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Abstract 

The paper presents an Expectation Maximiza-

tion (EM) algorithm for automatic generation 

of parallel and quasi-parallel data from any 

degree of comparable corpora ranging from 

parallel to weakly comparable. Specifically, 

we address the problem of extracting related 

textual units (documents, paragraphs or sen-

tences) relying on the hypothesis that, in a 

given corpus, certain pairs of translation 

equivalents are better indicators of a correct 

textual unit correspondence than other pairs of 

translation equivalents. We evaluate our 

method on mixed types of bilingual compara-

ble corpora in six language pairs, obtaining 

state of the art accuracy figures. 

1 Introduction 

Statistical Machine Translation (SMT) is in a con-

stant need of good quality training data both for 

translation models and for the language models. 

Regarding the latter, monolingual corpora is evi-

dently easier to collect than parallel corpora and 

the truth of this statement is even more obvious 

when it comes to pairs of languages other than 

those both widely spoken and computationally 

well-treated around the world such as English, 

Spanish, French or German. 

Comparable corpora came as a possible solu-

tion to the problem of scarcity of parallel corpora 

with the promise that it may serve as a seed for 

parallel data extraction. A general definition of 

comparability that we find operational is given by 

Munteanu and Marcu (2005). They say that a (bi-

lingual) comparable corpus is a set of paired doc-

uments that, while not parallel in the strict sense, 

are related and convey overlapping information.  

Current practices of automatically collecting 

domain-dependent bilingual comparable corpora 

from the Web usually begin with collecting a list 

of t terms as seed data in both the source and the 

target languages. Each term (in each language) is 

then queried on the most popular search engine and 

the first N document hits are retained. The final 

corpus will contain t × N documents in each lan-

guage and in subsequent usage the document 

boundaries are often disregarded. 

At this point, it is important to stress out the 

importance of the pairing of documents in a com-

parable corpus. Suppose that we want to word-

align a bilingual comparable corpus consisting of 

M documents per language, each with k words, 

using the IBM-1 word alignment algorithm (Brown 

et al., 1993). This algorithm searches for each 

source word, the target words that have a maxi-

mum translation probability with the source word. 

Aligning all the words in our corpus with no regard 

to document boundaries, would yield a time com-

plexity of      operations. The alternative would 

be in finding a 1:p (with p a small positive integer, 

usually 1, 2 or 3) document assignment (a set of 

aligned document pairs) that would enforce the ―no 

search outside the document boundary‖ condition 

when doing word alignment with the advantage of 

reducing the time complexity to      operations. 

When M is large, the reduction may actually be 

vital to getting a result in a reasonable amount of 

time. The downside of this simplification is the 

loss of information: two documents may not be 

correctly aligned thus depriving the word-

alignment algorithm of the part of the search space 

that would have contained the right alignments. 
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Word alignment forms the basis of the phrase 

alignment procedure which, in turn, is the basis of 

any statistical translation model. A comparable 

corpus differs essentially from a parallel corpus by 

the fact that textual units do not follow a transla-

tion order that otherwise greatly reduces the word 

alignment search space in a parallel corpus. Given 

this limitation of a comparable corpus in general 

and the sizes of the comparable corpora that we 

will have to deal with in particular,  we have de-

vised one variant of an Expectation Maximization 

(EM) algorithm (Dempster et al., 1977) that gener-

ates a 1:1 (p = 1) document assignment from a par-

allel and/or comparable corpus using only pre-

existing translation lexicons. Its generality would 

permit it to perform the same task on other textual 

units such as paragraphs or sentences. 

In what follows, we will briefly review the lit-

erature discussing document/paragraph alignment 

and then we will present the derivation of the EM 

algorithm that generates 1:1 document alignments. 

We will end the article with a thorough evaluation 

of the performances of this algorithm and the con-

clusions that arise from these evaluations. 

