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Abstract

We participated in the BioNLP Shared Task 2011,
addressing the GENIA event extraction (GE) and
the Epigenetics and Post-translational Modifica-
tions (EPI) tasks. A graph-based approach is
employed to automatically learn rules for detect-
ing biological events in the life-science literature.
The event rules are learned by identifying the
key contextual dependencies from full syntactic
parsing of annotated text. Event recognition is
performed by searching for an isomorphism be-
tween event rules and the dependency graphs of
sentences in the input texts. While we explored
methods such as performance-based rule rank-
ing to improve precision, we merged rules across
multiple event types in order to increase recall.

We achieved a 41.13% F-score in detecting events
of nine types in the Task 1 of the GE task, and a
52.67% F-score in identifying events across fif-
teen types in the core task of the EPI task. Our
performance on both tasks is comparable to the
state-of-the-art systems. Our approach does not
require any external domain-specific resources.
The consistent performance on the two tasks sup-
ports the claim that the method generalizes well
to extract events from different domains where
training data is available.

recognition of semantically typed, complex events in
the biological literature. Although the best-performing
system achieved a 51.95% F-score in identifying events
across nine types, only 4 of the rest 23 participating
teams obtained an F-score in the 40% range. This sug-
gests that the problem of biological event extraction is
difficult and far from solved.

Graphs provide a powerful primitive for modeling
biological data such as pathways and protein interac-
tion networks (Tian et al., 2007; Yan et al., 2006). More
recently, the dependency representations obtained from
full syntactic parsing, with its ability to reveal long-
range dependencies, has shown an advantage in bi-
ological relation extraction over the traditional Penn
Treebank-style phrase structure trees (Miyao et al.,
2009). Since the dependency representation maps
straightforwardly onto a directed graph, operations on
graphs can be naturally applied to the problem of bio-
logical event extraction.

We participated in the BioNLP-ST 2011 (Kim et al.,
2011a), and applied a graph matching-based approach
(Liu et al., 2010) to tackling the Task 1 of the GE-
NIA event extraction (GE) task (Kim et al., 2011b), and
the core task of the Epigenetics and Post-translational
Modifications (EPI) task (Ohta et al., 2011), two main

tasks of the BioNLP-ST 2011. Event recognition is
performed by searching for an isomorphism between
dependency representations of automatically learned
Recent research in information extraction in the biologevent rules and complete sentences in the input texts.
ical domain has focused on extracting semantic eventsis process is treated as a subgraph matching problem,
involving genes or proteins, such as binding events evhich corresponds to the search for a subgraph isomor-
post-translational modifications. To date, most of thphic to a rule graph within a sentence graph. While
biological knowledge about these events has only beave explored methods such as performance-based rule
available in the form of unstructured text in scientifioanking to improve the precision of the GE and EPI
articles (Abulaish and Dey, 2007; Ananiadou et altasks, we merged rules across multiple event types in
2010). order to increase the recall of the EPI task.

When a biological event is described in text, it can The rest of the paper is organized as follows: In Sec-
be analyzed by recognizing its type, the trigger that sigion 2, we introduce the BioNLP Shared Task 2011.
nals the event, and one or more event arguments. TBection 3 describes the subgraph matching-based event
BioNLP-ST 2009 (Kim et al., 2009) focused on theextraction method. Section 4 and Section 5 elabo-

1 Introduction
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rate the implementation details and our performance
respectively. Finally, Section 6 summarizes the paper
and introduces future work.

inhibit-2/VBP

2 BioNLP Shared Task 2011 prep-of

BIO_Entity-5/NNP
(STAT6)

expression-15/NN

The BioNLP-ST 2011 is the extension of the BioNLP-

prep_b: n n
ST 2009 that focused on the recognition of events in the ! pfy :
biological literature. The BioNLP-ST 2011 extends the [B‘ﬂai?.tmﬁ P] [Blolig'éysilffq Np] (s 1900
previous task in three directions: the type of the inves- e in
tigated text, the domain of the subject, and the targeted
event types. As a result, the shared task was organized monocytes-10/NNS
into four independent tasks: GENIA Event Extraction Lo
Task (GE), Epigenetics and Post-translational Modifi-
cations Task (EPI), Infectious Diseases Task (ID) and human-6/JJ

Bacteria Track.

