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Abstract 

We describe the system from the Natural 
Language Processing group at Microsoft 
Research for the BioNLP 2011 Shared 
Task. The task focuses on event extraction, 
identifying structured and potentially 
nested events from unannotated text. Our 
approach follows a pipeline, first 
decorating text with syntactic information, 
then identifying the trigger words of 
complex events, and finally identifying the 
arguments of those events. The resulting 
system depends heavily on lexical and 
syntactic features. Therefore, we explored 
methods of maintaining ambiguities and 
improving the syntactic representations, 
making the lexical information less brittle 
through clustering, and of exploring novel 
feature combinations and feature reduction. 
The system ranked 4th in the GENIA task 
with an F-measure of 51.5%, and 3rd in the 
EPI task with an F-measure of 64.9%. 

1 Introduction 

We describe a system for extracting complex 
events and their arguments as applied to the 
BioNLP-2011 shared task.  Our goal is to explore 
general methods for fine-grained information 
extraction, to which the data in this shared task is 
very well suited.  We developed our system using 
only the data provided for the GENIA task, but 
then submitted output for two of the tasks, GENIA 
and EPI, training models on each dataset 
separately, with the goal of exploring how general 
the overall system design is with respect to text 

domain and event types. We used no external 
knowledge resources except a text corpus used to 
train cluster features. We further describe several 
system variations that we explored but which did 
not contribute to the final system submitted. We 
note that the MSR-NLP system consistently is 
among those with the highest recall, but needs 
additional work to improve precision. 

2 System Description 

Our event extraction system is a pipelined 
approach, closely following the structure used by 
the best performing system in 2009 (Björne et al., 
2009). Given an input sentence along with 
tokenization information and a set of parses, we 
first attempt to identify the words that trigger 
complex events using a multiclass classifier. Next 
we identify edges between triggers and proteins, or 
between triggers and other triggers. Finally, given 
a graph of proteins and triggers, we use a rule-
based post-processing component to produce 
events in the format of the shared task. 

2.1 Preprocessing and Linguistic Analysis 

We began with the articles as provided, with an 
included tokenization of the input and 
identification of the proteins in the input. However, 
we did modify the token text and the part-of-
speech tags of the annotated proteins in the input to 
be PROT after tagging and parsing, as we found 
that it led to better trigger detection. 

The next major step in preprocessing was to 
produce labeled dependency parses for the input. 
Note that the dependencies may not form a tree: 
there may be cycles and some words may not be 
connected. During feature construction, this 
parsing graph was used to find paths between 
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words in the sentence. Since proteins may consist 
of multiple words, for paths we picked a single 
representative word for each protein to act as its 
starting point and ending point. Generally this was 
the token inside the protein that is closest to the 
root of the dependency parse. In the case of ties, 
we picked the rightmost such node. 

2.1.1 McClosky-Charniak-Stanford parses 
The organizers provide parses from a version of 
the McClosky-Charniak parser, MCCC (McClosky 
and Charniak, 2008), which is a two-stage 
parser/reranker trained on the GENIA corpus. In 
addition, we used an improved set of parsing 
models that leverage unsupervised data, MCCC-I 
(McClosky, 2010). In both cases, the Stanford 
Parser was used to convert constituency trees in the 
Penn Treebank format into labeled dependency 
parses: we used the collapsed dependency format. 

2.1.2 Dependency posteriors 
Effectively maintaining and leveraging the 
ambiguity present in the underlying parser has 
improved task accuracy in some downstream tasks 
(e.g., Mi et al. 2008). McClosky-Charniak parses 
in two passes: the first pass is a generative model 
that produces a set of n-best candidates, and the 

second pass is a discriminative reranker that uses a 
rich set of features including non-local 
information. We renormalized the outputs from 
this log-linear discriminative model to get a 
posterior distribution over the 50-best parses. This 
set of parses preserved some of the syntactic 
ambiguity present in the sentence. 

The Stanford parser deterministically converts 
phrase-structure trees into labeled dependency 
graphs (de Marneffe et al., 2006). We converted 
each constituency tree into a dependency graph 
separately and retained the probability computed 
above on each graph. 

