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Abstract

Building on technical advances from the
BioNLP 2009 Shared Task Challenge, the
2011 challenge sets forth to generalize tech-
niques to other complex biological event ex-
traction tasks. In this paper, we present the
implementation and evaluation of a signature-
based machine-learning technique to predict
events from full texts of infectious disease
documents. Specifically, our approach uses
novel signatures composed of traditional lin-
guistic features and semantic knowledge to
predict event triggers and their candidate argu-
ments. Using a leave-one out analysis, we re-
port the contribution of linguistic and shallow
semantic features in the trigger prediction and
candidate argument extraction. Lastly, we ex-
amine evaluations and posit causes for errors
in our complex biological event extraction.

1 Introduction

The BioNLP 2009 Shared Task (Kim et al., 2009)
was the first shared task to address fine-grained in-
formation extraction for the bio-molecular domain,
by defining a task involving extraction of event
types from the GENIA ontology. The BioNLP 2011
Shared Task ( (Kim et al., 2011)) series generalized
this defining a series of tasks involving more text
types, domains and target event types. Among the
tasks for the new series is the Infection Disease task,
proposed and investigated by (Pyysalo et al., 2011;
Pyysalo et al., 2010; Bjorne et al., 2010).

Like the other tasks for the BioNLP Shared Task
series, the goal is to extract mentions of relevant
events from biomedical publications. To extract

an event, the event trigger and all arguments must
be identified in the text by exact offset and typed
according to a given set of event and argument
classes (Miwa et al., 2010). Entity annotations are
given for a set of entity types that fill many of the
arguments.

Here we describe Pacific Northwest National Lab-
oratory’s (PNNL) submission to the BioNLP 2011
Infectious Disease shared task. We describe the ap-
proach and then discuss results, including an analy-
sis of errors and contribution of various features.

2 Approach

Our system uses a signature-based machine-learning
approach. The system is domain-independent,
using a primary task description vocabulary and
training data to learn the task, but domain re-
sources can be incorporated as additional features
when available, as described here. The approach
can be broken down into 4 components: an au-
tomated annotation pipeline to provide the basis
for features, classification-based trigger identifica-
tion and argument identification components, and a
post-processing component to apply semantic con-
straints. The UIMA framework1 is used to integrate
the components into a pipeline architecture.

2.1 Primary Tasks

A definition of the events to be extracted is used to
define candidates for classification and post-process
the results of the classification. First a list of
domain-specific entity classes is given. Entities of

1http://uima.apache.org/
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Event Class Arguments
Gene expression Theme(Protein|Regulon-operon)
Transcription Theme(Protein|Regulon-operon)
Protein catabolism Theme(Protein)
Phosphorylation Theme(Protein), Site(entity)?
Localization Theme(core entity), AtLoc(entity)?, ToLoc(entity)?
Binding Theme(core entity)+, Site(entity)*
Regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Positive regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Negative regulation Theme(core entity|event), Cause(core entity|event)?, Site(entity)?, CSite(entity)?
Process Participant(core entity)?

Table 1: Summary of the target events. Type restrictions on fillers of each argument type are shown in parenthesis.
Multiplicity of each argument type is also marked (+ = one-to-many, ? = zero-to-one, * = zero-to-many, otherwise =
one).

these classes are assumed to be annotated in the data,
as is the case for the Infectious Disease task. Then,
each event class is given, with a list of argument
types for each. Each argument is marked with its
multiplicity, indicating how many of this argument
type is valid for each event, either: one – exactly one
is required, one-to-many – one or more is required,
zero-to-one – one is optional, and zero-to-many –
one or many are optional. Also, restrictions on the
classes of entities that can fill each argument are
given, by listing: one or more class names – indicat-
ing the valid domain-specific entity classes from the
definition, core entity – indicating that any domain-
specific entity in the definition is valid, event – indi-
cating that any event in the definition is valid, or en-
tity – indicating that any span from the text is valid.
Table 1 shows the summary of the event extraction
tasks for the Infectious Disease track.

