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Abstract features limit systems’ performance in this setting

for two reasons. First, featusparsityprevents sys-
Finding the right representation for words is  tems from generalizing accurately to words and fea-
critical for building accurate NLP systems a5 not seen during training. Because word fre-
when domain-specific labeled data for the quencies are Zipf distributed, this often means that

task is scarce. This paper investigates lan- h s litt] | inina d f b ial
guage model representations, in which lan- there Is little relevant training data for a substantia

guage models trained on unlabeled corpora fraCtion Of'pal’ameters (Blkel, 2004), eSpeCially in
are used to generate real-valued feature vec- new domains (Huang and Yates, 2009). For exam-

tors for words. We investigate ngram mod- ple, word-type features form the backbone of most
els and probabilistic graphical models, includ- POS-tagging systems, but types like “gene” and
ing a novel lattice-structured Markov Random “pathway” show up frequently in biomedical liter-

Field. - Experiments indicate that language 516 and rarely in newswire text. Thus, a classifier
model representations outperform traditional

representations, and that graphical model rep- trained_ on newswire data gnd tested on biomedical
resentations outperform ngram models, espe-  data will have seen few training examples related to
cially on sparse and polysemous words. sentences with features “gene” and “pathway” (Ben-
David et al., 2009; Blitzer et al., 2006).

Further, because words apmlysemous word-
type features prevent systems from generalizing to
NLP systems often rely on hand-crafted, carefullygituations in which words have different meanings.
engineered sets of features to achieve strong perfdror instance, the word type “signaling” appears pri-
mance. Thus, a part-of-speech (POS) tagger wouldarily as a present participle (VBG) in Wall Street
traditionally use a feature like, “the previous tokenJournal (WSJ) text, as in, “Interest rates rose, sig-
ist he” to help classify a given token as a noun omaling that...” (Marcus et al., 1993). In biomedical
adjective. For supervised NLP tasks with sufficientext, however, “signaling” appears primarily in the
domain-specific training data, these traditional fegehrase “signaling pathway,” where it is considered
tures yield state-of-the-art results. However, NLR noun (NN) (PennBiolE, 2005); this phrase never
systems are increasingly being applied to texts likappears in the WSJ portion of the Penn Treebank
the Web, scientific domains, and personal commyHuang and Yates, 2010a).
nications like emails, all of which have very differ- Our response to these problems with traditional
ent characteristics from traditional training corporaNLP representations is to seek new representations
Collecting labeled training data for each new targehat allow systems to generalize more accurately to
domain is typically prohibitively expensive. We in- previously unseen examples. Our approach depends
vestigate representations that can be applied when the well-knowndistributional hypothesjswhich
domain-specific labeled training data is scarce.  states that a word’s meaning is identified with the

An increasing body of theoretical and empiricakcontexts in which it appears (Harris, 1954; Hin-
evidence suggests that traditional, manually-craftedle, 1990). Our goal is to develop probabilistic lan-
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guage models that describe the contexts of individin et al., 1998) as non-sparse features (Lin and Wu,
ual words accurately. We then construepresen- 2009; Candito and Crabbe, 2009; Koo et al., 2008;
tations or mappings from word tokens and typesZhao et al., 2009); 4) and recently, language models
to real-valued vectors, from these language model@engio, 2008; Mnih and Hinton, 2009) as represen-
Since the language models are designed to modetions (Weston et al., 2008; Collobert and Weston,
words’ contexts, the features they produce can #008; Bengio et al., 2009), some of which have al-
used to combat problems with polysemy. And byeady yielded state of the art performance on domain
careful design of the language models, we can limadaptation tasks (Huang and Yates, 2009; Huang and
the number of features that they produce, controllinyfates, 2010a; Huang and Yates, 2010b; Turian et al.,
how sparse those features are in training data. ~ 2010) and IE (Ahuja and Downey, 2010; Downey et

