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Abstract

We introduce a new emotion classification
task based on Leary’s Rose, a framework for
interpersonal communication. We present a
small dataset of 740 Dutch sentences, out-
line the annotation process and evaluate an-
notator agreement. We then evaluate the per-
formance of several automatic classification
systems when classifying individual sentences
according to the four quadrants and the eight
octants of Leary’s Rose. SVM-based classi-
fiers achieve average F-scores of up to 51% for
4-way classification and 31% for 8-way clas-
sification, which is well above chance level.
We conclude that emotion classification ac-
cording to the Interpersonal Circumplex is a
challenging task for both humans and ma-
chine learners. We expect classification per-
formance to increase as context information
becomes available in future versions of our
dataset.

1 Introduction

While sentiment and opinion mining are popular re-
search topics, automatic emotion classification of
text is a relatively novel –and difficult– natural lan-
guage processing task. Yet it immediately speaks
to the imagination. Being able to automatically
identify and classify user emotions would open up
a whole range of interesting applications, from in-
depth analysis of user reviews and comments to en-
riching social network environments according to
the user’s emotions.

Most experiments in emotion classification focus
on a set of basic emotions such as “happiness”, “sad-

ness”, “fear”, “anger”, “surprise” and “disgust”. The
interpretation of “emotion” we’re adopting in this
paper, however, is slightly more specific. We con-
centrate on the emotions that are at play in interper-
sonal communication, more specifically in the dy-
namics between participants in a conversation: is
one of the participants taking on a dominant role?
Are the speakers working towards a common goal,
or are they competing? Being able to automati-
cally identify these power dynamics in interpersonal
communication with sufficient accuracy would open
up interesting possibilities for practical applications.
This technology would be especially useful in e-
learning, where virtual agents that accept (and inter-
pret) natural language input could be used by players
to practice their interpersonal communication skills
in a safe environment.

The emotion classification task we present in this
paper involves classifying individual sentences into
the quadrants and octants of Leary’s Rose, a frame-
work for interpersonal communication.

We give a brief overview of related work in sec-
tion 2 and the framework is outlined in section 3.
Section 4 introduces the dataset we used for clas-
sification. Section 5 outlines the methodology we
applied, and the results of the different experiments
are reported on in section 6. We discuss these results
and draw conclusions in section 7. Finally, section 8
gives some pointers for future research.

2 Related Work

The techniques that have been used for emotion clas-
sification can roughly be divided into pattern-based
methods and machine-learning methods. An often-
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used technique in pattern-based approaches is to use
pre-defined lists of keywords which help determine
an instance’s overall emotion contents. The AESOP
system by Goyal et al. (2010), for instance, attempts
to analyze the affective state of characters in fables
by identifying affective verbs and by using a set of
projection rules to calculate the verbs’ influence on
their patients. Another possible approach –which
we subscribe to– is to let a machine learner deter-
mine the appropriate emotion class. Mishne (2005)
and Keshtkar and Inkpen (2009), for instance, at-
tempt to classify LiveJournal posts according to their
mood using Support Vector Machines trained with
frequency features, length-related features, semantic
orientation features and features representing special
symbols. Finally, Rentoumi et al. (2010) posit that
combining the rule-based and machine learning ap-
proaches can have a positive effect on classification
performance. By classifying strongly figurative ex-
amples using Hidden Markov Models while relying
on a rule-based system to classify the mildly figura-
tive ones, the overall performance of the classifica-
tion system is improved.

Whereas emotion classification in general is a
relatively active domain in the field of computa-
tional linguistics, little research has been done re-
garding the automatic classification of text accord-
ing to frameworks for interpersonal communication.
We have previously carried out a set of classifica-
tion experiments using Leary’s Rose on a smaller
dataset (Vaassen and Daelemans, 2010), only tak-
ing the quadrants of the Rose into account. To our
knowledge, this is currently the only other work con-
cerning automatic text classification using any real-
ization of the Interpersonal Circumplex. We expand
on this work by using a larger dataset which we eval-
uate for reliability. We attempt 8-way classification
into the octants of the Rose, and we also evaluate a
broader selection of classifier setups, including one-
vs-all and error-correcting systems.

