
Proceedings of BioNLP Shared Task 2011 Workshop, pages 155–163,
Portland, Oregon, USA, 24 June, 2011. c©2011 Association for Computational Linguistics

MSR-NLP Entry in BioNLP Shared Task 2011

Chris Quirk, Pallavi Choudhury, Michael Gamon, and Lucy Vanderwende
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
{chrisq,pallavic,mgamon,lucyv}@microsoft.com

Abstract

We describe the system from the Natural
Language Processing group at Microsoft
Research for the BioNLP 2011 Shared
Task. The task focuses on event extraction,
identifying structured and potentially
nested events from unannotated text. Our
approach follows a pipeline, first
decorating text with syntactic information,
then identifying the trigger words of
complex events, and finally identifying the
arguments of those events. The resulting
system depends heavily on lexical and
syntactic features. Therefore, we explored
methods of maintaining ambiguities and
improving the syntactic representations,
making the lexical information less brittle
through clustering, and of exploring novel
feature combinations and feature reduction.
The system ranked 4th in the GENIA task
with an F-measure of 51.5%, and 3rd in the
EPI task with an F-measure of 64.9%.

1 Introduction

We describe a system for extracting complex
events and their arguments as applied to the
BioNLP-2011 shared task. Our goal is to explore
general methods for fine-grained information
extraction, to which the data in this shared task is
very well suited. We developed our system using
only the data provided for the GENIA task, but
then submitted output for two of the tasks, GENIA
and EPI, training models on each dataset
separately, with the goal of exploring how general
the overall system design is with respect to text

domain and event types. We used no external
knowledge resources except a text corpus used to
train cluster features. We further describe several
system variations that we explored but which did
not contribute to the final system submitted. We
note that the MSR-NLP system consistently is
among those with the highest recall, but needs
additional work to improve precision.

2 System Description

Our event extraction system is a pipelined
approach, closely following the structure used by
the best performing system in 2009 (Björne et al.,
2009). Given an input sentence along with
tokenization information and a set of parses, we
first attempt to identify the words that trigger
complex events using a multiclass classifier. Next
we identify edges between triggers and proteins, or
between triggers and other triggers. Finally, given
a graph of proteins and triggers, we use a rule-
based post-processing component to produce
events in the format of the shared task.

2.1 Preprocessing and Linguistic Analysis

We began with the articles as provided, with an
included tokenization of the input and
identification of the proteins in the input. However,
we did modify the token text and the part-of-
speech tags of the annotated proteins in the input to
be PROT after tagging and parsing, as we found
that it led to better trigger detection.

The next major step in preprocessing was to
produce labeled dependency parses for the input.
Note that the dependencies may not form a tree:
there may be cycles and some words may not be
connected. During feature construction, this
parsing graph was used to find paths between

155

words in the sentence. Since proteins may consist
of multiple words, for paths we picked a single
representative word for each protein to act as its
starting point and ending point. Generally this was
the token inside the protein that is closest to the
root of the dependency parse. In the case of ties,
we picked the rightmost such node.

2.1.1 McClosky-Charniak-Stanford parses
The organizers provide parses from a version of
the McClosky-Charniak parser, MCCC (McClosky
and Charniak, 2008), which is a two-stage
parser/reranker trained on the GENIA corpus. In
addition, we used an improved set of parsing
models that leverage unsupervised data, MCCC-I
(McClosky, 2010). In both cases, the Stanford
Parser was used to convert constituency trees in the
Penn Treebank format into labeled dependency
parses: we used the collapsed dependency format.

2.1.2 Dependency posteriors
Effectively maintaining and leveraging the
ambiguity present in the underlying parser has
improved task accuracy in some downstream tasks
(e.g., Mi et al. 2008). McClosky-Charniak parses
in two passes: the first pass is a generative model
that produces a set of n-best candidates, and the

second pass is a discriminative reranker that uses a
rich set of features including non-local
information. We renormalized the outputs from
this log-linear discriminative model to get a
posterior distribution over the 50-best parses. This
set of parses preserved some of the syntactic
ambiguity present in the sentence.

The Stanford parser deterministically converts
phrase-structure trees into labeled dependency
graphs (de Marneffe et al., 2006). We converted
each constituency tree into a dependency graph
separately and retained the probability computed
above on each graph.

