh (<) represent the sound [s].



3.2 Vowels

Urdu has ten vowels. Seven of them contain na-
salized forms. Out of these seven, four long vo-
wels are represented by Alef Madda (1), Alef (),
Choti Yeh (s) and Vav (8) and three short vo-
wels are represented by Arabic Kasra (Zer),
Arabic Fatha (Zabar) and Arabic Damma (Pesh).
In Urdu language, the Vowel demonstration is
context sensitive. For example, the Urdu Choti
Yeh (s) and Vav (¥) can also be used as a conso-
nant (Malik M G Abbas et al., 2008).

3.3 Aerab Marks

The aerab marks are those marks that are added
to a letter to change the pronunciation of a word
or to differentiate among similar words. It is also
called as diacritical mark or diacritic.?

There are 15 accent marks in Urdu (Malik M G
Abbas et al., 2008). Accent marks (Zabar, Zer,
Pesh, Ulta Pesh, Do-Zabar, Do-Zer, Do-Pesh etc)
represent vowel sounds. These are placed above
or below of an Urdu word. The accent marks are
very rarely used by people in writing Urdu.
When the diacritic of a character in a word is
changed then it could entirely change its mean-
ing. These accent marks play a significant role in
the right pronunciation and recognition of mean-
ing of a sentence, such as:

et e S 5sSly ws)s

(A vine is on the tree)

= LS el

(The bull is eating grass)

In the first sentence, the word (J») means “a
creeping plant” or a “vine” while in the second
sentence it means a “bull”. To remove the doubt
between these two words, there should be Zabar
after Beh (<) in the second sentence.

and

3.4 Special Characters

There are two special characters used in Urdu
which are discussed bellow:

a. Hamza ()
Hamza is used to separate two consecutive vo-
wels sounds. For example, in °sl (come), Hamza
is separating two vowel sounds i.e. Alef Madda
(") and Vav (5).

b. Heh Doachashmee (*)
Heh Doachashmee (®) changes the action of a simple

3 http://www.the-comma.com/diacritics.php

48

consonant and makes it aspired consonant. For exam-
ple, g+ =p>, 0+ =p
Examples in words: |Xip>, Jpu

(Flag, Fruit)

4. Issues in developing an Urdu Stemmer
4.1 Morphological rich language

Urdu is morphologically rich language. It pro-
duces high number of derivational and inflec-
tional words for a single word form. There are 57
different forms that can be generated from a sin-
gle Urdu word (Rizvi, S. & Hussain, M., 2005).
For Example, some different forms of Urdu word
2% (read) are:

SISO Y- STIRENT- SIPREN- SIPIgUE. SRR S TPV S I V. 5

ST SV SYALT SR SO [T S VRN T S VAT S¥

Besides its own vocabulary, the Urdu vocabu-
lary also consists of large number of Arabic, Per-
sian, Hindi and English words etc. Thus Urdu
language inherits the characteristics of the above
mentioned languages too and as a result stem-
ming process becomes a challenging task. We
cannot achieve a good level of precision if a
stemmer of any borrowed language is used as a
stemmer on Urdu words. The reason is that, the
Arabic stemmer will just stem Arabic words that
are used in Urdu as borrowed words and a Per-
sian stemmer will just stem borrowed Persian
words etc.

By using traditional process of modeling every
form of a word as a unique word generates a lot
of problems for Natural Language Processing
applications such as growth of vocabulary, in-
flectional gaps, larger out-of-vocabulary rates
and poor language model probability estimation.

The relation among words in Urdu is found by
using inflecting nouns, postposition and pro-
nouns to state case information, number and
gender. Inflecting verbs to reproduce number,
gender and person information etc. Inflecting
adjectives are to agree with the noun in number,
gender and case. Thus, the standard stemmers
which are developed for English words are not
practically implementable for Urdu language.

4.2 Engineering issues

Urdu is bidirectional language and electronically
we cannot represent it in ASCII form. Such type
of language is represented by a special character



set called Unicode. The Arabic Orthography Un-
icode Standards are used to process Urdu.
Unicode is not supported by many programming
languages. The languages that support Unicode
include C#, Python and Java etc. Some pro-
gramming language support Unicode but the IDE
may not support it fully.