One possibility was to run feature extraction on 
each of these 50 parses, and weight the resulting 
features in some manner. However, this caused a 
significant increase in feature count. Instead, we 
gathered a posterior distribution over dependency 
edges: the posterior probability of a labeled 
dependency edge was estimated by the sum of the 
probability of all parses containing that edge. 
Gathering all such edges produced a single labeled 
graph that retained much of the ambiguity of the 
input sentence. Figure 1 demonstrates this process 
on a simple example. We applied a threshold of 0.5 
and retained all edges above that threshold, 
although there are many alternative ways to exploit 
this structure.  

 
Figure 1: Example sentence from the GENIA corpus. (a) Two of the top 50 constituency parses from the MCCC-I 
parser; the first had a total probability mass of 0.43 and the second 0.25 after renormalization. Nodes that differ 
between parses are shaded and outlined. (b) The dependency posteriors (labels omitted due to space) after 
conversion of 50-best parses. Solid lines indicate edges with posterior > 0.95; edges with posterior < 0.05 were 
omitted. Most of the ambiguity is in the attachment of “elicited”. 
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As above, the resulting graph is likely no longer 
a connected tree, though it now may also be cyclic 
and rather strange in structure. Most of the 
dependency features were built on shortest paths 
between words. We used the algorithm in Cormen 
et al. (2002, pp.595) to find shortest paths in a 
cyclic graph with non-negative edge weights. The 
shortest path algorithm used in feature finding was 
supplied uniform positive edge weights. We could 
also weight edges by the negative log probability 
to find the shortest, most likely path. 

2.1.3 ENJU 

We also experimented with the ENJU parses 
(Miyao and Tsujii, 2008) provided by the shared 
task organizers. The distribution contained the 
output of the ENJU parser in a format consistent 
with the Stanford Typed Dependency 
representation . 

2.1.4 Multiple parsers 
We know that even the best modern parsers are 
prone to errors. Including features from multiple 
parsers helps mitigate these errors. When different 
parsers agree, they can reinforce certain 
classification decisions. The features that were 
extracted from a dependency parse have names 
that include an identifier for the parser that 
produced them. In this way, the machine learning 
algorithm can assign different weights to features 
from different parsers. For finding heads of multi-
word entities, we preferred the ENJU parser if 
present in that experimental condition, then fell 
back to MCCC parses, and finally MCCC-I. 

2.1.5 Dependency conversion rules 
We computed our set of dependency features (see 
2.2.1) from the collapsed, propagated Stanford 
Typed Dependency representation (see 
http://nlp.stanford.edu/software/dependencies_man
ual.pdf and de Marneffe et al., 2006), made 
available by the organizers.  We chose this form of 
representation since we are primarily interested in 
computing features that hold between content 
words.  Consider, for example, the noun phrase 
“phosphorylation of TRAF2”. A dependency 
representation would specify head-modifier 
relations for the tuples (phosphorylation, of) and 
(of, TRAF2). Instead of head-modifier, a typed 
dependency representation specifies PREP and 

PPOBJ as the two grammatical relations: 
PREP(phosphorylation-1, of-2) and PPOBJ(of-2, 
TRAF2-3). A collapsed representation has a single 
triplet specifying the relation between the content 
words directly, PREP_OF(phosphorylation-1, 
TRAF2-3); we considered this representation to be 
the most informative.   

We experimented with a representation that 
further normalized over syntactic variation.  The 
system submitted for the GENIA subtask does not 
use these conversion rules, while the system 
submitted for the EPI subtask does use these rules.  
See Table 2 for further details. While for some 
applications it may be useful to distinguish 
whether a given relation was expressed in the 
active or passive voice, or in a main or a relative 
clause, we believe that for this application it is 
beneficial to normalize over these types of 
syntactic variation.  Accordingly, we had a set of 
simple renaming conversion rules, followed by a 
rule for expansion; this list was our first effort and 
could likely be improved.  We modeled this 
normalized level of representation on the logical 
form, described in Jensen (1993), though we were 
unable to explore NP-or VP-anaphora 