The definition of the GE task remained the same as Figure1: Dependency Graph Example

the BioNLP-ST 2009. However, additional annotated
texts that come from full papers were provided togethé Subgraph Matching-based Event Extraction
with the dataset of the 2009 task to generalize the ta§k1
from PubMed abstracts to full text articles. The pri-"
mary task of the GE task was to detect biological eventshe dependency representation of a sentence is formed
of nine types such as protein binding and regulatioﬁ’,y tokens in the sentence and binary relations between
given the annotation of protein names. It was requiredlem. A single dependency relation is represented
to extract type, trigger, and primary arguments of eachsrelation(governor dependen wheregovernorand
event. This task is an example of extraction of semaflependentare tokens, andelation is a type of the
tically typed, complex events for which the argument§rammatical dependency relation. This representation
can also be other events. Such embedding results inssessentially a labeled directed graph, which is named
nested structure that captures the underlying biologiceependency grapand defined as follows:

statements more accurately. Definition 1. A dependency graph is a pair of sets
Different rom the subject domain ofthe GE taskcorf oy f (P 22 50 © eS8 FUEERe
transcription factors in human b!ood cglls, the EPItas dges, for which the edge labels are types of depen-
focused on events related to epigenetic change, mcluai

ina DNA methvlati d hist dificati i ency relations between the tokens, and the edge direc-
N9 methylation and histone modriication, as el , ;o fromgovernorto dependenhode.

as other common post-translational protein modifica- Figure 1 illustrates the dependency graph for the sen-

tions. The core task followed the definition for Phosfence: “Interferons inhibit activation of STAT6 by in-

phorylation event extraction in the 2009 task, and ®farleukin 4 in human monocytes by inducing SOCS-1

tended that basic event type to a total of fifteen typeg'sene expression.” (MEDLINE: 10485906). The token

including both positive and negative variants, for ex:

. i number in the sentence is appended to each token in
ampleAcetylationandDeacetylation The task dataset PP

W repared from relevant PubMed abstract Wi,[(?{der to differentiate identical tokens that co-occur in a
as prepared from reieva uoMed abstracts, Wit yience. Al the protein names in the sentence have

additional evidence sentences from dgtabases suchb%sén replaced with a unified tag “BlEntity”. The
PubMeth (Ongenaert et al., 2007). Given the annoti_v.,-oS tag of each token is noted. “BIEntity” tokens

tion of protein names, the core task required to extra
type, trigger, and primary arguments of each event.

We focused on the primary task of GE and the coré? Event Rule Induction
task of EPI, and tackled the event extraction problem ifihe premise of our work is that there is a set of fre-
both cases using a graph matching-based method. quently occurring event rules that match a majority of

Dependency Representation

%tre uniformly tagged as proper nouns.
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statedevents about protein biology. We consider thathe same as the edge label(¢{v;), f(v;)).
an event rule encodes the detailed description and char-The subgraph isomorphism problem is NP-complete
acterizes the typical contextual structure of a group ¢Cormen et al., 2001). A number of algorithms have
biological events. The rules are learned from labeleldeen designed to tackle the problem of subgraph iso-
training sentences using a graph-based rule inductiomorphism in different applications (Ullmann, 1976;
method (Liu et al., 2010), and we briefly describe th€ordella et al., 2004; Pelillo et al., 1999). Considering
algorithm as follows. that the graphs of rules and sentences involved in the
Starting with the dependency graph of each traininghatching process are small, a simple subgraph match-
sentence, edge directions are first removed so that ting algorithm using a backtracking approach (Liu et
directed graph is transformed into an undirected graphl., 2010) was used in this work. It is named “Injec-
where a path must exist between any two nodes sintee Graph Embedding Algorithm” and designed based
the graph is always connected. For each gold event, the the Huet’s graph unification algorithm (Huet, 1975).
shortest dependency path in the undirected graph cofhe formalized algorithm and the detailed description
necting the event trigger nodes to each event argumeaie given in (Liu et al., 2010).
node is selected. The union of all shortest dependencyWhen matching between graphs, different combina-
paths is then computed, and the original directed déons of matching features can be applied, resulting in
pendency representation of the path union is retrievetifferent matching criteria. The features include edge
and used as the graph representation of the event.  features (E) which are edge label and edge direction,
For multi-token event triggers, the shortest deper®nd node features which are POS tags (P), trigger to-
dency path connecting the node of every trigger tokefens (T), and all tokens (A), ranging from the least spe-
to the node of each event argument is selected, and #i#c matching criterion, E, to the much stricter crite-
union of the paths is then computed for each triggeri_on, A. For each sentence, the algorithm returns all the
For regulation events, when a sub-event is used as &tched rules together with the corresponding injec-
argument, only the type and the trigger of the sub-evetive mappings from rule nodes to sentence tokens. Bio-
are preserved as the argument of the main events. Tiegical events are then extracted by applying the event
shortest dependency path is extracted so as to connéescriptions of tokens in each matched rule consisting
the trigger nodes of the main event to the trigger nodé¥ the type, the trigger and the arguments to the corre-
of the sub-event. In case that there exists more th&@onding tokens of the sentence.
one shortest path, all of the paths are considered. As a .
result, each gold event is transformed into the form ¢f Implementation
a biological event rule. The algorithm is elaborated 3,1  Preprocessing
more detail in (Liu et al., 2010). The obtained rules ar

