
Proceedings of the 15th Conference on Computational Natural Language Learning: Shared Task, pages 102–106,
Portland, Oregon, 23-24 June 2011. c©2011 Association for Computational Linguistics

Mention Detection: Heuristics for the OntoNotes annotations

Jonathan K. Kummerfeld, Mohit Bansal, David Burkett and Dan Klein
Computer Science Division

University of California at Berkeley
{jkk,mbansal,dburkett,klein}@cs.berkeley.edu

Abstract

Our submission was a reduced version of
the system described in Haghighi and Klein
(2010), with extensions to improve mention
detection to suit the OntoNotes annotation
scheme. Including exact matching mention
detection in this shared task added a new and
challenging dimension to the problem, partic-
ularly for our system, which previously used
a very permissive detection method. We im-
proved this aspect of the system by adding
filters based on the annotation scheme for
OntoNotes and analysis of system behavior on
the development set. These changes led to im-
provements in coreference F-score of 10.06,
5.71, 6.78, 6.63 and 3.09 on the MUC, B3,
Ceaf-e, Ceaf-m and Blanc, metrics, respec-
tively, and a final task score of 47.10.

1 Introduction

Coreference resolution is concerned with identifying
mentions of entities in text and determining which
mentions are referring to the same entity. Previously
the focus in the field has been on the latter task.
Typically, mentions were considered correct if their
span was within the true span of a gold mention, and
contained the head word. This task (Pradhan et al.,
2011) has set a harder challenge by only considering
exact matches to be correct.

Our system uses an unsupervised approach based
on a generative model. Unlike previous work, we
did not use the Bllip or Wikipedia data described in
Haghighi and Klein (2010). This was necessary for
the system to be eligible for the closed task.

The system detects mentions by finding the max-
imal projection of every noun and pronoun. For the
OntoNotes corpus this approach posed several prob-
lems. First, the annotation scheme explicitly rejects
noun phrases in certain constructions. And second,
it includes coreference for events as well as things.
In preliminary experiments on the development set,
we found that spurious mentions were our primary
source of error. Using an oracle to exclude all spu-
rious mentions at evaluation time yielded improve-
ments ranging from five to thirty percent across the
various metrics used in this task. Thus, we decided
to focus our efforts on methods for detecting and fil-
tering spurious mentions.

To improve mention detection, we filtered men-
tions both before and after coreference resolution.
Filters prior to coreference resolution were con-
structed based on the annotation scheme and partic-
ular cases that should never be mentions (e.g. single
word spans with the EX tag). Filters after corefer-
ence resolution were constructed based on analysis
of common errors on the development set.

These changes led to considerable improvement
in mention detection precision. The heuristics used
in post-resolution filtering had a significant negative
impact on recall, but this cost was out-weighed by
the improvements in precision. Overall, the use of
these filters led to a significant improvement in F1

across all the coreference resolution evaluation met-
rics considered in the task.

2 Core System

We use a generative approach that is mainly un-
supervised, as described in detail in Haghighi and

102



Klein (2010), and briefly below.

2.1 Model

The system uses all three of the standard abstrac-
tions in coreference resolution; mentions, entities
and types. A mention is a span in the text, the en-
tity is the actual object or event the mention refers
to, and each type is a group of entities. For example,
”the Mountain View based search giant” is a men-
tion that refers to the entity Google, which is of type
organization.

At each level we define a set of properties (e.g.
proper-head). For mentions, these properties are
linked directly to words from the span. For enti-
ties, each property corresponds to a list of words,
instances of which are seen in specific mentions of
that entity. At the type level, we assign a pair of
multinomials to each property. The first of these
multinomials is a distribution over words, reflecting
their occurrence for this property for entities of this
type. The second is a distribution over non-negative
integers, representing the length of word lists for this
property in entities of this type.

The only form of supervision used in the system
is at the type level. The set of types is defined and
lists of prototype words for each property of each
type are provided. We also include a small number
of extra types with no prototype words, for entities
that do not fit well in any of the specified types.

These abstractions are used to form a generative
model with three components; a semantic module, a
discourse module and a mention module. In addi-
tion to the properties and corresponding parameters
described above, the model is specified by a multi-
nomial prior over types (φ), log-linear parameters
over discourse choices (π), and a small number of
hyperparameters (λ).

Entities are generated by the semantic module by
drawing a typet according toφ, and then using that
type’s multinomials to populate word lists for each
property.

