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Abstract

The Surface Realisation (SR) Task was a new
task at Generation Challenges 2011, and had
two tracks: (1) Shallow: mapping from shal-
low input representations to realisations; and
(2) Deep: mapping from deep input represen-
tations to realisations. Five teams submitted
six systems in total, and we additionally evalu-
ated human toplines. Systems were evaluated
automatically using a range of intrinsic met-
rics. In addition, systems were assessed by
human judges in terms of Clarity, Readability
and Meaning Similarity. This report presents
the evaluation results, along with descriptions
of the SR Task Tracks and evaluation methods.
For descriptions of the participating systems,
see the separate system reports in this volume,
immediately following this results report.

1 Introduction and Overview

Many different surface realisers have been devel-
oped over the past three decades or so. While
symbolic realisers dominated for much of this pe-
riod, the past decade has seen the development of
many different types of statistical surface realisers.
A significant subset of statistical realisation work
(Langkilde, 2002; Callaway, 2003; Nakanishi et al.,
2005; Zhong and Stent, 2005; Cahill and van Gen-
abith, 2006; White and Rajkumar, 2009) has pro-
duced results for regenerating the Penn Treebank
(PTB) (Marcus et al., 1995). The basic approach in
all this work was to remove information from the
Penn Treebank parses (the word strings themselves
as well as some of the parse information), and then

convert and use these underspecified representations
as inputs to the surface realiser whose task it is to
reproduce the original treebank sentence.

While publications reporting this type of work
referred to each other and (tentatively) compared
BLEU scores, the results were not in fact directly
comparable, because of the differences in the in-
put representations automatically derived from Penn
Treebank annotations. In particular, the extent to
which they were underspecified varied from one sys-
tem to the next. Our aim in developing the Surface
Realisation (SR) Task was to make it possible, for
the first time, to directly compare different, inde-
pendently developed surface realisers by developing
a ‘common-ground’ input representation that could
be used by all participating systems to generate real-
isations from. In fact, we created two different input
representations, one shallow, one deep, in order to
enable more teams to participate.

Five teams submitted systems to the SR Task (see
Table 1), submitting six systems in total. We also
used the corpus texts themselves as ‘system’ out-
puts, to provide a human topline. We evaluated par-
ticipating systems using a range of intrinsic eval-
uation methods, both automatically computed and
human-assessed (for an overview, see Table 2).

This report describes the data (Section 2), task
definition, evaluation methods and results (Sec-
tions 3 and 4) for the SR Task, and then presents
a discussion of some problematic issues in develop-
ing a shared surface realisation task for the first time
(Section 5). The participating systems are described
in the particpants’ reports in this volume, immedi-
ately following this report.
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Team Organisation(s) Shallow systems Deep systems
ATT AT&T Labs Research ATT-0 y –
DCU Dublin City University DCU –

Toshiba (China) Research and Development Center
OSU Ohio State University – OSU y

STUMABA Universität Stuttgart STUMABA-S x,y STUMABA-D x,y

Universitat Pompeu Fabra
Université du Maine

UCM Universidad Complutense de Madrid UCM –

Table 1: SR-Task teams and systems. The STUMABA systems are the version called ‘System 2’ in the team’s report.
x = resubmitted after fixing software bugs; y = late submission.

Quality criterion: Type of evaluation: Evaluation Method(s):

Humanlikeness Intrinsic/automatic BLEU, NIST, TER, METEOR
Intrinsic/human Human assessment of Meaning Similarity

Readability Intrinsic/human Human Readability judgements
Clarity Intrinsic/human Human Clarity judgements

Table 2: Overview of evaluation procedures used in the SR Shared Task.

2 Data

The SR Task data has two input representations—
one for each track, shallow and deep. In both, sen-
tences are represented as sets of unordered labeled
dependencies (with the exception of named entities,
see Section 2.4 below, which are ordered). The shal-
low input representation is intended to be a more
‘surfacey’, syntactic represention of the sentence.
The deep(er) input type is intended to be closer to a
semantic, more abstract, representation of the mean-
ing of the sentence.