3 Leary’s Rose

Though several frameworks have been developed
to describe the dynamics involved in interpersonal
communication (Wiggins, 2003; Benjamin, 2006),
we have chosen to use the Interpersonal Circum-
plex, better known as “Leary’s Rose” (Leary, 1957).

Figure 1: Leary’s Rose

Leary’s Rose (Figure 1) is defined by two axes: the
above-below axis (vertical), which tells us whether
the speaker is being dominant or submissive towards
the listener; and the together-opposed axis (horizon-
tal), which says something about the speaker’s will-
ingness to co-operate with the listener. The axes di-
vide the Rose into four quadrants, and each quadrant
can again be divided into two octants.

What makes the Circumplex especially interest-
ing for interpersonal communication training is that
it also allows one to predict (to some extent) what
position the listener is most likely going to take
in reaction to the way the speaker positions him-
self. Two types of interactions are at play in Leary’s
Rose, one of complementarity and one of similar-
ity. Above-behavior triggers a (complementary) re-
sponse from the below zone and vice versa, while
together-behavior triggers a (similar) response from
the together zone and opposed-behavior triggers a
(similar) response from the opposed area of the
Rose. The speaker can thus influence the listener’s
emotions (and consequently, his response) by con-
sciously positioning himself in the quadrant that will
likely trigger the desired reaction.

4 Dataset

To evaluate how difficult it is to classify sentences
–both manually and automatically– according to
Leary’s Rose, we used an expanded version of the
dataset described in Vaassen and Daelemans (2010).
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The dataset1 contains a total of 740 Dutch sentences
labeled according to their position on the Interper-
sonal Circumplex. The majority of the sentences
were gathered from works specifically designed to
teach the use of Leary’s Rose (van Dijk, 2000; van
Dijk and Moes, 2005). The remaining sentences
were specifically written by colleagues at CLiPS and
by e-learning company Opikanoba. 31 sentences
that were labeled as being purely neutral were re-
moved from the dataset for the purposes of this clas-
sification experiment, leaving a set of 709 Dutch
sentences divided across the octants and quadrants
of the Interpersonal Circumplex. Table 1 shows the
class distribution within the dataset and also lists the
statistical random baselines for both 8-class and 4-
class classification tasks.

709 sentences

TOG A: 165 sentences
leading: 109 sentences
helping: 56 sentences

TOG B: 189 sentences
co-operative: 92 sentences
dependent: 97 sentences

OPP B: 189 sentences
withdrawn: 73 sentences
defiant: 116 sentences

OPP A: 166 sentences
aggressive: 71 sentences
competitive: 95 sentences

Baseline 25.4% 13.1%

Table 1: Distribution of classes within the dataset2

Below are a few example sentences with their cor-
responding position on the Rose.

• Please have a seat and we’ll go over the options
together. - helping (TOG A)

• So what do you think I should do now? - de-
pendent (TOG B)

• That’s not my fault, administration’s not my re-
sponsibility! - defiant (OPP B)

• If you had done your job this would never have
happened! - aggressive (OPP A)

4.1 Agreement Scores
Placing sentences on Leary’s Rose is no easy task,
not even for human annotators. An added complica-
tion is that the sentences in the dataset lack any form
of textual or situational context. We therefore expect
agreement between annotators to be relatively low.

1Dataset available on request.
2“TOG” and “OPP” stand for together and opposed respec-

tively, while “A” and “B” stand for above and below.

To measure the extent of inter-annotator disagree-
ment, we had four annotators label the same random
subset of 50 sentences. The annotators were given a
short introduction to the workings of Leary’s Rose,
and were then instructed to label each of the sen-
tences according to the octants of the Rose using the
following set of questions:

• Is the current sentence task-oriented (opposed)
or relationship-oriented (together)?

• Does the speaker position himself as the dom-
inant partner in the conversation (above) or is
the speaker submissive (below)?

• Which of the above two dimensions (affinity or
dominance) is most strongly present?