4.3 Diacritical Marks

Special attention should be given to the diacriti-
cal marks while developing an Urdu stemmer.
The stem of an Urdu word changes with the use
of these marks. For example ¢ is used in two
senses, when Zabar is placed above the character
¢ and on J, then its meaning is people and its
stem is sl (people). But when Zer is placed be-
low J, then its meaning is scholar and its stem is
ale (knowledge).

Similarly Juy word has two meanings. One is
messengers when Pesh is used on 4 and o« with
stem Js= (messenger) and other is access when
Zabar is used on J and o= with stem Jw) (send-
ing). Another example is the word a& | which
has two meanings (The last/ring), the first one
has stem a3 (finish) and second has a3 (ring).

4.4 Compound Words

For word formation, compounding is one of the
morphological procedures. The grouping of two
words which already exist is called a compound
word (Payne, Thomas E., 2006). When two or
more than two lexeme stems are merged together
to produce another lexeme, then it is called com-
pound word (Sproat. R., 1992). Examples are:
Firefighter, Blackbird, Water-hose, Hardhat,
Rubber-hose and Fire-hose in English.
It is very difficult to classify the compound
words as a single or multiple words. The (Durra-
ni N., 2007) discussed three schemes of com-
pound words in Urdu i.e. AB, A-0-B and A-e-B.

a. AB formation
This scheme involves only joining of two free
morphemes e.g. s m (Bandaging) , ss= ok
(husband wife), couple literally, J\sa) Ja (condi-
tion). AB form of compounds is further classified
into Dvanda, Tatpurusa, Karmadharaya and Di-
vigu (Sabzwari S, 2002).

b. A-o0-B formation
This formation of Urdu compounds contains a
linking morpheme “0” and is represented by a
character “g9” , e.g.s i (soberness and
humility), <\iSs ki (correspondence), Claly (4l
(law and order).
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c. A-e-B formation

In this formation constituent words are con-
nected with the help of one of the enclitic short
morphemes; zer-e-izafat or hamza-e-izafat e.g.
@Sdaa jua (president) is combined by a diacritical
mark “Zer” below u called as zer-e-izafat while
in J> #~3a (heart’s spirit) and ol S (Islam-
ic caliphs), the diacritical mark hamza (#) is used
as a hamza-e-izafat.
Some times the reduplication also produces am-
biguity; whether it is treated as single or double
word e.g. il g5l piaasg] gl nS> AS>
(together, slowly, at every place)
Therefore there should be some rule for the
identification of compound words. Thus these
points should be considered while developing an
Urdu stemmer.

4.5 Tokenization

The natural language processing applications
need that the entered text should be tokenized for
further processing. English language generally
uses white spaces or punctuation marks for the
identification of word boundaries.

Although in Urdu, space character is not present
but with increasing usage of computer, it is now
being used, for generating right shaping and to
break up words.
Example: S3,19195 3459 =t )95 =i ) Mo

(The President called away the Minister)
In the above sentence there are eight words (to-
kens) but computer will consider the whole sen-
tence as a single word because the computer will
generate tokens on the basis of space occurrence.
As due to non-joiner characters (here J<g¢e <)) in
the words, no space occurs among words, so this
whole sentence is considered as a single word.
Therefore, during stemming, these non-joiner
characters wrongly generate tokens of input text,
stemmer will generate wrong resultantly stem.
Tokenization process should be error free, hence
producing correct tokens before applying an Ur-
du stemmer.

4.6 Affixes Removal

The word affix is used by the linguists for ex-
pressing that where a bound morpheme precisely
be joined to a word. The Prefix, Suffix and infix
are called affixes. Due to the use of affixes, a
single word may contain a lot of variants and by
removing these affixes (prefix and suffix) from a
word will result into a stem word e.g. #48% (mis
presumption). After removing the Urdu prefix



and suffix from this word, produced a stem word

O (presumption).