2.2 Annotation

Linguistic and domain annotations are automatically
applied to the document to be used for trigger and
argument identification in framing the tasks for clas-
sification and generating features for each instance.
Linguistic annotations include sentence splits, to-
kens, parts of speech, tree parses, typed dependen-
cies (deMarneffe et al., 2006; MacKinlay et al.,
2009), and stems. For the Infectious Disease task,
the parses from the Stanford Parser (Klein and Man-
ning, 2003) provided by the Supporting Analysis
(Stenetorp et al., 2011) was used to obtain all of
these linguistic annotations, except for the stems,
which were obtained from the Porter Stemmer (van

Rijsbergen et al., 1980).
For the Infectious Disease task, two sets of do-

main specific annotations are included: known
trigger words for each event class and semantic
tags from the Unified Medical Language System
(UMLS) (Bodenreider, 2004). Annotations for
known trigger words are created using a dictionary
of word stem-event class pairs created from anno-
tated training data. An entry is created in the dictio-
nary every time a new stem is seen as a trigger for
an event class. When a word with one of these stems
is seen during processing, it is annotated as a typical
trigger word for that event class.

Semantic tags are calculating using MetaMap
2010 (Aronson and Lang, 2010). MetaMap provides
semantic tags for terms in a document with up to
three levels of specificity, from most to least spe-
cific: concept, type and group (Torii et al., 2011).
Word sense disambiguation is used to identify the
best tags for each term. For example, consider the
tags identified by MetaMap for the phrase Human
peripheral B cells:

Human
concept: Homo sapiens
type: Human
group: Living Beings

Peripheral
type: Spatial Concept
group: Concepts & Ideas

B-Cells
concept: B-Lymphocytes
type: Cell
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group: Anatomy

In this example, semantic mappings were found for
three terms: Human, Peripheral and B-Cells. Hu-
man and B-Cells were mapped to specific concepts,
but Peripheral was mapped to a more general group.

Entities are also annotated at this point. For the
Infectious Disease task, annotations for five entity
types are given: Protein, Two-component system,
Chemical, Organism, or Regulon/Operon.

2.3 Trigger Identification
Triggers are identified using an SVM classifier (Vap-
nik, 1995; Joachims, 1999). Candidate triggers are
chosen from the words in the text by part-of-speech.
Based on known triggers seen in the training data, all
nouns, verbs, adjectives, prepositions and adverbs
are selected as candidates. A binary model is trained
for each event type, and candidate triggers are tested
against each classifier.

The following features are used to classify candi-
date event triggers:

• term – the candidate trigger
• stem – the stem of the term
• part of speech – the part of speech of the term
• capitalization – capitalization of the term
• punctuation – individual features for the pres-

ence of different punctuation types
• numerics – the presence of a number in the

term
• ngrams – 4-grams of characters from the term
• known trigger types – tags from list of known

trigger terms for each event type
• lexical context – terms in the same sentence
• syntactic dependencies – the type and role

(governor or dependent) of typed dependencies
involving the trigger
• semantic type – type mapping from MetaMap
• semantic group – group mapping from

MetaMap

For training data, both the Infectious Disease
training set and the GENIA training set were used.
Although the GENIA training set represents a dif-
ferent genre and is annotated with a slightly differ-
ent vocabulary than the Infectious Disease task data,

it is similar enough to provide some beneficial su-
pervision. The Infectious Disease training data is
relatively small at 154 documents so including the
larger GENIA training set at 910 documents results
in a much more larger training set. Testing on the
Infectious Disease development data, a 1 point im-
provement in fscore in overall results is seen with
the additional training data.

2.4 Argument Identification

Arguments are also identified using an SVM classi-
fier. For each predicted trigger, candidate arguments
are selected based on the argument types. For ar-
guments that are restricted to being filled by some
set of specific entity and event types, each anno-
tated entity and predicted event is selected as a can-
didate. For arguments that can be filled by any span
of text, each span corresponding to a constituent of
the tree parse is selected as a candidate. Each pair
of an event trigger and a candidate argument serves
as an instance for the classification. A binary model
is trained for each event type, and each pair is tested
against each classifier.