The input representations were created by post-
processing the CoNLL 2008 Shared Task data (Sur-
deanu et al., 2008). For the preparation of the
CoNLL-08 Shared task data, selected sections of the
Penn WSJ Treebank were converted to syntactic de-
pendencies via the LTH Constituent-to-Dependency
Conversion Tool for Penn-style Treebanks (Pen-
nconverter) (Johansson and Nugues, 2007). The
resulting dependency bank was then merged with
the Nombank (Meyers et al., 2004) and Propbank
(Palmer et al., 2005) corpora. Named entity infor-
mation from the BBN Entity Type corpus was also
integrated into the CoNLL-08 data. Our shallow
representation is based on the Pennconverter depen-
dencies. The deep representation is derived from the
merged Nombank, Propbank and syntactic depen-
dencies in a process similar to the graph completion

algorithm outlined in (Bohnet et al., 2010) (see Sec-
tion 2.2 for differences).

2.1 Shallow representation

The shallow data consists of unordered syntactic de-
pendency trees. Each word and punctuation marker
from the original sentence is represented as a node
in a syntactic dependency tree.

Nodes: The node information consists of a word’s
lemma, a coarse-grained POS-tag, and, where ap-
propriate, number, tense and participle features and
a sense tag id (as a suffix to the lemma). In addition,
two punctuation features encode the quotation and
bracketing information for the sentence.

The POS-tag set is slightly less fine-grained than
the Penn POS-tag set. We removed the distinction
between VBP and VBZ for example, so that deter-
mining agreement is a task left to the realiser.

Edges: Edges between nodes are labeled with the
syntactic labels produced by the Penncoverter. See
the SR Task Documentation1 for a summary descrip-
tion of the label set. In addition to these atomic la-
bels, edges can be labeled with non-atomic labels,
which consist of multiple atomic labels (see Sur-
deanu et al. (2008) for details). See the SR Task

1Available here: http://www.itri.brighton.ac.uk/

home/Anja.Belz/pdf/SR-Task-2011-Doc.pdf
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Documentation for our current handling of long-
distance dependencies and future plans for improve-
ments.

2.2 Deep
The deep representation is in the form of depen-
dency graphs and is not restricted to tree structures.

Nodes: Information at each node consists of a
word’s lemma, and where appropriate, number,
tense and participle features and a sense tag id (as
a suffix to the lemma). Two punctuation features
encode the quotation and bracketing information for
the sentence. Unlike in the shallow representation,
there is no POS-tag information.

In a step towards removing punctuation, we re-
moved commas from the deep representation.2 In
addition, some function words (specifically, that-
complementizers and TO infinitives) were removed.
For the future, we intend to remove further function
words, such as relative pronouns and case-marking
prepositions.

Edges: Semantic edges are labeled with semantic
labels taken from the Propbank and Nombank se-
mantic roles.

Where the PropBank/NomBank relations result in
an unconnected structure, we connected the graph
with edges from the corresponding syntactic tree,
with the syntactic labels produced by the Pen-
ncoverter.

Some of these Pennconverter labels have been
modified slightly in order to make them more gen-
eral. See Table 3 for details. In the case of NMOD
and AMOD, the syntactic head is typically a seman-
tic argument of its modifier; accordingly, these syn-
tactic relations were replaced with an AINV (Argu-
ment INVerse) semantic relation. The direction of
Pennconverter edges remains unchanged.

2.3 Tokenisation
Tokenisation follows that of the CoNLL data, which
differs from that of the Penn Treebank. Hyphen-
ated words are split and dependencies between the
split tokens are given. For example, prime-time is
represented as three tokens with the dependencies:
[time]HMOD → [prime]HY PH → [−].

2There remain 55 occurrences where the comma had depen-
dent nodes which we intend to remove in the future.

2.4 Named Entities
Named entity annotations from the BBN Entity Type
corpus were used to derive NAME dependencies in
the CoNLL corpus. For the SR Task data we have
numbered all NAME dependencies with the order
they appear in the original sentence because, ar-
guably, the ordering of words in named entities is
not a task that should be left to a surface realizer.

2.5 Coordination
Following the CoNLL format, the first conjunct is
the head of coordinate structures in both shallow
and deep representations. All other conjuncts, and
the coordinating conjunction, are descendants of the
leftmost conjunct. The order of the conjuncts is en-
coded in the dependency structure. The treatment of
coordination will be revisited in future years.