2 Related Work 

Document alignment and other types of textual 

unit alignment have been attempted in various sit-

uations involving extracting parallel data from 

comparable corpora. The first case study is offered 

by Munteanu and Marcu (2002). They align sen-

tences in an English-French comparable corpus of 

1.3M of words per language by comparing suffix 

trees of the sentences. Each sentence from each 

part of the corpus is encoded as a suffix tree which 

is a tree that stores each possible suffix of a string 

from the last character to the full string. Using this 

method, Munteanu and Marcu are able to detect 

correct sentence alignments with a precision of 

95% (out of 100 human-judged and randomly se-

lected sentences from the generated output). The 

running time of their algorithm is approximately 

100 hours for 50000 sentences in each of the lan-

guages. 

A popular method of aligning sentences in a 

comparable corpus is by classifying pairs of sen-

tences as parallel or not parallel. Munteanu and 

Marcu (2005) use a Maximum Entropy classifier 

for the job trained with the following features: sen-

tence lengths and their differences and ratios, per-

centage of the words in a source sentence that have 

translations in a target sentence (translations are 

taken from pre-existing translation lexicons), the 

top three largest fertilities, length of the longest 

sequence of words that have translations, etc. The 

training data consisted of a small parallel corpus of 

5000 sentences per language. Since the number of 

negative instances (5000
2 
– 5000) is far more large 

than the number of positive ones (5000), the nega-

tive training instances were selected randomly out 

of instances that passed a certain word overlap fil-

ter (see the paper for details). The classifier preci-

sion is around 97% with a recall of 40% at the 

Chinese-English task and around 95% with a recall 

of 41% for the Arabic-English task. 

Another case study of sentence alignment that 

we will present here is that of Chen (1993). He 

employs an EM algorithm that will find a sentence 

alignment in a parallel corpus which maximizes 

the translation probability for each sentence bead 

in the alignment. The translation probability to be 

maximized by the EM procedure considering each 

possible alignment   is given by 

 

 (     )   ( )∏ ([  
    

 ])

 

   

 

 

The following notations were used:   is the 

English corpus (a sequence of English sentences), 

  is the French corpus, [  
    

 ] is a sentence bead 

(a pairing of m sentences in English with n 

sentences in French),   ([  
    

 ]   [  
    

 ]) 

is the sentence alignment (a sequence of sentence 

beads) and p(L) is the probability that an alignment 

contains L beads. The obtained accuracy is around 

96% and was computed indirectly by checking 

disagreement with the Brown sentence aligner 

(Brown et al., 1991) on randomly selected 500 

disagreement cases. 

The last case study of document and sentence 

alignment from ―very-non-parallel corpora‖ is the 

work from Fung and Cheung (2004). Their contri-

bution to the problem of textual unit alignment 

resides in devising a bootstrapping mechanism in 

which, after an initial document pairing and conse-

quent sentence alignment using a lexical overlap-

ping similarity measure, IBM-4 model (Brown et 

al., 1993) is employed to enrich the bilingual dic-

tionary that is used by the similarity measure. The 
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process is repeated until the set of identified 

aligned sentences does not grow anymore. The 

precision of this method on English-Chinese sen-

tence alignment is 65.7% (out of the top 2500 iden-

tified pairs). 

3 EMACC 

We propose a specific instantiation of the well-

known general EM algorithm for aligning different 

types of textual units: documents, paragraphs, and 

sentences which we will name EMACC (an acro-

nym for ―Expectation Maximization Alignment for 

Comparable Corpora‖). We draw our inspiration 

from the famous IBM models (specifically from 

the IBM-1 model) for word alignment (Brown et 

al., 1993) where the translation probability (eq. (5)) 

is modeled through an EM algorithm where the 

hidden variable a models the assignment (1:1 word 

alignments) from the French sequence of words (‗ 

indexes) to the English one. 

By analogy, we imagined that between two sets 

of documents (from now on, we will refer to doc-

uments as our textual units but what we present 

here is equally applicable – but with different per-

formance penalties – to paragraphs and/or sentenc-

es) – let‘s call them   and  , there is an assignment 

(a sequence of 1:1 document correspondences
1
), 

the distribution of which can be modeled by a hid-

den variable   taking values in the set {true, false}. 