In this paper, we analyze the performancel., 2007b). In contrast to this previous work, we de-
of language-model-based representations on taskalop a novel Partial Lattice MRF language model
where domain-specific training data is scarce. Ouhat incorporates a factorial representation of latent
contributions are as follows: states, and demonstrate that it outperforms the pre-
1. We introduce a novel factorial graphical modevious state-of-the-art in POS tagging in a domain
representation, a Partial-Lattice Markov Randoradaptation setting. We also analyze the novel PL-
Field (PL-MRF), which is a tractable variation of MRF representation on an |E task, and several repre-
a Factorial Hidden Markov Model (HMM) for lan- sentations along the key dimensions of sparsity and
guage modeling. polysemy.
2. In experiments on POS tagging in a domain adap- Most previous work on domain adaptation has fo-
tation setting and on weakly-supervised informaeused on the case where some labeled data is avail-
tion extraction (IE), we quantify the performance ofable in both the source and target domains (Daum
representations derived from language models. WH, 2007; Jiang and Zhai, 2007; Dawmlll and
show that graphical models outperform ngram repMarcu, 2006; Finkel and Manning, 2009; Dredze
resentations. The PL-MRF representation achievesa al., 2010; Dredze and Crammer, 2008). Learn-
state-of-the-art 93.8% accuracy on the POS taggingg bounds are known (Blitzer et al., 2007; Man-
task, while the HMM representation improves ovesour et al., 2009). Dauglll et al. (2010) use semi-
the ngram model by 10% on the IE task. supervised learning to incorporate labeled and unla-
3. We analyze how the performance of the differerbeled data from the target domain. In contrast, we
representations varies due to the fundamental chatwestigate a domain adaptation setting where no la-
lenges of sparsity and polysemy. beled data is available for the target domain.

The next section discusses previous work. Sec- )
tions 3 and 4 present the existing representations we Representations

lnvestégat%a(sng the .T)ew PL;MRF’ rlc(aspecd'u;/r(laly. Se(I:A representationis a set of features that describe
Ions > an esCrbe our two tasks an eresu ﬁ?stances for a classifier. Formally, |& be an

of using our representations on each of them. Sefﬁ'stance set and leE be the set of labels for a

tion 7 concludes. classification task. A representation is a function
R : X — Y for some suitable feature spa¥gsuch
asR?). We refer to dimensions of asfeatures and
There is a long tradition of NLP research on repfor an instance: € X we refer to values for partic-
resentations, mostly falling into one of four cateular dimensions oR?(z) as features of.

gories: 1) vector space models of meaning based . , ,

on document-level lexical cooccurrence statisticst Traditional POS-Tagging Representations
(Salton and McGill, 1983; Turney and Pantel, 2010As a baseline for POS tagging experiments and an
Sahlgren, 2006); 2) dimensionality reduction techexample of our terminology, we describe a repre-
niques for vector space models (Deerwester et akentation used in traditional supervised POS taggers.
1990; Honkela, 1997; Kaski, 1998; Sahlgren, 2005Fhe instance set’ is the set of English sentences,
Blei et al., 2003; \Ayrynen et al., 2007); 3) using and Z is the set of POS tag sequences. A traditional
clusters that are induced from distributional similarrepresentation RAD-R maps a sentencec X to a

ity (Brown et al., 1992; Pereira et al., 1993; Mar-sequence of boolean-valued vectors, one vector per

2 PreviousWork
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Representation Feature 33 HMM-based Representations

TRAD-R Vol[z;: = w] In previous work, we have implemented several

Vesufiicesl [z; ends withs] ~ "epresentations based on HMMs (Rabiner, 1989),

1[z; contains a digit which we used for both POS tagging (Huang and

Yates, 2009) and IE (Downey et al., 2007b). An

NGRAM-R Vo w P(w'ww")/P(w) MM is a generative probabilistic model that gen-
HMM-TOKEN-R Villyix = k| erates each word; in the corpus conditioned on a
HMM-TYPE-R ViP(y = k|lz = w) latent variabley;. Eachy; in the model takes on in-
I-HMM-TOKEN-R VK 1yi j* = k| tegral values from to K, and each one is generated
BROWN-TOKEN-R V(2 1012} by th_e. Iatept \_/arigble for the preceding woig, 1.

Ve (4.6,10,20) PrEfiX(yits, p) The joint distribution for a corpus = (z1, . .. 7:1:N_)
BROWN-TYPE-R v, prefix(y, p) and a set of state vectons = (y1,...,yn) IS

given by: P(x,y) = II; P(@:lys) P(yilyi-1). Us-

ing Expectation-Maximization (EM) (Dempster et
al., 1977), itis possible to estimate the distributions
for P(z;|y;) and P(y;|y;—1) from unlabeled data.

