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Abstract

We present a novel corpus-driven approach
towards grammar approximation for a lin-
guistically deep Head-driven Phrase Struc-
ture Grammar. With an unlexicalized prob-
abilistic context-free grammar obtained by
Maximum Likelihood Estimate on a large-
scale automatically annotated corpus, we
are able to achieve parsing accuracy higher
than the original HPSG-based model. Dif-
ferent ways of enriching the annotations car-
ried by the approximating PCFG are pro-
posed and compared. Comparison to the
state-of-the-art latent-variable PCFG shows
that our approach is more suitable for the
grammar approximation task where train-
ing data can be acquired automatically. The
best approximating PCFG achieved ParsE-
val F1 accuracy of 84.13%. The high ro-
bustness of the PCFG suggests it is a viable
way of achieving full coverage parsing with
the hand-written deep linguistic grammars.

1 Introduction

Deep linguistic processing technologies have
been evolving closely around the development
of rich formalisms which typically introduce
mild context-sensitivity. Examples of well-
adopted frameworks include various Tree Adjoin-
ing Grammars, Combinatory Categorial Gram-
mars, Lexical Functional Grammars (with untyped
Features Structures in F-structures), and Head-
Driven Phrase Structure Grammars (with Typed
Featured Structures). Such formalisms have been
successfully powering the modern formal linguis-
tic studies. However, the intrinsic complexity
of deeper formalisms1 hinders the deployment of

1In the context of this paper, by deeper formalism we
mean formalisms which are at least mildly context-sensitive,

such resources in language technology applica-
tions.

Take HPSG for example. The linguistic frame-
work is built on top of the typed feature logic for-
malisms (e.g., Carpenter (1992)). The monostratal
representation integrates various syntactic and se-
mantic information concerning a linguistic object
(and all its sub-components) in a single typed fea-
tures structure. And the integration of information
and compatibility checking is achieved by the uni-
fication operation. Such a formalism is especially
suitable for developing and implementing a lin-
guistic theory. But the lack of a polynomial upper-
bound time complexity in unification-based pars-
ing raises concerns of the processing efficiency.

Meanwhile, from the grammar engineering per-
spective we see grammar developers constantly
joggling between two somewhat conflicting goals:
on the one hand, to describe the linguistic phenom-
ena in a precisely constrained way; on the other
hand, to achieve broad coverage when parsing un-
seen real-world texts. As a result, many of these
large-scale grammar implementations are forced
to choose to either compromise the linguistic pre-
ciseness, or to accept the low coverage in parsing.

In this paper, we propose PCFG approxima-
tion as a way to alleviate some of these issues
in HPSG processing. While HPSG framework is
great for linguistic description, we show that when
carefully designed, a much simpler approximat-
ing probabilistic context-free grammar can be ex-
tracted automatically, and is capable of achieving
good parsing accuracy while maintaining high ro-
bustness and efficiency.

The rest of the paper is organized as the fol-
lowing: Section 2 gives an overview of HPSG as
an linguistic theory and its application in parsing;

in a comparative sense to the context-free grammars.
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Section 3 reviews the previous related work on
CFG approximation of HPSG; Section 4 presents
the corpus-driven PCFG approximation with both
internal and external annotations; Section 5 de-
scribes the evaluation setup and results; Section 6
compares our approach with other related work on
parsing (such as self-training), and foresees the ap-
plication of the approximating PCFGs; Section 7
concludes the paper.

2 Parsing with Head-Driven Phrase
Structure Grammars

Head-Driven Phrase Structure Grammar (Pol-
lard and Sag, 1994) is a constraint-based highly
lexicalized non-derivational generative grammar
framework. Based on a typed feature structures
formalism, the HPSG theory describes a small set
of highly generalized linguistic principles, with
which the rich information derived from the de-
tailed lexical types interacts to produce precise lin-
guistic interpretations.

