
Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 63–68,
Portland, OR, USA, 24 June 2011. c©2011 Association for Computational Linguistics

The ARC Project: Creating logical models of Gothic cathedrals using
natural language processing

Charles Hollingsworth
Inst. for Artificial Intelligence

The University of Georgia
Athens, GA 30602

cholling@uga.edu

Stefaan Van Liefferinge
Rebecca A. Smith

Lamar Dodd School of Art
The University of Georgia

Athens, GA 30602

Michael A. Covington
Walter D. Potter

Inst. for Artificial Intelligence
The University of Georgia

Athens, GA 30602

Abstract

The ARC project (for Architecture
Represented Computationally) is an at-
tempt to reproduce in computer form the
architectural historian’s mental model of
the Gothic cathedral. This model includes
the background information necessary to
understand a natural language architectural
description. Our first task is to formalize
the description of Gothic cathedrals in a
logical language, and provide a means for
translating into this language from natural
language. Such a system could then be
used by architectural historians and others
to facilitate the task of gathering and using
information from architectural descriptions.
We believe the ARC Project will represent
an important contribution to the preservation
of cultural heritage, because it will offer
a logical framework for understanding the
description of landmark monuments of the
past. This paper presents an outline of our
plan for the ARC system, and examines some
of the issues we face in implementing it.

1 Introduction

The ARC project is designed to assist architectural
historians and others with the task of gathering and
using information from architectural descriptions.1

The architectural historian is confronted with an
1This research benefited from the generous support of a Dig-

ital Humanities Start-Up Level I Grant from the National En-
dowment for the Humanities (Grant Number HD5110110), a
University of Georgia Research Foundation Grant, and from
The University of Georgia President’s Venture Fund.

overwhelming amount of information. Even if we
restrict ourselves to Gothic architecture (our primary
area of interest), any given building has probably
been described dozens, if not hundreds, of times.
These descriptions may have been written in dif-
ferent time periods, using different vocabularies,
and may describe the same building during different
stages of construction or renovation. Descriptions
may be incomplete or even contradictory. An archi-
tectural historian should be able to extract necessary
information about a building without encountering
anything contradictory or unclear.

To facilitate information gathering, we propose a
logic-based knowledge representation for architec-
tural descriptions. Our approach is similar to that
used by Liu et al. (2010), but while their representa-
tion took the form of a set of production rules for an
L-system, ours is more closely tied to the semantics
of natural language. Descriptions of various cathe-
drals would then be translated into this representa-
tion. The resulting knowledge base would be used
to give intelligent responses to queries, identify con-
flicts among various descriptions, and highlight rela-
tionships among features that a human reader might
have missed.

2 Why Gothic?

In addition to being major monuments of cultural
heritage, Gothic cathedrals are particularly well-
suited for logical analysis. The structure of Gothic
follows a logical form. Despite variations, Gothic
cathedrals present a number of typical features, such
as pointed arches, flying buttresses, and a plan on a
Latin cross (Figure 1). The repetition of elements

63



Figure 1: Example of a cathedral ground plan (Chartres,
France), from Viollet-le-Duc (1854-68)

like columns and vaulting units allows for more suc-
cinct logical descriptions (Figure 2). And the his-
torical importance of Gothic means that a wealth of
detailed descriptions exist from which we can build
our knowledge base.

The study of Gothic cathedrals is also important
for cultural preservation. Some cathedrals have been
modified or renovated over the years, and their orig-
inal forms exist only in descriptions. And tragedies
such as the 1976 earthquake which destroyed the
cathedral in Venzone underscore the importance of
architectural information. A usable and versatile ar-
chitectural knowledge base would greatly facilitate
the task of restoring damaged buildings.

3 Outline of the ARC system

The outline of the ARC system is the result of close
collaboration between architectural historians and
artificial intelligence researchers. While the system
is still in its infancy, the complete ARC system will
have three distinct modes of interaction, to be used
by three different types of user. We will refer to

Figure 2: Nave of Notre Dame de Paris, showing the rep-
etition of elements. (Photograph by S. Van Liefferinge)

these modes as superuser mode, administrator mode,
and user mode. The superuser mode will be used to
write and edit a generic model for Gothic architec-
ture that will serve as background information prior
to dealing with any specific descriptions. The ad-
ministrator mode will be used to enter the details of
particular buildings. The purpose of the user mode
will be to allow end users to submit queries to the
knowledge base.