Table 1: Summary of features provided by our repre- We construct two different representations from
sentations. V,1[g(a)] represents a set of boolean featy\Ms, one for POS tagging and one for IE. For
tures, one for each value af, where the feature is POS tagging, we use the Viterbi algorithm to pro-

true iff g(a) is true. z; represents a token at position ‘ .
i in sentencex, w represents a word type, Suffixes duce the optimal settingx of the latent states for a

{-ing,-0gy,-ed,-s,-ly,-ion,-tion, -ity, & (andk) represents 9IVeN sentence, or y+ = argmax, P(x,y). We
a value for a latent state (set of latent states) in a lateriéS€ the value of;+ as a new feature far; that repre-
variable modely x represents the optimal setting of latentsents a cluster of distributionally-similar words. For
statesy for x, y; is the latent variable fot;, andy; ; is  |E, we require features for word typas rather than
the latent variable for; at layerj. prefix(y,p) is thep-  tokensz;. We use theK-dimensional vector that
length prefix of the Brown clustey. represents the distributioR(y|z = w) as the fea-
ture vector for word typev. This set of features
represents a “soft clustering” af into K different
word z; in the sentence. Dimensions for each laterd|;sters. We refer to these representations esH
vector include indicators for the word type:sfand  Token-R and HUIM-TYPE-R, respectively.
various orthographic features. Table 1 presents the gecause HMM-based representations offer a
full list of features in TRAD-R. Since our IE task gmgall number of discrete states as features, they have
classifies word types rather than tokens, this basg-mych greater potential to combat feature sparsity
Ilne_ is not appropriate for that task. _Below, we dethan do ngram models. Furthermore, for token-
scribe how we can learn representatidhby using pased representations, these models can potentially
a variety of language models, for use in both our Iy angje polysemy better than ngram language models
and POS tagging tasks. All representations for POy providing different features in different contexts.
taggm_g inherit the features fromRRD-R; all repre- We also compare against a variation of the HMM
sentations for |E do not. from our previous work (Huang and Yates, 2010a),
henceforth HY10. This model independently trains
3.2 Ngram Representations M separate HMM models on the same corpus, ini-
tializing each one randomly. We can then use the
N-gram representations model a word typein Viterbi-optimal decoded latent state of each inde-
terms of the n-gram contexts in whieh appears pendent HMM model as a separate feature for a to-
in a corpus. Specifically, for word» we generate ken. We refer to this language model as an I-HMM,
the vectorP(w'ww”)/P(w), the conditional prob- and the representation as Imt -TOKEN-R.
ability of observing the word sequene€ to the left Finally, we compare against Brown clusters
andw” to the right ofw. The experimental section (Brown et al., 1992) as learned features. Although
describes the particular corpora and language modet traditionally described as such, Brown cluster-
eling methods used for estimating probabilities.  ing involves constructing an HMM model in which

LATTICE-TOKEN-R  V; ;. 1[y; j* = k]
LATTICE-TYPE-R Vi P(y = k|z = w)
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each type is restricted to having exactly one latel
state that may generate it. Brove al. describe a
greedy agglomerative clustering algorithm for train
ing this model on unlabeled text. Following Turiar
et al. (2010), we use Percy Liang’s implementatior
of this algorithm for our comparison, and we tes
runs with 100, 320, and 1000 clusters. We use fe
tures from these clusters identical to Turiral’s.!
Turianet al. have shown that Brown clusters matct
or exceed the performance of neural network-bas
language models in domain adaptation experimer
for named-entity recognition, as well as in-domail
experiments for NER and chunking.

. Figure 1: The Partial Lattice MRF (PL-MRF) Model for a
4 A Novel L attice L anguage M odel 5-word sentence and a 4-layer lattice. Dashed gray edges
Representation are part of a full lattice, but not the PL-MRF.