Several large-scale HPSG-based NLP parsing
systems have been built in the past decade.
Among them are the Enju English & Chinese
parser (Miyao et al., 2004; Yu et al., 2010), the
Alpino parser for Dutch (van Noord, 2006), and
the LKB & PET (Copestake, 2002; Callmeier,
2000) for English, German, Japanese and a dozen
more other DELPH-IN2 grammars of various
languages. These systems are successful show-
cases of where modern grammar engineering con-
tributes to the state-of-the-art parsing systems.
With the modern processing techniques such as
quasi-destructive unification (Tomabechi, 1991),
quick check (Kiefer et al., 1999), ambiguity pack-
ing (Oepen and Carroll, 2000) and selective un-
packing (Zhang et al., 2007), the practical parsing
efficiency has been greatly improved. But none
of these changes the underlying formalism, there-
fore the parser still can run into exponential pars-
ing time in theory.

Another disadvantage of deep grammar lies in
the difficulty of proper statistical modeling of
the richer representation. For example, Abney
(1997) shows that naı̈ve MLE is not consistent
for unification-based grammars, and proposes ran-
dom fields as an alternative. In practice, we see
most HPSG parsing systems opt for a discrimi-
native Maximum Entropy Model (MEM) for parse
ranking on top of the hypothesis space licensed by

2http://www.delph-in.net/

the HPSG grammar (Miyao and Tsujii, 2002; Mal-
ouf and van Noord, 2004; Toutanova et al., 2005).
For further efficiency, the hypothesis space of the
HPSG parses is pruned with supertagging or sym-
bolic CFG filtering rules (Matsuzaki et al., 2007) at
early stages. It is however unclear how these sep-
arate models can be unified to guide the best-first
construction of HPSG parses without an exhaus-
tive creation of the (packed) parse forest or ad hoc
pruning.

Moreover, the heavily constraint-based nature
of the grammar poses a difficult choice between
linguistic preciseness and practical parsing robust-
ness. As a result, many HPSG parser implementa-
tions have to sacrifice on the linguistic side in trade
for a decent parsing coverage.

3 Related Work

Previous work in the direction of HPSG approxi-
mation has seen two major approaches: grammar-
based approach and the corpus-driven approach.

The grammar-based approach (Kiefer and
Krieger, 2004) tries to compile out a huge set
of categories by flattening the TFSes into atomic
symbols. This approach can in theory guarantee
the equivalence of the grammars in both parsing
and generation. However, in practice it generates
billions of CFG productions. Even when carefully
choosing a subset of the HPSG features, the result-
ing grammar is too large to be useful for parsing
or generation.

The corpus-based approach (Krieger, 2007), on
the other hand, builds the approximating CFG by
observing the growth of the chart when parsing
texts with the HPSG. Passive edges on the chart
represent the successful application of HPSG rules,
hence are modeled by an approximating CFG pro-
duction. Also, the symbols in CFG only carry
partial information from a small set of feature-
paths used in quick check (Kiefer et al., 1999), i.e.,
the frequently failed feature-paths in unification,
hence the most discriminating ones.

Both approaches are symbolic in the sense that
there is no probabilistic model produced to disam-
biguate the CFG parses. In the case of corpus-
based approach, one can also acquire frequency
counts for each CFG rule. But since not all passive
edges occur in a full parse tree, and not all parses
are correct, the statistics obtained is not suitable
for the parsing task.

Kiefer et al. (2002) propose to use a PCFG in a
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two-stage parsing setup, where the PCFG predicts
derivations in the first step, followed by the replay
of unification. The experiment was carried out on
a relatively small grammar. And due to the un-
availability of large-scale treebank at the time, un-
supervised Inside-Outside algorithm was used for
the probability estimation.

Cahill et al. (2004) reported an application of
the PCFG approximation technique in LFG pars-
ing and the recovery of long distance dependen-
cies on the f-structures. Two main differences be-
tween their work and the one presented in this pa-
per should be noted. First, the approximation tar-
get for Cahill et al. (2004) is a treebank-induced
grammar, while this paper targets for a large-
scale hand-crafted grammar. Second, the monos-
tratal representation in HPSG entails that a cor-
rect derivation tree will also guarantee the correct
recovery of unbounded dependencies represented
by the underlying feature structures, while in the
LFG universe these have to be resolved on the f-
structures instead of the c-structures.