This assignment will be largely determined by the 

existence of word translations between a pair of 

documents, translations that can differentiate be-

tween one another in their ability to indicate a cor-

rect document alignment versus an incorrect one. 

In other words, we hypothesize that there are cer-

tain pairs of translation equivalents that are better 

indicators of a correct document correspondence 

than other translation equivalents pairs. 

We take the general formulation and derivation 

of the EM optimization problem from (Borman, 

2009). The general goal is to optimize  (   ), that 

is to find the parameter(s)   for which  (   ) is 

maximum. In a sequence of derivations that we are 

not going to repeat here, the general EM equation 

is given by: 

                                                           
1 Or ―alignments‖ or ―pairs‖. These terms will be used with 

the same meaning throughout the presentation. 

    

       
 

∑ (      )    (     )

 

 (1) 

where  ∑  (      )   . At step n+1, we try to 

obtain a new parameter      that is going to max-

imize (the maximization step) the sum over z (the 

expectation step) that in its turn depends on the 

best parameter    obtained at step n. Thus, in 

principle, the algorithm should iterate over the set 

of all possible   parameters, compute the expecta-

tion expression for each of these parameters and 

choose the parameter(s) for which the expression 

has the largest value. But as we will see, in prac-

tice, the set of all possible parameters has a dimen-

sion that is exponential in terms of the number of 

parameters. This renders the problem intractable 

and one should back off to heuristic searches in 

order to find a near-optimal solution. 

We now introduce a few notations that we will 

operate with from this point forward. We suggest 

to the reader to frequently refer to this section in 

order to properly understand the next equations: 

   is the set of source documents,     is the 

cardinal of this set; 

   is the set of target documents with     its 

cardinal; 

     is a pair of documents,      and 

    ; 

    is a pair of translation equivalents 

〈     〉 such that    is a lexical item that 

belongs to    and    is a lexical item that 

belongs to   ; 

   is the set of all existing translation 

equivalents pairs 〈     〉.   is the transla-

tion probability score (as the one given for 

instance by GIZA++ (Gao and Vogel, 

2008)). We assume that GIZA++ transla-

tion lexicons already exist for the pair of 

languages of interest. 

In order to tie equation 1 to our problem, we de-

fine its variables as follows: 

   is the sequence of 1:1 document align-

ments of the form              ,     

{              }. We call   an assign-

ment which is basically a sequence of 1:1 

document alignments. If there are     1:1 

document alignments in   and if        , 
then the set of all possible assignments has 
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the cardinal equal to     (
   
   
) where n! is 

the factorial function of the integer n and 

.
 
 
/ is the binomial coefficient. It is clear 

now that with this kind of dimension of the 

set of all possible assignments (or   pa-

rameters), we cannot simply iterate over it 

in order to choose the assignment that 

maximizes the expectation; 

   *          + is the hidden variable that 

signals if a pair of documents     repre-

sents a correct alignment (true) or not 

(false); 

   is the sequence of translation equivalents 

pairs     from T in the order they appear 

in each document pair from  . 

Having defined the variables in equation 1 this 

way, we aim at maximizing the translation equiva-

lents probability over a given assignment,  (   ). 
In doing so, through the use of the hidden variable 

z, we are also able to find the 1:1 document align-

ments that attest for this maximization. 

We proceed by reducing equation 1 to a form 

that is readily amenable to software coding. That 

is, we aim at obtaining some distinct probability 

tables that are going to be (re-)estimated by the 

EM procedure. Due to the lack of space, we omit 

the full derivation and directly give the general 

form of the derived EM equation 

           
 

,   (   )     (      )- (2) 

Equation 2 suggests a method of updating the as-

signment probability  (      )  with the lexical 

alignment probability  (   ) in an effort to pro-

vide the alignment clues that will ―guide‖ the as-

signment probability towards the correct 

assignment. All it remains to do now is to define 

the two probabilities. 