A lot of stemmers (except for Urdu) were devel-
oped for stripping off prefixes & suffixes from a
word but there is little work done on infix strip-
ping from a word. We cannot get stem word of
an Urdu word by only stripping off prefixes and
(or) suffixes e.g. als8 (nations) , alwa (mos-
ques) , aste (knowledge).

These words contain infixes and large amount of
such type of words are present in Urdu. Special
attention should be given to those Urdu words
having infixes. After studying the morphology of
Urdu words, it is noticed that if patterns for such
type of words (having infixes) are made, then a
correct stem could be achieved.

4.7 Exceptional Cases

a. Exceptional words

The removal of affixes (Prefixes and Suffixes)
from a word produces a stem word but some
times truncating these affixes leads to an errone-
ous stem e.g. J4. Here U is a prefix, where the
stemmer eliminates it by producing J2 , which is
not a correct stem of the above stated word.
It means that in some words, the affixes play the
role of stem characters and should not be re-
moved. Such type of words should be treated as
an exceptional case. In Urdu, there are a lot of
words that can be treated as an exceptional case,
thus for a stemmer, such word lists should be
maintained in advance.
b. Urdu digits, Arithmetic Symbols and
Punctuations

Urdu is read and written from right to left but
when numbers are introduced, it is read and writ-
ten from left to right.
SV S,9,0Y &3 gy S moi>
(Hafsa’s birthday is 2" February 2009)
The Urdu digits (*-%), Arithmetic Symbols (+,-
,*, /) and Punctuation marks (.,$, », <, " ,¢ )
should be treated as an exceptional case during
developing Urdu stemmer.

4.8 Stem-word Dictionary

To check the accuracy of any stemmer, there
should be a stem word dictionary. After studying
relevant literature, it is noted that there is no stem
dictionary available for Urdu text. Therefore,
development of an Urdu stem dictionary is ne-
cessary for testing the accuracy of a stemmer on
huge corpus.
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4.9 Different Urdu words having same stem

In Urdu, there are a lot of words that are different
in meaning but their stem is same e.g. s (cha-
racteristic) and JY (signs). As we mentioned that
the meaning of these two words are different
from each other but their stem is same i.e. J
Similarly the words <Ssk (rulers) and < (an-
gels) are two different words having single script
for their stem without diacritical marks i.e. <da,
The word < has two meanings i.e. ruler or an-
gel. The word Js< (principles) and <ulal (facts)
have same stem i.e. J«al (principle/fact). Such
type of words needs attention while developing a
stemmer for Urdu language.

4.10 Code switching

Code switching, in linguistics, is the parallel use
of more than one languages during conversation.
The code switching in Urdu language is common
and it accepts foreign words especially from
English, e.g. = borrowed ®4S ~ (This Camera
is borrowed).

In this example the Urdu text is from right to
left-wards, while the English word “borrowed” is
from left to right. The tokenization of the above
sentence is performed in proper way electronical-
ly but Urdu stemmer will not stem the foreign
word “borrowed”, which is an issue.

5. Conclusion and Future Work

Stemmer is the core tool of any IR system. In this
paper we have discussed some rule based Eng-
lish, Arabic, Persian and Urdu stemmers. Very
less work has been done on Urdu stemmer due to
its complex and rich morphology. Besides its
own vocabulary, Urdu is also influenced by other
morphology such as Arabic, Persian, Hindi, Eng-
lish etc. We have pointed out some challenges
pertaining to the development of an Urdu stem-
mer. These issues should be considered while
developing a rule based Urdu stemmer.

After studying different stemmers developed for
Arabic, Persian and Urdu languages, we intend to
develop an efficient rule based Urdu stemmer
which will not only handle those Urdu words
having prefixes and suffixes but also infixes. We
will make patterns for handling infixes. For pre-
processing of the proposed Urdu stemmer, Urdu
stop word list will be maintained. An Urdu stem-
word dictionary will also be prepared for evalua-
tion purposes.
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Abstract

Arabic morphology poses special challenges
to computational natural language processing
systems. Its rich morphology and the highly
complex word formation process of roots and
patterns make computational approaches to
Arabic very challenging. In this paper we
present an approach for morphological
analysis and generation of Modern Standard
Arabic (MSA). Our approach is based on
Arabic morphological automaton technology.
We take the special representation of Arabic
morphology (root and scheme) to construct a
set of morphological automaton which will be
used directly in developing a system for
Arabic  morphological analysis and
generation. Our approach for Arabic
morphological analysis and generation can be
used in different Arabic NLP applications
such as Machine Translation (MT) and
Information Retrieval (IR).