Our final language model is a novel latent-variable
language model with rich latent structure, shown ifExpressing the lattice model in log-linear form, we
Figure 1. The model contains a latticelaf x N la- ~can write the marginal probability’(x) of a given
tent states, wher® is the number of words in a sen- Séntencex as:
tence andV/ is the number of layers in the model.
We can justify the choice of thisymodel from a lin- Hecciigny) SCOTEE X, ¥)
guistic perspective as a way to capture the multi- v 2wy eecuige ) SCOTEE, X', )
dimensional nature of words. Linguists have long
argued that words have many different features in'4nere scorg,x,y) = exp(6. - fe(xc,y)). Our
high dimensional space: they can be separately daodel .lncludes parameters for tran5|t|ons between
scribed by part of speech, gender, number, case, p&© adjacent latent variables on layer0;7 5 o
son, tense, voice, aspect, mass vs. count, and a hi¥ty:; = s andy; 1 ; = s'. It also includes obser-
of semantic categories (agency, animate vs. inarjation parameters for latent variables and tokens, as
mate, physical vs. abstract, etc.), to name a few (Séogell as for pairs of adjacent latent variables in differ-
et al., 2003). Our model seeks to capture a multent layers and their tokengs’s, , and6?%, .
dimensional representation of words by creating #r v; ; = s, v j+1 = ', andz; = w.
separate layer of latent variables for each dimension. Computationally, the lattice MRF is preferable to
The values of thel! layers of latent variables for a @ ndve Factorial HMM (Ghahramani and Jordan,
single word can be used dg distinct features in 1997) representation, which would requitg2/)
our representation. The I-HMM attempts to modeparameters for ad/-layer model. However, ex-
the same intuition, but unlike a lattice model the Iact training and inference in supervised settings are
HMM layers are entirely independent, and as a restill intractable for this model (Sutton et al., 2007),
sult there is no mechanism to enforce that the layemnd thus it has not yet been explored as a language
model different dimensions. Duh (2005) previouslynodel, which requires even more difficult, unsuper-
used a 2-layer lattice for tagging and chunking, bwtised training. Training is intractable in part because
in a supervised setting rather than for representati@f the difficulty in enumerating and summing over
learning. the exponentially-many configuratiogpdor a given

Let Clig(x,y) represent the set of all maximalx. We address this difficulty in two ways: by modi-

cliques in the graph of the MRF model ferandy. fying the model, and by modifying the training pro-
- cedure.
Percy Liang’s implementation is available at
http://metaoptimize.com/projects/wordreprs/ Turian et al. 4.1 Partial Lattice MRF
also tested a run with 3200 clusters in their experiments, which .
we have been training for months, but which has not finished instead of the full lattice model, we construct a

time for publication. Partial Lattice MRF (PL-MRF) model by deleting
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certain edges between latent layers of the modelhere N(x), the neighborhood ok, indicates a
(dashed gray edges in Figure 1). Let= L%J, set of perturbed variations of the original sentence
where N is the length of the sentence. 4f< ¢ x. Contrastive estimation seeks to move probability
andj is odd, or ifj is even and > ¢, we delete mass away from the perturbed neighborhood sen-
edges betweep; ; andy; ;1. The same lattice of tences and onto the original sentence. We use a
nodes remains, but fewer edges and paths. A ceneighborhood function that includes all sentences
tral “trunk” at i = ¢ connects all layers of the lat- which can be obtained from the original sentence by
tice, and branches from this trunk connect either tewapping the order of a consecutive pair of words.
the branches in the layer above or the layer beloWraining uses gradient descent over this non-convex
(but not both). The result is a model that retaingbjective function with a standard software package
most of the edges of the full model. Additionally, (Liu and Nocedal, 1989) and converges to a local
the pruned model makes the branches conditionalipaximum (Smith and Eisner, 2005).

independent from one another, except through the For tractability, we modify the training procedure
trunk. For instance, the right branch at layers 1o train the PL-MRF one layer at a time. L#trep-
and 2 in Figure 11 4,v15,y2,4, andys 5) are dis- resent the set of parameters relating to features of
connected from the right branch at layers 3 and Kayer i, and letd—; represent all other parameters.
(y3.4, Y35, Y44, andyy 5), except through the trunk We fix _, = 0, and optimized, using contrastive
and the observed nodes. As a result, excluding tlestimation. After convergence, we fix;, and opti-
observed nodes, this model has a lwee-widthof mizef;, and so on. We use a convergence threshold
2 (excluding observed nodes), and a variety of ebf 1076, and each layer typically converges in under
ficient dynamic programming and message-passirig0 iterations.

algorithms for training and inference can be readily

applied (Bodlaender, 1988).Our inference algo- 5 Domain Adaptation for a POS Tagger

rithm passes information from the branches inwards

to the trunk, and then upward along the trunk iyve evaluate the representations described above on
timeO(K4MN). " "a POS tagging task in a domain adaptation setting.