One possibility was to run feature extraction on
each of these 50 parses, and weight the resulting
features in some manner. However, this caused a
significant increase in feature count. Instead, we
gathered a posterior distribution over dependency
edges: the posterior probability of a labeled
dependency edge was estimated by the sum of the
probability of all parses containing that edge.
Gathering all such edges produced a single labeled
graph that retained much of the ambiguity of the
input sentence. Figure 1 demonstrates this process
on a simple example. We applied a threshold of 0.5
and retained all edges above that threshold,
although there are many alternative ways to exploit
this structure.

Figure 1: Example sentence from the GENIA corpus. (a) Two of the top 50 constituency parses from the MCCC-I
parser; the first had a total probability mass of 0.43 and the second 0.25 after renormalization. Nodes that differ
between parses are shaded and outlined. (b) The dependency posteriors (labels omitted due to space) after
conversion of 50-best parses. Solid lines indicate edges with posterior > 0.95; edges with posterior < 0.05 were
omitted. Most of the ambiguity is in the attachment of “elicited”.

156

As above, the resulting graph is likely no longer
a connected tree, though it now may also be cyclic
and rather strange in structure. Most of the
dependency features were built on shortest paths
between words. We used the algorithm in Cormen
et al. (2002, pp.595) to find shortest paths in a
cyclic graph with non-negative edge weights. The
shortest path algorithm used in feature finding was
supplied uniform positive edge weights. We could
also weight edges by the negative log probability
to find the shortest, most likely path.

2.1.3 ENJU

We also experimented with the ENJU parses
(Miyao and Tsujii, 2008) provided by the shared
task organizers. The distribution contained the
output of the ENJU parser in a format consistent
with the Stanford Typed Dependency
representation .

2.1.4 Multiple parsers
We know that even the best modern parsers are
prone to errors. Including features from multiple
parsers helps mitigate these errors. When different
parsers agree, they can reinforce certain
classification decisions. The features that were
extracted from a dependency parse have names
that include an identifier for the parser that
produced them. In this way, the machine learning
algorithm can assign different weights to features
from different parsers. For finding heads of multi-
word entities, we preferred the ENJU parser if
present in that experimental condition, then fell
back to MCCC parses, and finally MCCC-I.

2.1.5 Dependency conversion rules
We computed our set of dependency features (see
2.2.1) from the collapsed, propagated Stanford
Typed Dependency representation (see
http://nlp.stanford.edu/software/dependencies_man
ual.pdf and de Marneffe et al., 2006), made
available by the organizers. We chose this form of
representation since we are primarily interested in
computing features that hold between content
words. Consider, for example, the noun phrase
“phosphorylation of TRAF2”. A dependency
representation would specify head-modifier
relations for the tuples (phosphorylation, of) and
(of, TRAF2). Instead of head-modifier, a typed
dependency representation specifies PREP and

PPOBJ as the two grammatical relations:
PREP(phosphorylation-1, of-2) and PPOBJ(of-2,
TRAF2-3). A collapsed representation has a single
triplet specifying the relation between the content
words directly, PREP_OF(phosphorylation-1,
TRAF2-3); we considered this representation to be
the most informative.

We experimented with a representation that
further normalized over syntactic variation. The
system submitted for the GENIA subtask does not
use these conversion rules, while the system
submitted for the EPI subtask does use these rules.
See Table 2 for further details. While for some
applications it may be useful to distinguish
whether a given relation was expressed in the
active or passive voice, or in a main or a relative
clause, we believe that for this application it is
beneficial to normalize over these types of
syntactic variation. Accordingly, we had a set of
simple renaming conversion rules, followed by a
rule for expansion; this list was our first effort and
could likely be improved. We modeled this
normalized level of representation on the logical
form, described in Jensen (1993), though we were
unable to explore NP-or VP-anaphora

Renaming conversion rules:
1. ABBREV -> APPOS
2. NSUBJPASS -> DOBJ
3. AGENT -> NSUBJ
4. XSUBJ -> NSUBJ
5. PARTMOD(head, modifier where last 3

characters are "ing") -> NSUBJ(modifier, head)
6. PARTMOD(head, modifier where last 3

characters are "ed") -> DOBJ(modifier, head)
Expansion:
1. For APPOS, find all edges that point to the head

(gene-20) and duplicate those edges, but
replacing the modifier with the modifier of the
APPOS relation (kinase-26).