Th ing st in (Liu et al., 201
categorized in terms of the event types of the tasks. € same preprocessing steps as in (Liu et al., 2010)

are completed on the datasets of the GE and the EPI

tasks before performing text mining strategies. These

include sentence segmentation and tokenization, Part-

We attempted to match event rules to each testing sesf-Speech tagging, and sentence parsing.

tence to extract events from the sentence using a senThe Stanford unlexicalized natural language parser

tence matching approach. Since the event rules and fyersion 1.6.5), which includes Genia Treebank 1.0

sentences all possess a dependency graph, the matchippta et al., 2005) as training material, is used to ana-

process is a subgraph matching problem, which colyze the syntactic structure of the sentences. The parser

responds to the search for a subgraph isomorphic geturns a dependency graph for each sentence.

an event rule graph within the graph of a testing sen-

tence. The subgraph matching problem is also callé? Rule Induction and Sentence Matching

subgraph isomorphispaefined in this work as follows: For each gold event, the shortest path in the undirected
Definition 2. An event rule grapitz, = (V,, E,) graph connecting the event trigger to each event argu-

is isomorphic to a subgraph of a sentence gr@ph=  ment is extracted using Dijkstra’s algorithm (Cormen

(Vs, Es), denoted byG, = S, C G, if there is an et al., 2001) with equal weight for edges.

injective mappingf : V,, — V; such that, for every  Sentence matching is performed and the raw match-

directed pair of nodes;, v; € V,., if (v;,v;) € E, then ing results are then postprocessed based on the specifi-

(f(vi), f(vj)) € Es, and the edge label dfv;, v;) is  cations of the shared task, such as event trigger cannot

3.3 Sentence Matching
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bea protein name or another event. in training data. Therefore, the detection of some
Geneexpressiorevents is always accompanied by cer-
5 Results and Evaluation tain Transcription events. This will have detrimen-

This section presents our results on the GE and the Eg, effects on the precision of boffranscriptionand

tasks (Kim et al., 2011b; Ohta et al., 2011) respectively. eneexpress.lo-reve_nt type_s. .
. ; i X As transcription is the first step leading to gene ex-
Different experimental methods in processing the ob-

tained event rules are described for the purpose of i o >>1on (Ananla_dou and Mcn_au_ght, 2005), there ex-
ISt some correlations or associations between the two

proving the precision of both tasks and increasing the . .

recall of the EPI task. event types. In tackling this problem, we processed
the overlapping rules based on a conditional probability

5.1 GE task P(t|E), wheret stands for an event trigger aidepre-
sents one of the event types. Eq.(1) is used to estimate

the value ofP(¢;| E).
For training data, only sentences that contain at least

one protein and one event are considered candidates

for further processing. For testing data, candidate sen- P(L|E) = f(ti, E) (1)
tences contain at least one protein. Our event recog- i f(ti, B)

nition method focuses on extracting events from sen- ) )
tences. Therefore, only sentence-based events are co wheref(t;, E) is the frequency of the event trigger

sidered in this work. Table 1 presents some statistics 8 the event typdZ in the training data, ar@i_f(ti’ E)
the preprocessed datasets. calculates the total frequency of all event triggers of the

event typeF in the training data.

5.1.1 Preprocessing Results

Attributes Counted Training Dev. Testilg .P(ti|E) evaluates the degree of the importance of a
Abstracts&Fullarticles 908 559 347 (riggerto an eve_nt type. When the depe_ndency g'raphs
Total sentences 8750 2.954  3.437 of two rules of different event types are |somorph|_c to

) | _each other, and two rules share a same event trigger,
Candidatesentences 3,615 1,989  2,3830 examine theP(t;|E) of each event type, and only
Total events 10,287 3,243 4,457 retain the rule for which th@(t;| E) is higher.
Sentence-basesvents 9,583 3,058 hiddgn  compared to the “once a trigger, always a trigger”

method employed in other work (Buyko et al., 2009;
Kilicoglu and Bergler, 2009), triggers are treated in a