The lexical document alignment probability 

 (   ) is defined as follows: 

 (   )  ∏
∑  (   |   )     

      
     

 (3) 

where  (       )  is the simplified lexical docu-

ment alignment probability which is initially equal 

to  (   ) from the set  . This probability is to be 

read as ―the contribution     makes to the correct-

ness of the     alignment‖. We want that the 

alignment contribution of one translation equiva-

lents pair     to distribute over the set of all possi-

ble document pairs thus enforcing that 

∑  (   |   )   

    {              }

 
(4) 

The summation over   in equation 3 is actually 

over all translation equivalents pairs that are to be 

found only in the current     document pair and 

the presence of the product        ensures that we 

still have a probability value. 

The assignment probability  (      ) is also 

defined in the following way: 

 

 (      )  ∏  (        )

     

 (5) 

for which we enforce the condition: 

∑  (        )   

    {              }

 
(6) 

Using equations 2, 3 and 5 we deduce the final, 

computation-ready EM equation 

     

       
 

[  ∏
∑  (       )     

      
     

   ∏  (        )

     

]

       
 

∑ [  
∑  (       )     

      
     

    (        )] 

(7) 

As it is, equation 7 suggests an exhaustive search 

in the set of all possible   parameters, in order to 

find the parameter(s) for which the expression that 

is the argument of ―argmax‖ is maximum. But, as 

we know from section 3, the size of this this set is 

prohibitive to the attempt of enumerating each   

assignment and computing the expectation expres-

sion. Our quick solution to this problem was to 

directly construct the ―best‖   assignment
2
 using a 

                                                           
2 We did not attempt to find the mathematical maximum of the 

expression from equation 7 and we realize that the conse-
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greedy algorithm: simply iterate over all possible 

1:1 document pairs and for each document pair 

    {              }  compute the align-

ment count (it‘s not a probability so we call it a 

―count‖ following IBM-1 model‘s terminology) 

 

  
∑  (   |   )     

      
    (        ) 

 

Then, construct the best 1:1 assignment      by 

choosing those pairs     for which we have counts 

with the maximum values. Before this cycle 

(which is the basic EM cycle) is resumed, we per-

form the following updates: 

 (        )   (        )

 
∑  (   |   )     

      
 

(7a) 

 

 (   |   )  ∑  (   |   )

        

 (7b) 

and normalize the two probability tables with 

equations 6 and 4. The first update is to be inter-

preted as the contribution the lexical document 

alignment probability makes to the alignment 

probability. The second update equation aims at 

boosting the probability of a translation equivalent 

if and only if it is found in a pair of documents be-

longing to the best assignment so far. In this way, 

we hope that the updated translation equivalent 

will make a better contribution to the discovery of 

a correct document alignment that has not yet been 

discovered at step n + 1. 

Before we start the EM iterations, we need to 

initialize the probability tables  (        ) and 

 (   |   ) . For the second table we used the 

GIZA++ scores that we have for the     translation 

equivalents pairs and normalized the table with 

equation 4. For the first probability table we have 

(and tried) two choices: 

 (D1) a uniform distribution: 
 

      
; 

 (D2) a lexical document alignment meas-

ure  (   ) (values between 0 and 1) that is 

computed directly from a pair of docu-

                                                                                           
quence of this choice and of the greedy search procedure is not 

finding the true optimum. 

ments     using the     translation equiva-

lents pairs from the dictionary  : 

 (   )  

 
∑    (  )         

∑    (  )         

        
 

(8) 

where      is the number of words in document    

and    (  ) is the frequency of word    in docu-

ment    (please note that, according to section 3, 

    is not a random pair of words, but a pair of 

translation equivalents). If every word in the 

source document has at least one translation (of a 

given threshold probability score) in the target 

document, then this measure is 1. We normalize 

the table initialized using this measure with equa-

tion 6. 

EMACC finds only 1:1 textual units alignments 

in its present form but a document pair     can be 

easily extended to a document bead following the 

example from (Chen, 1993). The main difference 

between the algorithm described by Chen and ours 

is that the search procedure reported there is inva-

lid for comparable corpora in which no pruning is 

available due to the nature of the corpus. A second 

very important difference is that Chen only relies 

on lexical alignment information, on the parallel 

nature of the corpus and on sentence lengths corre-

lations while we add the probability of the whole 

assignment which, when initially set to the D2 dis-

tribution, produces a significant boost of the preci-

sion of the alignment. 