The assignment of entities to mentions is handled
by the discourse module. Affinities between men-
tions are defined by a log-linear model with param-
etersπ for a range of standard features.

Finally, the mention module generates the ac-
tual words in the span. Words are drawn for each
property from the lists for the relevant entity, with

a hyper-parameter for interpolation between a uni-
form distribution over the words for the entity and
the underlying distribution for the type. This allows
the model to capture the fact that some properties
use words that are very specific to the entity (e.g.
proper names) while others are not at all specific
(e.g. pronouns).

2.2 Learning and Inference

The learning procedure finds parameters that are
likely under the model’s posterior distribution. This
is achieved with a variational approximation that
factors over the parameters of the model. Each set
of parameters is optimized in turn, while the rest are
held fixed. The specific update methods vary for
each set of parameters; for details see Section 4 of
Haghighi and Klein (2010).

3 Mention detection extensions

The system described in Haghighi and Klein (2010)
includes every NP span as a mention. When run on
the OntoNotes data this leads to a large number of
spurious mentions, even when ignoring singletons.

One challenge when working with the OntoNotes
data is that singleton mentions are not annotated.
This makes it difficult to untangle errors in coref-
erence resolution and errors in mention detection. A
mention produced by the system might not be in the
gold set for one of two reasons; either because it is
a spurious mention, or because it is not co-referent.
Without manually annotating the singletons in the
data, these two cases cannot be easily separated.

3.1 Baseline mention detection

The standard approach used in the system to detect
mentions is to consider each word and its maximal
projection, accepting it only if the span is an NP or
the word is a pronoun. This approach will intro-
duce spurious mentions if the parser makes a mis-
take, or if the NP is not considered a mention in the
OntoNotes corpus. In this work, we considered the
provided parses and parses produced by the Berke-
ley parser (Petrov et al., 2006) trained on the pro-
vided training data. We added a set of filters based
on the annotation scheme described by Pradhan et al.
(2007). Some filters are applied before coreference
resolution and others afterward, as described below.

103



Data Set Filters P R F

Dev

None 37.59 76.93 50.50
Pre 39.49 76.83 52.17
Post 59.05 68.08 63.24
All 58.69 67.98 63.00

Test All 56.97 69.77 62.72

Table 1: Mention detection performance with various
subsets of the filters.

3.2 Before Coreference Resolution

The pre-resolution filters were based on three reli-
able features of spurious mentions:

• Appositive constructions

• Attributes signaled by copular verbs

• Single word mentions with a POS tag in the set:
EX, IN, WRB, WP

To detect appositive constructions we searched
for the following pattern:

NP

NP , NP . . .

And to detect attributes signaled by copular struc-
tures we searched for this pattern:

VP

cop verb NP

where we used the fairly conservative set of cop-
ular verbs: {is, are, was, ’m}. In both
cases, any mention whose maximal NP projection
appeared as the bold node in a subtree matching the
pattern was excluded.

In all three cases, errors from the parser (or POS
tagger) may lead to the deletion of valid mentions.
However, we found the impact of this was small and
was outweighed by the number of spurious mentions
removed.

3.3 After Coreference Resolution

To construct the post-coreference filters we analyzed
system output on the development set, and tuned

Filters MUC B3 Ceaf-e Blanc

None 25.24 45.89 50.32 59.12
Pre 27.06 47.71 50.15 60.17
Post 42.08 62.53 43.88 66.54
All 42.03 62.42 43.56 66.60

Table 2: Precision for coreference resolution on the dev
set.

Filters MUC B3 Ceaf-e Blanc

None 50.54 78.54 26.17 62.77
Pre 51.20 77.73 27.23 62.97
Post 45.93 64.72 39.84 61.20
All 46.21 64.96 39.24 61.28

Table 3: Recall for coreference resolution on the dev set.

based on MUC and B3 performance. The final set
of filters used were:

• Filter if the head word is in a gazetteer, which
we constructed based on behavior on the devel-
opment set (head words found using the Collins
(1999) rules)

• Filter if the POS tag is one of WDT, NNS, RB,
JJ, ADJP

• Filter if the mention is a specific case ofyou
or it that is more often generic (you know,
you can, it is)

• Filter if the mention is any cardinal other than
a year

A few other more specific filters were also in-
cluded (e.g.’s when tagged as PRP) and one type
of exception (if all words are capitalized, the men-
tion is kept).