4 Probabilistic Context-Free
Approximation of HPSG

Unlike the approaches in previous work which
approximates the symbolic HPSG alone, we pro-
pose a PCFG approach which approximates the
combination of the grammar and its disambigua-
tion model. This allows us to closely model the
deep parser behavior with a single approximation
PCFG.

For the experiments in this paper, we use
the English Resource Grammar (ERG; Flickinger
(2002)) and the accompanying treebanks (see Sec-
tion 5.1 for detailed descriptions). But the tech-
nique presented in this section can be easily ap-
plied to other languages and HPSG grammar im-
plementations.

4.1 Derivation Normalization

A complete HPSG analysis is recorded in a deriva-
tion tree. The terminals of the tree are surface
tokens in the sentence. The preterminals are the
names of the activated lexical entries. The non-
(pre)terminal nodes (except for the root) corre-
spond to grammar rules applied to create the HPSG
signs. An extra root node denotes the “root” con-
dition fulfilled to license a complete HPSG parse.
An example derivation of ERG is given in Figure 1.

Before extracting the approximation grammar,

we perform several normalizing transformations
on the original derivations. First, in order to ac-
quire an unlexicalized grammar, we replace the
lexical entry names on the preterminal with their
corresponding lexical type defined in the ERG lex-
icon. Second, we collapse the unary chain of mor-
phological rules together with the preterminal lex-
ical types to form the so-called “supertag”. As
shown in Figure 1, these unary rules always oc-
cur above the preterminals and below any syntac-
tic constructional rules. Practice shows that this
helps improve the parsing accuracy of the PCFG.
The last normalization concerns with the treatment
of punctuations. In ERG (as for release 1010),
punctuations are treated as affixes instead of in-
dependent tokens by themselves. For better com-
patibility with other annotations, we convert the
original punctuation-attaching unary rule (applied
above the morphological rules and below the syn-
tactic rules) into a binary branch. The normalized
derivation tree of the previous example is shown in
Figure 2. It is worth noting that all the normalizing
steps can be reversed without introducing ambigu-
ity. The approximating PCFGs will be extracted
from the normalized derivations, while the evalu-
ation will be reported on the original derivations
(though the tagging accuracy will be calculated on
the lexical types).

4.2 PCFG with External Annotation

Although the derivation tree records all necessary
information to recover the complete HPSG anal-
ysis (i.e. carrying out unification on each node
of the tree with corresponding grammar rules and
lexical entries), it does not always encode the nec-
essary information in an explicit way, due to the
fact that rules in HPSG are highly generalized (see
Section 2). For example, the rule “hd-cmp u c”
in ERG can be used to express a head-complement
composition without specifying the syntactic cat-
egory of the head. Thus a node marked only with
“hd-cmp u c” could be a VP, PP, or NP. There-
fore it will be difficult to accurately predict the
derivation without such information. To compen-
sate for the lack of information in the derivation
tree, we add additional annotations to the non-
terminals. We further differentiate external anno-
tation, i.e., additional information from the context
of the tree node, and internal annotation, i.e. infor-
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ROOT STRICT

SB-HD MC C

SP-HD N C

THE 1

The

HDN-AJ RC C

N SG ILR

COMPUTER N1

computer

CL RC FIN NWH C

SB-HD NMC C

HDN BNP PN C

N SG ILR

JOHN

John

HD XCOMP C

V PST OLR

BUY V1

bought

HD OPTCMP C

W PERIOD PLR

V PST OLR

CRASH V1

crashed.

Figure 1: Example of an original ERG derivation tree

ROOT

ROOT STRICT

SB-HD MC C

SP-HD N C

d - the le

The

HDN-AJ RC C

n - c le&N SG ILR

computer

CL RC FIN NWH C

SB-HD NMC C

HDN BNP PN C

n - pn-msc le&N SG ILR

John

HD XCOMP C

v np le&V PST OLR

bought

HD OPTCMP C

W PERIOD PLR

v pp unacc le&V PST OLR

crashed

PUNCT PERIOD

.