Many of the features used are inspired by those
used in semantic role labeling systems (Gildea and
Jurafsky, 2002). Given an event trigger and a can-
didate argument, the following features are used to
classify event arguments:

• trigger type – the predicted event type of the
trigger
• argument terms – the text of the argument
• argument type – entity or event type annota-

tion on the argument
• argument super-type – core entity or core ar-

gument
• trigger and argument stems – the stems of

each
• trigger and argument parts of speech – the

part of speech of each
• parse tree path – from the trigger to argument

via least common ancestor in tree parse, as a
list of phrase types
• voice of sentence – active or passive
• trigger and argument partial paths – from

the trigger or argument to the least common an-
cestor in tree parse, as a list of phrase types

132



• relative position of argument to trigger – be-
fore or after
• trigger sub-categorization – representation of

the phrase structure rule that describes the rela-
tionship between the trigger, its parent and its
siblings.

The training data used is the same as for trig-
ger identification: the Infectious Disease training set
plus the Genia training set.

2.5 Post-processing
A post-processing component is used to turn output
from the various classifiers into semantically valid
output according to the target task. For each pre-
dicted trigger, the positive predictions for each argu-
ment model are collected, and the set is compared to
the argument restrictions in the target task descrip-
tion.

For example, the types on argument predictions
are compared to the argument restrictions in the
target task, and non-conforming ones are dropped.
Then the multiplicity of the arguments for each pre-
dicted event is checked against the task vocabulary.
Where there were not sufficient positive argument
predictions to make a full event, the best negative
predictions from the model are tried. When a com-
pliant set of arguments can not be created for a pre-
dicted event, it is dropped.

3 Results and Discussion

Results for the system on both the development data
and the official test data for the task are shown in
Table 2 and Table 5, respectively. For the develop-
ment data, a system using gold-standard event trig-
gers is included, to isolate the performance of argu-
ment identification. In all cases, the total fscore for
non-regulation events were much higher than regula-
tion events. On the official test data, the system per-
formed the best in predicting Phosphorylation (fs-
core = 71.43), Gene Expression (fscore = 53.33) and
Process events (fscore = 51.04), but was unable to
find any Transcription and Regulation events. This
is also evident in the results on the development data
using predicted triggers; additionally, no matches
were found for localization and binding events. The
total fscore on the development data using gold trig-
gers was 55.33, more than 13 points higher than

when using predicted triggers. In the discussion that
follows, we detail the importance of individual fea-
tures and their contribution to evaluation fscores.

3.1 Feature Importance

The effect of each argument and trigger feature type
on the Infectious Disease development data was de-
termined using a leave-one-out approach. The ar-
gument and trigger feature effect results are shown
in Table 3 and Table 4, respectively. In a series of
experiments, each feature type is left out of the full
feature set one-by-one. The difference in fscore be-
tween each of these systems and the full feature set
system is the effect of the feature type; a high nega-
tive effect indicates a significant contribution to the
system since the removal of the feature resulted in a
lower fscore.

Features fscore effect
all features 41.66
w/o argument terms 36.16 -5.50
w/o argument type 39.50 -2.16
w/o trigger partial path 40.65 -1.01
w/o argument part of speech 40.98 -0.68
w/o argument partial path 41.16 -0.50
w/o trigger sub-categorization 41.45 -0.21
w/o argument stem 41.48 -0.18
w/o argument super-type 41.63 -0.03
w/o trigger type 41.63 -0.03
w/o trigger part of speech 41.81 0.15
w/o trigger stem 41.81 0.15
w/o voice of sentence 41.85 0.19
w/o relative position 42.21 0.55
w/o parse tree path 42.67 1.01

Table 3: Effect of each argument feature type on Infec-
tious Disease development data.

Within the argument feature set system, the parse
tree path feature had a notable positive effect of
1.01. The features providing the greatest contribu-
tion were argument terms and argument type with
effects of -5.50 and -2.16, respectively. Within the
trigger feature set system, the lexical context and
syntactic dependencies features showed the highest
negative effect signifying positive contribution to the
system. The text and known trigger types features
showed a negative contribution to the system.
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Using Gold Triggers Using Predicted Triggers
Event Class gold/ans./match recall prec. fscore gold/ans./match recall prec. fscore

Gene expression 134 / 110 / 100 74.63 90.00 81.60 134 / 132 / 85 64.18 64.39 64.29
Transcription 35 / 26 / 23 65.71 88.46 75.41 25 / 0 / 0 0.00 0.00 0.00