4 Other modifications

The parses in the OntoNotes data include the addi-
tion of structure within noun phrases. Our system
was not designed to handle the NML tag, so we
removed such nodes, reverting to the standard flat-
tened NP structures found in the Penn Treebank.

We also trained the Berkeley parser on the pro-
vided training data, and used it to label the develop-
ment and test sets.1 We found that performance was

1In a small number of cases, the Berkeley parser failed, and
we used the provided parse tree instead.

104



Filters MUC B3 Ceaf-e Ceaf-m Blanc

None 33.67 57.93 34.43 42.72 60.60
Pre 35.40 59.13 35.29 43.72 61.38
Post 43.92 63.61 41.76 49.74 63.26
All 44.02 63.66 41.29 49.46 63.34

Table 4: F1 scores for coreference resolution on the dev
set.

slightly improved by the use of these parses instead
of the provided parses.

5 Results

Since our focus when extending our system for this
task was on mention detection, we present results
with variations in the sets of mention filters used. In
particular, we have included results for our baseline
system (None), when only the filters before coref-
erence resolution are used (Pre), when only the fil-
ters after coreference resolution are used (Post), and
when all filters are used (All).

The main approach behind the pre-coreference fil-
ters was to consider the parse to catch cases that are
almost never mentions. In particular, these filters
target cases that are explicitly excluded by the an-
notation scheme. As Table 1 shows, this led to a
1.90% increase in mention detection precision and
0.13% decrease in recall, which is probably a result
of parse errors.

For the post-coreference filters, the approach was
quite different. Each filter was introduced based on
analysis of the errors in the mention sets produced
by our system on the development set. Most of the
filters constructed in this way catch some true men-
tions as well as spurious mentions, leading to signif-
icant improvements in precision at the cost of recall.
Specifically an increase of21.46% in precision and
decrease of8.85% in recall, but an overall increase
of 12.74% in F1-score.

As Tables 2 and 3 show, these changes in mention
detection performance generally lead to improve-
ments in precision at the expense of recall, with the
exception of Ceaf-e where the trends are reversed.
However, as shown in Table 4, there is an overall
improvement in F1 in all cases.

In general the change from only post-coreference
filters to all filters is slightly negative. The final sys-

Metric R P F1
MUC 46.39 39.56 42.70

B3 63.60 57.30 60.29
Ceaf-m 45.35 45.35 45.35
Ceaf-e 35.05 42.26 38.32
Blanc 58.74 61.58 59.91

Table 5: Complete results on the test set

tem used all of the filters because the process used to
create the post-coreference filters was more suscep-
tible to over-fitting, and the pre-coreference filters
provided such an unambiguously positive contribu-
tion to mention detection.

6 Conclusion

We modified the coreference system of Haghighi
and Klein (2010) to improve mention detection per-
formance. We focused on tuning using the MUC and
B3 metrics, but found considerable improvements
across all metrics.

One important difference between the system de-
scribed here and previous work was the data avail-
able. Unlike Haghighi and Klein (2010), no extra
data from Wikipedia or Bllip was used, a restriction
that was necessary to be eligible for the closed part
of the task.

By implementing heuristics based on the annota-
tion scheme for the OntoNotes data set and our own
analysis of system behavior on the development set
we were able to achieve the results shown in Table 5,
giving a final task score of 47.10.

7 Acknowledgments

We would like to thank the anonymous reviewers
for their helpful suggestions. This research is sup-
ported by the Office of Naval Research under MURI
Grant No. N000140911081, and a General Sir John
Monash Fellowship.

References

Michael John Collins. 1999.Head-driven statistical
models for natural language parsing. Ph.D. thesis,
Philadelphia, PA, USA. AAI9926110.

Aria Haghighi and Dan Klein. 2010. Coreference resolu-
tion in a modular, entity-centered model. InProceed-

105



ings of NAACL, pages 385–393, Los Angeles, Califor-
nia, June. Association for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of COLING-
ACL, pages 433–440, Sydney, Australia, July. Associ-
ation for Computational Linguistics.

Sameer S. Pradhan, Lance Ramshaw, Ralph Weischedel,
Jessica MacBride, and Linnea Micciulla. 2007. Unre-
stricted coreference: Identifying entities and events in
ontonotes. InProceedings of the International Confer-
ence on Semantic Computing, pages 446–453, Wash-
ington, DC, USA. IEEE Computer Society.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. Conll-2011 shared task: Modeling unrestricted
coreference in ontonotes. InProceedings of the Fif-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2011), Portland, Oregon,
June.

106