We were able to build event rules for 9,414 goldnore flexible way in our work. A token is not neces-
events. Gold events in which the event trigger anga'lly always a trigger unless it appears in the appropri-
an event argument are not connected by a path in tR& context. Also, the same token can serve as trigger
undirected dependency graph of the sentence could gt different event types as long as it appears in the dif-
be transformed into a biological event rule. After reférent context. A trigger will only be classified into a
moving duplicate rules, we obtained 8,677 event rulefixed event type when it could serve as trigger for dif-
which are distributed over nine event types. The ruld§rent event types in the same context.
that are isomorphic to egch other in. terms of their grapghs Performance-based rule ranking
representation are not filtered at this stage as the dupli-

. In addition to the process of refining rules across
cate events they produce will be removed eventually tgvent wpes. we proposed a performance-based rule
prepare the annotations for the shared task. YPEs, prop P

ranking method to evaluate each rule under one event
5.1.2 Probability-based rule refining type. We matched each rule to sentences in the de-

We observed that some event rules of an event typy§/oPment set using the subgraph matching approach.

overlap with rules of other event types. For instance, For rules that produce at least one event prediction, we

Transcriptionrule is isomorphic to &eneexpression 'anked them by?RC(r;), the precision of each rule,
rule in terms of the graph representation and they ald§ich is computed via Eq.(2).

share a same event trigger token. In fact, tokens like

“gene expression” and “induction” are used as event Hcorrectly_predicted_events_by_r;
trigger of both Transcription and Geneexpression £’ RC(r;) = Hpredicted_events_ by r; (2)

Table 1: Statistics of GE dataset
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We manually examined the rules with low rank. Into allow tokens to match if their lemmatized forms
our experiments, th& RC(r;) ratio of these rules is have a common synonym in terms of the synsets
bigger than 4:1. We removed the ones that are either inf WordNet. Since WordNet will relate verbs such
correct or ambiguous in semantics and syntactics basasl “induce” and ‘“receive” together as they share
on our domain knowledge. Our assumption is that these synonym “have”, and allow nouns like “expres-
rules will keep producing false positive events on theion” and “aspect” to match as they share a syn-
testing data if they are retained in the rule set. Faynym “face”, we limited this extension to only ad-
rules that do not make any predictions on the develofective tokens to avoid too many false positive events
ment data, we keep them in the set in the hope that thapd allow tokens like “crucial” and “critical” to match.
may contribute to the event recognition from the testing Table 2 shows the event extraction results on the
data. Without affecting much on the recall, this processevelopment data based on different matching cri-
helps to improve the precision of the events extractadria. The performance is evaluated by “Approxi-

from the development data. mate Span Matching/Approximate Recursive Match-
ing”, the primary evaluation measure of the shared task.
5.1.4 GE Results on Development Set “E+P*+T*", “E+P*+A*" and “E+P*+A*S” demon-

In our previous work (Liu et al., 2010), the match-Strate the performance of the extended criteria.
ing criteria, “E+P+T” and and “E+P+A", achieved the Foat Recall%e) P % F 5
highest F-score and the highest precision respectively cature ecall(%) rec.(%) _F-score(%
among all the investigated matching criteria. “E+P+T”| E¥*P+A 28.03 66.74 39.48

~

requires that edge directions and labels of all edges (E)E+P+T 31.17 52.38 39.09
be identical, POS tags (P) of all tokens be identical, and E+P*+A* 31.45 63.51 42.07
tokens of only event triggers (T) be identical for the| E+P*+T* 35.71 46.26 40.31
edges and the nodes of a rule and a sentence to matClE+p*+A*S 31.51 63.32 42.08

with each other. “E+P+A’ requires that edges (E), PO
tags (P) and all tokens (A) be exactly the same. In thigble 2: GE results on development set using different
work, we focused on these two criteria and explorefatching criteria

to extend them for graph matching between event rules . . N
and sentences. As the strictest ma_tchlng cr|ter'|a', “E+P+A" performs
We attempted to relax the matching criterion of PO etter than “E+P+T” in both precision and F-score. Al-

ough "E+P+T” achieves a better recall, when relax-
tags for nouns and verbs. For nouns, the plural form of . o .
) . i ing the matching criteria from all tokens being the same
nouns is allowed to match with the singular form, an

roper nouns are allowed to match with reqular nounso only event trigger tokens having to be identical, the
prop 9 recision of “E+P+T" is decreased by a large margin,

