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Abstract strain the generation space and improve the gener-
ation quality.

In this paper we describe our system and ex-

perimental results on the development set of '

the Surface Realisation Shared Task. DCU tg;ii'zr;:st
submitted 1-best outputs for the Shallow sub-

task of the shared task, using a surface real- subj mnr
isation technique based on dependency-based 3 .
n-gram models. The surface realiser achieved pred:athlete pred-fast
BLEU and NIST scores of 0.8615and 13.6841 num:sg

respectively on the SR development set.
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1 Introduction
pred:young pred:the

DCU submitted outputs for SR-Shallow, the shal-_ ,
low sub-task of the surface realisation shareglgure 1: Unordered dependency tree for the input of the
. . . Sentence: the young athlete ran fast
task, using a surface realisation technique baseg
on dependency-based n-gram models, described in
some detail in (Guo et al., 2010). >
The generation method captures the mapping be-
tween the surface form sentences and the unordergtle shallow input representation takes the form of
syntactic representations of the shallow representan unordered dependency tree. The basic approach
tion by linearising a set of dependencidisectly, of the surface realisation method is to traverse the
rather than via the application of grammar rules aput tree ordering the nodes at each sub-tree based
in more traditional chart-style or unification-basedon local information. For each sub-tree the nodes
generators (White, 2004; Nakanishi et al., 2005are ordered according to a combination of n-gram
Cahill and van Genabith, 2006; Hogan et al., 2007%nodels of increasing specificity. At the most gen-
White and Rajkumar, 2009). In contrast to conveneral level, for a particular sub-tree, the n-gram model
tional n-gram language models over surface wordimply models the grammatical relations (including
forms (Langkilde-Geary, 2002), we exploit struc-the predicate/head) of the sub-tree. Take for exam-
tural information and various linguistic features in-ple the sub-tree rooted at nodiédrom Figure 1. The
herent in the dependency representations to corealiser linearises the lemmas at nodes/ and K

Throughout this document DCU stands for the joint teamby learning the correct order of the syntactic rela-

of Dublin City University and Toshiba (China) Research andions (in this ?aSGUbJ. < pred < _mnr)-
Development Center participating in the SR Task 2011. Formally, in our most basic model, for a lo-

Dependency-based N-gram Models
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cal sub-treet; containingm grammatical relations jective! dependencies, the generation algorithm re-
(GRs) (includingpred), generating a surface string cursively traverse§” in a bottom-up fashion and at
Sm = s.s, expressed by; is equivalent to €ach sub-tree;:

linearising all the GRs present at The depen- 1 instantiates the local predicaiecd; att; and per-
dency n-gram (DN-gram) model calculates proba-  forms morphological inflections if necessary
bilities for all permutationd Ry = GFR,...G Ry, 2. calculates DN-gram probabilities of possible GR
and searches for the best surface sequence that max- permutations licensed by

imises the probability?(S7") in terms of maximis-
ing P(GR"). Applying the chain rule and the 3. finds the most probable GR sequence among all
Markov assumption, the probability of the surface ~ Possibilities by Viterbi search

realisation is computed according to Eq. (1). 4. generates the surface stringaccording to the best
GR sequence as a realisation.pf

P(S7") = P(GRY") = P(GR1...GRy) = || P(GRy|IGF{Z} ) 5. propagates; up to the parent sub-tree.
k=1

W 4 Experimental Results

The basic dependency n-gram model over bafeesults of the surface generator on the SR development
GRs is not a good probability estimator as it onlyset. tra?ned exclusively on the SR training set, are dis-
makes use of a few dozen grammatical functiof!@yedin Table 1.

roles. For example there is no way to capture the BLEU-4 | NIST | METEOR

difference between two nominal modifiers accord- 0.8615 | 13.6841] 0.8925
ing to the labels of the two GRs. In order to facil-
itate better decisions, we extend the basic model to Table 1: Results on the development set

a number of more complex DN-gram models incor-

porating contextual information such as the syntac-

tic relation of the parent of a node, as well as local

node information (e.gtense andnumber features). References

In the most specific model all grammatical relation$ysife canill and Josef van Genabith. 2006. Robust
are lexicalised (in the case of subtree rooted at node pcrFG-based generation using automatically acquired
I from Figure 1 the model learnsubj(athlete) < LFG approximations. IiProceedings of the 44th An-
pred(run) < mnr(fast)). Log-linear interpolations  nual Meeting of the Association for Computational
(LLI) are used to combine the estimates from the Linguistics (ACL).

different DN-gram models: Yuging Guo, Haifeng Wang, and Josef van Genabith.
2010. Dependency-based n-gram models for general
PEE (s = [ [ Pucsty™ 2 purpose sentence realisatidtatural Language Engi-

neering, 1(1):1-29.
Deirdre Hogan, Conor Cafferkey, Aoife Cahill, and Josef

‘ot : van Genabith. 2007. Exploiting multi-word units in
3 TheRealisation Algorithm history-based probabilistic generation. |mProceed-

In order to generate the surface lexical form corre- ings of the Joint Conference on Empirical Methods
sponding to an input lemma, morphological alterna- n Natural Language Processing and Conference on

tion has to be determined. From the training corpus, COmPUtational Natural Language Learning.

we use the grammatical properties like number, part- iThe algorithm assumes all dependencies are projective and
of-speech tag, tense, and participle feature which ateerefore has a somewhat inadequate handling of the non-
encoded in the input nodes, to learn a mapping fromyoiective dependencies that do exist in the SR data. Fonexa

. . le, for the input dependency tree of sentevity , they wonder
lemma to the appropriate word form in the Surfacfgshould it belong to the EC ? (training set sentld=32553) the

realisation. _ algorithm can not generate the original word order. A furthe
The generation process proceeds as followgie-processing step is needed to make all dependenciesproj
Given an input tred” consisting of unordered pro- tive.
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