The Loria Instruction Generation System L in GIVE 2.5

Alexandre Denis
INRIA Grand-Est, LORIA-Nancy
54603 Villers les Nancy Cedex, France
denis@loria.fr

Abstract

This paper presents the instruction genera-
tion system L submitted by the LORIA and
TALARIS team to the GIVE challenge 2011
(GIVE 2.5). The system L takes the same ap-
proach to instruction generation than its prede-
cessor the system NA that participated to the
GIVE challenge 2010 (GIVE 2), the two sys-
tems are almost the same except minor mod-
ifications. We present the strategy of these
systems, namely a directive, low level, naviga-
tion strategy (“Go left”) and a referring strat-
egy based on focus and sub-contexts (Denis,
2010) (“Not this one! Look for the other one”).
These strategies were successful, as shown by
the GIVE 2 challenge, but also had some de-
ficiences we tried to fix for GIVE 2.5. We ex-
plain these deficiencies and how we fixed them
in GIVE 2.5. We eventually present the pre-
liminary results that show that the system L,
like the system NA, achieved a very good result
both in objective and in subjective metrics.

1 Introduction

The GIVE challenge (Byron et al., 2009; Koller et
al., 2010) is a framework that enables to evaluate
instruction giving systems in a 3D setting. Players
connect to the framework and are paired randomly
with a system that will guide them through a 3D
maze to retrieve a trophy. Each system must de-
velop its own strategy to instruct the player to move
(navigation strategy) and to push buttons to open
doors or deactivate alarms (referring strategy). The
systems must also make sure to monitor the player
behaviour and provide him the necessary feedback
to put him back on track if he performs wrong ac-
tions. From this framework we can draw two kinds
of results, the objective results (task success rate,
duration, number of words, etc.) and the subjective
results (overall evaluation by the player, friendliness,

302

etc.), see (Koller et al., 2010). These two metrics are
both helpful to assess the quality of the systems.

We describe in this paper the system L, developed
by the LORIA laboratory that participated to GIVE
2.5. The system is very close to the system NA that
participated to the former challenge GIVE 2 (Denis
et al., 2010). Thanks to GIVE 2 metrics, we were
able to draw some interesting conclusions about the
efficiency of the system and we tried to improve the
existing flaws for GIVE 2.5. In section 2, we first
present the previous system NA, and describe its
navigation and referring strategies. We then show
in section 3 what was wrong with the NA choices,
in which situations it was not optimal, and how we
circumvented the problems in the system L. We con-
clude in section 4 with the preliminary results and
show that the performance of the system L is better
than system NA.

2 NA System

In this section we describe the NA system that par-
ticipated to the GIVE 2 challenge (Denis et al.,
2010). We first present the whole instruction giving
strategy and the main loop. Then we present the
two kinds of instructions at hand, move instructions
and push instructions and how these two instructions
are both verbalized and monitored. We also describe
three mandatory components, namely the replanning
mechanism, the acknowledgement and warning sys-
tem and the messaging manager.

2.1 Instruction giving

Like other systems, the NA system relies on the plan
returned by the planner provided with the frame-
work. However, it does not directly rely on this
plan because of its too fine-grained granularity and
builds an higher level plan. The general idea to build
the high-level plan (or instruction plan) is to iterate
through the plan returned by the planner (or ac-
tion plan) and gather move actions. For instance,

Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 302-306,
Nancy, France, September 2011. (©)2011 Association for Computational Linguistics



when a move action takes place in the same room
than a push action, the move action and the push
action are gathered into a single push instruction.
Or when two move actions take place in the same
room, they are gathered into a single move instruc-
tion. The plan is iterated and a rule-based matching
algorithm rewrites the actions into instructions.

instr (push(bs),

actions: (move(r37,r42), push(bs)))

Figure 1: A push instruction gathering a move and a
push action

Following the plan consists in providing the in-
structions at the right time, and monitoring the suc-
cess or failure of actions. The main loop thus consists
of two parts:

e pop a new expected instruction from the instruc-
tion plan when there is no current one

e evaluate the success or failure of the expected
action and verbalize it

For each instruction, two functions have then to
be specified:

e how to verbalize the instruction ?

e how to monitor the success or failure of the in-
struction ?

We now detail these two functions for both move
and push instructions as they were implemented in
NA.