Thus, in the 2nd sentence in PMC-1310901-01-
introduction, “... leading to expression of a bcr-abl
fusion gene, an aberrant activated tyrosine kinase,
....”, there are two existing grammatical relations:

PREP_OF(expression-15, gene-20)
APPOS(gene-20, kinase-26)

to which this rule adds:

PREP_OF(expression-15, kinase-26)

157

2.2 Trigger Detection
We treated trigger detection as a multi-class
classification problem: each token should be
annotated with its trigger type or with NONE if it
was not a trigger. When using the feature set
detailed below, we found that an SVM
(Tsochantaridis et al., 2004) outperformed a
maximum entropy model by a fair margin, though
the SVM was sensitive to its free parameters. A
large value of C, the penalty incurred during
training for misclassifying a data point, was
necessary to achieve good results.

2.2.1 Features for Trigger Detection
Our initial feature set for trigger detection was
strongly influenced by features that were
successful in Björne et al., (2009).

Token Features. We included stems of single
tokens from the Porter stemmer (Porter, 1980),
character bigrams and trigrams, a binary indicator
feature if the token has upper case letters, another
indicator for the presence of punctuation, and a
final indicator for the presence of a number. We
gathered these features for both the current token
as well as the three immediate neighbors on both
the left and right hand sides.

We constructed a gazetteer of possible trigger
lemmas in the following manner. First we used a
rule-based morphological analyzer (Heidorn, 2000)
to identify the lemma of all words in the training,
development, and test corpora. Next, for each word
in the training and development sets, we mapped it

to its lemma. We then computed the number of
times that each lemma occurred as a trigger for
each type of event (and none). Lemmas that acted
as a trigger more than 50% of the time were added
to the gazetteer.

During feature extraction for a given token, we
found the lemma of the token, and then look up
that lemma in the gazetteer. If found, we included
a binary feature to indicate its trigger type.

Frequency Features. We included as features
the number of entities in the sentence, a bag of
words from the current sentence, and a bag of
entities in the current sentence.

Dependency Features. We used primarily a set
of dependency chain features that were helpful in
the past (Björne et al., 2009); these features walk
the Stanford Typed Dependency edges up to a
distance of 3.

We also found it helpful to have features about
the path to the nearest protein, regardless of
distance. In cases of multiple shortest paths, we
took only one, exploring the dependency tree
generally in left to right order. For each potential
trigger, we looked at the dependency edge labels
leading to that nearest protein. In addition we had a
feature including both the dependency edge labels
and the token text (lowercased) along that path.
Finally, we had a feature indicating whether some
token along that path was also in the trigger
gazetteer. The formulation of this set of features is
still not optimal especially for the “binding” events
as the training data will include paths to more than
one protein argument. Nevertheless, in Table 3,

Key Relation Value Key Relation Value
quantities child(left, NNS JJ) measurable measurable child-1(left, NNS JJ) quantities
found child(after, VBN NNS) hours hours child-1(after, VBN NNS) found
found child(after, VBN NN) ingestion ingestion child-1(after, VBN NN) found

Figure 2: A sample PubMed sentence along with its dependency parse, and some key/relation/value triples
extracted from that parse for computation of distributional similarity. Keys with a similar distribution of values
under the same relation are likely semantically related. Inverse relations are indicated with a superscript -1.
Prepositions are handled specially: we add edges labeled with the preposition from its parent to each child
(indicated by dotted edges).

158

we can see that this set of features contributed to
improved precision.

Cluster Features. Lexical and stem features
were crucial for accuracy, but were unfortunately
sparse and did not generalize well. To mitigate
this, we incorporated word cluster features. In
addition to the lexical item and the stem, we added
another feature indicating the cluster to which each
word belongs. To train clusters, we downloaded all
the PubMed abstracts (http://pubmed.gov), parsed
them with a simple dependency parser (a
reimplementation of McDonald, 2006 trained on
the GENIA corpus), and extracted dependency
relations to use in clustering: words that occur in
similar contexts should fall into the same cluster.
An example sentence and the relations that were
extracted for distributional similarity computation
are presented in Figure 2. We ran a distributional
similarity clustering algorithm (Pantel et al., 2009)
to group words into clusters.

