The GIVE-2.5 C Generation System

David Nicolas Racca, Luciana Benotti and Pablo Duboue
Universidad Nacional de Cérdoba
Facultad de Matematica, Astronomia y Fisica
Cordoba, Argentina
{david.racca, luciana.benotti, pablo.duboue}@gmail.com

Abstract

In this paper we describe the C generation
system from the Universidad Nacional de
Cérdoba (Argentina) as embodied during the
2011 GIVE 2.5 challenge. The C system has
two distinguishing characteristics. First, its
navigation and referring strategies are based
on the area visible to the player, making the
system independent of GIVE’s internal repre-
sentation of areas (such as rooms). As a result,
the system portability to other virtual environ-
ments is enhanced. Second, the system adapts
classical grounding models to the task of in-
struction giving in virtual worlds. The simple
grounding processes implemented (for refer-
ents, game concepts and game progress) seem
to have an impact on the evaluation results.

1 Introduction

GIVE-2.5 is the third instance of the challenge
on Generating Instructions in Virtual Environ-
ments (Byron et al., 2007). The GIVE Challenge
is an NLG evaluation contest in which natural lan-
guage generation systems help human players com-
plete a treasure hunt in virtual 3D worlds.

In GIVE, the C system and the human Instruction
Follower (IF)—the player—establish a dialogue sit-
uated in a virtual world. The C system verbalizes,
in real time, instructions that the IF must follow in
order to complete the game. Generating instructions
involves the generation of referring expressions and
navigation instructions. The C system was designed
independently of GIVE world’s internal concepts by
using the IF’s visibility information. As a result, the

290

main algorithms of the system can be ported to dif-
ferent virtual environments.

To make the communication more effective, the
C system implements a grounding model for refer-
ents based on Traum’s grounding acts model (Traum
and Allen, 1992; Traum, 1999). The system also im-
plements a grounding process for unknown objects,
such as alarms, describing them to the player and
specifying their effects.

The paper is structured as follows. Section 3 de-
scribes the system’s strategy based on player’s visi-
bility. Section 2 introduces the architecture design of
the system. Section 4 explains C system’s ground-
ing model. Section 5 briefly analyzes the evaluation
results and Section 6 concludes.

2 System Architecture

In the virtual worlds, the player has to press several
buttons to accomplish the target goal. These but-
tons, when pressed, modify the state of the virtual
world. C system’s architecture is an adaptation of
Reiter and Dale (2000) NLG architecture to GIVE’s
dynamic context. Figure 1 presents the architecture
diagram of the C System. The arrows between the
different modules represent how data flows through
modules. Note that data flows through a cycle that
starts with the player’s actions information and fin-
ishes with C system’s text instructions. On each it-
eration, C system checks what the player did or is
doing at the moment and uses this information as
well as the plan’s information to create one or more
instructions in response to the player’s activities.
The Monitor module is responsible for check-
ing player progress and status. It collects targeted

Proceedings of the 13th European Workshop on Natural Language Generation (ENLG), pages 290-295,
Nancy, France, September 2011. (©2011 Association for Computational Linguistics

CSystem CNLG
—_— Flayer's Actiyiy - Docurment
= Monitor — Evants Planning
Shown S eﬂ@;e?kk Cungent_
Overlappag Sentences Determination
- 4
Last Plan Ste Shown Sentences,
Human Verbalized ¢ Overlapped Sentences 8,
Player | Microplanning and .959@
- Surface Realization s
Intruction | Sender]
Timer Thread % (" D (Refering R
GIVE S@“feqc Lexicalizer Expressions
ﬁ MBS el 5 Entity Generation
infarmation \) Reference | _ Y,
CWorld L:">

Figure 1: C system’s architecture diagram.

player’s actions which will be used later by the
CNLG module to determine the content of the next
instruction to be generated. Given a player’s action,
Monitor checks if the system’s last verbalized plan
step has now been accomplished by the player. That
is, it verifies whether the player has performed the
action previously indicated by the C system. This
task is important for the grounding process imple-
mented by the NLG as discussed in Section 4. The
monitor also checks if the player is close to an alarm
and whether an alarm is visible. In addition, it
checks for player’s inactivity using a set of timeouts
which take into account the time the player is taking
to perform the last issued instruction.