2.6 Data Format
The data format for the shallow and deep tracks has
the following components:

1. A line with the graph number (e.g. sentId=11055).
2. The graph represented as lines where each line rep-

resents a single node and consists of at least 4 and a
maximum of 10 fields:
RELATION ID PARENT ID LEMMA[.sensetagID]
[CPOS=POStag] [num=sg|pl] [tense=past|pres]
[partic=past|pres] [quoted=d*s*] [bracket=r*c*]

Each line contains at least the first 4 fields, except
for nodes with multiple heads. In such cases, there
is one line for each head→ node relation. The first
time this occurs the full information for the node is
given. For subsequent occurrences only the rela-
tion label, the node ID, and the parent node ID are
given. Note that, as the syntactic representations are
strictly trees, multiple heads will only occur in the
deep representation.
The dependency structure of the graphs is reflected
both through tabular indentation and the ID and
PARENT ID fields.

3. A line containing the original sentence, followed by
a blank line (the test set data did not include the
sentence).

2.7 Training, Development and Test Sets
We followed the main data set divisions of the
CoNLL’08 data. However, we removed 300 ran-
domly selected sentences in chunks of 5 consecutive
sentences for use in human evaluations. Of these,
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Name Description/Comments
RELATION (shallow) Syntactic dependency relations. NAME dependencies are numbered with order information. The root of the tree has

relation SROOT.
RELATION (deep) Semantic relations when available. Otherwise, they are the shallow relations, some of which have been simplified

as follows: NMOD|AMOD → AINV , HMOD → MOD, PMOD → A1. Sentences have a single root,
marked with relation SROOT.

ID Token id of the node, starts at 1 for each new sentence
PARENTID Token id of the parent of this node
LEMMA[.sensetagID] Lemma with, when available, a sense tag id suffix. The lemma and sense tag id are the lemma and roleset id extracted

from propbank/nombank. When this information is unavailable the lemma is the predicted lemma extracted from the
CoNLL-08 data set.

CPOS (shallow) Hand-annotated coarse grained POS tag (from PTB); V BD|V BN |V BP |V BZ → V B, NNS → NN ,
NNPS → NNP , all other POS tags→ original hand-annotated PTB POS tag.

NUM Feature for nouns only. Values are singular or plural - derived from hand-annotated PTB POS tags. NN |NNP →
singular, NNS|NNPS → plural.

TENSE Feature for verbs only. Values are past or pres(ent) - derived from hand-annotated PTB POS tags. V BD → past,
V BP |V BZ → present

PARTIC Feature for participle tense derived from hand-annotated PTB POS tags (note: partic=pres could indicate a present
participle or gerund). V BN → past, V BG→ pres.

QUOTED Feature for indicating whether the node is quoted in the original sentence. d = doublequoted, s = singlequoted.
This feature value can consist of any number of d’s followed by any number of s’s. Multiple d’s or s’s occur when the
node is embedded inside more than one quotation mark. Take for example the sentence: He added : “ Every paper
company management has to be saying to itself , ‘ Before someone comes after me , I ’m going to go after somebody
. ’ ” The node corresponding to paper will have feature quoted = d and the node for word someone will have
quoted = ds.

BRACKET Feature for indicating whether the node is inside brackets in the original sentence. r = round brackets, c =
curly brackets. In a similar fashion to the QUOTED feature, this feature value can consist of any number of r’s
followed by any number of c’s.

Table 3: Field descriptions for Shallow and Deep Representations.

we used 100 as the test set for human evaluation this
year and will use the remainder in future editions of
the SR Shared Task.

1. Training set: PTB Sections 02–21.

2. Development set: 1,034 sentences from PTB Sec-
tion 24 (less 300 sentences for use in human evalu-
ations).

3. Test set for automatic evaluations: PTB Sec. 23.

4. Test set for human evaluations: 100 sentences in
chunks of 5 consecutive sentences, randomly se-
lected (and removed) from PTB Section 24.

Note that a small number of sentences from the
selected WSJ sections were not included in the
CoNLL-08 data (and are thus not included in the SR
Task data) due to difficulties in merging the various
data sets (e.g. Section 23 has 17 fewer sentences).