Tfidf features. This set of features was intended
to capture the salience of a term in the medical and
“general” domain, with the aim of being able to
distinguish domain-specific terms from more
ambiguous terms. We calculated the tf.idf score for
each term in the set of all PubMed abstracts and
did the same for each term in Wikipedia. For each
token in the input data, we then produced three
features: (i) the tf.idf value of the token in PubMed
abstracts, (ii) the tf.idf value of the token in
Wikipedia, and (iii) the delta between the two
values. Feature values were rounded to the closest
integer. We found, however, that adding these
features did not improve results.

2.2.2 Feature combination and reduction
We experimented with feature reduction and
feature combination within the set of features
described here. For feature reduction we tried a
number of simple approaches that typically work
well in text classification. The latter is similar to
the task at hand, in that there is a very large but
sparse feature set. We tried two feature reduction
methods: a simple count cutoff, and selection of
the top n features in terms of log likelihood ratio
(Dunning, 1993) with the target values. For a count
cutoff, we used cutoffs from 3 to 10, but we failed
to observe any consistent gains. Only low cutoffs
(3 and occasionally 5) would ever produce any
small improvements on the development set. Using

log likelihood ratio (as determined on the training
set), we reduced the total number of features to
between 10,000 and 75,000. None of these
experiments improved results, however. One
potential reason for this negative result may be that
there were a lot of features in our set that capture
the same phenomenon in different ways, i.e. which
correlate highly. By retaining a subset of the
original feature set using a count cutoff or log
likelihood ratio we did not reduce this feature
overlap in any way. Alternative feature reduction
methods such as Principal Component Analysis, on
the other hand, would target the feature overlap
directly. For reasons of time we did not experiment
with other feature reduction techniques but we
believe that there may well be a gain still to be had.

For our feature combination experiments the
idea was to find highly predictive Boolean
combinations of features. For example, while the
features a and b may be weak indicators for a
particular trigger, the cases where both a and b are
present may be a much stronger indicator. A linear
classifier such as the one we used in our
experiments by definition is not able to take such
Boolean combinations into account. Some
classifiers such as SVMs with non-linear kernels
do consider Boolean feature combinations, but we
found the training times on our data prohibitive
when using these kernels. As an alternative, we
decided to pre-identify feature combinations that
are predictive and then add those combination
features to our feature inventory. In order to pre-
identify feature combinations, we trained decision
tree classifiers on the training set, and treated each
path from the root to a leaf through the decision
tree classifier as a feature combination. We also
experimented with adding all partial paths through
the tree (as long as they started from the root) in
addition to adding all full paths. Finally, we tried
to increase the diversity of our combination
features by using a “bagging” approach, where we
trained a multitude of decision trees on random
subsets of the data. Again, unfortunately, we did
not find any consistent improvements. Two
observations that held relatively consistently across
our experiments with combination features and
different feature sets were: (i) only adding full
paths as combination features sometimes helped,
while adding partial paths did not, and (ii) bagging
hardly ever led to improvements.

159

2.3 Edge Detection

This phase of the pipeline was again modeled as
multi-class classification. There could be an edge
originating from any trigger word and ending in
any trigger word or protein. Looking at the set of
all such edges, we trained a classifier to predict the
label of this edge, or NONE if the edge was not
present. Here we found that a maximum entropy
classifier performed somewhat better than an SVM,
so we used an in-house implementation of a
maximum entropy trainer to produce the models.

2.3.1 Features for Edge Detection
As with trigger detection, our initial feature set for
edge detection was strongly influenced by features
that were successful in Björne et al. (2009).
Additionally, we included the same dependency
path features to the nearest protein that we used for
trigger detection, described in 2.2.1. Further, for a
prospective edge between two entities, where the
entities are either a trigger and a protein, or a
trigger and a second trigger, we added a feature
that indicates (i) if the second entity is in the path
to the nearest protein, (ii) if the head of the second
entity is in the path to the nearest protein, (iii) the
type of the second entity.

2.4 Post-processing

Given the set of edges, we used a simple
deterministic procedure to produce a set of events.