 

Renaming conversion rules: 
1. ABBREV -> APPOS 
2. NSUBJPASS -> DOBJ 
3. AGENT -> NSUBJ 
4. XSUBJ -> NSUBJ 
5. PARTMOD(head, modifier where last 3 

characters are "ing") -> NSUBJ(modifier, head) 
6. PARTMOD(head, modifier where last 3 

characters are "ed") -> DOBJ(modifier, head) 
Expansion: 
1. For APPOS, find all edges that point to the head 

(gene-20) and duplicate those edges, but 
replacing the modifier with the modifier of the 
APPOS relation (kinase-26).  

 

Thus, in the 2nd sentence in PMC-1310901-01-
introduction, “... leading to expression of a bcr-abl 
fusion gene, an aberrant activated tyrosine kinase, 
....”, there are two existing grammatical relations: 

 

PREP_OF(expression-15, gene-20) 
APPOS(gene-20, kinase-26) 
 

to which this rule adds: 
 

PREP_OF(expression-15, kinase-26) 
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2.2 Trigger Detection 
We treated trigger detection as a multi-class 
classification problem: each token should be 
annotated with its trigger type or with NONE if it 
was not a trigger. When using the feature set 
detailed below, we found that an SVM 
(Tsochantaridis et al., 2004) outperformed a 
maximum entropy model by a fair margin, though 
the SVM was sensitive to its free parameters. A 
large value of C, the penalty incurred during 
training for misclassifying a data point, was 
necessary to achieve good results. 

2.2.1 Features for Trigger Detection 
Our initial feature set for trigger detection was 
strongly influenced by features that were 
successful in Björne et al., (2009).  

Token Features. We included stems of single 
tokens from the Porter stemmer (Porter, 1980), 
character bigrams and trigrams, a binary indicator 
feature if the token has upper case letters, another 
indicator for the presence of punctuation, and a 
final indicator for the presence of a number. We 
gathered these features for both the current token 
as well as the three immediate neighbors on both 
the left and right hand sides. 

We constructed a gazetteer of possible trigger 
lemmas in the following manner. First we used a 
rule-based morphological analyzer (Heidorn, 2000) 
to identify the lemma of all words in the training, 
development, and test corpora. Next, for each word 
in the training and development sets, we mapped it 

to its lemma. We then computed the number of 
times that each lemma occurred as a trigger for 
each type of event (and none). Lemmas that acted 
as a trigger more than 50% of the time were added 
to the gazetteer. 

During feature extraction for a given token, we 
found the lemma of the token, and then look up 
that lemma in the gazetteer. If found, we included 
a binary feature to indicate its trigger type. 

Frequency Features. We included as features 
the number of entities in the sentence, a bag of 
words from the current sentence, and a bag of 
entities in the current sentence. 

Dependency Features. We used primarily a set 
of dependency chain features that were helpful in 
the past (Björne et al., 2009); these features walk 
the Stanford Typed Dependency edges up to a 
distance of 3. 

We also found it helpful to have features about 
the path to the nearest protein, regardless of 
distance. In cases of multiple shortest paths, we 
took only one, exploring the dependency tree 
generally in left to right order. For each potential 
trigger, we looked at the dependency edge labels 
leading to that nearest protein. In addition we had a 
feature including both the dependency edge labels 
and the token text (lowercased) along that path. 
Finally, we had a feature indicating whether some 
token along that path was also in the trigger 
gazetteer. The formulation of this set of features is 
still not optimal especially for the “binding” events 
as the training data will include paths to more than 
one protein argument.  Nevertheless, in Table 3, 

 
Key Relation Value Key Relation Value 
quantities child(left, NNS JJ) measurable measurable child-1(left, NNS JJ) quantities 
found child(after, VBN NNS) hours hours child-1(after, VBN NNS) found 
found child(after, VBN NN) ingestion ingestion child-1(after, VBN NN) found 
 
Figure 2: A sample PubMed sentence along with its dependency parse, and some key/relation/value triples 
extracted from that parse for computation of distributional similarity. Keys with a similar distribution of values 
under the same relation are likely semantically related. Inverse relations are indicated with a superscript -1. 
Prepositions are handled specially: we add edges labeled with the preposition from its parent to each child 
(indicated by dotted edges). 
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we can see that this set of features contributed to 
improved precision. 