1

Due to the rising importance of globalization and
multilingualism, there is a need to build natural
language processing (NLP) systems for an
increasingly wider range of languages, including
those languages that have traditionally not been
the focus of NLP research. The development of
NLP technologies for a new language is a
challenging task since one needs to deal not only
with language specific phenomena but also with a
potential lack of available resources (e.g.
lexicons, text, annotations).

Arabic is a language of rich morphology
compared to other language especially European
languages. It based on both derivational and
inflectional morphology. The richness of Arabic
morphology makes the analysis process difficult
to deal. On the one hand, morphological analysis
process is used in the most of the NLP
applications such as information retrieval, spell-
checking and machine translation. On the other
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hand, morphological analysis is the first step
before syntactic analysis. Furthermore, it is an
essential step in semantic analysis.

There has been much work on Arabic
morphology. For an overview see (Al-Sughaiyer
and Al-Kharashi, 2004). Generally speaking,
morphological analysis of any word given
consists of determining the values of a large
number of features such as basic part-of-speech
(i.e., noun, verb, etc.), gender, person, number,
voice, information about the clitics, etc. (Habash,
2005). The most of the morphological analysis
systems don’t display the whole features of the
word analyzed and some of them are destined for
a special applications. We note that the
morphological analysis systems available now
have different aims, some of them have a
commercial purpose and the other systems are
available for research and evaluation (Attia,
20006).

In this paper we present an approach for
Arabic morphological analysis and generation
based on morphological automata and used a
morphological database constructed using
XMODEL (XML-base Morphological Definition
Language). To develop an Arabic morphological
automaton, we exploited particularities of Arabic
morphology. The Arabic verbs and nouns are
characterized by a special representation “root +
scheme”. Verbs and nouns are derived from roots
by applying schemes to these roots to generate
Arabic stems and then adding prefixes and
suffixes to the stems to form a correct word in
Arabic language. Table 1 show four schemes
applied to the root “cml” (the work notion) (Ja=)
to generate four derived stems.

Scheme facal | FAcil | fuccAl Mafcal
Stem Lo | dee |0k Jeaa
generated
Transliteration | camal | CAmil | cummAl | macmal
Table 1 : Schemes generating stems from the root
“cml” (Jee)
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2 Previous work

There has much been work on Arabic
morphological analysis and generation. In this
paragraph, we will present some of the most
work referenced in the literature and well
documented.

2.1 ElixirFM: an Arabic Morphological

Analyzer by Otakar Smrz

ElixirFM is an online Arabic Morphological
Analyzer for Modern Written Arabic developed
by Otakar Smrz available for evaluation and well
documented. This morphological analyzer is
written in Haskell, while the interfaces in Perl.
ElixirFM is inspired by the methodology of
Functional Morphology (Forsberg & Ranta,
2004) and initially relied on the re-processed
Buckwalter lexicon (Buckwalter, 2002). It
contains two main components: a multi- purpose
programming library and a linguistically
morphological lexicon (Smrz, 2007). The
advantage of this analyzer is that it gives to the
user four different modes of operation (Resolve,
Inflect, Derive and Lookup) for analyzing an
Arabic word or text. But the system is limited
coverage because it analyzes only words in the
Modern Written Arabic.

2.2 MAGEAD: A Morphological Analyzer

and Generator for Arabic Dialects

MAGEAD is one of the existing morphological
analyzers for the Arabic language available for
research. It’s a functional morphology systems
compared to Buckwalter morphological analyzer
which models form-based morphology (M.
Altantawy et al., 2010). To develop MAGEAD,
they use a morphemic representation for all
morphemes and explicitly define
morphophonemic and orthographic rules to
derive the allomorphs. The lexicon is developed
by extending Elixir-FM’s lexicon. The advantage
of this analyzer is that it processes words from
the morphology of the dialects which they
considered as a novel work in this domain, but
unfortunately this analyzer needs a complete
lexicon for the dialects to make the evaluation
more interesting and convincing, and to verify
these claims.