4 Experiments and Evaluations 

The test data for document alignment was com-

piled from the corpora that was previously collect-

ed in the ACCURAT project
3
 and that is known to 

the project members as the ‖Initial Comparable 

Corpora‖ or ICC for short. It is important to know 

the fact that ICC contains all types of comparable 

corpora from parallel to weakly comparable docu-

ments but we classified document pairs in three 

classes: parallel (class name: p), strongly compa-

rable (cs) and weakly comparable (cw). We have 

considered the following pairs of languages: Eng-

lish-Romanian (en-ro), English-Latvian (en-lv), 

English-Lithuanian (en-lt), English-Estonian (en-

et), English-Slovene (en-sl) and English-Greek 

                                                           
3 http://www.accurat-project.eu/ 
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(en-el). For each pair of languages, ICC also con-

tains a Gold Standard list of document alignments 

that were compiled by hand for testing purposes. 

We trained GIZA++ translation lexicons for 

every language pair using the DGT-TM
4
 corpus. 

The input texts were converted from their Unicode 

encoding to UTF-8 and were tokenized using a 

tokenizer web service described by Ceauşu (2009). 

Then, we applied a parallel version of GIZA++ 

(Gao and Vogel, 2008) that gave us the translation 

dictionaries of content words only (nouns, verbs, 

adjective and adverbs) at wordform level. For Ro-

manian, Lithuanian, Latvian, Greek and English, 

we had lists of inflectional suffixes which we used 

to stem entries in respective dictionaries and pro-

cessed documents. Slovene remained the only lan-

guage which involved wordform level processing. 

The accuracy of EMACC is influenced by three 

parameters whose values have been experimentally 

set: 

 the threshold over which we use transla-

tion equivalents from the dictionary   for 

textual unit alignment; values for this 

threshold (let‘s name it ThrGiza) are 

from the ordered set *             +; 
 the threshold over which we decide to up-

date the probabilities of translation equiva-

lents with equation 7b; values for this 

threshold (named ThrUpdate) are from 

the same ordered set *             +; 
 the top ThrOut% alignments from the 

best assignment found by EMACC. This 

parameter will introduce precision and re-

call with the ―perfect‖ value for recall 

equal to ThrOut%. Values for this pa-

rameter are from the set *         +. 
We ran EMACC (10 EM steps) on every possible 

combination of these parameters for the pairs of 

languages in question on both initial distributions 

D1 and D2. For comparison, we also performed a 

baseline document alignment using the greedy al-

gorithm of EMACC with the equation 8 supplying 

the document similarity measure. The following 4 

tables report a synthesis of the results we have ob-

tained which, because of the lack of space, we 

cannot give in full. We omit the results of EMACC 

with D1 initial distribution because the accuracy 

                                                           
4 http://langtech.jrc.it/DGT-TM.html 

figures (both precision and recall) are always lower 

(10-20%) than those of EMACC with D2. 