Cluster Features. Lexical and stem features 
were crucial for accuracy, but were unfortunately 
sparse and did not generalize well. To mitigate 
this, we incorporated word cluster features. In 
addition to the lexical item and the stem, we added 
another feature indicating the cluster to which each 
word belongs. To train clusters, we downloaded all 
the PubMed abstracts (http://pubmed.gov), parsed 
them with a simple dependency parser (a 
reimplementation of McDonald, 2006 trained on 
the GENIA corpus), and extracted dependency 
relations to use in clustering: words that occur in 
similar contexts should fall into the same cluster. 
An example sentence and the relations that were 
extracted for distributional similarity computation 
are presented in Figure 2. We ran a distributional 
similarity clustering algorithm (Pantel et al., 2009) 
to group words into clusters. 

Tfidf features. This set of features was intended 
to capture the salience of a term in the medical and 
“general” domain, with the aim of being able to 
distinguish domain-specific terms from more 
ambiguous terms. We calculated the tf.idf score for 
each term in the set of all PubMed abstracts and 
did the same for each term in Wikipedia. For each 
token in the input data, we then produced three 
features: (i) the tf.idf value of the token in PubMed 
abstracts, (ii) the tf.idf value of the token in 
Wikipedia, and (iii) the delta between the two 
values. Feature values were rounded to the closest 
integer. We found, however, that adding these 
features did not improve results. 

2.2.2 Feature combination and reduction 
We experimented with feature reduction and 
feature combination within the set of features 
described here. For feature reduction we tried a 
number of simple approaches that typically work 
well in text classification. The latter is similar to 
the task at hand, in that there is a very large but 
sparse feature set. We tried two feature reduction 
methods: a simple count cutoff, and selection of 
the top n features in terms of log likelihood ratio 
(Dunning, 1993) with the target values. For a count 
cutoff, we used cutoffs from 3 to 10, but we failed 
to observe any consistent gains. Only low cutoffs 
(3 and occasionally 5) would ever produce any 
small improvements on the development set. Using 

log likelihood ratio (as determined on the training 
set), we reduced the total number of features to 
between 10,000 and 75,000. None of these 
experiments improved results, however. One 
potential reason for this negative result may be that 
there were a lot of features in our set that capture 
the same phenomenon in different ways, i.e. which 
correlate highly. By retaining a subset of the 
original feature set using a count cutoff or log 
likelihood ratio we did not reduce this feature 
overlap in any way. Alternative feature reduction 
methods such as Principal Component Analysis, on 
the other hand, would target the feature overlap 
directly. For reasons of time we did not experiment 
with other feature reduction techniques but we 
believe that there may well be a gain still to be had. 

For our feature combination experiments the 
idea was to find highly predictive Boolean 
combinations of features. For example, while the 
features a and b may be weak indicators for a 
particular trigger, the cases where both a and b are 
present may be a much stronger indicator. A linear 
classifier such as the one we used in our 
experiments by definition is not able to take such 
Boolean combinations into account. Some 
classifiers such as SVMs with non-linear kernels 
do consider Boolean feature combinations, but we 
found the training times on our data prohibitive 
when using these kernels. As an alternative, we 
decided to pre-identify feature combinations that 
are predictive and then add those combination 
features to our feature inventory. In order to pre-
identify feature combinations, we trained decision 
tree classifiers on the training set, and treated each 
path from the root to a leaf through the decision 
tree classifier as a feature combination. We also 
experimented with adding all partial paths through 
the tree (as long as they started from the root) in 
addition to adding all full paths. Finally, we tried 
to increase the diversity of our combination 
features by using a “bagging” approach, where we 
trained a multitude of decision trees on random 
subsets of the data. Again, unfortunately, we did 
not find any consistent improvements. Two 
observations that held relatively consistently across 
our experiments with combination features and 
different feature sets were: (i) only adding full 
paths as combination features sometimes helped, 
while adding partial paths did not, and (ii) bagging 
hardly ever led to improvements. 
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2.3 Edge Detection 