For verbs, past tense, prese nt tense and base pre%%rgrly 14%. This indicates that a certain number of bi-
form are allowed to match with each other.

ological events are described in very similar ways in

Next, Iegtersk of each token arﬁ tre;nsformed Into IO‘I’_Ve[he literature, involving same grammatical structures
case, an tokens containing hyp ens are norma 'Zgﬂd identical contextual contents. While producing
into non-hyphenated forms. Lemmatization is then Pefore incorrect events. “E+P*+A*" and “E+P*+T*"

formed on every pair of tokens to be matc_hed USInQignificantly improve the recall, leading to a better
WordNet (Fellbaum, 1998) as the lemmatizer to aIF-score over “E+P+A" and “E+P+T". This confirms

low token's thlat ;h?re a same Ielm;na rt10 match. | S'nﬁ‘?e effectiveness of the POS relaxation and the to-
WordNetis a lexical database only for the genera Er,‘Q(en lemmatization on the generalization of event rules.

lish language, the lemma of a fair amount of domalan+P*+A*S,, obtains a comparable performance with
specific vocabulary cannot be found in WordNet, SUChE+P*+A*” with only a 0.06% increase in recall and a
as “Phosphorylation” and “Methylation”. In this case, »qy drop in precision

a backup process is invoked to stem the tokens to

their root forms using the Porter’s stemming algorithn$.1.5  GE Results on Testing Set

(Porter, 1997) allowing the tokens derived from a same Table 3 shows our results of “E+P*+A*” on the test-

root word to match. ing data using the official metric. We are listed as
To further generalize event rules, we extendettam “CCP-BTMG”. Ranked by F-score, our perfor-

the matching criteria “E+P*+A*" to “E+P*+A*S” mance ranked 10th out of 15 participating groups. It
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is worth noting that our result on the event type “Prouation results on PubMed abstracts and PMC full text
tein_catabolism’ranked 1st. articles separately. Our system performs consistently
on both abstracts and full papers and the difference be-

Event type Rec.(%) Prec.(%) F(%) tween F-scores is less than 1% (41.39% vs. 40.47%)
Geneexpression 58.68 75.77  66.14 mostly due to the small recall loss on full texts.
Transcription 39.08 5191 4459
Proteincatabolism  66.67  83.33  74.07 the-af:,:ets . 550/50; f—,g’% 2(8(’/‘28

. 4 rict Matching . . .
Phospho_rylaﬂon 63.78 8551 730 Appr. SpanNoTrigger/Recur. 33.68 62.17 43.69
Localization 29.32 91.80 44.44 Appr. Span/Recur./Decomp. 32.56 66.20 43|65
Binding 22.61 49.12  30.96¢ Appr. Sp. No T./Recur./Decomp. 34.96 69.87 46,60
Regulation 12.99 46.73  20.33 | Appr. Span/Recur. (Abstract) 31.87 59.02 41.39
Positive_regulation 21.90 4451 29.35 | Appr. Span/Recur. (Full paper) 30.82 58.92 40/47
Negativeregulation  15.76 40.18  22.64 Table 4: GE results on testing set by other evaluation measures
All total 31.57 58.99 41.13

Table 3: GE results of “E+P*+A*” on testing set by “Ap- 5.2 EPI task

roximate Span /Approximate Recursive Matching”
P P PP g 5.2.1 Preprocessing Results

The performance of our system on the testing set Table 5 presents some statistics of the datasets. We

is consistent with that of the development set. wwere able to build event rules for 1598 gold events. Af-
achieved a comparable precision with the top systeni&" removing duplicate rules, we obtained 1,562 event
and ranked 6th by precision. However, our recall wal!les distributed over fifteen event types.

lower, ranking 11th. This advgrsely impagtgd the ove “Attributes Counted Training  Dev. Testig
all F-score. The lower recall is not surprising because

the graph matching criteria “E+P*+A*" strictly de- Abstracts 600 200 440
mand that every lemmatized token in the patterns, other Otal sentences 6,411 2,218  4,64(
than protein names represented as“B@tity”, has to | Candidatesentences 1,054 1241 2,839
find its exact match in the input sentences. The detailedotal events 1,738 582 1,194
analysis on the recall problem is presented in the “ErrorSentence-basex/ents 1,643 536 hidden

Classification” section.