As with our HMM models, we create two repre- ;
sentations from PL-MRFs, one for tokens and ong'1 Experimental Setup
for types. For tokens, we decode the model to com/e use the same experimental setup as in HY10:
putey s, the matrix of optimal latent state values forthe Penn Treebank (Marcus et al., 1993) Wall Street
sentencex. For each layerj and and each possi- Journal portion for our labeled training data; 561
ble latent state valué, we add a boolean feature MEDLINE sentences (9576 types, 14554 tokens,
for tokenz; that is true iffy+; ; = k. For types, 23% OOV tokens) from the Penn BiolE project

we compute distributions over the latent state spacé>ennBiolE, 2005) for our labeled test set; and all of
Let y be the column vector of latent variables forthe unlabeled text from the Penn Treebank WSJ por-
word z. For each possible configuration of valdes tion plus a MEDLINE corpus of 71,306 unlabeled
of the latent variables, we add a real-valued fea- Sentences to train our language models. The two
tures forz given by P(y = k|z = w). We refer texts come from two very different domains, mak-

to these two representations astirice-TOKeN-R  ing this data a tough test for domain adaptation.

and LATTICE-TYPE-R, respectively. We use an open source Conditional Random Field
_ _ (CRF) (Lafferty et al., 2001) software pack&gke-
4.2 Parameter Estimation signed by Sunita Sarawagi and William W. Cohen

We train the PL-MRF using contrastive estimationfo implement our supervised models. L¥tbe a
which iteratively optimizes the following objective training corpusZ the corresponding labels, at

function on a corpuX: a representation function. For each tokenn X,

we include a parameter in our CRF model for all
3 log >y Ieeciigxy) SCOTEE X, ¥) featuresR(z;) and all possible labels i#. Further-
= > oxeN(x)y Leecuigx y) SCOTEe, X', y’)  more, we include transition parameters for pairs of

- consecutive labels;, z; 1 1.
2As M, N — oo, 5 out of every 6 edges are kept. -
3¢.f. a tree-width of min{Z,N) for the unpruned model “4Available fromhttp://sourceforge.net/projects/crf/
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For representations, we tested RAD-R, model % error OOV % error
NGRAM-R, HMM-TOKEN-R, |-HMM-TOKEN-R

(between 2 and 8 layers), anchtTICE-TOKEN-R TRAD-R o 11.7 32.7
(8, 12, 16, and 20 layers). Following HY10, each | RAD-R#self-training  11.5 29.6
latent node in the I-HMMs have 80 possible values, SCL 111 -
creatings0® ~ 10'° possible configurations of the BROWN-TOKEN-R 10.8 25.4
8-layer I-HMM for a single word. Each node in [1MM-TOKEN-R 9.5 24.8
the PL-MRF is binary, creating a much smaller II\ISI\RAﬁAM‘_I'IZKEN . 23 2;44
20 ~ 106 - , ; ) ) . _
number 2<° ~ 10°) of possible configurations for L ATTICE-TOKEN-R o g

each word in a 20-layer representation. RiK1-R
was trained using an unsmoothed trigram model onSCL+500bio 3.9 -
the Web 1Tgram corpus. To keep the feature sét

manageable, we included the top 500 most coOmMGRye 2: PL-MRF representations reduce error by 7.5%
ngrams for each word type, and then used mutugdjative to the previous state-of-the-art I-HMM, and ap-
information on the training data to select the togproach within 2.3% absolute error a SCL+500bio model
10,000 most relevant ngram features for all woravith access to 500 labeled sentences from the target do-
types. We incorporated ngram features as bina ain. 1.8% Of the tags in the test set are new tags that
values indicating whether; appeared with the 9° not occur in the WSJ training data, so an error rate of

ngram or not. We also report on the encormanc8.9+1.8 = 5.7% error is a reasonable bound for the best
? B | ) t d BIB[ t al’ gt tural possible performance of a model that has seen no exam-

of Brown clusters and Blitzeet al's Structura ples from the target domain.