This phase of the pipeline was again modeled as 
multi-class classification. There could be an edge 
originating from any trigger word and ending in 
any trigger word or protein. Looking at the set of 
all such edges, we trained a classifier to predict the 
label of this edge, or NONE if the edge was not 
present. Here we found that a maximum entropy 
classifier performed somewhat better than an SVM, 
so we used an in-house implementation of a 
maximum entropy trainer to produce the models. 

2.3.1 Features for Edge Detection 
As with trigger detection, our initial feature set for 
edge detection was strongly influenced by features 
that were successful in Björne et al. (2009). 
Additionally, we included the same dependency 
path features to the nearest protein that we used for 
trigger detection, described in 2.2.1. Further, for a 
prospective edge between two entities, where the 
entities are either a trigger and a protein, or a 
trigger and a second trigger, we added a feature 
that indicates (i) if the second entity is in the path 
to the nearest protein, (ii) if the head of the second 
entity is in the path to the nearest protein, (iii) the 
type of the second entity.   

2.4 Post-processing 

Given the set of edges, we used a simple 
deterministic procedure to produce a set of events. 

This step is not substantially different from that 
used in prior systems (Björne et al., 2009). 

2.4.1 Balancing Precision and Recall 
As in Björne et al. (2009), we found that the trigger 
detector had quite low recall. Presumably this is 
due to the severe class imbalance in the training 
data: less than 5% of the input tokens are triggers. 
Thus, our classifier had a tendency to overpredict 
NONE. We tuned a single free parameter  
(the “recall booster”) to scale back the score 
associated with the NONE class before selecting 
the optimal class. The value was tuned for whole-
system F-measure; optimal values tended to fall in 
the range 0.6 to 0.8, indicating that only a small 
shift toward recall led to the best results. 

  Development Set  Test Set 

Event Class Count Recall Precision F1 Count Recall Precision F1 
Gene_expression 749 76.37 81.46 78.83 1002 73.95 73.22 73.58 
Transcription 158 49.37 73.58 59.09 174 41.95 65.18 51.05 
Protein_catabolism 23 69.57 80.00 74.42 15 46.67 87.50 60.87 
Phosphorylation 111 73.87 84.54 78.85 185 87.57 81.41 84.37 
Localization 67 74.63 75.76 75.19 191 51.31 79.03 62.22 
=[SVT-TOTAL]= 1108 72.02 80.51 76.03 1567 68.99 74.03 71.54 
Binding 373 47.99 50.85 49.38 491 42.36 40.47 41.39 
=[EVT-TOTAL]= 1481 65.97 72.73 69.18 2058 62.63 65.46 64.02 
Regulation 292 32.53 47.05 38.62 385 24.42 42.92 31.13 
Positive_Regulation 999 38.74 51.67 44.28 1443 37.98 44.92 41.16 
Negative_Regulation 471 35.88 54.87 43.39 571 41.51 42.70 42.10 
=[REG-TOTAL]= 1762 36.95 51.79 43.13 2399 36.64 44.08 40.02 
ALL-Total 3243 50.20 62.60 55.72 4457 48.64 54.71 51.50 
Table 1: Approximate span matching/approximate recursive matching on development and test data 
sets for GENIA Shared Task -1 with our system. 

Trigger 
Detection 
Features 

Trigger 
Loss Recall Prec. F1 

B 2.14 48.44 64.08 55.18 
B + TI 2.14 48.17 62.49 54.40 
B + TI + C 2.14 50.32 60.90 55.11 
B + TI + C + PI 2.03 50.20 62.60 55.72 
B + TI + C + PI 
+D 

2.02 49.21 62.75 55.16 

Table 2: Recall/Precision/F1 on the GENIA 
development set using MCCC-I + Enju parse; 
adding different features for Trigger Detection. 
B = Base set Features, TI = Trigger inflect 
forms, 
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3 Results 

Of the five evaluation tracks in the shared task, we 
participated in two: the GENIA core task, and the 
EPI (Epigenetics and Post-translational 
modifications) task. The systems used in each track 
were substantially similar; differences are called 
out below. Rather than building a system 
customized for a single trigger and event set, our 
goal was to build a more generalizable framework 
for event detection. 