While examining the false positives, we found that
for many cases our result matched the gold annotationy, processed the obtained rules following the
but for the trigger word. We believe that event type and, e rule refining and ranking processes of the GE
their arguments are more important biologically thaR g, e experimented with two graph matching
the trigger. We consulted some domain experts WhQiieria for extracting EPI events, “E+P*T* and
reinforced our intuition in many cases that differentg pxyp*  From the preliminary results, we ob-
words could be considered as trigger for the event igaed that “E+P*+A* achieves a high precision over
question. Following this we contacted organizers anglyo, hut a lower recall around 33%. Compared to
they agreed to release a new evaluation scheme to 'tﬂ'e GE task results, “E+P*+T*" achieves a better re-
nore the trigger match requirement in order to SUPPOEL| against a small tradeoff for precision. We consider
evaluation of the event extraction itself. that this is because the event triggers themselves for

Table 4 shows our results of “E+P*+A*" evaluatedihe Ep| task such as “acetylation”, “deglycosylation”
by other official evaluation metrics of the task. Theyq “demethylation” are powerful enough to differen-
strict matching scheme requires exact trigger span fgte among event types without the need to resort to

well as all its nested events to be recursively correghore contextual content of the patterns. Therefore, we
for an event to be considered correctly extracted. Oygc\sed on using “E+P*+T*” to extract events.

F-score in terms of the strict matching is only 2.65%

lower than the relaxed, primary measure, indicating-2-2 Recall-oriented rule merging

that most of the detected triggers are captured with cor- Since all the event types excepCatalysis
rect text span. The organizers also provided the evdDNA methylation and DNA_demethylation in the

Table 5: Statistics of EPI dataset
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EPI task involve addition or removal of biochemicalone” approach significantly improves the recall while
functional groups at a particular amino acid residue groducing many false positive events, leading to a F-
a protein (Hunter, 2009), common syntactic structurescore comparable with the “pairwise flip” method.

of expressing the protein PTM e_vents might be sharesqz. 4 EPI Results on Testing Set

across event types. To further improve the recall, we . .
proposed a rule merging strategy to take advantage of /& conducted two runs on the testing data in terms
the syntactic structures of rules across event types. °f "E+P*+T*(pairwise)” and "E+P*+T*(all in one)".

We first experimented with a “pairwise flip” ap- Since the two rule merging method§ achleve-com_para-
proach which combines rules of the pairwise, positiv8/€ F-scores, we decided to submit a run with higher
and negative event types by flipping the type and tH&C@ll- Table 7 shows our results of "E+P*+T*" using
trigger of event rules. For instance, the event ruletgIe “allin om‘e”. approgch _On the official metrics. Only
of PhosphorylatiorandDephosphorylatiomre merged 7 teams participated in this task. For the core task, our

together and then used to detect events of the two typgrformance ranked 7th, only 0.16% lower in F-score
than the 6th team. When evaluating our results in terms

respectively.
Next, the “pairwise flip” approach was extended t&' the full task, we ranked 6th.
an “all in one” method. For one event type, the rules eooire Recall(%) Prec.(%) F(%)

of all other PTM event types are processed and merg
into the rules of the current type if the trigger of ruleg
of other types contains one of these 12 morpheme

“acetyl”, “g.lycosyl”, “hydroxyl”, “methyl”, “phospho- Table 7: EPI results on testing set

ryl”, “ubiqui”, “deacetyl”, “deglycosyl”, “dehydroxy!”,
“demethyl”, “dephosphory!”, “deubiqui”. We consider Compared to the top teams, our F-score is mostly af-
that event rules involving these morphemes in triggdected by the lower recall. Although the run we submit-
are more likely to discuss representative protein posted achieves the highest recall among all our runs, our
translational modifications. recall is about 20% less than the best performing sys-
52.3 EPI Results on Development Set tem. Considering that most of thg eventtypes of thg EPI
) task tend to use tokens containing only a small fixed
Table 6 shows thfe evept extraction rgsults.on.the dgét of domain-specific morphemes as triggers, the re-
velopment data using different matching criteria angly geficit is assumed to be lack of event rules that de-

rule merging methods. The performance is evaluategine syntactic structures of expressing a fair amount
by the primary evaluation measure. of EPI events.

CE+P*+T*(coretask)  45.06 63.37 52.6
’qE+P*+T*(fuII task) 23.44 37.93 289y

~

Feature Recall(%) Prec.(%) F(%) 5.3 Error Classification
E+P*+A 32.65 79.83  46.34 gince the gold event annotation of the testing data is
E+P*+T* 38.14 73.51  50.23 hidden, we examined the event extraction results of the
E+P*+A*(pairwise) 35.22 80.39  48.98 development data to analyze the underlying errors. The
E+P*+T*(pairwise) 40.89 77.52  53.54 detailed analysis is reported in terms of false negative
E+P*+T*@allinone)  46.39 63.08  53.4f and false positive events.

