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Abstract

In this paper we describe our approach to
the BioNLP 2011 shared task on biomedical
event extraction from abstracts and full pa-
pers. We employ a joint inference system de-
veloped using the search-based structured pre-
diction framework and show that it improves
on a pipeline using the same features and it is
better able to handle the domain shift from ab-
stracts to full papers. In addition, we report on
experiments using a simple domain adaptation
method.

1 Introduction

The term biomedical event extraction is used to re-
fer to the task of extracting descriptions of actions
and relations among one or more entities from the
biomedical literature. The BioNLP 2011 shared
task GENIA Task1 (BioNLP11ST-GE1) (Kim et al.,
2011) focuses on extracting events from abstracts
and full papers. The inclusion of full papers in the
datasets is the only difference from Task1 of the
BioNLP 2009 shared task (BioNLP09ST1) (Kim et
al., 2009), which used the same task definition and
abstracts dataset. Each event consists of a trigger
and one or more arguments, the latter being proteins
or other events. The protein names are annotated in
advance and any token in a sentence can be a trig-
ger for one of the nine event types. In an exam-
ple demonstrating the complexity of the task, given
the passage “. . . SQ 22536 suppressed gp41-induced
IL-10 production in monocytes”, systems should ex-
tract the three nested events shown in Fig. 1d.

In our submission, we use the event extraction
system of Vlachos and Craven (2011) which em-
ploys the search-based structured prediction frame-
work (SEARN) (Daumé III et al., 2009). SEARN
converts the problem of learning a model for struc-
tured prediction into learning a set of models for
cost-sensitive classification (CSC). In CSC, each
training instance has a vector of misclassification
costs associated with it, thus rendering some mis-
takes in some instances to be more expensive than
others. Compared to other structured prediction
frameworks such as Markov Logic Networks (Poon
and Vanderwende, 2010), SEARN provides high
modeling flexibility but it does not requiring task-
dependent approximate inference.

In this work, we show that SEARN is more accu-
rate than a pipeline using the same features and it is
better able to handle the domain shift from abstracts
to full papers. Furthermore, we report on exper-
iments with the simple domain adaptation method
proposed by Daumé III (2007), which creates a ver-
sion of each feature for each domain. While the re-
sults were mixed, this method improves our perfor-
mance on full papers of the test set, for which little
training data is available.

2 Event extraction decomposition

Figure 1 describes the event extraction decomposi-
tion that is used throughout the paper. Each stage has
its own module to perform the classification needed.

In trigger recognition the system decides whether
a token acts as a trigger for one of the nine event
types or not. We only consider tokens that are tagged
as nouns, verbs or adjectives by the parser, as they
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ID type Trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

(d) Event construction

Figure 1: The stages of our biomedical event extraction system.

cover the majority of the triggers in the data. The
main features used in the classifier represent the
lemma of the token which is sufficient to predict
the event type correctly in most cases. In addition,
we include features that conjoin each lemma with
its part-of-speech tag and its immediate lexical and
syntactic context, which allows us to handle words
that can represent different event types, e.g. “activ-
ity” often denotes a Regulation event but in “binding
activity” it denotes a Binding event instead.

In Theme assignment, we form an agenda of can-
didate trigger-argument pairs for all trigger-protein
combinations in the sentence and classify them as
Themes or not. Whenever a trigger is predicted to be
associated with a Theme, we form candidate pairs
between all the Regulation triggers in the sentence
and that trigger as the argument, thus allowing the
prediction of nested events. Also, we remove candi-
date pairs that could result in directed cycles, as they
are not allowed by the task. In Cause assignment,
we form an agenda of candidate trigger-argument
pairs and classify them as Causes or not. We form
pairs between Regulation class triggers that were as-
signed at least one Theme, and protein names and
other triggers that were assigned at least one Theme.

The features used in these two stages are extracted
from the syntactic dependency path and the textual
string between the trigger and the argument. We
extract the shortest unlexicalized dependency path
connecting each trigger-argument pair using Dijk-
stra’s algorithm, allowing the paths to follow either
dependency direction. One set of features represents

the shortest unlexicalized path between the pair and
in addition we have sets of features representing
each path conjoined with the lemma, the PoS tag and
the event type of the trigger, the type of the argument
and the first and last lemmas in the dependency path.