3 Automatic Evaluations

We computed scores using the following well-
known automatic evaluation metrics:

1. BLEU (Papineni et al., 2002):3 geometric mean of
1- to 4-gram precision with a brevity penalty; recent

3http://www.itl.nist.gov/iad/mig/tests/mt/2009/

implementations use smoothing to allow sentence-
level scores to be computed.

2. NIST:4,5 n-gram similarity weighted in favour of
less frequent n-grams which are taken to be more
informative.

3. METEOR (Banerjee and Lavie, 2005; Denkowski
and Lavie, 2011):6 lexical similarity based on exact,
stem, synonym, and paraphrase matches between
words and phrases.

4. TER (Snover et al., 2006):7 a length-normalized edit
distance metric where phrasal shifts are counted as
one edit.

For each metric, we calculated system-level scores,
the mean of the sentence-level scores and weighted
n-best scores (described below).

Text normalisation: Output texts were nor-
malised by lower-casing all tokens, removing any
extraneous white space characters and ensuring con-
sistent treatment of ampersands.

4http://www.itl.nist.gov/iad/mig/tests/mt/doc
/ngram-study.pdf

5http://www.itl.nist.gov/iad/mig/tests/mt/2009/
6http://www.cs.cmu.edu/ alavie/METEOR/
7http://www.umiacs.umd.edu/ snover/terp/

220



N-best, ranked system outputs: Ranked 5-best
outputs were scored using a weighted average of
the sentence-level scores for each metric, with these
sentence-level weighted sums averaged across all
outputs. The weight wi assigned to the ith sys-
tem output was in inverse proportion to its rank ri
(K = 5): wi = K−ri+1PK

j=1 K−rj+1

Missing outputs: Missing outputs were scored as
zero (one for TER); in the n-best evaluation, missing
or duplicate outputs were scored as 0 (1 for TER).
Since coverage was high for all systems (97% for
OSU; 100% for all others), we only report results
for all sentences (with the missing output penalty),
rather than separately reporting scores for just the
covered items.

3.1 Metric Scores

The automatic metric scores for all systems appear
in Tables 4 and 5 for the Automatic Test Set and
Human Test Set, respectively. Tables 6 and 7 give
the means of sentence-level scores; the columns
containing single capital letters show the homoge-
neous subsets of systems as determined by a post-
hoc Tukey HSD analysis; systems whose scores are
not significantly different (at the 0.05 level overall)
share a letter.

In the tables, system scores are shown for all sys-
tems, both in the shallow and deep track; thus, it
should be noted that the scores for STUMABA-D and
OSU, which are deep-task systems, are not directly
comparable to the scores for the remaining, shallow-
task systems. Across the metrics and data sets,
STUMABA-S is consistently the top-scoring system,
with DCU between STUMABA-S and STUMABA-D.
Since the automatic test set was much larger than
the human test set, there were more significant dif-
ferences between pairs of systems, as expected. TER

and METEOR were less sensitive, with STUMABA-S

and DCU falling into a top group for TER on the test
section (i.e., there was no significant difference be-
tween STUMABA-S and DCU on the mean TER score
at the 0.05 level overall), and STUMABA-S, DCU and
STUMABA-D forming a top group for METEOR. On
the human test set, the pattern was similar but with
larger homogeneous subsets.

With the n-best results, it is difficult to make any
firm conclusions with only two systems supplying

n-best outputs. Nevertheless, it is evident that across
the metrics, both the ATT and OSU systems have con-
sistently higher 1-best scores than weighted n-best
scores, indicating that they are generally successful
in choosing a single-best output that is more similar
to the reference sentence than the others in the top
5. In the absence of multiple reference sentences or
human evaluation results for the n-best list though,
it is unclear to what extent the outputs in the n-best
list might represent valid paraphrases versus clearly
less acceptable outputs.

4 Human Evaluations

4.1 Experimental Set-up
We assessed three criteria in the human evaluations:
Clarity, Readability and Meaning Similarity. We
used continuous sliders as rating tools (see Figures 1
and 2), because raters tend to prefer them (Belz and
Kow, 2011). Slider positions were mapped to values
from 0 to 100 (best).

The instructions relating to Clarity and Readabil-
ity read as follows:8

The first criterion you need to assess is Clarity.
How clear (easy to understand) is the highlighted
sentence within the context of the text extract?