3.1 Superuser mode

A small set of superusers will be able to create and
edit the generic model of a Gothic cathedral. This
will consist of information about features generally
considered typical of Gothic (such as the cruciform
ground plan and use of pointed arches) as well as
more common-sense information (such as the fact
that the ceiling is above the floor). These are facts
that are unlikely to be explicitly stated in an archi-
tectural description because the reader is assumed
to know them already. Individual descriptions need
only describe how a particular building differs from
this generic model. The generic model will be un-
derdetermined, in that it will remain silent about fea-
tures that vary considerably across buildings (such
as the number of vaulting units in the nave).

The generic description will be written in a
domain-specific architectural description language
(ADL) modeled on English, and translated into a
logical programming language such as Prolog. The

64



A column is a type of support. Every
column has a base, a shaft, and a cap-
ital. Most columns have a plinth. The
base is above the plinth, the shaft is
above the base, and the capital is above
the shaft. Some columns have a neck-
ing. The necking is between the shaft
and the capital.

Figure 3: Sample ADL listing.

general task of rendering the semantics of natu-
ral language into logic programming is addressed
extensively by Blackburn and Bos (2005), and an
architecture-specific treatment is given by Mitchell
(1990). However, our goal is not a complete imple-
mentation of English semantics. Rather, our task is
more like natural language programming, in which
the computer is able to extract its instructions from
human language. (For treatments of natural lan-
guage programming systems in other domains, see
Nelson (2006) and Lieberman and Liu (2005).) In
particular, historical details, asides, and other lan-
guage not pertaining to architecture would be treated
as comments and safely ignored. A syntactic parser
can extract those sentences and phrases of interest to
the system and pass over the rest. The ADL should
allow anyone reasonably familiar with architectural
terminology to work on the description without the
steep learning curve of a programming language.
It should be able to understand multiple wordings
for the same instruction, perhaps even learning new
ones over time. As our eventual goal is to be able
to understand real-world architectural texts, gram-
matical English sentences should not produce errors.
Any such misunderstanding should be seen as an op-
portunity to improve the system rather than a failure
on the part of the user. As an example of how a por-
tion of a column description in an ADL might look,
see Figure 3. In order to implement this ADL, a
number of interesting problems must be solved. The
following section describes a few we have dealt with
so far.

Referring to unnamed entities
The simple statement “Every column has a base”

does not have a straightforward rendering in a log-

ical language like Prolog. In order to render it, we
must be able to say that for each column, there exists
some (unnamed) base belonging to that column. To
do this, we use Skolemization (after Skolem (1928)),
a technique for replacing existential quantifiers with
unique identifiers (Skolem functions). Blackburn
and Bos (2005) demonstrate the use of Skolem func-
tions in capturing natural language semantics, and a
contemporary application is demonstrated by Cua et
al. (2010). Our implementation is a modified version
of that described by Covington et al. (1988).

To say “Every column has a base”, we insert two
rules into the knowledge base. The first declares the
existence of a base for each column:

base(base inst(X, 1)) :- column(X).

The second tells us that the base belongs to the col-
umn:

has(X, base inst(X, 1)) :- column(X).

Here base inst(X, 1) is a Skolem function for an
instance of base, where X is the name of the object
to which it belongs, and 1 is its index. (In the case
of a base, there is only one per column.) Thus a
column named column1 would have a base named
base inst(column1, 1), and so forth.

Context sensitivity
Sentences are not isolated semantic units, but

must be understood in terms of information pro-
vided by previous sentences. In the listing in Fig-
ure 3, the statement “the base is above the plinth” is
interpreted to mean “each column’s base is above
that column’s plinth”. In order to make the cor-
rect interpretation, the system must know that the
present topic is columns, and recognize that “base”
and “plinth” are among the listed components of
columns.

We assume the superuser’s description consti-
tutes a single discourse, divided into topics by para-
graph. Accessibility domains correspond to para-
graphs. When the description mentions “the base”,
it is assumed to refer to the base mentioned earlier in
the paragraph as a component of the column. That
the column is the paragraph’s topic is indicated in
the first sentence. Our treatment of discourse refer-
ents and accessibility domains is similar to that of
discourse representation theory (Kamp and Reyle,
1993).