The CNLG module is the language generator of
the system and is based on Reiter and Dale’s archi-
tecture. The Content Determination unit uses the
current plan and the monitor output to create a list of
messages. Each message contains information cor-
responding to a CNLG’s final utterance. Given a set
of player’s activity events such as a correct/incorrect
object manipulation or player’s inactivity, the Con-
tent Determination module selects from the plan the
items that will form part of the next generated in-
structions. The Lexicalizer and Referring Expres-
sions Generator (REG) modules convert the mes-
sages given by the Content Determinator module
into a set of sentences objects (each representing a
text utterance). The CWorld module provides infor-
mation to all other modules about the current state
of the GIVE World and player status.

Lastly, the Instruction Timer module sends the list

291

of sentences to the human player ensuring that these
are shown long enough to be considered completely
read. It also determines which utterances will be
shown using a priority hierarchy list of the sentence
objects. Using this information, it classifies the sen-
tences into shown and overlapped sentences.

3 Visibility-based Strategy

The main NLG task in GIVE is helping the human
player by communicating a list of steps to reach
the trophy. Thus, the NLG must communicate all
the steps that compose the plan obtained using the
GIVE framework planner. On this context there
are three different types of plan steps (PS): move-
ment plan steps (MoPS), object manipulation plan
steps (MaPS) and object taking plan steps (TaPS). In
GIVE, MaPS are related to pressing buttons where
TaPS are actions that imply the possession of an
object. MoPS are movement actions indicating the
player must move from one region to another.

Since planners cannot handle continues environ-
ments, the virtual world has to be discretized. GIVE
worlds are discretized into smaller rectangular re-
gions such that, for all pairs of regions A and B, A
is adjacent to B if and only if every point of A can
be seen from B and every point of B can be seen
from A. Two points in different regions can see each
other if it is possible to draw a straight line between
the two points without intersecting a wall. In GIVE,
all rooms and hallways are rectangular and therefore
so are all regions.

The strategy of the C system is based on player’s

visibility. The C system chooses the next plan step
to verbalize by checking whether the plan step’s
argument (e.g., button or target region) is visible by
the player. The plan is a list composed of MaPS,
MoPS and TaPS, sorted by the order in which these
actions needs to be performed. A GIVE tipical plan
has the following form:

MoPS}, MoPSs, ..., MaP5Sy,
MoPS? MoPS3,...,MaPS,,

MaPSy, MoPSF™ MoPSy™ ..., TaPS

Our algorithm selects one plan step at a time check-
ing whether the argument of the first MaPS or TaPS
is visible-360° by the player. An object is visible-
360° by the player if she can visualize it directly by
turning around 360°. If the first MaPS or TaPS do
not satisfy this, then the C system takes the sublist
[MoPSt, MoPSs, ..., MaP5S,] and looks for the
last MoPS that its “to” region is visible-360° by the
player. A region is visible-360° when its center point
is visible-360°. Therefore, the C system will first re-
fer to the first object that the player has to manipulate
if it is visible-360° and it will refer to the last visible
region if that object is not visible. The principle of
discretization given above ensures that such region
exists if the plan is valid. The resulting behavior is
to navigate the player referring to the furthest region
until the first object to manipulate becomes visible.
When giving MoPS instructions, the system replans
only when the player has moved off the path enough
to lose all MoPS region’s visibility.

The C system replans if the player actions invali-
date the current plan. This can happen if the player
presses a button that was not the next button in the
plan or when she goes so far away from the path es-
tablished by plan that all the regions in the path are
no longer visible-360°.

Object’s visibility at 360° considers a circular vis-
ibility zone. This represents the points from which
the player is able to visualize the object at 360°. The
zone circle’s radius determines the distance from
which the system will consider that the player can
see the object and it depends on the number of dis-
tractors that object has. This value is higher if there
are few distractors and it is lower if there are many.
By doing this, the C system forces the player to get
closer to the target object if there are many distrac-

292

T [T 7
click the bottom

L en buttons,

Figure 2: A referential expression from outside the but-
ton’s room.

tors near, decreasing the number of visible distrac-
tors and thus, facilitating the generation of referring
expressions. This also makes the C system capable
of giving a button’s reference from afar if the button
is alone and then easily identifiable.