2.2 Move instructions

2.2.1 Verbalizing move instructions

The verbalization of a move instruction consists
basically in providing the direction to the goal re-
gion. If there is a door located at the goal region,
the verbalization is “Go through the doorway + di-
rection”, and if there is not, the verbalization is sim-
ply “Go + direction”. The direction is computed by
taking the angle from the player position to the goal
region, and we only consider four directions “in front
of you”, “to your right”, “to your left” and “behind
you”.

Nevertheless, there could be cases in which the
goal region of the high level move instruction is not
the most direct region. For instance, the room in fig-
ure 2 being shaped like an U, the player has to move
to region r3, but because the moves to r2 and r3 are
in the same room, they are aggregated in a single
move instruction. But if we would directly utter the

303

direction to the goal region r3, given the player ori-
entation we would utter “Go to your left”. Instead,
we need to consider not the goal region of the move
instruction but the different regions composing the
expected move. The trick is to take the region of the
last low-level move action composing the move in-
struction which is theoretically visible (modulo any
orientation) from his current position. The compu-
tation takes into account visibility by testing if an
imaginary ray from the player position to the center
of a tested region intersects a wall or not. Thus, in
this case, because a ray from the player to r3 inter-
sects a wall, it is not chosen for verbalizing while r2
is picked and the produced utterance is eventually
“Go behind you” (this instruction has been changed
in the system L to “Turn around”, see section 3).

Figure 2: Example of U-turn

2.2.2 Monitoring move execution

The evaluation of the move instructions takes care
of the lower action level. It simply tests if the player
stands in a room for which there exists in the lower
action level a region in the same room. In other
words, a region is not on the way if it is located in a
room where the player should not be. If this is the
case, the failure of the move instruction is then raised
(see replanning section 2.4). If the player reaches the
goal region of the move instruction, then the success
is raised and the current expectation is erased.

2.3 Push instructions

2.3.1 Verbalizing push instructions

Given the structure of the instruction plan, a push
instruction can only take place in the room of the tar-
get button. The push instruction is actually provided
in two steps: a manipulate instruction that makes
explicit the push expectation “Push a blue button”,
and a designation instruction that focuses on iden-
tifying the argument itself “Not this one! Look for
the other one!”. The verbalization of the manipulate
instruction does not make use of the focus, it only
describes the object. On the other hand the verbal-
ization of the designation instruction first updates
the focus with the visible objects and then produces
a referring expression.

This two steps referring process makes it easier
to work with our reference setup. We tried apply-



ing Reference Domain Theory (RDT) for the ref-
erence to buttons (Salmon-Alt and Romary, 2000;
Denis, 2010). The main idea of this theory is that
the referring process can be defined incrementally,
each referring expression relying on the previous re-
ferring expressions. Thus, after uttering a push ex-
pectation, a domain (or group) of objects is made
salient, and shorter referring expressions can be ut-
tered. For example, after uttering “Push a blue but-
ton”, the system can forget about other buttons and
focus only the blue buttons. Expressions with one-
anaphora are then possible, for instance “Yeah! This
one!”. Spatial relations are only used when there is
no property distinguishing the referent in the desig-
nation phase of the referring process. These spatial
properties are computed, not from the player point of
view, but to discriminate the referent in the domain,
that is as opposed to other similar objects. For in-
stance, we could produce expressions such as “Yeah!
The blue button on the right!”. Vertical and hori-
zontal orderings are produced, but only three posi-
tions for each of them are produced left/middle/right
and top/middle/bottom. We also found it impor-
tant to have negative designation instructions such
as “Not this one” when there are focused buttons in
the current domain that are not the expected but-
tons. Thanks to the referring model, we just have to
generate “Not” followed by the RE designating the
unwanted focus. More details about the use of Ref-
erence Domain Theory in the GIVE challenge can be
found in (Denis, 2010).

2.3.2 Monitoring push execution

The evaluation of the success of a push expectation
is straightforward: if the expected button is pushed it
is successful, and the push expectation is erased such
that the main loop can pick the next instruction, if
a wrong button is pushed or if the region the player
is standing in is not on the way (see section 2.2.2)
then the designation process fails.