In the event construction stage, we convert the
predictions of the previous stages into events. If
a Binding trigger is assigned multiple Themes, we
choose to form either one event per Theme or one
event with multiple Themes. For this purpose, we
group the arguments of each nominal Binding trig-
ger according to the first label in their dependency
path and generate events using the cross-product of
these groups. For example, assuming the parse was
correct and all the Themes recognized, “interactions
of A and B with C” results in two Binding events
with two Themes each, A with C, and B with C re-
spectively. We add the exceptions that if two Themes
are part of the same token (e.g. “A/B interactions”),
or the trigger and one of the Themes are part of the
same token, or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.

3 Structured prediction with SEARN

SEARN (Daumé III et al., 2009) forms the struc-
tured output prediction of an instance s as a se-
quence of T multiclass predictions ŷ1:T made by a
hypothesis h. The latter is a weighted ensemble of
classifiers that are learned jointly. Each prediction ŷt

can use features from s as well as from all the pre-
vious predictions ŷ1:t−1, thus taking structure into
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account. These predictions are referred to as actions
and we adopt this term in order to distinguish them
from the structured output predictions.

The SEARN algorithm is presented in Alg. 1. In
each iteration, SEARN uses the current hypothesis
h to generate a CSC example for each action ŷt cho-
sen to form the prediction for each labeled instance
s (steps 6-12). The cost associated with each action
is estimated using the gold standard according to a
loss function l which corresponds to the task eval-
uation metric (step 11). Using a CSC learning al-
gorithm, a new hypothesis hnew is learned (step 13)
which is combined with the current one according to
the interpolation parameter β (step 14). h is initial-
ized to the optimal policy (step 2) which is derived
from the gold standard. In each iteration SEARN
“corrupts” the optimal policy with the learned hy-
potheses. Thus, each hnew is adapted to the actions
chosen by h instead of the optimal policy. The algo-
rithm terminates when the dependence on the latter
becomes insignificant.

Algorithm 1 SEARN
1: Input: labeled instances S , optimal policy π, CSC

learning algorithm CSCL, loss function `
2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1 . . . ŷT

7: for ŷt in h(s) do
8: Extract features Φt = f(s, ŷ1:t−1)
9: for each possible action yi

t do
10: Predict y′t+1:T = h(s|ŷ1:t−1, y

i
t)

11: Estimate cit = `(ŷ1:t−1, y
i
t, y′t+1:T )

12: Add (Φt, ct) to E
13: Learn a classifier hnew = CSCL(E)
14: h = βhnew + (1− β)h
15: Output: hypothesis h without π

4 Biomedical event extraction with
SEARN

In this section we describe how we learn the event
extraction decomposition described in Sec. 2 under
SEARN. Each instance is a sentence and the hypoth-
esis learned in each iteration consists of a classifier
for each stage of the pipeline, excluding event con-
struction which is rule-based.

SEARN allows us to extract structural features for
each action from the previous ones. During trig-
ger recognition, we add as features the combination
of the lemma of the current token combined with
the event type (if any) assigned to the previous and
the next token, as well as to the tokens that have
syntactic dependencies with it. During Theme as-
signment, when considering a trigger-argument pair,
we add features based on whether the pair forms an
undirected cycle with previously predicted Themes,
whether the trigger has been assigned a protein as a
Theme and the candidate Theme is an event trigger
(and the reverse), and whether the argument is the
Theme of a trigger with the same event type. We
also add a feature indicating whether the trigger has
three Themes predicted already. During Cause as-
signment, we add features representing whether the
trigger has been assigned a protein as a Cause and
the candidate Cause is an event trigger.

Since the features extracted for an action depend
on previous ones, we need to define a prediction or-
der for the actions. In trigger recognition, we pro-
cess the tokens from left to right since modifiers
appearing before nouns tend to affect the meaning
of the latter, e.g. “binding activity”. In Theme
and Cause assignment, we predict trigger-argument
pairs in order of increasing dependency path length,
assuming that, since they are the main source of fea-
tures in these stages and shorter paths are less sparse,
pairs containing shorter ones should be predicted
more reliably. The loss function sums the number of
false positive and false negative events, which is the
evaluation measure of the shared task. The optimal
policy is derived from the gold standard and returns
the action that minimizes the loss over the sentence
given the previous actions and assuming that all fu-
ture actions are optimal.