Annotators were also given the option to label a sen-
tence as being purely neutral should no emotional
charge be present.

Table 2 shows Fleiss’ kappa scores calculated for
4 and 8-class agreement.

# of classes κ

4 0.37
8 0.29

Table 2: Inter-annotator agreement, 4 annotators

Though the interpretation of kappa scores is in
itself subjective, scores between 0.20 and 0.40 are
usually taken to indicate “fair agreement”.

The full dataset was also annotated a second time
by the initial rater six months after the first annota-
tion run. This yielded the intra-annotator scores in
Table 3. A score of 0.5 is said to indicate “moderate
agreement”.

# of classes κ

4 0.50
8 0.37

Table 3: Intra-annotator agreement

The relatively low kappa scores indicate that the
classification of isolated sentences into the quad-
rants or octants of Leary’s Rose is a difficult task
even for humans.

As an upper baseline for automatic classification,
we take the average of the overlaps between the
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main annotator and each of the other annotators on
the random subset of 50 sentences. This gives us an
upper baseline of 51.3% for 4-way classification and
36.0% for the 8-class task.

5 Methodology

Our approach falls within the domain of automatic
text categorization (Sebastiani, 2002), which fo-
cuses on the classification of text into predefined cat-
egories. Starting from a training set of sentences
labeled with their position on the Rose, a machine
learner should be able to pick up on cues that will al-
low the classification of new sentences into the cor-
rect emotion class. Since there are no easily identi-
fiable keywords or syntactic structures that are con-
sistently used with a position on Leary’s Rose, using
a machine learning approach is a logical choice for
this emotion classification task.

5.1 Feature Extraction
The sentences in our dataset were first syntacti-
cally parsed using the Frog parser for Dutch (Van
den Bosch et al., 2007). From the parsed out-
put, we extracted token, lemma, part-of-speech, syn-
tactic and dependency features using a “bag-of-
ngrams” approach, meaning that for each n-gram
(up to trigrams) of one of the aforementioned fea-
ture types present in the training data, we counted
how many times it occurred in the current instance.
We also introduced some extra features, including
average word and sentence length, features for spe-
cific punctuation marks (exclamation points, ques-
tion marks...) and features relating to (patterns of)
function and content words.

Due to efficiency and memory considerations, we
did not use all of the above feature types in the same
experiment. Instead, we ran several experiments us-
ing combinations of up to three feature types.

5.2 Feature Subset Selection
Whereas some machine learners (e.g. Support Vec-
tor Machines) deal relatively well with large num-
bers of features, others (e.g. memory-based learn-
ers) struggle to achieve good classification accuracy
when too many uninformative features are present.
For these learners, we go through an extra feature
selection step where the most informative features
are identified using a filter metric (see also Vaassen

and Daelemans (2010)), and where only the top n
features are selected to be included in the feature
vectors.

5.3 Classification

We compared the performance of different classifier
setups on both the 4-way and 8-way classification
tasks. We evaluated a set of native multiclass clas-
sifiers: the memory-based learner TiMBL (Daele-
mans and van den Bosch, 2005), a Naı̈ve Bayes
classifier and SVM Multiclass (Tsochantaridis et al.,
2005), a multiclass implementation of Support Vec-
tor Machines. Further experiments were run using
SVM light classifiers (Joachims, 1999) in a one-vs-
all setup and in an Error-Correcting Output Code
setup (ECOCs are introduced in more detail in sec-
tion 5.3.1). Parameters for SVM Multiclass and
SVM light were determined using Paramsearch’s
two-fold pseudo-exhaustive search (Van den Bosch,
2004) on vectors containing only token unigrams.
The parameters for TiMBL were determined using
a genetic algorithm designed to search through the
parameter space3.

5.3.1 Error-Correcting Output Codes
There are several ways of decomposing multiclass

problems into binary classification problems. Error-
Correcting Output Codes (ECOCs) (Dietterich and
Bakiri, 1995) are one of these techniques. Inspired
by distributed output coding in signal processing
(Sejnowski and Rosenberg, 1987), ECOCs assign
a distributed output code –or “codeword”– to each
class in the multiclass problem. These codewords,
when taken together, form a code matrix (Table 4).