The second criterion to assess is Readability. This
is sometimes called ’fluency’, and your task is to
decide how well the highlighted sentence reads; is
it good fluent English, or does it have grammatical
errors, awkward constructions, etc.

Note that you should assess Clarity separately from
Readability: it is possible for a text to be com-
pletely clear, yet not read well; conversely, it is pos-
sible for a text to read very well, and its meaning to
be unclear.

Please rate the highlighted sentence by moving
each slider to the position that corresponds to your
rating.

The part of the instructions relating to Meaning Sim-
ilarity was as follows:

This time you are being shown two extracts which
are identical except for the highlighted sentences.
You need to read both sentences within their con-
text, and then decide how close in meaning the sec-
ond sentence is to the first. [...] Once again use the
slider to express your rating. The closer in meaning

8See http://www.nltg.brighton.ac.uk/research/

sr-task-evals/SR-1C/ for full instructions.
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BLEU NIST METEOR TER

System sys avg nb sys avg nb sys avg nb sys avg nb
STUMABA-S 0.8911 0.8827 — 14.87 14.74 — 0.9956 0.9851 — 0.0427 0.0476 —

DCU 0.8575 0.8532 — 14.63 14.52 — 0.9836 0.9747 — 0.0550 0.0535 —
STUMABA-D 0.7943 0.7853 — 14.40 14.21 — 0.9866 0.9744 — 0.0921 0.0946 —

ATT 0.6701 0.6711 0.4638 13.50 13.45 9.792 0.9780 0.9669 0.7106 0.1414 0.1322 0.3739
OSU 0.3566 0.3743 0.2882 10.92 10.66 7.918 0.8519 0.8483 0.6394 0.4674 0.4246 0.5547
UCM 0.2351 0.2527 — 2.782 4.611 — 0.6240 0.6079 — 0.5728 0.5570 —

Table 4: Automatic metric scores for automatic test data (PTB Section 23), including system-level scores (sys), mean
of sentence-level scores (avg) and mean of weighted n-best scores (nb).

BLEU NIST METEOR TER

System sys avg nb sys avg nb sys avg nb sys avg nb
STUMABA-S 0.8763 0.8621 — 10.81 10.70 — 0.9944 0.9842 — 0.0494 0.0537 —

DCU 0.8470 0.8319 — 10.73 10.65 — 0.9871 0.9791 — 0.0654 0.0650 —
STUMABA-D 0.7734 0.7510 — 10.59 10.43 — 0.9878 0.9754 — 0.1042 0.1096 —

ATT 0.6616 0.6262 0.4573 10.22 10.03 7.499 0.9788 0.9554 0.7135 0.1610 0.1664 0.3851
OSU 0.3975 0.4032 0.3164 9.056 8.850 6.736 0.8626 0.8546 0.6586 0.4226 0.3863 0.5189
UCM 0.2526 0.2652 — 2.466 3.620 — 0.6457 0.6268 — 0.5484 0.5416 —

Table 5: Automatic metric scores for human test data (PTB Section 24 100-sentence subset), including system-level
scores (sys), mean of sentence-level scores (avg) and mean of weighted n-best scores (nb).

the second sentence is to the first, the further to the
right you need to place the slider.

For each test data item, raters were first shown
the screen for the Readability and Clarity assess-
ment (as shown in Figure 1), followed by the screen
for Meaning Similarity assessment (see Figure 2).
We displayed system outputs as they were. Raters
were instructed to disregard spaces before punctu-
ation and similar whitespace problems. Some sys-
tems produced lower-cased outputs, others (like the
STUMABA-D one output of which is shown in Fig-
ures 1 and 2) produced outputs with capitalisations.

All experiments use a Repeated Latin Squares de-
sign which ensures that each subject sees the same
number of outputs from each system and for each
test set item. Following detailed instructions, raters
first did three practice examples, followed by the
texts to be rated, in an order randomised for each
rater. Evaluations were carried out via a web inter-
face. Raters were encouraged to take breaks, and in
the case of the 2-hour long SR-Shallow evaluation
they were required to take breaks.