2.3  Buckwalter

Analyzer

Arabic  Morphological

This analyzer is considered as one of the most
referenced in the literature, well documented and
available for evaluation. It is also used by
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Linguistic Data Consortium (LDC) for POS
tagging of Arabic texts, Penn Arabic Treebank,
and the Prague Arabic Dependency Treebank
(Atwell et al., 2004). It takes the stem as the base
form and root information is provided. This
analyzer contains over 77800 stem entries which
represent 45000 lexical items. However, the
number of lexical items and stems makes the
lexicon voluminous and as result the process of
analyzing an Arabic text becomes long.

2.4  Xerox Arabic Morphological Analysis

and Generation

Xerox Arabic morphological Analyzer is well
known in the literature and available for
evaluation and well documented. This analyzer is
constructed using Finite State Technology (FST)
(Beesley, 1996; Beesley, 2000). It adopts the root
and pattern approach. Besides this, it includes
4930 roots and 400 patterns, effectively
generating 90000 stems. The advantages of this
analyzer are, on the one hand, the ability of a
large coverage. On the other hand, it is based on
rules and also provides an English glossary for
each word. But the system fails because of some
problems such as the overgeneration in word
derivation, production of words that do not exist
in the traditional Arabic dictionaries (Darwish,
2002) and we can consider the volume of the
lexicon as another disadvantage of this analyzer
which could affect the analysis process.

3 Our approach

3.1 Lexicon

The lexicon of a language is the set of its valid
lexical forms. As in any morphological analysis
system, developing a high-quality lexicon is often
the first step towards building a robust
morphological analyzer, which is in turn the
front-end to many NLP systems. There are two
aspects that contribute to this enhancement level.
The first aspect concerns the number of lexicon
entries contained in the lexicon. Second aspect
concerns the richness in linguistics information
contained by the lexicon entries. BAMA lexicon
is the best know in the literature and well
documented. It wused by large Arabic
morphological  analyzers  (Elixir-FM  and
MAGEAD).For an overview of the existing
Arabic lexicon see (Al-Sughaiyer and Al-
Kharashi, 2004).

Nowadays, a mnew method was been
implemented to represent, design and implement
the lexicons. It is based on the Lexical Markup



Framework (LMF). LMF is the I1SO-24613
standard for natural language processing (NLP)
and lexicons. The US delegation is the first which
started the work on LMF in 2003. In early 2004,
the ISO/TC37 committee decided to form a
common [SO project with Nicoletta Calzolari
(Italy) as convenor and Gil Francopoulo (France)
and Monte George (US) as editors. The aims of
LMF are to provide a common model for the
creation and use of lexical resources, to manage
the exchange of data between and among these
resources, and to enable the merging of large
number of individual electronic resources to form
extensive global electronic resources. This
method for representing lexical resource covers
all the natural languages. We note that for Arabic
language, lexicons based on LMF are still in
progress towards a standard for representing the
Arabic linguistic resource.

Our approach for representing the lexicon is
based on XMODEL (XML-based Morphological
Definition Language). In this approach, the
Arabic lexicon contains morphological classes,
morphological properties and morphological
rules. Morphological classes allow gathering a set
of morphological components having the same
nature, the same morphological characteristics

and the same semantic actions. For the
morphological properties, they allow
characterizing the different morphological

components represented by the morphological
classes; they contain morphological descriptors
(the features) that would be assigned to different
morphological components (the property
“Gender” distinguishes between masculine and
feminine components). Finally, morphological
rules allow combining the morphological
components to generate correct language words.
They are considered as a generator of language
words. We note that wuntil now, our
morphological database contains 5970 entries.
The use of XMODEL allows representing the
morphological  database  independent  of
processing which will be applied and allows a
considerable reduction of morphological entries.