5.3.1 False negatives

It is shown that false negative events have a substan-

The two rule merging methods using “E+P*+T*” tial impact on the performance of all 15 participating
outperform others in terms of F-score. The “pairwis¢eams of the GE task. The best recall, 49.56%, cap-
flip” method achieves higher precision as the syntadures less than half of the gold events in the testing set.
tic structures of rules to describe the pairwise, positiviln our work, three major causes of false negatives are
and negative events tend to be highly similar. Howevedetermined for both tasks.
when merging all the rules across PTM event types, (1) Low coverage of rule set: For the GE task, the
although more events are captured, rules that invohgraph matching criteria “E+P*+A*” strictly asks every
syntactic structures for expressing very specific evenlismmatized token in the patterns to find its exact match
of certain types may not generalize well on some othén the input sentences. Although maintaining the pre-
types, resulting in incorrect events. Thus, the “all ircision at a high level, this directly limits the contextual

Table 6: EPI results on development set
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structureand content around the proteins and thus pre- (1) Assignment of overlapping event rules;: The
vents the recall from being higher. conditional probability-based method to assign over-

Lemmatization helps to detect more events, howevdgpped rules of different event types effectively reduces
further generalization needs to be performed on the esie number of event candidates but leads to errors. For
isting rules to relax the token matching requirementnstance, “methylation” is used as the trigger for two
For instance, when “lysine” appears in an event rul@verlapping rules oDNA methylationand Methyla-
knowing that “lysine” is an amino acid, the rule mighttion. Based on theé®(¢;|E), “methylation” is classified
be further generalized to allow all amino acids to matchito DNA methylation An erroneou®NA_methylation
with each other in order to recognize more events. event is then detected from a development sentence in-

For the EPI task, although “E+P*+T*" requires to-Stead of the gol@dlethylationevent. Although the trig-
kens of only event triggers to be identical, we captureger and the participant are all identified correctly, the
less than half of the gold events. We noticed that margvent type is assigned wrongly.
trigger tokens in the development sentences do not ap-In fact, the same contextual structure and con-
pear as triggers in the training set. This leads to thent appear in botBNA methylationand Methylation
failure of extracting the corresponding events. Sincevents in the training data. According to the EPI
the training data is the only source of triggers in outask (Ohta et al., 2011Methylationis to abbreviate
work, the coverage of triggers limits the generalizatiofor “protein methylation” and thus is different from
power of event rules. DNA methylation In this case, the only way to dis-

For both tasks, we found that many gold events aféguish between the two types is to identify that the
described in grammatical structures that are not cotiological entity mentioned in the sentence is a gene for
ered by the existing rules induced from the training sefPNA methylationanda protein forMethylation Since
tences. These structures tend to be more complex, @enes and their products are uniformly annotated as
volving a long dependency path from the trigger to ar-Protein” in the task, it is not possible to assign a cor-
guments in the graphs of sentences. Events that condiggt event type in this case from the perspective of the
of these structures are not recognized as no match@éent extraction itself.
rules will be returned from the subgraph matching. (2) Lack of postprocessing rules: Some misiden-

In order to further improve the recall, some posttified events require customized postprocessing rules.
processing steps are necessary to be performed on [ instance, &eneexpressiorevent is detected from
raw dependency graphs of both rules and sentences i€ phrase “Tax expression vector” of a development
stead of using them in the graph matching directly. Bgentence. However, since “Tax expression” is only
eliminating semantically unimportant nodes and group!sed as an adjective to describe “vector” in this context,
ing lexically connected nodes together, the rules cdhe identifiedGeneexpressiorevent is not appropriate.
be generalized to retain only their skeleton structurddkewise, “Spl transcription” should not be identified
while complex sentences can be syntactically simplas an event in the context of “Sp1 transcription factors”.
fied to allow event rules to match them. (4) Inconsistencies in gold annotation: Some ex-

(2) Compound error effect: In both tasks, reg- tracted events are considered biologically meaningful
ulation and catalysis event types can take sub-everidt evaluated as false positives due to the inconsisten-
as arguments. Therefore, if the nested sub-events &i€S in the gold annotation. In Table 4, the 3.2% in-
not correctly identified, the main events will not be excrease in precision of the no-trigger evaluation measure
tracted due to the compound error effect. over the primary evaluation scheme indicates that the