In step 11 of Alg. 1, the cost of each action is esti-
mated over the whole sentence. While this allows us
to take structure into account, it can result in costs
being affected by a part of the output that is not re-
lated to that action. This is likely to occur in event
extraction, as sentences can often be long and con-
tain disconnected event components in their output
graphs. For this reason we use focused costing (Vla-
chos and Craven, 2011), in which the cost estimation
for an action takes into account only the part of the
output graph connected with that action.
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pipeline (R/P/F) SEARN (R/P/F)
trigger 49.1 64.0 55.6 83.2 28.6 42.6
Theme 43.7 78.6 56.2 63.8 72.0 67.6
Cause 13.9 61.0 22.6 33.9 53.8 41.6
Event 31.7 70.1 43.6 45.8 60.51 52.1

Table 1: Results on the development dataset.

5 Experiments

In our experiments, we perform multiclass CSC
learning using our implementation of the on-
line passive-aggressive (PA) algorithm proposed by
Crammer et al. (2006). The aggressiveness param-
eter and the number of rounds in parameter learn-
ing are set by tuning on 10% of the training data
and we use the variant named PA-II with prediction-
based updates. For SEARN, we set the interpolation
parameter β to 0.3. For syntactic parsing, we use
the output of the parser of Charniak and Johnson
(2005) adapted to the biomedical domain by Mc-
Closky (2010), as provided by the shared task orga-
nizers in the Stanford collapsed dependencies with
conjunct dependency propagation (Stenetorp et al.,
2011). Lemmatization is performed using morpha
(Minnen et al., 2001). No other knowledge sources
or tools are used.

In order to assess the benefits of joint learning un-
der SEARN, we compare it against a pipeline of in-
dependently learned classifiers using the same fea-
tures and task decomposition. Table 1 reports the
Recall/Precision/F-score achieved in each stage, as
well as the overall performance. SEARN obtains
better performance on the development set by 8.5
F-score points. This increase is larger than the 7.3
points reported in Vlachos and Craven (2011) on
the BioNLP09ST1 datasets which contain only ab-
stracts. This result suggests that the gains of joint
inference under SEARN are greater when learning
from the additional data from full papers. Note
that while the classifier learned with SEARN over-
predicts triggers, the Theme and Cause classifiers
maintain relatively high precision with substantially
higher recall as they are learned jointly with it.
As triggers that do not form events are ignored by
the evaluation, trigger overprediction without event
overprediction does not result in performance loss.

The results of our submission on the test

dataset using SEARN were 42.6/61.2/50.2
(Recall/Precision/F-score) which ranked sixth
in the shared task. In the Regulation events which
are considered harder due to nesting, our submis-
sion was ranked fourth. This demonstrates the
potential of SEARN for structured prediction, as the
performance on regulation events depends partly on
the performance on the simple ones on which our
submission was ranked eighth.

After the end of the shared task, we experimented
with the domain adaptation method proposed by
Daumé III (2007), which creates multiple versions
for each feature by conjoining it with the domain la-
bel of the instance it is extracted from (abstracts or
full papers). While this improved the performance
of the pipeline baseline by 0.3 F-score points, the
performance under SEARN dropped by 0.4 points
on the development data. Using the online service
provided by the organizers, we evaluated the perfor-
mance of the domain adapted SEARN-based system
on the test set and the overall performance improved
to 50.72 in F-score (would have ranked 5th). In
particular, domain adaptation improved the perfor-
mance on full papers by 1.22 points, thus reaching
51.22 in F-score. This version of the system would
have ranked 3rd overall and 1st in the Regulation
events in this part of the corpus. We hypothesize
that these mixed results are due to the sparse fea-
tures used in the stages of the event extraction de-
composition, which become even sparser using this
domain adaptation method, thus rendering the learn-
ing of appropriate weights for them harder.

6 Conclusions

We presented a joint inference approach to the
BioNLP11ST-GE1 task using SEARN which con-
verts a structured prediction task into a set of CSC
tasks whose models are learned jointly. Our results
demonstrate that SEARN achieves substantial per-
formance gains over a standard pipeline using the
same features.
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