C system verbalizes MoPS referencing their re-
gion’s center by using direction instructions such as
—Go straight— or —Move left—. Also, while nav-
igating, the system checks if there are alarms be-
tween the target region and player’s location in a
straight line and it warns the player about this. MaPS
are verbalized using referential expressions for the
target objects. To make this kind of references, the
system uses object’s type and color, its relative posi-
tion with respect to others of the same type (e.g.,
first, second, in the middle) and its relative posi-
tion with respect to player’s location (e.g., on your
left). It also implements visual focus and deduction
by elimination types of references as —That one—
or —Not this one—. Visual focus and deduction by
elimination expressions are generated for trophy ob-
jects too, besides button’s objects.

The C system visibility-based strategy is a general
approach that allows to reference buttons as soon as
they become visible (for example, the bottom green
button in Figure 2). This strategy is, of course, not
without its limitations. We can experience stability
issues with respect to the generated descriptions for
players that move abruptly (particularly if turning).

4 Grounding in Situated Dialogue

When people communicate, they constantly try to
arrive to a state in which they believe to have under-
stood, what has been said, well enough for current
purposes. The process by which people arrive to this
state is called grounding. The C system implements
three different kinds of grounding.

First, the system grounds new virtual world ob-
jects such as alarms and safes. In this process what
is grounded is the link between the graphical repre-
sentation of alarms and safes inside GIVE with the
role they play in the game. This grounding process
is crucial for completing the GIVE task successfully
since the player needs to identify the alarms in or-
der not to lose the game, and she needs to identify
the safe in order to win the game. The system imple-
ments this grounding process in two stages. The first
time the player sees an alarm the system introduces
the new object by first describing the object and
prompting the player to pay attention to it—Do you
see that red region on the floor>—then naming it—
That’s an activated alarm and finally describing its
effects—If you step over one of them, we’ll lose the
game. In a second stage, every time the player gets
too close to an alarm, the system will just present
a warning—There’s an alarm, watch out. The ev-
idence that the alarms have been grounded is quite
weak in the GIVE scenario since the player does not
need to interact with them but to avoid them. How-
ever, we believe it had an impact in the number of
lost games (see §5).

Secondly, the system grounds the state of comple-
tion of the task. In this process, what is grounded is
the effect the player actions have on the state of the
task. The C system implements this grounding pro-
cess in order to minimize the amount of cancelled
games following the hypothesis that the player will
cancel less if she knows she is advancing in the
task. This grounding process is implemented by in-
dicating the effect of the player actions which ad-
vance the task—We’ve opened one door. We need
to open two more doors—as well as those actions
that were incorrect—Wrong button! We’ve activated
an alarm. The evidence that the current state of the
task has been grounded is non-existing in the GIVE
scenario since the player does not react to it in any
observable way. However, we believe it had an im-

293

pact in the number of cancelled games and in the
subjective metrics too (see §5).

Finally, the system needs to ground the buttons
that the player has to manipulate in order to advance
in the task. In this process, what is grounded is
the identity of particular buttons that the player has
to interact with. This is the grounding task which
exhibits the strongest evidence, since the player in-
teracting with the referred button is strong evidence
that the intended referent was grounded. However,
this is also the grounding task inside GIVE which
is more complex since the GIVE worlds are de-
signed such that the intended referents have many
distractors (objects of similar characteristics). As a
result, the best strategy to implement this ground-
ing process is not to give a referring expression
that uniquely identifies the referent but to imple-
ment it as a collaborative grounding process (as
proven empirically by the GIVE-2 NA system (De-
nis et al., 2010)). The C system implements this
grounding process adapting the model proposed by
Traum (1992; 1999), which is a computational adap-
tation of the collaborative grounding model pro-
posed by Clark and Schaefer (1989). In the rest
of this section we explain how the C system adapts
Traum’s model to instruction giving in virtual envi-
ronments.

Let’s consider the following sample interaction
with the system:

IG(1): Press the left blue button

IF(2): [Stares at the button on the right]
1G(3): Not that button

IF(4): [Stares at the left button]

IG(5): Yep, that button

IF(6): [Pushes the left blue button]

Traum models the grounding process as a finite
state automata. Figure 3 illustrates the part of the
automata of Traum’s model that was implemented
in the C system.