Figure 2: Example of a normalized derivation tree
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mation coming from the HPSG sign.3

For the external annotation, we mark each non-
terminal node with up to n grandparents. This is
an effective technique used in both PCFG pars-
ing (Klein and Manning, 2003)4 and HPSG parse
disambiguation (Toutanova et al., 2005). As ERG
rules are either unary or binary, we do not an-
notate nodes with sibling information, though for
a grammar with flat rules this could potentially
help, as shown by Klein and Manning (2003) (so-
called horizontal markovization). We choose not
to annotate the preterminal supertags with grand-
parents, for the overly fine-grained tagset hurts the
parsing coverage.

4.3 PCFG with Internal Annotation

While the external annotation enrich the derivation
tree by gathering context information, the internal
annotation explores the detailed HPSG sign asso-
ciated with the tree node. Note that an average
ERG sign contains hundreds of feature-paths and
their corresponding values, it is important to pick a
suitable small yet effective subset of them as anno-
tation. Following the practice of (Krieger, 2007),
we choose to use up to six top-ranked quick-check
paths (see Table 1), which are the most frequently
failed feature-path in unification.

To access the HPSG sign, feature structures are
reconstructed by unifying the corresponding TFS
of the HPSG rule with the instantiated TFSes of its
daughters. This can be done efficiently even with
naı̈ve unification algorithms, for there is no search
involved. And the unification never fails when the
original derivation tree is produced by the ERG.
Next, the value of the annotation is determined
by the type of the TFS at the end of each given
feature-path (or *undef* in case the path was not
defined in the TFS). For example, for feature-path
SYNSEM.LOCAL.CAT.COMPS (the remaining list
of complements for the sign), value *null* denotes
an empty list, while *olist* denotes a list with only
optional complements. Figure 3 shows an exam-
ple of an annotated tree with 1-level grandparent
and HEAD feature-path annotation.

3Our notion of internal and external annotation is slightly
different to that of (Klein and Manning, 2003). In our notion,
internal annotation refers to the information from the local
HPSG sign.

4This technique is called vertical markovization in (Klein
and Manning, 2003).

Feature-Path
1 SYNSEM.LOCAL.CAT.HEAD
2 SYNSEM.LOCAL.CONJ
3 SYNSEM.LOCAL.AGR.PNG.PN
4 SYNSEM.LOCAL.CAT.VAL.COMPS
5 SYNSEM.LOCAL.CAT.HEAD.MOD
6 SYNSEM.LOCAL.CAT.VAL.COMPS.FIRST.OPT

Table 1: Top feature-paths used for internal annotation

4.4 Grammar Extraction & Probability
Estimation

To extract the approximating PCFG, we need a dis-
ambiguated treebank annotated with HPSG deriva-
tions. The treebank is constructed by first parsing
the input sentences with the HPSG parser, then dis-
ambiguated either manually or automatically by
the parse selection model. The CFG symbols and
production rules are extracted directly from the an-
notation enriched derivation trees from the tree-
bank. Each tree node contributes to one frequency
count of the corresponding CFG rule with the par-
ent’s symbol as the LHS, and the symbols of its
daughters as the RHS. For the experiments in this
paper, we do not prune the CFG symbols or rules.
The rule probability is calculated with Maximum
Likelihood Estimate (MLE) without smoothing.

Pr(A→ β) = P (A→ β|A) =
#(A→ β)

#A
(1)

The lexical model, however, does receive
smoothing for unknown word handling. More
specifically, words are assigned a signature
(sig(w)) based on their capitalization, suffix, digit
and other character features. We then use the MLE
estimate of P (T |sig(w)) as a prior against which
observed taggings T were taken:

P (T |w) =
#(T,w) + α · P (T |sig(w))

#T + α
(2)

P (T |w) is then inverted to give P (w|T ).
The grammar extraction procedure is very ef-

ficient. The time required is linear to the size
of the treebank. Even with the richest annota-
tions (with unification operations involved), the
procedure marches through thousands of trees per
minute. This allows us to scale up the extraction
with millions of trees.