Correspondence Learning (SCL) (2006) technique,

which uses manually-selected “pivot” words (like
“of”, “the”) to learn domain-independent features.from our test data, along with 296 non-polysemous
Finally, we compare against the self-training CRRvord types, chosen based on POS tags and manual

technique from HY10. inspection. We further define sparse word types as
those that appear 5 times or fewer in all of our unla-
5.2 Resultsand Discussion beled data, and non-sparse word types as those that

ear at least 50 times in our unlabeled data. Table

For each representation, we measured the accur
P hows results on these subsets of the data.

of the POS tagger on the biomedical test text. Ta-
As expected, all of our language models outper-

ble 2 shows the results for the best variation of eac%rm the baseline by a larger margin on polysemous

kind of model — 20 layers for the PL-MRF, 7 lay- ds th I ds. Th
ers for the I-HMM, and 1000 clusters for the BrownW.0r S than on non-polySemous woras. € mar-

clustering. All language model representations si%%m betwee; ci;ra:phlgal model represlentatlons and ':jhe
nificantly outperform the SCL model and the@AD- gram mgl eba S0 mcr[ﬁas\efs{ OE. pdo yszr_nousfv;/r(])r S
R baseline. The novel PL-MRF model outperform§Jresuma y because the Viterbl decoding of these

the previous state of the art, the I-HMM model, andmde'.S takes into account the tOkPTnS. n t.he sur-
much of the performance increase comes from rounding sentence. The same behavior is evident for

11.3% relative reduction in error on words that ap_sparsny: all of the language model representations

pear in biomedical texts but not in newswire textsqutperform the baseline by a larger margin on sparse

Both graphical model representations significantlWords than not-sparse words, and all of the graphical

outperform the ngram model, which is trained on faf"°d€ls perform better relative to the ngram model
more text. For comparison, (;ur best model, the pLO" SParse words as well. Thus representations based

MRF, achieved a 96.8% in-domain accuracy on sed" graphical quels address two _key issues in build-
tions 22-24 of the Penn Treebank, about 0.5% sHQg representations for POS tagging.
of a state-of-the-art in-domain system (Shen et al6
2007) with more sophisticated supervised learning.
We expected that language model representatiots this section, we evaluate our learned representa-
perform well in part because they provide meaningions on a different task that investigates the abil-
ful features for sparse and polysemous words. Tity of each representation to capture semantic, rather
test this, we selected 109 polysemous word typdhan syntactic, information. Specifically, we inves-

Information Extraction Experiments
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POS Tagging Information Extraction
polys. not polys.| sparse notsparse polys. notpolys. sparse notsparse

tokens/types| 159 4321 463 12194 222 210 266 166
categories - - - - 12 4 13 3
TRAD-R 59.5 78.5 52.5 89.6 - - - -
Ngram 68.2 85.3 61.8 94.0 0.07 0.17 0.06 0.25
HMM 67.9 83.4 60.2 91.6 0.14 0.26 0.15 0.32

(-Ngram) (-0.3) (-1.9) | (-1.6) (-2.4) (+0.07)  (+0.09) | (+0.09) (+0.07)
[-HMM 75.6 85.2 62.9 94.5 - - - -

(-Ngram) (+7.4) (-0.1) (+1.1) (+0.5) - - - -
PL-MRF 70.5 86.9 65.2 94.6 0.09 0.15 0.1 0.19

(-Ngram) (+2.3) +1.6) (+3.4) (+0.6) (+0.02)  (-0.02) | (+0.04) (-0.06)

Table 3: Graphical models consistently outperform ngrandetoby a larger margin on sparse words than not-sparse
words. On polysemous words, the difference between graphiodel performance and ngram performance grows
for POS tagging, where the context surrounding polysemausisvis available to the language model, but not for
information extraction. For tagging, we show number of tekand accuracies. For IE, we show number of types,
categories, and AUCs.

tigate aset-expansioniask in which we're given a dard distance measures, including KL and Jensen-
corpus and a few “seed” noun phrases from a s&hannon divergence, and cosine, Euclidean, and L1
mantic category (e.g. Superheroes), and our goal dstance. In experiments, we found that improving
to identify other examples of the category in the corupon this simple averaging was not easy—in fact,
pus. This is aveakly-supervisethsk because we are tuning a weighted average of the distance measures
given only a handful of examples of the categoryfor each representation did not improve results sig-
rather than a large sample of positively and negazificantly on held-out data.
tively labeled training examples. Because set expansion is performed at the level