This step is not substantially different from that
used in prior systems (Björne et al., 2009).

2.4.1 Balancing Precision and Recall
As in Björne et al. (2009), we found that the trigger
detector had quite low recall. Presumably this is
due to the severe class imbalance in the training
data: less than 5% of the input tokens are triggers.
Thus, our classifier had a tendency to overpredict
NONE. We tuned a single free parameter
(the “recall booster”) to scale back the score
associated with the NONE class before selecting
the optimal class. The value was tuned for whole-
system F-measure; optimal values tended to fall in
the range 0.6 to 0.8, indicating that only a small
shift toward recall led to the best results.

 Development Set Test Set

Event Class Count Recall Precision F1 Count Recall Precision F1
Gene_expression 749 76.37 81.46 78.83 1002 73.95 73.22 73.58
Transcription 158 49.37 73.58 59.09 174 41.95 65.18 51.05
Protein_catabolism 23 69.57 80.00 74.42 15 46.67 87.50 60.87
Phosphorylation 111 73.87 84.54 78.85 185 87.57 81.41 84.37
Localization 67 74.63 75.76 75.19 191 51.31 79.03 62.22
=[SVT-TOTAL]= 1108 72.02 80.51 76.03 1567 68.99 74.03 71.54
Binding 373 47.99 50.85 49.38 491 42.36 40.47 41.39
=[EVT-TOTAL]= 1481 65.97 72.73 69.18 2058 62.63 65.46 64.02
Regulation 292 32.53 47.05 38.62 385 24.42 42.92 31.13
Positive_Regulation 999 38.74 51.67 44.28 1443 37.98 44.92 41.16
Negative_Regulation 471 35.88 54.87 43.39 571 41.51 42.70 42.10
=[REG-TOTAL]= 1762 36.95 51.79 43.13 2399 36.64 44.08 40.02
ALL-Total 3243 50.20 62.60 55.72 4457 48.64 54.71 51.50
Table 1: Approximate span matching/approximate recursive matching on development and test data
sets for GENIA Shared Task -1 with our system.

Trigger
Detection
Features

Trigger
Loss Recall Prec. F1

B 2.14 48.44 64.08 55.18
B + TI 2.14 48.17 62.49 54.40
B + TI + C 2.14 50.32 60.90 55.11
B + TI + C + PI 2.03 50.20 62.60 55.72
B + TI + C + PI
+D

2.02 49.21 62.75 55.16

Table 2: Recall/Precision/F1 on the GENIA
development set using MCCC-I + Enju parse;
adding different features for Trigger Detection.
B = Base set Features, TI = Trigger inflect
forms,

160

3 Results

Of the five evaluation tracks in the shared task, we
participated in two: the GENIA core task, and the
EPI (Epigenetics and Post-translational
modifications) task. The systems used in each track
were substantially similar; differences are called
out below. Rather than building a system
customized for a single trigger and event set, our
goal was to build a more generalizable framework
for event detection.

3.1 GENIA Task

Using F-measure performance on the development
set as our objective function, we trained the final

system for the GENIA task with all the features
described in section 2, but without the conversion
rules and without either feature combination or
reduction. Furthermore, we trained the cluster
features using the full set of PubMed documents
(as of January 2011). The results of our final
submission are summarized in Table 1. Overall, we
saw a substantial degradation in F-measure when
moving from the development set to the test set,
though this was in line with past experience from
our and other systems.

We compared the results for different parsers in
Table 3. MCCC-I is not better in isolation but does
produce higher F-measures in combination with
other parsers. Although posteriors were not
particularly helpful on the development set, we ran

Parser
SVT-Total Binding REG-Total All-Total

Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 Recall Prec. F1

MCCC 70.94 82.72 76.38 45.04 55.26 49.63 34.39 51.88 41.37 48.10 64.39 55.07
MCCC-I 68.59 82.59 74.94 42.63 58.67 49.38 32.58 52.76 40.28 46.06 65.50 54.07
Enju 71.66 82.18 76.56 40.75 51.01 45.31 32.24 49.39 39.01 46.69 62.70 53.52
MCCC-I +
Posteriors