3.1 GENIA Task 

Using F-measure performance on the development 
set as our objective function, we trained the final 

system for the GENIA task with all the features 
described in section 2, but without the conversion 
rules and without either feature combination or 
reduction. Furthermore, we trained the cluster 
features using the full set of PubMed documents 
(as of  January 2011). The results of our final 
submission are summarized in Table 1. Overall, we 
saw a substantial degradation in F-measure when 
moving from the development set to the test set, 
though this was in line with past experience from 
our and other systems.  

We compared the results for different parsers in 
Table 3. MCCC-I is not better in isolation but does 
produce higher F-measures in combination with 
other parsers. Although posteriors were not 
particularly helpful on the development set, we ran 

Parser 
SVT-Total Binding REG-Total All-Total 

Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 

MCCC 70.94 82.72 76.38 45.04 55.26 49.63 34.39 51.88 41.37 48.10 64.39 55.07 
MCCC-I 68.59 82.59 74.94 42.63 58.67 49.38 32.58 52.76 40.28 46.06 65.50 54.07 
Enju 71.66 82.18 76.56 40.75 51.01 45.31 32.24 49.39 39.01 46.69 62.70 53.52 
MCCC-I + 
Posteriors 

70.49 78.87 74.44 47.72 51.59 49.58 35.64 50.40 41.76 48.94 61.47 54.49 

MCCC + 
Enju 

71.84 82.04 76.60 44.77 53.02 48.55 34.96 53.15 42.18 48.69 64.59 55.52 

MCCC-I + 
Enju 

72.02 80.51 76.03 47.99 50.85 49.38 36.95 51.79 43.13 50.20 62.60 55.72 

Table 3: Comparison of Recall/Precision/F1 on the GENIA Task-1 development set using various 
combinations of parsers: Enju, MCCC (Mc-Closky Charniak), and MCCC-I (Mc-Closky Charniak 
Improved self-trained biomedical parsing model) with Stanford collapsed dependencies were used for 
evaluation. Results on Simple, Binding and Regulation and all events are shown. 
 

  Development Set  Test Set 

Event Class Count Recall Precision F1 Count Recall Precision F1 
Hydroxylation 31 25.81 61.54 36.36 69 30.43 84.00 44.68 
Dehydroxylation 0 100.00 100.00 100.00 0 100.00 100.00 100.00 
Phosphorylation 32 71.88 85.19 77.97 65 72.31 85.45 78.33 
Dephosphorylation 1 0.00 0.00 0.00 4 0.00 0.00 0.00 
Ubiquitination 76 63.16 75.00 68.57 180 67.78 81.88 74.16 
Deubiquitination 8 0.00 0.00 0.00 10 0.00 0.00 0.00 
DNA_methylation 132 72.73 72.18 72.45 182 71.43 73.86 72.63 
DNA_demethylation 9 0.00 0.00 0.00 6 0.00 0.00 0.00 
Glycosylation 70 61.43 67.19 64.18 169 39.05 69.47 50.00 
Deglycosylation 7 0.00 0.00 0.00 12 0.00 0.00 0.00 
Acetylation 65 89.23 75.32 81.69 159 87.42 85.28 86.34 
Deacetylation 19 68.42 92.86 78.79 24 62.50 93.75 75.00 
Methylation 65 64.62 75.00 69.42 193 62.18 73.62 67.42 
Demethylation 7 0.00 0.00 0.00 10 0.00 0.00 0.00 
Catalysis 60 3.33 15.38 5.48 111 4.50 33.33 7.94 
====[TOTAL]==== 582 57.22 72.23 63.85 1194 55.70 77.60 64.85 
Table 4: Approximate span matching/approximate recursive matching on development and test data 
sets for EPI CORE Task with our system 
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a system consisting of MCCC-I with posteriors 
(MCCC-I + Posteriors) on the test set after the 
final results were submitted, and found that it was 
competitive with our submitted system (MCCC-I + 
ENJU). We believe that ambiguity preservation 
has merit, and hope to explore more of this area in 
the future. Diversity is important: although the 
ENJU parser alone was not the best, combining it 
with other parsers led to consistently strong results.  