Class 1 0 1 0 1 0 1 0
Class 2 0 0 0 0 1 1 1
Class 3 1 1 1 1 1 1 1
Class 4 0 0 1 1 0 0 1

Table 4: Example code matrix

Each column of this code matrix defines a binary
classification task, with a 0 indicating that the in-
stances with the corresponding class label should
be part of a larger negative class, and a 1 indicat-

3The fitness factor driving evolution was the classification
accuracy of the classifier given a set of parameters, using token
unigram features in a 10-fold cross-validation experiment.
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ing the positive class. A binary classifier (or “di-
chotomizer”) is trained for each column. When a
new instance is to be classified, it is first classified by
each of these dichotomizers, which each return their
predicted class (1 or 0). The combined output from
each dichotomizer forms a new codeword. The final
class is determined by choosing the codeword in the
code matrix that has the smallest distance (according
to some distance metric) to the predicted codeword.

This method offers one important advantage com-
pared to other, simpler ensemble methods: because
the final class label is determined by calculating the
distance between the predicted codeword and the
class codewords, it is possible to correct a certain
number of bits in the predicted codeword if the dis-
tance between the class codewords is large enough.

Formally, a set of ECOCs can correct bd−1
2 c bits,

where d is the minimum Hamming distance (the
number of differing bits) between codewords in the
code matrix. The error-correcting capacity of an
ECOC setup is thus entirely dependent on the code
matrix used, and a great deal of attention has been
devoted to the different ways of constructing such
code matrices (Ghani, 2000; Zhang et al., 2003;
Álvarez et al., 2007).

In our ECOC classification setup, we used code
matrices artificially constructed to maximize their
error-correcting ability while keeping the number of
classifiers within reasonable bounds. For 4-class
classification, we constructed 7-bit codewords us-
ing the exhaustive code construction technique de-
scribed in Dietterich and Bakiri (1995). For the 8-
class classification problem, we used a Hadamard
matrix of order 8 (Zhang et al., 2003), which has
optimal row (and column) separation for the given
number of columns. Both matrices have an error-
correcting capacity of 1 bit.

6 Results

All results in this section are based on 10-fold cross-
validation experiments. Table 5 shows accuracy
scores and average F-scores for both 4-way and 8-
way classification using classifiers trained on to-
ken unigrams only, using optimal learner parame-
ters. For TiMBL, the number of token unigrams was
limited to the 1000 most predictive according to the

Gini coëfficient4. All other learners used the full
range of token unigram features. The Naı̈ve Bayes
approach performed badly on the 8-way classifica-
tion task, wrongly classifying all instances of some
classes, making it impossible to calculate an F-score.

4-class 8-class
accuracy F-score accuracy F-score

SVM Multiclass 47.3% 46.8% 31.6% 28.3%
Naı̈ve Bayes 42.6% 40.1% 26.1% NaN

TiMBL 41.3% 41.3% 23.6% 22.9%
SVM / one-vs-all 46.0% 45.4% 29.3% 27.2%

SVM / ECOCs 48.1% 47.8% 31.3% 26.3%
Random baseline 25.4% 13.1%

Upper baseline 51.3% 36.0%

Table 5: Accuracy and average F-scores - token unigrams

All classifiers performed better than the random
baseline (25.4% for 4-class classification, 13.1% for
classification into octants) to a very significant de-
gree. We therefore take these token unigram scores
as a practical baseline.

feature types accuracy avg. F-score
SVM Multiclass w1, l3, awl 49.4% 49.4%

TiMBL w1, w2, l1 42.0% 42.0%
SVM / one-vs-all l2, fw3, c3 51.1% 51.0%

SVM / ECOCs l2, c3 52.1% 51.2%

Table 6: Best feature type combinations - quadrants5

feature types accuracy avg. F-score
SVM / one-vs-all w1, l1, c1 34.0% 30.9%

SVM / ECOCs w2, fw3, c3 34.8% 30.2%

Table 7: Best feature type combinations - octants

We managed to improve the performance of some
of the classifier systems by including more and dif-
ferent features types. Tables 6 and 7 show perfor-
mance for 4-way and 8-way classification respec-
tively, this time using the best possible combination

4The filter metric and number of retained features was de-
termined by testing the different options using 10-fold CV and
by retaining the best-scoring combination (Vaassen and Daele-
mans, 2010).