cs P/R Prms. P/R Prms. # 

en-

ro 

1/ 

0.69047 

0.4 

0.4 
0.7 

0.85714/ 

0.85714 

0.4 

0.4 
1 

42 

en-

sl 

0.96666/ 

0.28807 

0.4 
0.4 

0.3 

0.83112/ 

0.83112 

0.4 
0.4 

1 

302 

en-

el 

0.97540/ 

0.29238 

0.001 

0.8 
0.3 

0.80098/ 

0.80098 

0.001 

0.4 
1 

407 

en-

lt 

0.97368/ 
0.29191 

0.4 

0.8 

0.3 

0.72978/ 
0.72978 

0.4 

0.4 

1 

507 

en-

lv 

0.95757/ 

0.28675 

0.4 

0.4 

0.3 

0.79854/ 

0.79854 

0.001 

0.8 

1 

560 

en-

et 

0.88135/ 
0.26442 

0.4 

0.8 

0.3 

0.55182/ 
0.55182 

0.4 

0.4 

1 

987 

Table 1: EMACC with D2 initial distribution on strong-

ly comparable corpora 

 
cs P/R Prms. P/R Prms. # 

en-

ro 

1/ 
0.69047 

0.4 
0.7 

0.85714/ 
0.85714 

0.4 
1 

42 

en-

sl 

0.97777/ 
0.29139 

0.001 
0.3 

0.81456/ 
0.81456 

0.4 
0.1 

302 

en-

el 

0.94124/ 
0.28148 

0.001 
0.3 

0.71851/ 
0.71851 

0.001 
1 

407 

en-

lt 

0.95364/ 

0.28514 

0.001 

0.3 

0.72673/ 

0.72673 

0.001 

1 
507 

en-

lv 

0.91463/ 
0.27322 

0.001 
0.3 

0.80692/ 
0.80692 

0.001 
1 

560 

en-

et 

0.87030/ 
0.26100 

0.4 
0.3 

0.57727/ 
0.57727 

0.4 
1 

987 

Table 2: D2 baseline algorithm on strongly comparable 

corpora 

 

cw P/R Prms. P/R Prms. # 

en-

ro 

1/ 

0.29411 

0.4 

0.001 
0.3 

0.66176/ 

0.66176 

0.4 

0.001 
1 

68 

en-

sl 

0.73958/ 
0.22164 

0.4 

0.4 

0.3 

0.42767/ 
0.42767 

0.4 

0.4 

1 

961 

en-

el 

0.15238/ 

0.04545 

0.001 

0.8 

0.3 

0.07670/ 

0.07670 

0.001 

0.8 

1 

352 

en-

lt 

0.55670/ 
0.16615 

0.4 

0.8 

0.3 

0.28307/ 
0.28307 

0.4 

0.8 

1 

325 

en-

lv 

0.23529/ 

0.07045 

0.4 
0.4 

0.3 

0.10176/ 

0.10176 

0.4 
0.4 

1 

511 

en-

et 

0.59027/ 
0.17634 

0.4 

0.8 

0.3 

0.27800/ 
0.27800 

0.4 

0.8 

1 

483 

Table 3: EMACC with D2 initial distribution on weakly 

comparable corpora 
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cw P/R Prms. P/R Prms. # 

en-

ro 

0.85/ 
0.25 

0.4 
0.3 

0.61764/ 
0.61764 

0.4 
1 

68 

en-

sl 

0.65505/ 
0.19624 

0.4 
0.3 

0.39874/ 
0.39874 

0.4 
1 

961 

en-

el 

0.11428/ 
0.03428 

0.4 
0.3 

0.06285/ 
0.06285 

0.4 
1 

352 

en-

lt 

0.60416/ 
0.18012 

0.4 
0.3 

0.24844/ 
0.24844 

0.4 
1 

325 

en-

lv 

0.13071/ 
0.03921 

0.4 
0.3 

0.09803/ 
0.09803 

0.4 
1 

511 

en-

et 

0.48611/ 
0.14522 

0.001 
0.3 

0.25678/ 
0.25678 

0.4 
1 

483 

Table 4: D2 baseline algorithm on weakly comparable 

corpora 

 

In every table above, the P/R column gives the 

maximum precision and the associated recall 

EMACC was able to obtain for the corresponding 

pair of languages using the parameters (Prms.) 

from the next column. The P/R column gives the 

maximum recall with the associated precision that 

we obtained for that pair of languages.  

The Prms. columns contain parameter settings 

for EMACC (see Tables 1 and 3) and for the D2 

baseline algorithm (Tables 2 and 4): in Tables 1 

and 3 values for ThrGiza, ThrUpdate and 

ThrOut are given from the top (of the cell) to the 

bottom and in Tables 2 and 4 values of ThrGiza 

and ThrOut are also given from top to bottom 

(the ThrUpdate parameter is missing because the 

D2 baseline algorithm does not do re-estimation). 

The # column contains the size of the test set: the 

number of documents in each language that have to 

be paired. The search space is # * # and the gold 

standard contains # pairs of human aligned docu-

ment pairs.  