70.49 78.87 74.44 47.72 51.59 49.58 35.64 50.40 41.76 48.94 61.47 54.49

MCCC +
Enju

71.84 82.04 76.60 44.77 53.02 48.55 34.96 53.15 42.18 48.69 64.59 55.52

MCCC-I +
Enju

72.02 80.51 76.03 47.99 50.85 49.38 36.95 51.79 43.13 50.20 62.60 55.72

Table 3: Comparison of Recall/Precision/F1 on the GENIA Task-1 development set using various
combinations of parsers: Enju, MCCC (Mc-Closky Charniak), and MCCC-I (Mc-Closky Charniak
Improved self-trained biomedical parsing model) with Stanford collapsed dependencies were used for
evaluation. Results on Simple, Binding and Regulation and all events are shown.

 Development Set Test Set

Event Class Count Recall Precision F1 Count Recall Precision F1
Hydroxylation 31 25.81 61.54 36.36 69 30.43 84.00 44.68
Dehydroxylation 0 100.00 100.00 100.00 0 100.00 100.00 100.00
Phosphorylation 32 71.88 85.19 77.97 65 72.31 85.45 78.33
Dephosphorylation 1 0.00 0.00 0.00 4 0.00 0.00 0.00
Ubiquitination 76 63.16 75.00 68.57 180 67.78 81.88 74.16
Deubiquitination 8 0.00 0.00 0.00 10 0.00 0.00 0.00
DNA_methylation 132 72.73 72.18 72.45 182 71.43 73.86 72.63
DNA_demethylation 9 0.00 0.00 0.00 6 0.00 0.00 0.00
Glycosylation 70 61.43 67.19 64.18 169 39.05 69.47 50.00
Deglycosylation 7 0.00 0.00 0.00 12 0.00 0.00 0.00
Acetylation 65 89.23 75.32 81.69 159 87.42 85.28 86.34
Deacetylation 19 68.42 92.86 78.79 24 62.50 93.75 75.00
Methylation 65 64.62 75.00 69.42 193 62.18 73.62 67.42
Demethylation 7 0.00 0.00 0.00 10 0.00 0.00 0.00
Catalysis 60 3.33 15.38 5.48 111 4.50 33.33 7.94
====[TOTAL]==== 582 57.22 72.23 63.85 1194 55.70 77.60 64.85
Table 4: Approximate span matching/approximate recursive matching on development and test data
sets for EPI CORE Task with our system

161

a system consisting of MCCC-I with posteriors
(MCCC-I + Posteriors) on the test set after the
final results were submitted, and found that it was
competitive with our submitted system (MCCC-I +
ENJU). We believe that ambiguity preservation
has merit, and hope to explore more of this area in
the future. Diversity is important: although the
ENJU parser alone was not the best, combining it
with other parsers led to consistently strong results.

Table 2 explores feature ablation: TI appears to
degrade performance, but clusters regain that loss.
Protein depth information was helpful, but
dependency rule conversion was not. Therefore
the B+TI+C+PI combination was our final
submission on GENIA.

3.2 EPI Task

We trained the final system for the Epigenetics
task with all the features described in section 2.
Further, we produced the clusters for the
Epigenetics task using only the set of GENIA
documents provided in the shared task.

In contrast to GENIA, we found that the
dependency rule conversions had a positive impact
on development set performance. Therefore, we
included them in the final system. Otherwise the
system was identical to the GENIA task system.

4 Discussion

After two rounds of the BioNLP shared task, in
2009 and 2011, we wonder whether it might be
possible to establish an upper-bound on recall and
precision. There is considerable diversity among
the participating systems, so it would be interesting
to consider whether there are some annotations in
the development set that cannot be predicted by
any of the participating systems1. If this is the case,
then those triggers and edges would present an
interesting topic for discussion. This might result
either in a modification of the annotation protocols,
or an opportunity for all systems to learn more.

After a certain amount of feature engineering,
we found it difficult to achieve further
improvements in F1. Perhaps we need a significant
shift in architecture, such as a shift to joint
inference (Poon and Vanderwende, 2010). Our
system may be limited by the pipeline architecture.

1 Our system output for the 2011development set can be
downloaded from http://research.microsoft.com/bionlp/

MWEs (multi-word entities) are a challenge.
Better multi-word triggers accuracy may improve
system performance. Multi-word proteins often led
to incorrect part-of-speech tags and parse trees.