65



Default reasoning
We must have a way to dismiss facts from the

knowledge base on the basis of new evidence. Our
model describes the “typical” Gothic cathedral, not
every Gothic cathedral. There is usually an excep-
tion to an apparent rule. To handle this, we make
use of defeasible or nonmonotonic reasoning, as de-
scribed by Reiter (1987) and Antoniou (1997). (Sev-
eral variants of defeasible reasoning are also de-
scribed by Billington et al. (2010).)

The ADL accommodates exceptions through the
use of modifiers. Words like “all” and “every” indi-
cate a rule that holds without exception. Words like
“most” or “usually” indicate that a rule is present by
default in the model, but can be altered or removed
by future assertions. Finally, the word “some” in-
dicates that a rule is not present by default, but can
be added. The system’s internal logical represen-
tation can keep track of which rules are defeasible
and which are not. Attempts to make an assertion
that conflicts with a non-defeasible rule will fail,
whereas assertions contradicting a defeasible rule
will modify the knowledge base. Conclusions deriv-
able from the defeated rule will no longer be deriv-
able. Our implementation is a somewhat simplified
version of the system presented by Nute (2003).

Partial ordering
Defeasible reasoning can help us resolve a par-

ticular type of ambiguity found in natural language.
Architectural descriptions contain many partial or-
dering relations, such as “above” or “behind”. These
relations are irreflexive, antisymmetric, and transi-
tive. When such relations are described in natu-
ral language, as in the description in Figure 3, they
are typically underspecified. We say that an item is
“above” another, without making explicit whether it
is immediately above. We also do not specify which
is the first (e.g. lowest) element in the series. In our
generic model, if it is simply stated that one item is
above another, we insert a non-defeasible rule in the
knowledge base, such as

above(capital, shaft)

The further assertion

immediately(above(capital, shaft))

is also made, but is defeasible. Should another item
be introduced that is above the shaft but below the

capital, the immediately relation no longer holds.
We can also deal with underspecificity by recogniz-
ing when more than one state of affairs might corre-
spond to the description. For example, if it has been
asserted that item A is above item C, and that item
B is above item C, we have no way of knowing the
positions of A and B relative to each other. A query
Is A above B? must then return the result maybe.

3.2 Administrator mode

The administrator mode is used to input informa-
tion about particular buildings, as opposed to Gothic
cathedrals in general. When an administrator be-
gins an interactive session, the generic model de-
signed by the superuser is first read into the knowl-
edge base. The administrator simply describes how
the particular cathedral in question differs from the
generic model, using the same architectural descrip-
tion language. We would also like for the adminis-
trator mode to accept real-world cathedral descrip-
tions in natural language rather than ADL. This is a
nontrivial task, and complete understanding is likely
a long way away. In the short term, the system
should be able to scan a description, identify certain
salient bits of information, and allow the adminis-
trator to fill in the gaps as needed. To illustrate the
problem of understanding real-world descriptions,
we present the following excerpt from a description
of the Church of Saint-Maclou:

The nave arcade piers, chapel open-
ing piers, transept crossing piers, and
choir hemicycle piers are all composed of
combinations of five sizes of individual
plinths, bases, and moldings that rise from
complex socles designed around polygons
defined by concave scoops and flat faces.
All the piers, attached and freestanding
on the north side of the church, are com-
plemented by an identical pier on the op-
posite side. However, no two piers on
the same side of the church are identical.
(Neagley, 1998) p. 29.

There are important similarities between this de-
scription and our own architectural description lan-
guage. We see many key entities identified (nave
arcade piers, chapel opening piers, etc.), as well as

66



words indicating relationships between them (com-
posed, identical, etc.) Even if complete understand-
ing is not currently feasible, we could still use tech-
niques such as named entity extraction to add details
to our model.

3.3 User mode

The user mode will consist of a simple query an-
swering system. Users will input queries such as
“How many vaulting units are in the nave at Saint-
Denis?” or “Show me all cathedrals with a four-
story elevation.” The system will respond with the
most specific answer possible, but no more, so that
yes/no questions might be answered with “maybe,”
and quantitative questions with “between four and
six”, depending on the current state of the knowl-
edge base. Unlike web search engines, which only
attempt to match particular character strings, our
system will have the advantage of understanding.
Since descriptions are stored as a logical knowledge
base rather than a string of words, we can ensure that
more relevant answers are given.