4.5 Hierarchically Split-Merge PCFG
For comparison we also trained a hierarchically
split-merge latent-variable PCFG with the Berke-
ley parser (Petrov et al., 2006). The latent-variable
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ROOT

ROOT STRICT
ˆROOT [verb full]

SB-HD MC C
ˆROOT STRICT [verb full]

SP-HD N C
ˆSB-HD M C [noun]

d - the le

The

HDN-AJ RC C
ˆSP-HD N C [noun]

n - c le&N SG ILR

computer

CL RC FIN NWH C
ˆHDN-AJ RC C [verb full]

SB-HD NMC C
ˆCL RC-FIN-NWH C [verb full]

HDN BNP PN C
ˆSB-HD NMC C [noun]

n - pn-msc le&N SG ILR

John

HD XCOMP C
ˆSB-HD NMC C [verb full]

v np le&V PST OLR

bought

HD OPTCMP C
ˆSB-HD MC C [verb full]

W PERIOD PLR
ˆHD OPTCMP C [verb full]

v pp unacc le&V PST OLR

crashed

PUNCT PERIOD
.

Figure 3: Example tree with 1-level grandparent and HEAD feature-path annotation

approach has proven to deliver state-of-the-art
parsing performance for multiple languages. The
key advantage is that it automatically induces sub-
categories from the treebank and produces a finer
grained grammar without manual intervention. On
treebanks with coarse-grained categories (which is
typical for manually annotated treebanks), this is
particularly effective.

In our experiment, we train the split-merge
latent-variable PCFG on the derivation trees.
The Expectation-Maximization training process is
much more expensive than our MLE-based PCFG
extraction. Also, given that the categories in
the normalized derivations are already quite fine-
grained (hundreds of non-terminal symbols and
thousands of tags), the grammar stopped improv-
ing after only three rounds of split-merge itera-
tions.

5 Experiments

5.1 Grammar & Data

We use the 1010 release of the English Re-
source Grammar for the approximation experi-
ments. This version of the ERG contains a total
of 200 syntactic constructional rules, and 50 lex-

ical/inflectional rules. 145 of the 200 syntactic
rules are binary, while the remaining 55 are unary.
All lexical/inflectional rules are unary. In addi-
tion, the grammar contains a hand-compiled lex-
icon with around 1000 leaf lexical types and over
35K base-form entries.

Several large treebanks have been developed
with the ERG. Unlike the traditional manually an-
notated treebanks, these are referred to as the
Redwoods-style dynamic treebanks (Oepen et al.,
2002). Sentences from the corpus are first parsed
by the ERG, and then manually disambiguated
(mostly by the grammarian himself). For the
experiments in this paper, we use the manually
disambiguated WeScience Treebank (Ytrestoel
et al., 2009), which currently contains a to-
tally of over 11K sentences from a selection of
Wikipedia articles in the domain of Natural Lan-
guage Processing with an average length of 18 to-
kens per sentence, pre-processed to strip irrelevant
markups, and divided into 13 sections. Of all the
sentences, about 78% received exactly one “gold”
analysis. The rest either fail to be parsed by the
ERG, or there is no single acceptable reading. We
will only use the subset of sentences with a “gold”
parse for the experiment. More specifically we
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keep “ws12” for development and “ws13” for the
final testing. Sections “ws01” to “ws11” contain
a total of 7,636 “gold” trees, which are used for
training.

Apart from the WeScience, we also use
the large-scale automatically disambiguated
WikiWoods Treebank (Flickinger et al., 2010).
Currently, WikiWoods contains about 55M
English sentences extracted from the English
Wikipedia articles. The corpus is parsed with
the 1010 version of the ERG, and automatically
disambiguated with a Maximum Entropy model
trained with the manually disambiguated trees.
Only 1 top-ranked reading is preserved. Since the
correctness of the parse is unchecked, the dataset
is potentially noisy. The total amount of trees
available for training is about 48M.