To ease comparison between EMACC and the 

D2 baseline for each type of corpora (strongly and 

weakly comparable), we grayed maximal values 

between the two: either the precision in the P/R 

column or the recall in the P/R column. 

In the case of strongly comparable corpora (Ta-

bles 1 and 2), we see that the benefits of re-

estimating the probabilities of the translation 

equivalents (based on which we judge document 

alignments) begin to emerge with precisions for all 

pairs of languages (except en-sl) being better than 

those obtained with the D2 baseline. But the real 

benefit of re-estimating the probabilities of transla-

tion equivalents along the EM procedure is visible 

from the comparison between Tables 3 and 4. Thus, 

in the case of weakly comparable corpora, in 

which EMACC with the D2 distribution is clearly 

better than the baseline (with the only exception of 

en-lt precision), due to the significant decrease in 

the lexical overlap, the EM procedure is able to 

produce important alignment clues in the form of 

re-estimated (bigger) probabilities of translation 

equivalents that, otherwise, would have been ig-

nored. 

It is important to mention the fact that the re-

sults we obtained varied a lot with values of the 

parameters ThrGiza and ThrUpdate. We ob-

served, for the majority of studied language pairs, 

that lowering the value for ThrGiza and/or 

ThrUpdate (0.1, 0.01, 0.001…), would negative-

ly impact the performance of EMACC due to the 

fact of introducing noise in the initial computation 

of the D2 distribution and also on re-estimating 

(increasing) probabilities for irrelevant translation 

equivalents. At the other end, increasing the 

threshold for these parameters (0.8, 0.85, 0.9…) 

would also result in performance decreasing due to 

the fact that too few translation equivalents (be 

they all correct) are not enough to pinpoint correct 

document alignments since there are great chances 

for them to actually appear in all document pairs. 

So, we have experimentally found that there is a 

certain balance between the degree of correctness 

of translation equivalents and their ability to pin-

point correct document alignments. In other words, 

the paradox resides in the fact that if a certain pair 

of translation equivalents is not correct but the re-

spective words appear only in documents which 

correctly align to one another, that pair is very im-

portant to the alignment process. Conversely, if a 

pair of translation equivalents has a very high 

probability score (thus being correct) but appears 

in almost every possible pair of documents, that 

pair is not informative to the alignment process and 

must be excluded. We see now that the EMACC 

aims at finding the set of translation equivalents 

that is maximally informative with respect to the 

set of document alignments. 

We have introduced the ThrOut parameter in 

order to have better precision. This parameter actu-

ally instructs EMACC to output only the top (ac-

cording to the alignment score probability 

 (        )) ThrOut% of the document align-

ments it has found. This means that, if all are cor-

rect, the maximum recall can only be ThrOut%. 
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But another important function of ThrOut is to 

restrict the translation equivalents re-estimation 

(equation 7b) for only the top ThrOut% align-

ments. In other words, only the probabilities of 

translation equivalents that are to be found in top 

ThrOut% best alignments in the current EM step 

are re-estimated. We introduced this restriction in 

order to confine translation equivalents probability 

re-estimation to correct document alignments 

found so far. 

Regarding the running time of EMACC, we can 

report that on a cluster with a total of 32 CPU 

cores (4 nodes) with 6-8 GB of RAM per node, the 

total running time is between 12h and 48h per lan-

guage pair (about 2000 documents per language) 

depending on the setting of the various parameters. 

5 Conclusions 

The whole point in developing textual unit align-

ment algorithms for comparable corpora is to be 

able to provide good quality quasi-aligned data to 

programs that are specialized in extracting parallel 

data from these alignments. In the context of this 

paper, the most important result to note is that 

translation probability re-estimation is a good tool 

in discovering new correct textual unit alignments 

in the case of weakly related documents. We also 

tested EMACC at the alignment of 200 parallel 

paragraphs (small texts of no more than 50 words) 

for all pairs of languages that we have considered 

here. We can briefly report that the results are bet-

ter than the strongly comparable document align-

ments from Tables 1 and 2 which is a promising 

result because one would think that a significant 

reduction in textual unit size would negatively im-

pact the alignment accuracy. 
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