5The “feature types” column indicates the types of features
that were used, represented as a letter followed by an integer
indicating the size of the n-gram: w: word tokens, l: lemmas,
fw: function words, c: characters, awl: average word length
(based on the number of characters)
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of up to three feature types6 for every classifier setup
where an improvement was noted.

We used McNemar’s test (Dietterich, 1998) to
compare the token unigram scores with the best fea-
ture combination scores for each of the above clas-
sifiers. For both 4-way and 8-way classification, the
one-vs-all and ECOC approaches produced signif-
icantly different results7. The improvement is less
significant for TiMBL and SVM Multiclass in the
4-way classification experiments.

Note that for classification into quadrants, the per-
formance of the SVM-based classifiers is very close
to the upper baseline of 50.3% we defined earlier.
It is unlikely that performance on this task will im-
prove much more unless we add context information
to our interpersonal communication dataset. The 8-
way classification results also show promise, with
scores up to 30%, but there is still room for improve-
ment before we reach the upper baseline of 36%.

In terms of classifiers, the SVM-based systems
perform better than their competitors. Naı̈ve Bayes
especially seems to be struggling, performing signif-
icantly worse for the 4-class classification task and
making grave classification errors in the 8-way clas-
sification task. The memory-based learner TiMBL
fares slightly better on the 8-class task, but isn’t able
to keep up with the SVM-based approaches.

When we examine the specific features that are
identified as being the most informative, we see that
most of them seem instinctively plausible as impor-
tant cues related to positions on Leary’s Rose. Ques-
tion marks and exclamation marks, for instance, are
amongst the 10 most relevant features. So too are
the Dutch personal pronouns “u”, “je” and “we” –
“u” being a second person pronoun marking polite-
ness, while “je” is the unmarked form, and “we” be-
ing the first person plural pronoun. Of course, none
of these features on their own are strong enough to
accurately classify the sentences in our dataset. It
is only through complex interactions between many
features that the learners are able to identify the cor-
rect class for each sentence.

6The best feature type combination for each setup was de-
termined experimentally by running a 10-fold cross-validation
test for each of the possible combinations.

74-class SVM one-vs-all: P=0.0014, 4-class SVM ECOCs:
P=0.0170, 8-class SVM one-vs-all: P=0.0045, 8-class SVM
ECOCs: P=0.0092

7 Conclusions

We have introduced a new emotion classification
task based on the Interpersonal Circumplex or
“Leary’s Rose”, a framework for interpersonal com-
munication. The goal of the classification task is to
classify individual sentences (outside of their textual
or situational context), into one of the four quad-
rants or eight octants of Leary’s Rose. We have out-
lined the annotation process of a small corpus of 740
Dutch sentences, and have shown the classification
task to be relatively difficult, even for human anno-
tators. We evaluated several classifier systems in a
text classification approach, and reached the best re-
sults using SVM-based systems. The SVM learners
achieved F-scores around 51% on the 4-way classi-
fication task, which is close to the upper baseline
(based on inter-annotator agreement), and perfor-
mance on 8-class classification reached F-scores of
almost 31%.

8 Future Research

The initial results of the emotion classification tasks
described in this paper are promising, but there is
a clear sense that without some contextual informa-
tion, it is simply too difficult to correctly classify
sentences according to their interpersonal emotional
charge. For this reason, we are currently developing
a new version of the dataset, which will no longer
contain isolated sentences, but which will instead
consist of full conversations. We expect that having
the sentences in their textual context will make the
classification task easier for both human annotators
and machine learners. It will be interesting to see if
and how the classification performance improves on
this new dataset.
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