Protein catabolism 0 / 0 / 0 0.00 0.00 0.00 0 / 0 / 0 0.00 0.00 0.00
Phosphorylation 13 / 13 / 13 100.00 100.00 100.00 13 / 14 / 13 100.00 92.86 96.30

Localization 1 / 1 / 0 0.00 0.00 0.00 1 / 10 / 0 0.00 0.00 0.00
Binding 17 / 6 / 0 0.00 0.00 0.00 17 / 3 / 0 0.00 0.00 0.00
Process 206 / 180 / 122 59.22 67.78 63.21 207 / 184 / 108 52.17 58.70 55.24

Regulation 81 / 61 / 20 24.69 32.79 28.17 80 / 0 / 0 0.00 0.00 0.00
Positive regulation 113 / 91 / 36 31.86 39.56 35.29 113 / 42 / 13 11.50 30.95 16.77
Negative regulation 90 / 71 / 32 35.56 45.07 39.75 90 / 42 / 11 12.22 26.19 16.67

TOTAL 690 / 559 / 346 50.14 61.72 55.33 680 / 427 / 230 33.97 53.86 41.66

Table 2: Results on Infectious Disease development data. The system is compared to a system using gold standard
triggers to isolate performance of argument identification.

Features fscore effect
all features 41.66
w/o lexical context 40.14 -1.52
w/o syntactic dependencies 40.28 -1.38
w/o ngrams 40.88 -0.78
w/o part of speech 41.48 -0.18
w/o capitalization 41.51 -0.15
w/o numerics 41.51 -0.15
w/o semantic group 41.55 -0.11
w/o punctuation 41.59 -0.07
w/o stem 41.74 0.08
w/o semantic type 41.82 0.16
w/o known trigger types 42.11 0.45
w/o text 42.31 0.65

Table 4: Effect of each trigger feature type on Infectious
Disease development data.

3.2 Transcription and Regulation events

Lastly, we present representative examples of errors
(e.g., false positive, false negative, poor recall) pro-
duced by our system in the Infectious Disease track
core tasks. The discussion herein will cover eval-
uations where our system did not correctly predict
(transcription and regulation) any events or partially
predicted (binding and +/- regulation) event triggers
and arguments. In the text examples that follow, trig-
gers are underlined and arguments are italicized.

The following are transcription events from the
document PMC1804205-02-Results-03 in the devel-
opment data.

• In contrast to the phenotype of the pta ackA
double mutant, pbgP transcription was reduced

in the pmrD mutant (Fig. 3).

• Growth at pH 5.8 resulted in pmrD
transcript levels that were approximately3.5-
fold higher than in organisms grown at pH 7.7
(Fig. 4A).

In both the development and test data evaluations,
our system did not predict any transcription events,
resulting in a 0.0 fscore; however, the system
achieved 75.41 fscore when the gold-standard trig-
gers were provided to the evaluation. Because ar-
gument prediction performed well, the system will
benefit most by improving transcription event trig-
ger prediction.

The following are regulation events from the doc-
ument PMC1804205-02-Results-01in the develop-
ment data.

• . . . we grew Salmonella cells harbouring chro-
mosomal lacZYA transcriptional fusions to the
PmrA-regulated genes pbgP, pmrC and ugd
(Wosten and Groisman, 1999) in N-minimal
media buffered at pH 5.8 or 7.7.

• We determined that Chelex 100 was effective at
chelating iron because expression of the pmrA-
independent iron-repressed iroA gene . . .

Similar to the transcription task, our system did not
predict any regulation events, resulting in a 0.0 fs-
core. Unlike transcription events though, our sys-
tem performed poorly on both argument identifica-
tion and trigger prediction. The system achieved a
28.17 fscore when gold-standard triggers were used
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Event Class gold (match) answer (match) recall prec. fscore
Gene expression 152 80 148 80 52.63 54.05 53.33

Transcription 50 0 0 0 0.00 0.00 0.00
Protein catabolism 5 1 12 1 20.00 8.33 11.76

Phosphorylation 16 10 12 10 62.50 83.33 71.43
Localization 7 4 22 4 57.14 18.18 27.59

Binding 56 7 14 7 12.50 50.00 20.00
Regulation 193 0 0 0 0.00 0.00 0.00

Positive regulation 193 34 87 34 17.62 39.08 24.29
Negative regulation 181 32 68 32 17.68 47.06 25.70

Process 516 234 401 234 45.35 58.35 51.04
TOTAL 1369 402 764 402 29.36 52.62 37.69

Table 5: Official results on Infectious Disease test data

in the evaluation. Hypotheses for poor performance
on candidate argument prediction are addressed in
the following sections.