3.2

In this part we describe the Arabic morphological
analyzer. So as to develop this analyzer, first of
all, we developed an Arabic morphological
database using XMODEL language integrating
all the entries suitable for Arabic language. Then,
we generated a set of Arabic morphological
automata representing a specific morphological
category. Finally, a framework is developed to

System description
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handle the
automata.

The presented work involves five steps. In this
paragraph, we provide a brief description of the
principles of this work. As input, the proposed
technique accepts an Arabic text. The first step is
to apply a tokenization process to the text given.
Then, a set of AMAUT (Arabic Morphological
AUTomata) are loaded, in a second step. The
part-of-speech is determined in the third step.
After that, the method determines all possible
affixes. Then the next step consists of extracting
the morpho-syntactic features according to the
valid affixes.

The tokenization process consists of extracting
all the words from the text given. A set of Arabic
morphological automata are loaded from a
package that contains all the implemented Arabic
morphological automata. Then, the approach
determines which AMAUT is suitable for that
word. The result may be one or more AMAUT
loaded. We note that the size of the final
AMAUT generated is about 120 MB. Then, the
method determines the part-of-speech. If the
word analyzed is a noun or a verb, the method
determines if it contains a scheme. Then, if it is a
verb, the method determines the type of the verb
(strong, weak, or incomplete), its tense (“mADI”
[ sale/, “muDAric” /g e/ or “eamr” / )Ai/), its
voice (active or passive), etc. If it is a noun, we
determine if it is a derived noun or particular
noun. If it is a particle, the method determines if
it is a preposition particle /oall  ssa/
conjunction particle /bl iy n /) etc. After
that, the method applied a process of extracting
the possible affixes attached to the word
analyzed. The next step consists of extracting the
morpho-syntactic features according to the valid
affixes and the scheme. Additional information is
extracted called in our approach morphological
descriptors. They describe the word analyzed and
they are very useful especially in Natural
Language Processing applications. Finally, the
morphological analyzer displays the results in a
table where each row contains the word analyzed
and all the data characterizing this word (see
Figure 1).

Generally speaking, morpho-syntactic features
displayed by the morphological analyzer are very
rich regarding the information given. It concerns
the morphological level; the syntactic and
semantic level which makes the richness of our
system compared to the others system. The utility
of this richness comes especially when the
system will be used in NLP applications. Here

lexicon and the morphological



are the most important features given by the

System.

e The word gender: masculine or feminine.

e The word person: first, second or third
person.

e The word number: singular, dual or
plural.

e The word case: “marfUc” (g.s8),
“manSUDb” (ws=ai), “majrUr” (Lssa),
“majzUm” (s )2=).

e The type of the word: verb, noun or
particle.

e [f the word is a verb, we give its tense:

present (“ealmuDAric”: g_badll), past
(“ealmADI”: =Wll)  or imperative
(“ealeamr™: »<Y¥). We also give its voice:
active or passive.

e The scheme of the word is given if

available.

Figure 1 shows the morphological analysis
results of some words analyzed using the
presented morphological analyzer. The displays
the Part-of-speech (verb, noun or particle), the
original scheme is displayed in column B because
Arabic has this particularity which is summarized
in that some words might be conjugated forms of
other words like “afcalu”, “afcilu “, “afculu”,
these three words are all conjugated forms of
“facala”. The gender (masculine or feminine) is
displayed in column D, the person (first, second
or third person) is displayed in column E, the
number (singular, dual or plural) is displayed in
column F. For the column G, it concerns some
properties that characterize the word analyzed
and they are very useful to the user. Some
morphological descriptors are displayed in
column H. Finally, the column I and J show the
affixes attached to the word.