5.2 The Parser

The approximating PCFG tends to grow huge
when rich annotations and large corpora are used.
For efficient application of the resulting gram-
mar, we implemented a CKY-style parser with bit-
vector-based algorithm as the one proposed by
Schmid (2004). The algorithm shows its strength
in extensibility for grammars with millions of
rules and hundreds of thousands of non-terminal
symbols.

A slight deviation of our implementation from
the BitPar algorithm is that, after constructing
the bit-vector-based recognition chart, we do not
apply the top-down filtering routine before cal-
culating the Viterbi probabilities. Practice shows
that in our case the recognition chart is normally
sparse, and the filtering routine itself costs more
time than what it saves from the additional calcu-
lations in the Viterbi step.

For correctness checking, we reproduced the
unlexicalized PCFG parsing accuracy reported by
Klein and Manning (2003) on PTB with our bit-
vector parser while achieving better efficiency (in
both training and testing) than the Stanford Parser.
Even though our parser is implemented in Java
(for better cross-platform compatibility), the low-
level bit-vector-based operations make our system
competitive even in comparison to the BitPar
implemented in C++.

As mentioned early, we do not prune the PCFG
rules during parsing. For the lexical look-up, we
allow the lexical model to propose multiple tags
(cut by certain probability threshold). In case a

full parse is not found, a partial parsing model
tries to recover fragmented analysis according to
the Viterbi probabilities of the constituents. With
careful design of the PCFG and sufficient train-
ing data, the parser normally delivers close to full
parsing coverage even without the fragmented par-
tial parsing mode.

5.3 Evaluation & Results

For the evaluation of our approximating PCFGs,
we compare the top-1 parses produced by the
PCFG with the manually disambiguated gold trees
in “ws13”. We assume the inputs have been pre-
tokenized but not tagged. All comparisons are
done on the original derivations. Several accuracy
measures are used, including the ParsEval labeled
bracketing precision, recall, F1 and exact match
ratio. Since the ParsEval scores ignore the preter-
minal nodes, we also report the (lexical type) tag-
ging accuracy. Several different training sets are
used.

WS contains 7636 “gold” trees from the sec-
tions “ws01-ws11” of the WeScience. The MEM
parse selection model is trained with this dataset.
The dataset is too small to acquire high coverage
PCFGs with heavy annotations. Therefore, only
PCFG(0) and PCFG(FP1) results are reported here.

WW000 contains 85,553 automatically parsed
and disambiguated trees from the WikiWoods
(all fragments with 000 as suffix). This is less than
0.2% of the entire WikiWoods, but close to the
limit for the latent-variable PCFG training with the
Berkeley Parser.

WW00 contains about 482K sentences (all frag-
ments with 00 as suffix), roughly 1% of the entire
WikiWoods. We were able to successfully train
PCFGs with relatively rich annotations.

WW contains the complete WikiWoods with
∼48M parsed tress. With feature-path annota-
tions, the training of the models takes too long.
Also, excessive annotation makes it difficult to
parse with the resulting huge grammar. We stop
at two levels of grandparent annotation, a PCFG
with almost 4M rules and over 128K non-terminal
symbols.

Table 2 summarizes the results of the accu-
racy evaluation. All results are reported on
the 785 trees from the section “ws13” of the
WeScience. MEM is the accuracy of the HPSG

204



parser disambiguation model given the candidate
parse forest. PCFG(0) is the unannotated PCFG
read off the bare (normalized) derivation trees.
PCFG(GPm,FPn) is the annotated PCFG model
withm-levels of grandparents and n feature-paths.
And PCFG-LA(SM3) is the latent-variable PCFG
after three split-merge iterations.

With the small WS training set, the baseline
PCFG without annotation achieved F1 of merely
60.96. Even one level of grandparent annotation,
the parsing coverage drops by over 10%. With 1
feature-path annotation, F1 improved significantly
to 66.45.