We posit that false negative trigger identifications
are due to the limited full text training data (i.e. tran-
scription events) and the inability of our system to
predict non-verb triggers (i.e. second transcription
example above). The SVM classifier was unable
to distinguish between true transcription event trig-
gers and transcription-related terms and ultimately,
did not predict any transcription event in the devel-
opment or test evaluations. To improve transcrip-
tion event prediction, immediate effort should fo-
cus on 1) providing additional training data (e.g.,
BioCreativec̃iteBioCreative) and 2) introduce a trig-
ger word filter that defines a subset of event triggers
that have the best hit rate in the corpus. The hit rate
is the number of occurrences of the word in a sen-
tence per event type, divided by the total count in the
gold standard (Nguyen et al., 2010).

3.3 +/-Regulation and Binding

The following positive regulation event is from doc-
ument PMC1874608-03-RESULTS-03 in the devel-
opment data.

• Invasiveness for HEp-2 cells was reduced to
39.1% of the wild-type level by mlc mutation,
whereas it was increased by 1.57-fold by hilE
mutation (Figure 3B).

In the preceding example, our system correctly
predicted the +regulation trigger and the theme hilE;

however, the correct argument was a gene expres-
sion event, not the entity. Many errors in the positive
and negative regulation events were of this type; the
predicted argument was a theme and not an event.

Evaluation of our system’s binding event predic-
tions resulted in low recall (12.50 or 0.0) in the
test and development evaluations. The proceeding
binding events are from document PMC1874608-
03-RESULTS-05 in the development data. In both
of the examples, our system correctly predicted the
trigger binding; however, no arguments were pre-
dicted. Evaluation on the development data with
gold standard triggers also resulted in an fscore of
0.0; thus, further algorithm refinement is needed to
improve binding scores.

• Mlc directly represses hilE by binding to the P3
promoter

• These results clearly demonstrate that Mlc
can regulate directly the hilE P3 promoter by
binding to the promoter.

The following binding event is from document
PMC1874608-01-INTRODUCTION in the devel-
opment data and is representative of errors across
many of the tasks. Here, the trigger is correctly pre-
dicted; however, the candidate arguments did not
match with the reference data. Upon closer look,
the arguments were drawn from the entire sentence,
rather than an independent clause. The syntactic
parse feature was not sufficient to prevent over-
predicting arguments for the trigger, a potential so-
lution is to add the arguments syntactic dependency
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to the trigger as a feature to the candidate argument
selection.

• Using two-hybrid analysis, it has been shown
that HilE interacts with HilD, which suggests
that HilE represses hilA expression by inhibit-
ing the activity of HilD through a protein-
protein interaction (19,20).

4 Summary

This article reports Pacific Northwest National Lab-
oratory’s entry to the BioNLP Shared Task 2011 In-
fectious Disease track competition. Our system uses
a signature-based machine-learning approach incor-
porating traditional linguistic features and shallow
semantic concepts from NIH’s METAMAP The-
saurus. We examine the contribution of each of
the linguistic and semantic features to the over-
all fscore for our system. This approach performs
well on gene expression, process and phosphoryla-
tion event prediction. Transcription, regulation and
binding events each achieve low fscores and war-
rant further research to improve their effectiveness.
Lastly, we present a performance analysis of the
transcription, regulation and binding tasks. Future
work to improve our system’s performance could in-
clude pre-processing using simple patterns (Nguyen
et al., 2010), information extraction from figure cap-
tions (Kim and Yu, 2011) and text-to-text event ex-
traction. The last suggested improvement is to add
semantic features to the candidate argument predic-
tion algorithm in addition to using rich features, such
as semantic roles (Torii et al., 2011).
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