2.4 Replanning

It is often the case that the expected instructions
are not executed. A simple way to handle wrong
actions would be to relaunch the planning process,
and restart the whole loop on a new instruction
plan. However, we need to take into account that the
player may move all the time and as such could trig-
ger several times the planning process, for instance
by moving in several wrong regions, making then the
system quite clumsy. To avoid this behavior, we sim-
ply consider a wait expectation which is dynamically
raised in the case of move or push expectation failure.
As other expectations, the two functions, verbalize

304

and evaluate have to be specified. A wait expecta-
tion is simply verbalized by “no no wait”, and its
success is reached when the player position is not
changing. Only when the wait expectation is met,
the planning process is triggered again, thus avoid-
ing multiple replanning triggers.

2.5 Acknowledging and warning

Acknowledging the behavior of the player is ex-
tremely important. Several kinds of acknowledg-
ments are considered throughout the instruction giv-
ing process. FEach time an action expectation is
satisfied a positive acknowledgement is uttered such
as “great!”, or “perfect!”, that is when the player
reaches an expected region or pushes the expected
button. We also generate acknowledgements in the
case of referring even if the identification expecta-
tion is not represented explicitly as an action. When
the player sees the expected button, we add “yeah!”
to the generated referring expression. This acknowl-
edgement does not correspond to the success itself of
the action, but just warns the player that what he is
doing is making him closer to the success. Negative
acknowlegdments are also uttered, when there is an
expectation failure (“no no wait”) or when there is
a visible button that could be the referent (“not this
one”).

However it is as necessary to warn the player when
something went wrong as warning him that some-
thing could go wrong. Indeed, if the player steps on
an alarm the game is lost. It is therefore quite im-
portant to warn the player about alarms. The NA
system first provides a warning at the beginning of
the game by explaining that there are red tiles on
the floor and that stepping on them entails losing
the game. But it also embeds an alarm monitor.
If at any time, the player is close to an alarm, the
system produces an utterance “Warning! There is
an alarm around!”. In order to avoid looping these
messages when the player passes by alarms, a timer
forbids uttering several alarm warnings. But if the
timer goes off, new alarm warnings could be poten-
tially produced.

2.6 Messaging

Message management in a real-time system is a crit-
ical task that has to take into account two factors:
the moment when an instruction is uttered and the
time the instruction stays on screen. NA relies on a
messaging system in which we distinguish two kinds
of messages, the mandatory messages and the can-
cellable messages. Mandatory messages are so im-
portant for the interaction that if they are not re-
ceived the interaction can break down. For instance,



the manipulate instructions (e.g. “Push a blue but-
ton”) are crucial for the rest of the referring process.
In the case they are not received, the player does not
know which kind of button he has to press. Can-
cellable messages are messages which could be re-
placed in the continuous verbalization. For instance,
the designation instructions (e.g. “Yeah! This one!”)
or the direction instructions (e.g. “Go straight”) are
continuously provided, each instruction overriding
the previous one. We cannot force the cancellable
messages to be displayed a given amount of time on
the screen because of the fast update of the environ-
ment. Both types of messages are then necessary:

e if we would have only mandatory messages, we
would risk to utter instructions at the wrong
moment because of the delay they would stay
on screen.

e and if we would have only cancellable messages,
we would risk to miss critical information be-
cause they can be replaced too fast by next in-
structions.

The system then maintains a message queue in
an independent thread called the message manager.
Each message, either mandatory or cancellable, is as-
sociated to the duration it has or can stay on screen.
The manager continuously takes the first message in
the queue, displays it and waits for the given du-
ration, then it displays the next message and so on.
Before a new message is added to the queue, the mes-
sage manager removes all pending cancellable mes-
sages while keeping mandatory messages. It then
adds the message, and if the current displayed in-
struction is cancellable it stops the waiting.

3 Improvements in system L

We present in this section some of the problems of
system NA and how we fixed them for GIVE 2.5 in
system L.

3.1 Navigation strategy

While the NA navigation strategy was quite effec-
tive, and in general praised by the subjective assess-
ment, it required some modifications. Some players
were confused with the “doorway” verbalization ei-
ther because they were not native speakers and did
not know the word, or because they did not con-
sider it as a natural wording. Indeed, because there
was no visible door and only openings in walls, this
verbalization was confusing. In system L, it simply
has been removed and a shorter instruction “Go +
direction” has been preferred. Moreover, thanks to

305

the free-text feedback, we found out that the ver-
balization “Go behind you” of NA was clearly inap-
propriate, several players complaining about its non-
naturalness and we replaced it by a simpler “Turn
around” in system L.