On the larger WW-000, the performance of the
baseline PCFG decreases by two 2% of F1, most
likely due to the noise introduced by the auto-
matic disambiguation. However, the larger train-
ing set enables 1-level grandparent annotation,
which brings F1 up to 71.42. The latent-variable
PCFG also performs well, delivering the best F1

at 71.87 after three split-merge iterations. But the
learning curve of the Berkeley parser has already
flatten out at this point, and we were unsuccessful
in further scaling up the training set.

With our annotated PCFGs, significant improve-
ments are achieved on the even larger WW-00. The
baseline PCFG seems to have recovered from the
previous drop, and outperforms the one trained
with the “gold” trees. With the mixture of 1-
level of grandparent and some feature-path anno-
tations, F1 reached over 80. The best performance
on WW-00 is achieved with PCFG(GP1,FP5). 2-
levels of grandparents alone outperforms 1-level
of grandparent, but the grammar quickly reaches
its size limit on this training set and starts to loose
coverage when more feature-path annotations are
added.

Finally, with the complete WikiWoods, both
PCFG(GP1) and PCFG(GP2) improved further,
with PCFG(GP2) reaching the highest F1 at 84.13.
It is interesting to note that this is even higher than
the F1 of the MEM disambiguation model. This is
partially due to the self-training effect on the huge
corpus. Another explanation is that the objective
function of the discriminative MEM was optimized
on the complete parse match instead of individ-
ual constituents, which will explain its high exact
match ratio at 43.57%.

6 Discussion

It is important to note that the grammar approxi-
mation task we take on in this paper is different
from the traditional treebank-based parsing. Al-
though the accuracy evaluation for both tasks are
done on a fixed set of “gold” trees, in the grammar
approximation task we have access to the theoret-
ically infinite pool of training data automatically
generated by the original grammar. Some com-
plex grammar extraction algorithms which work
fine on a small training corpus fail to scale up to
handle millions of trees. On the other hand, our
MLE-based PCFG extraction shows its advantage
in extensibility.

The approach of training a PCFG with automat-
ically annotated treebank is in a sense similar to
the self-training approach in semi-supervised pars-
ing (McClosky et al., 2006). However, instead of
parsing the unlabeled data with the PCFG directly,
we rely on the HPSG grammar and its disambigua-
tion model. The highly constrained ERG analy-
ses on unseen data allow us to obtain high quality
trees. And the penalty on introducing noisy data is
quickly compensated by the huge amount of data.

The approximating PCFG is much less con-
strained than the ERG. From the linguistic point
of view, it is difficult to interpret the huge set of
PCFG rules. And unlike the ERG, the PCFG is un-
suited in making grammaticality judgment. How-
ever, for the parsing task, the approximating PCFG
has its advantage in being flexible and robust,
needless to mention its cubic parsing time com-
plexity. One can choose various combinations of
annotations for a balanced efficiency, accuracy and
coverage. Although the experiments reported in
Section 5 are only testing on sentences which the
ERG can parse, we have also applied the PCFGs
on the remaining ∼20% texts and got close to full
parsing coverage (less than 1% failure). Although
the derivation tree constructed by the PCFG does
not guaratee a unifiable HPSG analysis with typed
feature structures, it provides an approximate pre-
diction on how the HPSG analysis should look
like. It is conceivable that with robust unification
under the open-world assumption of the type hier-
archy (Fouvry, 2003), one can get a partially well-
formed semantic structure with the guidance of the
approximating PCFG. Also, it would be interesting
to evaluate its impact on the overall parser perfor-
mance based on the semantic structures instead of
the theory-specific derivations.
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#Rule #NT #T P R F1 Ex TA

w
s

MEM - - - 82.70 82.91 82.80 43.57 96.87
PCFG(0) 10,251 208 1,152 63.53 58.59 60.96 19.49 86.19
PCFG(FP1) 12,178 669 1,152 70.02 63.22 66.45 20.51 86.20