The arc (S,1) represents the contribution to be
grounded— contribution (1) in our example. The
remaining arcs represent contributions which do not
need to be grounded because they are grounding
acts—such as contributions (2) to (6)! in our ex-
ample. Contributions (1) to (6) make the automata

"Notice that we consider that contributions are not only IG’s
utterances but also IF’s actions.

start —

. I
initiate! continue

reqRepair® ack®

cancel®

()

cancel®

repair!

(5

ack®™, ack’

ack®

reqRepair®

Figure 3: C system’s grounding model.

go through the states (S,1,2,1,2, F)). That is, (2)
and (4)—focusing a possible target and waiting—
are treated as request repairs by the receiver R (the
IG in this exchange). While (3) and (5) are treated
as repairs by the initiator I (the IF in this exchange).
Finally, (6) is modelled as an acknowledgement by
the IF which grounds the instruction Press the left
blue button; in the state F the contribution is consid-
ered grounded. If the IF would have pressed the cor-
rect button right after utterance (1) then the sequence
followed would have been (S, F'). While if the IF
would have pressed the wrong button right after ut-
terance (1) then the sequence followed would have
been (S, D). The state D is a dead state, the con-
tribution is considered ungroundable; after pressing
a wrong button the system needs to find a new plan
since the ongoing one may no longer be valid.

The C system implements only a part of Traum’s
grounding model because Traum’s model includes
the treatment of repairs contributed by the receiver.
This is not possible in the GIVE scenario since the IF
does not have enough information in order to correct
the IG, the IG is the only one that is supposed to have
knowledge of the task.

5 Evaluation Results

Figure 4 depicts the percentages for successful, lost
and cancelled games of the results of the GIVE
2.5. C system’s values for cancelled (16%) and
lost(14%) games are lower than the observed on the

294

| _CANCEL

@ EROST
B @R UCCESS

06

04
|

percentage of games
0.3

0.2
|

0.1

0.0

A B C CL L P1 P2 T

Figure 4: GIVE-2.5 results. Percentage of success, lost
and cancelled games by system.

other systems. We think this is a consequence of the
grounding strategy for alarm objects and progress
information used by C system.

The instructions about progress and effect’s de-
scriptions messages also enhanced the system’s sub-
jective metrics. For instance, most players thought
that C system gave them useful feedback about their
progress and most people considered they could
trust on C’s instructions.

6 Conclusions

In this work we have described the C natural lan-
guage generation system for the GIVE-2.5 chal-
lenge. Our system classical grounding models (such
as the ones from Traum (1992; 1999)) the process
of giving instructions in virtual worlds. The sim-
ple grounding process for buttons, alarms, safes and
game progress described in Section 4 had a posi-
tive impact on the evaluation metrics, as discussed
in Section 5.

Moreover, the C system navigation and referring
strategy (discussed in Section 3) is based on the area
visible to the player. We believe this player-centric
approach creates more natural-sounding instructions
and reduces the chances for the player getting lost.
The fact that these strategies make the C system also
independent of the GIVE framework internal repre-
sentations of concepts has portability implications
we seek to explore in further work.

References

Donna Byron, Alexander Koller, Jon Oberlander, Laura
Stoia, and Kristina Striegnitz. 2007. Generating In-
structions in Virtual environments (GIVE): A chal-
lenge and evaluation testbed for NLG. In Workshop
on Shared Tasks and Comparative Evaluation in Nat-
ural Language Generation.

Herbert H. Clark and Edward F. Schaefer. 1989. Con-
tributing to discourse. Cognitive Science, 13:259-294.

Alexandre Denis, Marilisa Amoia, Luciana Benotti,
Laura Perez-Beltrachini, Claire Gardent, and Tarik Os-
swald. 2010. The GIVE-2 Nancy Generation Systems
NA and NM. Technical report, Loria/INRIA, France.

E Reiter and R Dale. 2000. Building natural language
generation systems. Cambridge University Press.

David R. Traum and James F. Allen. 1992. A ”speech
acts” approach to grounding in conversation. In IC-
SLP.ISCA.

David R Traum. 1999. Computational Models of
Grounding in Collaborative Systems. In working notes
of AAAI Fall Symposium on Psychological Models of
Communication, pages 124-131, November.

295