Cursory inspection of the Epigenetics task
shows that some domain-specific knowledge
would have been beneficial. Our system had
significant difficulties with the rare inverse event
types, e.g. “demethylation” (e.g., there are 319
examples for “methylation” in the combined
training/development set, but only 12 examples for
“demethylation”). Each trigger type was treated
independently, thus we did not share information
between an event and its related inverse event type.
Furthermore, our system also failed to identify
edges for these rare events. One approach would
be to share parameters between types that differ
only in a prefix, e.g., “de”. In general, some
knowledge about the hierarchy of events may let
the learner generalize among related events.

5 Conclusion and Future Work

We have described a system designed for fine-
grained information extraction, which we show to
be general enough to achieve good performance
across different sets of event types and domains.
The only domain-specific characteristic is the pre-
annotation of proteins as a special class of entities.
We formulated some features based on this
knowledge, for instance the path to the nearest
protein. This would likely have analogues in other
domains, given that there is often a special class of
target items for any Information Extraction task.

As the various systems participating in the
shared task mature, it will be viable to apply the
automatic annotations in an end-user setting.
Given a more specific application, we may have
clearer criteria for balancing the trade-off between
recall and precision. We expect that fully-
automated systems coupled with reasoning
components will need very high precision, while
semi-automated systems, designed for information
visualization or for assistance in curating
knowledge bases, could benefit from high recall.
We believe that the data provided for the shared
tasks will support system development in either
direction. As mentioned in our discussion, though,
we find that improving recall continues to be a
major challenge. We seek to better understand the
data annotations provided.

162

Our immediate plans to improve our system
include semi-supervised learning and system
combination. We will also continue to explore
new levels of linguistic representation to
understand where they might provide further
benefit. Finally, we plan to explore models of joint
inference to overcome the limitations of pipelining
and deterministic post-processing.

Acknowledgments
We thank the shared task organizers for providing
this interesting task and many resources, the Turku
BioNLP group for generously providing their
system and intermediate data output, and Patrick
Pantel and the MSR NLP group for their help and
support.

References
Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola,

Tapio Pahikkala and Tapio Salakoski. 2009.
Extracting Complex Biological Events with Rich
Graph-Based Feature Sets. In Proceedings of the
Workshop on BioNLP: Shared Task.

Thomas Cormen, Charles Leiserson, and Ronald Rivest.
2002. Introduction to Algorithms. MIT Press.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational
Linguistics, 19(1), pp. 61-74.

George E. Heidorn, 2000. Intelligent Writing
Assistance. In Handbook of Natural Language
Processing, ed. Robert Dale, Hermann Moisl, and
Harold Somers. Marcel Dekker Publishers.

Karen Jensen. 1993. PEGASUS: Deriving Argument
Structures after Syntax. In Natural Language
Processing: the PLNLP approach, ed. Jensen, K.,
Heidorn, G.E., and Richardson, S.D. Kluwer
Academic Publishers.

Marie-Catherine de Marneffe, Bill MacCartney and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
LREC 2006.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature forest
models for probabilistic HPSG parsing.
Computational Linguistics 34(1): 35-80.

David McClosky and Eugene Charniak. 2008. Self-
Training for Biomedical Parsing. In Proceedings of
the Association for Computational Linguistics 2008.

David McClosky. 2010. Any Domain Parsing:
Automatic Domain Adaptation for Natural Language

Parsing. Ph.D. thesis, Department of Computer
Science, Brown University.

Ryan McDonald. 2006. Discriminative training and
spanning tree algorithms for dependency parsing. Ph.
D. Thesis. University of Pennsylvania.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based Translation. In Proceedings of ACL 2008,
Columbus, OH.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu and Vishnu Vyas. 2009. Web-Scale
Distributional Similarity and Entity Set Expansion. In
Proceedings of EMNLP 2009.

Hoifung Poon and Lucy Vanderwende. 2010. Joint
inference for knowledge extraction from biomedical
literature. In Proceedings of NAACL-HLT 2010.

Martin.F. Porter, 1980, An algorithm for suffix
stripping, Program, 14(3):130−137.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Alton. 2004. Support vector
machine learning for interdependent and structured
output spaces. In ICML 2004.

163