In both experiments we used native-speaker raters
from cohorts of 3rd-year undergraduate and post-
graduate students (from Oxford, UCL, KCL and
Sussex universities) currently doing, or having re-
cently completed, a degree in linguistics. In the
SR-Deep evaluation we used 6 raters evaluating half

the test set each (roughly 1 hour). In the SR-
Shallow evaluation we used 5 raters each evaluat-
ing the whole test set (2 hours). Their progress was
logged at 10min intervals, and they received gift
vouchers for their time.

In the following section, for each experiment
we report the F-ratio as determined by a one-way
ANOVA with the evaluation criterion in question as
the dependent variable and System as the grouping
factor. F is the ratio of between-groups variability
over within-group (or residual) variability, i.e. the
larger the value of F, the more of the variability ob-
served in the data is accounted for by the grouping
factor, here System, relative to what variability re-
mains within the groups. We also report homoge-
neous subsets (sets of systems among which there
are no significant differences) of systems as deter-
mined by a post-hoc Tukey’s HSD analysis (with a
significance threshold of 0.05).

4.2 Results
Table 8 shows three sets of means, for Clarity, Read-
ability and Meaning Similarity,9 for the systems in
the Shallow Track. As mentioned above, we in-
cluded the original PTB sentences as a topline (‘Cor-

9Note that the Meaning Similarity results for the Corpus sen-
tences should be 100 if the evaluators take care to place the
slider pointer right at the end of the scale, but it’s not easy to
see whether the slider pointer is at 100 or 98.
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BLEU NIST METEOR TER

STUMABA-S 0.8827 A 14.74 A 0.9851 A 0.0476 A
DCU 0.8532 B 14.52 B 0.9747 A B 0.0535 A

STUMABA-D 0.7853 C 14.21 C 0.9744 A B 0.0946 B
ATT 0.6711 D 13.45 D 0.9669 B 0.1322 C
OSU 0.3743 E 10.66 E 0.8483 C 0.4246 D
UCM 0.2527 F 4.611 F 0.6079 D 0.5570 E

Table 6: Tukey’s HSD (α = 0.05) homogeneous subsets for mean of sentence-level scores on automatic test data.

BLEU NIST METEOR TER

STUMABA-S 0.8621 A 10.71 A 0.9842 A 0.0537 A
DCU 0.8319 A 10.65 A B 0.9791 A 0.0650 A

STUMABA-D 0.7510 B 10.43 A B 0.9754 A 0.1096 A
ATT 0.6262 C 10.03 B 0.9554 A 0.1664 B
OSU 0.4032 D 8.850 C 0.8546 B 0.3863 C
UCM 0.2652 E 3.620 D 0.6268 C 0.5416 D

Table 7: Tukey’s HSD (α = 0.05) homogeneous subsets for mean of sentence-level scores on human test data.

pus’ in the table). The results look similar across the
three evaluation criteria: STUMABA-S has the high-
est mean, followed by DCU, but with no statistically
significant difference between them; ATT is third and
UCM fourth for Readability and Meaning Similarity,
and the two systems are joint third for Clarity. Rank-
ings are identical across the three criteria for the sys-
tems in the Deep Track, with STUMABA-D first in all
three cases, and OSU second.

F-ratios were as follows. For the shallow systems
and Clarity: F(4,495) = 49.402, p < .001; Readabil-
ity: F(4,495) = 52.839, p < .001; and Meaning Sim-
ilarity: F(4,495) = 82.565, p < .001. For the deep
systems and Clarity: F(2,294) = 120.020, p < .001;
Readability: F(2,294) = 162.22, p < .001; and
Meaning Similarity: F(2,294) = 197.27, p < .001.

F-ratios are overall greater for the deep systems
than for the shallow ones; and greater for Mean-
ing Similarity than for Readability for which in turn
is greater than for Clarity. The latter would indi-
cate, perhaps surprisingly, that there was less vari-
ation (more agreement) among the evaluators about
Meaning Similarity than about the other two evalua-
tion criteria.