w
w
-
0
0
0 PCFG(0) 25,859 236 1,799 60.18 57.34 58.73 14.14 85.33

PCFG(GP1) 64,043 3,983 1,799 72.61 70.28 71.42 21.02 86.92
PCFG-LA(SM3) * * * 73.12 70.66 71.87 23.18 89.81

w
w
-
0
0

PCFG(0) 61,426 247 2,546 63.61 61.14 62.35 16.56 88.59
PCFG(GP1) 187,852 5,828 2,546 77.87 77.41 77.64 24.84 91.83
PCFG(GP1,FP4) 271,956 16,731 2,546 80.60 79.84 80.22 29.04 93.20
PCFG(GP1,FP5) 319,511 21,414 2,546 80.94 80.32 80.63 28.54 93.33
PCFG(GP1,FP6) 320,630 21,694 2,546 80.92 80.31 80.61 28.41 93.33
PCFG(GP2) 489,890 45,658 2,546 79.68 79.56 79.62 28.92 92.01
PCFG(GP2,FP2) 559,006 66,218 2,546 79.78 79.46 79.62 32.23 92.71

w
w PCFG(GP1) 1,007,563 8,852 4,472 80.34 79.60 79.97 28.79 93.45

PCFG(GP2) 3,952,821 128,822 4,472 84.27 83.98 84.13 37.71 94.39

Table 2: Parsing Accuracy on ‘ws13’ with various models and training sets. Reported are grammar size (#Rule,
#NT, #T); ParsEval precision (P), recall (R), F1, and exact match ratio (Ex) on the original derivation tree; and
tagging accuracy (TA) on the lexical types.

Looking at the specific annotation strategies,
we compared the internal annotations with the ex-
ternal ones. Experiment result shows that when
the grandparent annotation is added, the grammar
size grows quickly. On a huge training set, this
is rewarded with significant accuracy gain. On
the smaller training set though, over-annotating
with grandparents results in a decrease in accu-
racy due to data sparseness. Instead, annotating
with feature-path information increases the gram-
mar size moderately, allowing one to approach the
optimal granularity of the PCFG.

In comparison to the linguistic annotations used
by Klein and Manning (2003) for PTB parsing,
our annotations are less language or treebank spe-
cific. This is due to the fact that the ERG rules
are relatively fine-grained in treating various lin-
guistic constructions. And the most relevant anno-
tations can be gathered from either the grandpar-
ents or the internal feature structure. Such general
design allows us to experiment with other deep
HPSG grammars in the near future.

For the clarity of the experiment, we have cho-
sen not to do constructional pruning or smooth-
ing, and focused our evaluation mostly on parsing
accuracy. This leaves much room for future in-
vestigation. For instance, we observe that a large
portion of the grammar rules have very low fre-
quency counts and almost no impact on the parsing
accuracy. On the other hand, even with the sim-

ple PCFG(GP1), after training with 45M sentences,
the grammar continues to pick up new rules at a
rate of one rule per 160 sentences. Most of these
new rules are the combination of low frequency
supertags.

Last but not the least, given the promising pars-
ing accuracy of the approximating PCFG, we be-
lieve it is worth reconsidering the role of the hand-
written grammars in the deep linguistic process-
ing. In the past, manual grammar engineering
has been taking on the dual role of offering con-
cise and accurate linguistic description on the one
hand, while attending the efficiency and robust-
ness in parsing on the other. The conflicting goal
has hindered the development of large-scale lin-
guistic grammars. The technique as the one pre-
sented in this paper shows one way of liberating
grammarians from the concerns over the process-
ing difficulties.

7 Conclusion

We presented a corpus-driven approach to ap-
proximate a large-scale hand-written HPSG with
a PCFG for robust and accurate parsing. Differ-
ent annotations are used to enrich the derivation
trees. And with the 48M sentence from the En-
glish Wikipedia automatically parsed and disam-
biguated by the ERG, a MLE-based PCFG achieved
F1 of 84.13, higher than the performance of the
discriminative MEM parse selection model (which
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has access to the candidate HPSG parse forest).
The obvious robustness and potential efficiency
advantages of the approximating PCFG suggest its
promising applications in deep linguistic process-
ing.
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