(3) Anaphora and coreference: Since our system inconsistent gold annotations of event triggers.
focuses on extracting events from sentences, events that .
contain protein names spanning multiple sentences wfll €onclusion and future work

not be captured. Recognition of these events requirge used dependency graphs to automatically induce
the ability to do anaphora and coreference resolution ffo|ogical event rules from annotated events. We ex-

biological text (Gasperin and Briscoe, 2008). plored methods such as performance-based rule rank-
ing to improve the accuracy of the obtained rules, and

we merged rules across multiple event types in order to
Three major causes of false positives are generalizetcrease the coverage of the rules. The event extraction
from our analysis. process is treated as a subgraph matching problem to

5.4 False positives
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searcltfor the graph of an event rule within the graph oflin-Dong  Kim,  Yoshinobu Kano Tomoko Ohta,
a sentence. We tackled two main tasks of the BioNLP Sampo Pyysalo, and Jun’ichi Tsujii. 2009. Overview of
Shared Task 2011. We achieved a 41.13% F-score inPionlp’09 shared task on event extraction Proceedings
detecting events across nine types in the Task 1 of the®f e NAACL-HLT 2009 Workshop on Natural Language

GE task, and a 52.67% F-score in identifying events ig)fess'ng inBiomedicine (BioNLP'09), pages 1-9.

across fifteen types in the core task of the EPI task. Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert

In future work, we would like to explore the ap-  gossy, and Jun’ichi Tsuijii. 2011a. Overview of BioNLP
proaches of generalizing the raw dependency graphs ofshared Task 2011. IRroceedings of the BioNLP 2011
both event rules and sentences in order to improve theWorkshop Companion Volume for Shared Ta&trtland,
recall of our event extraction system. We also plan to Oregon, June. Association for Computational Linguistics.
extend our system to tackle the other sub-tasks in G@\'{DO”Q Kimvz\gulelt\)’vg‘gv T_"Shih]jst";]‘ Tgkagi' é‘”d ?:(inﬁr_i

: g onezawa. . verview o e Genla event task In

and EPI tasks, S.UCh asto ex'tract events with gddltlonalBioNLP Shared Task 2011. Proceedings of the BioNLP
arguments like site and location, and to recognize nega-

. . . 2011 Workshop Companion Volume for Shared ;TRskt-
tions and speculations regarding the extracted events. land, Oregon, June. Association for Computational Lin-

guistics.

Haibin Liu, Vlado Keselj, and Christian Blouin. 2010. Bio-
logical event extraction using subgraph matchingPio-

Muhammad Abulaish and Lipika Dey. 2007. Biological re- ceedings of the 4th International Symposium on Semantic
lation extraction and query answering from medline ab- Mining in Biomedicine (SMBM-2010), October.
stracts using ontology-based text minirigata & Knowl-  Yusuke Miyao, Kenji Sagae, Rune Saetre, Takuya Mat-
edge Engineering, 61(2):228-262. suzaki, and Jun’ichi Tsujii. 2009. Evaluating contribu-

Sophia Ananiadou and John Mcnaught. 200Bxt Mining tions of natural language parsers to protein—protein inter-
for Biology And Biomedicine. Artech House Publishers. action extractionBioinformatics, 25(3):394-400.

Sophia Ananiadou, Sampo Pyysalo, Jun’ichi Tsujii, andomoko Ohta, Yuka Tateisi, and Junichi Tsujii. 2005. Syn-
Douglas B. Kell. 2010. Event extraction for systems bi- tax annotation for the genia corpus. Rroceedings of the
ology by text mining the literaturelrends in Biotechnol- IJCNLP 2005, pages 222-227.
ogy, 28(7):381-390. Tomoko Ohta, Sampo Pyysalo, and Jun’ichi Tsujii. 2011.

Ekaterina Buyko, Erik Faessler, Joachim Wermter, and Udo Overview of the Epigenetics and Post-translational Mod-
Hahn. 2009. Event extraction from trimmed dependency ifications (EPI) task of BioNLP Shared Task 2011. In
graphs. InBioNLP '09: Proceedings of the Workshop on  Proceedings of the BioNLP 2011 Workshop Companion
BioNLP, pages 19-27, Morristown, NJ, USA. Associa- Volume for Shared TagRortland, Oregon, June. Associ-
tion for Computational Linguistics. ation for Computational Linguistics.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, amgate Ongenaert, Leander Van Neste, Tim De Meyer, Ger-
Mario Vento. 2004. A (sub)graph isomorphism algo- ben Menschaert, Sofie Bekaert, and Wim Van Criekinge.
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