4 Conclusion

The ARC project is a great undertaking, and presents
us with a number of problems that do not have ready
solutions. We have presented just a few of these
problems, and the techniques we have developed for
solving them. There is still much work to be done
in implementing the architectural description lan-
guage, and processing real-world descriptions. In
addition, there are some capabilities we would like
to add to the system, such as producing graphical
renderings from descriptions.

It is our hope that the ARC system, when com-
pleted, will be of great benefit to architectural his-
torians, or anyone interested in Gothic cathedrals.
Having a knowledge base of cathedral designs that
can respond to queries will make the historian’s task
easier. The system’s ability to identify vague or con-
tradictory statements allows us to see how historical
descriptions differ from one another. And the pro-
cess of rendering architectural descriptions in a log-
ical form could provide new insights into the design
and structure of cathedrals.

References

Grigoris Antoniou. 1997. Nonmonotonic Reasoning.
The MIT Press, Cambridge, MA.

David Billington, Grigoris Antoniou, Guido Governatori
and Michael Maher. 2010. An Inclusion Theorem for
Defeasible Logics. ACM Transactions on Computa-
tional Logic Vol. 12, No.1, Article 6, October 2010.

Patrick Blackburn and Johan Bos. 2005. Representation
and Inference for Natural Language: A First Course in
Computational Semantics. CSLI Publications, Stan-
ford, California.

Michael A. Covington, Donald Nute, Nora Schmitz and
David Goodman. 1988. From English to Prolog via
Discourse Representation Theory. ACMC Research
Report 01-0024, The University of Georgia. URL
(viewed May 5, 2011): http://www.ai.uga.
edu/ftplib/ai-reports/ai010024.pdf

Jeffrey Cua, Ruli Manurung, Ethel Ong and Adam Pease.
2010. Representing Story Plans in SUMO. In Pro-
ceedings of the NAACL HLT 2010 Second Workshop
on Computational Approaches to Linguistic Creativ-
ity. Association for Computational Linguistics, Los
Angeles, California, June 2010, 40-48.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Kluwer, Dordrecht.

Henry Lieberman and Hugo Liu. 2005. Feasibility Stud-
ies for Programming in Natural Language. End-User
Development. H. Lieberman, F. Paterno, V. Wulf, eds.
Kluwer, Dordrecht.

Yong Liu, Yunliang Jiang and Lican Huang. 2010. Mod-
eling Complex Architectures Based on Granular Com-
puting on Ontology. IEEE Transactions on Fuzzy Sys-
tems, vol. 18, no. 3, 585-598.

William J. Mitchell. 1990. The Logic of Architecture:
Design, Computation, and Cognition. The MIT Press,
Cambridge, MA.

Linda Elaine Neagley. 1998. Disciplined Exuberance:
The Parish Church of Saint-Maclou and Late Gothic
Architecture in Rouen. The Pennsylvania State Uni-
versity Press, University Park, PA.

Graham Nelson. 2006. Natural Language, Semantic
Analysis and Interactive Fiction. URL (viewed May 5,
2011): http://www.inform-fiction.org/
I7Dowloads/Documents/WhitePaper.pdf

Donald Nute. 2003. Defeasible Logic. In Proceed-
ings of the Applications of Prolog 14th International
Conference on Web Knowledge Management And De-
cision Support (INAP’01), Oskar Bartenstein, Ulrich
Geske, Markus Hannebauer, and Osamu Yoshie (Eds.).
Springer-Verlag, Berlin, Heidelberg, 151-169.

Raymond Reiter. 1987. Nonmonotonic Reasoning. Ann.
Rev. Comput. Sci. 1987.2: 147-86.

67



Thoralf Skolem. 1928. Über die mathematische Logik
(Nach einem Vortrag gehalten im Norwegischen Math-
ematischen Verein am 22. Oktober 1928). In Selected
Works in Logic. Jens Erik Fenstad, ed. Universitets-
forlaget, Oslo - Bergen - Tromsö, 1970, 189-206.

Eugène-Emmanuel Viollet-le-Duc. 1854-68. Dictio-
nnaire raisonné de l’architecture française du XIe
au XVIe siècle. vol. 2. Libraries-Imprimeries
Réunies, Paris. Image URL (viewed May 5,
2011): http://fr.wikisource.org/wiki/
Fichier:Plan.cathedrale.Chartres.png

68