3.1.1 Referring strategy

The changes in navigation strategy were purely
cosmetic. On the contrary, despite its efficiency, the
NA referring strategy had some serious flaws and
thus required deeper modifications. In NA we sepa-
rated the referring process into two steps that could
make use of different discrimination features, the first
step for instance did not make use of focus or spatial
relationship, the second step used focus and spatial
relationship but only to disambiguate between visi-
ble buttons. However this strategy was failing in at
least two cases:

e the first descriptive step was not working well if
the player was too close to a button. Because in
most cases an indefinite referring expression was
uttered e.g. “Push a blue button”, it raised the
presupposition that any button was appropriate,
and if the player was too close to a matching
button, he would directly press it, even if it was
the wrong one.

e the second step mostly based on focus was not
working well in rooms where a lot of similar
buttons were present. The player would receive
first “Push a blue button” and would contin-
uously receive instructions like “Not this one!
Look for another one!”. He would then have to
turn around, looking at each blue button until
he would find the right one.

These two cases have been found out either by
looking at the raw datas, situations where wrong but-
tons are pushed, or duration between the instruction
and the actual push, or by looking at the subjective
assessments of the players.

The common solution to these problems was to
introduce player-relative spatial discrimination e.g.
“to your left”, as was done by another system that
participated in GIVE 2, the NM system, see (De-
nis et al., 2010). For system L we also relaxed the
difference between the two referring steps and both
use a combination of focus, description and relative
direction. In the first step, to address the indefinite
presupposition problem, we forbid the simple utter-
ance like “Push a blue button” but included either
focus-based discrimination like “Push a blue button
but not this one”, or player-relative spatial discrim-
ination like “Push a blue button, it is on your left”.



Unfortunately time prevented us to model correctly
the pronoun anaphora in the RDT framework (Denis,
2010) and it has been hardcoded. The player-relative
discrimination also helped a lot to solve the second
issue, instead of looking at each button, the player
was directed immediately to the intended referent.

4 Results and conclusion

The preliminary results of the GIVE 2.5 challenge are
consistent with the results of the GIVE 2 challenge
(Koller et al., 2010). While the system NA achieved
47% average task success in GIVE 2, the prelimi-
nary results show that the system L achieves 67.2%
in GIVE 2.5, and like last year it is in the top three
systems. It is also the fastest system while using the
smallest number of words to achieve task success. On
the subjective level, the system has been positively
evaluated and is in the first group for almost all met-
rics. The weakest point is shown by the task progress
feedback metric. The system receives its lowest mark
for the evaluation item “The system gave me useful
feedback about my progress”. This result is normal,
and in line with the previous challenge, since the sys-
tem does not provide any information about the task
at hand but only gives move and push instructions.
Other systems that participated to GIVE 2.5, for
instance system C, are much more talkative (hence
taking more time) and describe in details the task
and the current progress like the remaining number
of buttons. However, if giving task feedback is a nec-
essary feature, we could question how much these ap-
proaches are task independent and if we could draw
some general principles underlying the verbalization
of task progress.

References

Donna Byron, Alexander Koller, Kristina Striegnitz, Jus-
tine Cassell, Robert Dale, Johanna Moore, and Jon
Oberlander. 2009. Report on the First NLG Challenge
on Generating Instructions in Virtual Environments
(GIVE). In Proceedings of the 12th Furopean Work-
shop on Natural Language Generation (ENLG 2009),
pages 165—173, Athens, Greece, March. Association for
Computational Linguistics.

Alexandre Denis, Marilisa Amoia, Luciana Benotti,
Laura Perez-Beltrachini, Claire Gardent, and Tarik
Osswald. 2010. The GIVE-2 Nancy Generation Sys-
tems NA and NM. Technical report, INRIA Grand-
Est/LORIA.

Alexandre Denis. 2010. Generating Referring Expres-
sions with Reference Domain Theory. In Proceedings
of the 6th International Natural Language Generation
Conference - INLG 2010, Dublin Ireland.

306

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the sec-
ond NLG challenge on generating instructions in vir-
tual environments (GIVE-2). In Proceedings of the In-
ternational Natural Language Generation Conference
(INLG), Dublin.

Susanne Salmon-Alt and Laurent Romary. 2000. Gen-
erating referring expressions in multimodal contexts.
In Workshop on Coherence in Generated Multimedia -
INLG 2000, Mitzpe Ramon, Israel.