_— m m e

B Lexical Tabie o Fle arab fes\orat ot

A E ¢ ) E
_i.!nrphdcgica jDriginaI Scheme '_'Smene '_'Gc-nder '_'3ersnn [lumber
yotadehrajn |Refacal) [ [GHa Fr} [NCI
eavell [efeal) | feGlla [Pl NG
£37eff fefealld [ 6Feclla |Frt NSg
b [kl [ Gedll [ N
Jaouddy [cadda), | |GHa |Fl NG
yaddy (iazala, wacl, wacula], | [GHa Fr} [NSg
juoda [fech fadya 0 |6Ma F3 NSy
jara azala, waclz, wacula), | [GHa li [NSg
jar (st | |GHa |F NS
jur-a [fech fadh | L |F} NG
Jar~y [Iwazala, waclz, wauula, [ [GMa [Fid NS

h

« I3
| 6 | H [
Properties Morpholagical Descriptors |Prefives |Sufixes
SrongVedMODACT,  Raf (] (]
(SrongVeBACTHOD,  [Defas (€] )
(Orong Vet ACTHOD,  IDefiaS ] )
(Stong Verb ACTHOD, DefRal e (]
Incomplete VeioNOD,  DefRl, ] ()

[Nk Verb ACTHOD, DefRdl I )
Meat VerbASH0D. Nas 2 I ]
[Neak Verb ACTJIOD, DefNaS )
West Ve ACTHOD,  [NaSJez [
MeakVeb2ASHOD, NSz 4]
[Neak Verd ACTMOD,  |DefRal, ]

Figure 1: A morphological analysis of some Arabic words using the presented system

It should be noted that the presented system
could be used in both analysis and generation
unlike some Arabic morphological analyzers
which cannot be converted to generators in a
straightforward manner (Cavalli-Sforza, 2000;
Buckwalter, 2004; Habash, 2004 ;).

4 Evaluation

To evaluate our system, we select two of the best
known morphological analyzers in the literature:
ElixirFM by Otakar Smrz (Otakar Smrz and
Viktor Bielicky, 2010) and Xerox Arabic
Morphological Analyzer. We note that the corpus
used for the evaluation is taken from a standard
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input text provided by ALECSO (Arab League,
Educational, Cultural and Scientific
Organization) which organized a competition in

April 2009 of the Arabic Morphological
Analyzers in Damascus.
The evaluation process shows that our

morphological analyzer is strong concerning the
features given by each analyzer which makes our
system useful for the most of NLP applications
unlike the others; they are destined for specific
applications. In addition, the presented
morphological analyzer gives more additional
information about each word analyzed and more
precision.



In the evaluation done we process words in a
corpus selected from ALECSO input text

Appendix (1): Letter mappings

containing different part-of-speech (verbs, nouns | A o S 4 k
and particles), then, we calculate accuracy of o B o Al d 1
each analyzer as: S = number of words with good & T U= S| m
solutions / number of words. Table 2 provides the & ~ | o= D| o n
evaluation results of the three analyzers. Note z ] I T = h
that Table 2 contains in each column of the c H T AR W
analyzers the number of words (nouns, verbs and ‘ X z ol = y
particles) with no solution. J D 3 g d A
The Xerox . . Our kY AV/ —a f 3 t
POS number Morphological | ElixirFM System R -
Analyzer J S q i c
Nouns | 576 | 60 56 40 2 Z
Verbs 457 31 24 19 References
Particles | 167 42 45 -
Al-Sughaiyer Imad A. and Al-Kharashi Ibrahim A.
Total 1200 133 125 59 2004. Arabic morphological analysis techniques: A
Accuracy (%) 88.91% 89.58% | 95.08% comprehensive survey. Journal of the American

Table 2: The evaluation process results

The analyzer presented in this paper reaches an
accuracy of 95.08% which will make it one of the
best existing morphological analyzers for Arabic
language and it will be very useful for the next
future works to be done in NLP applications such
as syntactic and semantic analysis, machine
translation, information retrieval, etc.

5 Conclusion

In this paper, we have discussed some previous
work in this area of research which is the most
referenced in the literature. Then, we have
outlined some challenges of computational
Arabic morphology. After that, we presented an
approach to develop a morphological analyzer
and generator for Arabic language. To develop
this system for Arabic morphological analysis,
the need to develop a lexicon is an essential
stage. So, we used a new language for
representing, designing and implementing the
linguistic resource. It is based on a reduced XML
lexicon and it can be used not only in
morphological level, but in the other levels such
as syntactic and semantic level. Finally, our
approach could be used in NLP applications such
as machine translation and information retrieval.
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