Table 2 explores feature ablation: TI appears to 
degrade performance, but clusters regain that loss. 
Protein depth information was helpful, but 
dependency rule conversion was not.  Therefore 
the B+TI+C+PI combination was our final 
submission on GENIA.  

3.2 EPI Task 

We trained the final system for the Epigenetics 
task with all the features described in section 2. 
Further, we produced the clusters for the 
Epigenetics task using only the set of GENIA 
documents provided in the shared task. 

In contrast to GENIA, we found that the 
dependency rule conversions had a positive impact 
on development set performance. Therefore, we 
included them in the final system. Otherwise the 
system was identical to the GENIA task system.  

4 Discussion 

After two rounds of the BioNLP shared task, in 
2009 and 2011, we wonder whether it might be 
possible to establish an upper-bound on recall and 
precision. There is considerable diversity among 
the participating systems, so it would be interesting 
to consider whether there are some annotations in 
the development set that cannot be predicted by 
any of the participating systems1. If this is the case, 
then those triggers and edges would present an 
interesting topic for discussion. This might result 
either in a modification of the annotation protocols, 
or an opportunity for all systems to learn more. 

After a certain amount of feature engineering, 
we found it difficult to achieve further 
improvements in F1. Perhaps we need a significant 
shift in architecture, such as a shift to joint 
inference (Poon and Vanderwende, 2010). Our 
system may be limited by the pipeline architecture. 

                                                           
1 Our system output for the 2011development set can be 
downloaded from http://research.microsoft.com/bionlp/ 

MWEs (multi-word entities) are a challenge. 
Better multi-word triggers accuracy may improve 
system performance. Multi-word proteins often led 
to incorrect part-of-speech tags and parse trees. 

Cursory inspection of the Epigenetics task 
shows that some domain-specific knowledge 
would have been beneficial. Our system had 
significant difficulties with the rare inverse event 
types, e.g. “demethylation” (e.g., there are 319 
examples for “methylation” in the combined 
training/development set, but only 12 examples for 
“demethylation”). Each trigger type was treated 
independently, thus we did not share information 
between an event and its related inverse event type. 
Furthermore, our system also failed to identify 
edges for these rare events. One approach would 
be to share parameters between types that differ 
only in a prefix, e.g., “de”. In general, some 
knowledge about the hierarchy of events may let 
the learner generalize among related events. 

5 Conclusion and Future Work 

We have described a system designed for fine-
grained information extraction, which we show to 
be general enough to achieve good performance 
across different sets of event types and domains.  
The only domain-specific characteristic is the pre-
annotation of proteins as a special class of entities. 
We formulated some features based on this 
knowledge, for instance the path to the nearest 
protein.  This would likely have analogues in other 
domains, given that there is often a special class of 
target items for any Information Extraction task. 

As the various systems participating in the 
shared task mature, it will be viable to apply the 
automatic annotations in an end-user setting.  
Given a more specific application, we may have 
clearer criteria for balancing the trade-off between 
recall and precision.  We expect that fully-
automated systems coupled with reasoning 
components will need very high precision, while 
semi-automated systems, designed for information 
visualization or for assistance in curating 
knowledge bases, could benefit from high recall.  
We believe that the data provided for the shared 
tasks will support system development in either 
direction. As mentioned in our discussion, though, 
we find that improving recall continues to be a 
major challenge. We seek to better understand the 
data annotations provided. 
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Our immediate plans to improve our system 
include semi-supervised learning and system 
combination.  We will also continue to explore 
new levels of linguistic representation to 
understand where they might provide further 
benefit.  Finally, we plan to explore models of joint 
inference to overcome the limitations of pipelining 
and deterministic post-processing. 
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