5 Discussion

Input Conversion Issues: The principal goal of
the surface realisation shared task challenge is to
make it possible to directly compare different ap-
proaches to surface realisation by encouraging the
development of systems that start from a common
ground input representation. In this year’s SR

shared task, the top-performing systems (StuMaBa-
D, StuMaBa-S, DCU and ATT) were all statistical
dependency realisers that do not make use of an ex-
plicit, pre-existing grammar. By design, statistical
dependency realisers are robust and relatively easy
to adapt to new kinds of dependency inputs; as such,
they are well suited to the SR task in its current form.
In contrast, there were only two systems that em-
ployed a traditional, hand-crafted generation gram-
mar (UCM) or a reversible, Treebank-derived gram-
mar (OSU), neither of which produced competitive
results. In each case, difficulties in converting the
common ground inputs into the “native” or expected
inputs were cited as an unexpectedly large obstacle.
Indeed, the UCM system report concluded that

“[t]he reported results constitute a measure of
the coverage achieved by the input conversion
process more than a measure of the capabili-
ties of the realizer employed.”

Mapping inputs to other intermediate representa-
tions (such as logical forms or full LFG f-structures,
for example) introduces additional complexity and
noise into the pipeline, putting systems that require
substantive input conversion at a disadvantage. Nev-
ertheless, it could be that with more time, and greater
use of machine learning in input conversion or gram-
mars induced from the shared task data, it will be
possible for participants to develop grammar-based
systems that will produce more competitive realisers
in future challenges.10

10Note that there are other conceivable shared tasks where the
input conversion issue would not arise. For example, a text-to-
text shared task on sentential paraphrasing could be agnostic as
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Figure 1: Screen shot of evaluation of a realisation in context, using sliders, for the criteria of Clarity and Readability.

To encourage the development of a greater variety
of shared task systems, for next year we are actively
considering ways of making it easier to participate,
and welcome discussion of this topic.

Resources for the Community: A byproduct of
running this shared task has been the development
or refinement of various tools and data sets which
can serve as resources for the generation community.
These include:

• The training and test data sets, available from the
Linguistic Data Consortium by request.
• The automated testing script, available from:
http://www.ling.ohio-state.edu/ẽspinosa/genchal11/

• The test data from the six systems, with
the human evaluation scores, available from:
http://www.itri.brighton.ac.uk/research/sr-task/

As a result of the pilot SR Task, we have taken a
first step forward in making results truly compara-
ble in that researchers will be able to compare auto-

to the kinds of internal representations systems employ. How-
ever, in such text-to-text tasks, it would be difficult to isolate
text generation issues from text interpretation ones.

matic results on this year’s common ground inputs
to the numbers reported in the tables, when submit-
ting papers to conferences on the value of a given
technique for surface realization. Furthermore, the
human evaluation data can be used for system de-
velopment, and in meta-evaluation of metrics.

6 Conclusion

The first Surface Realisation Shared Task was the
result of a prolonged period of discussion and devel-
opment which originally started as a heated debate
about the comparability of the BLEU scores of differ-
ent systems during the ACL-IJCNLP’09 reviewers’
discussion period. We subsequently got together a
working group of researchers interested in develop-
ing an SR input representation and presented an ini-
tial proposal at INLG’10 (Belz et al., 2010). Over
the course of the past year we developed this into
the fully specified SR Task we are reporting in this
paper. The task in its present form should be re-
garded as a pilot, to be developed further over the
coming years, with input from all interested parties.
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Figure 2: Screen shot of evaluation of the Meaning Similarity of a realisation compared to the original corpus sentence.

Clarity Readability Meaning Similarity
System Mean Homogeneous System Mean Homogeneous System Mean Homogeneous

subsets subsets subsets
Corpus 88.55 A Corpus 88.97 A Corpus 96.68 A
STUMABA-S 74.80 B STUMABA-S 78.93 A B STUMABA-S 83.82 B
DCU 64.26 B DCU 77.32 B DCU 81.14 B
UCM 38.38 C ATT 50.72 C ATT 58.04 C
ATT 38.06 C UCM 38.43 D UCM 30.27 D

Table 8: SR-Task, Shallow Track: Results for Clarity, Readability and Meaning Similarity evaluations, in terms of
means and homogeneous subsets determined by post-hoc Tukey’s HSD (sig. < 0.05).

We hope that ultimately, this initiative will evolve
some degree of standardisation of realiser inputs, at
two, or possibly more, levels, facilitating the devel-
opment and re-use of off-the-shelf realiser tools.
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