Existing set-expansion techniques utilize the dissf word types rather than tokens, it requires type-
tributional hypothesis: candidate noun phrases forlzased representations. We companam4TYPE-
given semantic class are ranked based on how silR; NGRAM-R, LATTICE-TYPE-R, and BROwWN-
ilar their contextual distributions are to those of theT YPE-R in this experiment. We used a 25-state
seeds. Here, we measure how performance on thiMM, and the same PL-MRF as in the previous
set-expansion task varies when we employ differersection. Following previous set-expansion experi-
representations for the contextual distributions.  ments with n-grams (Ahuja and Downey, 2010), we

employ a trigram model with Kneser-Ney smooth-

6.1 Methods ing for NGRAM-R. For Brown clusters, instead of
The set-expansion task we address is formalized gigtance metrics like KL divergence (which assume
follows: given a corpus, a set of seeds from somdistributions), we rank extractions by the number
semantic categorg?, and a separate set of candidat®' matches between a word' RBWN-TYPE-R fea-
phrasesP, output a ranking of the phrases inin ~ tures and seed features.
decreasing order of likelihood of membershipin

For any given representatidf, the set-expansion 6.2 DataSets
algorithm we investigate is straightforward: we creWe utilized a set of approximately 100,000 sen-
ate a prototypical “seed representation vector” equédnces of Web text, joining multi-word named enti-
to the mean of the representation vectors for eadhes in the corpus into single tokens using the Lex
of the seeds. Then, we rank candidate phrases @tgorithm (Downey et al., 2007a). This process
increasing order of the distance between the candinables each named entity (the focus of the set-
date phrase representation and the seed represemgansion experiments) to be treated as a single to-
tion vector. As a measure of distance between refen, with a single representation vector for compar-
resentations, we compute the average of five staison. We developed all word type representations
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model AUC had a median number of occurrences in the cor-

HMM-TYPE-R 0.18 pus less than 30 were deemed sparse, and others
BROWN-TYPE-R  0.16 non-sparse. |E performance on these subsets of the
LATTICE-TYPE-R 0.11 data are shown in Table 3. Both graphical model

NGRAM-R 0.10 representations outperform the ngram representation
Random baseline  0.10 more on sparse words, as expected. For polysemy,

the picture is mixed: the PL-MRF outperform n-

Table 4: HuM-TYPE-R outperforms the other methods,grams on polysemous categories, whereas HMM's

improving performance by 12.5% over Brown clustersperformance_ advantage over nrgrams decreases.
and by 80% over the traditional NGM-R. One surprise on the IE task is that theTTICE-

TyPE-R performs significantly less well than the
HMM-TYPE-R, whereas the reverse is true on POS
using this corpus. tagging. We suspect that the difference is due to the
To obtain examples of multiple semantic catissue of classifying types vs. tokens. Because of
egories, we utilized selected Wikipedia “listOf” their more complex structure, PL-MRFs tend to de-
pages from (Pantel et al., 2009) and augmented thgsend more on transition parameters than do HMMs.
with our own manually defined categories, such thaurthermore, our decision to train the PL-MRFs
each list contained at least ten distinct examples oasing contrastive estimation with a neighborhood
curring in our corpus. In all, we had 432 exam+that swaps consecutive pairs of words also tends to
ples across 16 distinct categories such as Countrigsnphasize transition parameters. As a result, we

Greek Islands, and Police TV Dramas. believe the posterior distribution over latent states
given a word type is more informative in our HMM
6.3 Results model than the PL-MRF model. We measured the

gntropy of these distributions for the two models,
ﬁé‘]d found thaH(PpL_MRF(y|a7 = w)) = 9.95 bits,
ga@mpared withH (Pawm (y|z = w)) = 2.74 bits,

ich supports the hypothesis that the drop in the
-MRF’s performance on IE is due to its depen-
dence on transition parameters. Further experiments
are warranted to investigate this issue.

For each semantic category, we tested five diffe
entrandom selections of five seed examples, treati
the unselected members of the category as positi
examples, and all other candidate phrases as ne%‘)g"-
tive examples. We evaluate using the area under t &
precision-recall curve (AUC) metric.
The results are shown in Table 4. All represen
tations improve performance over a random bas& Conclusion and Future Work
line, equal to the average AUC over five random or-
derings for each category, and the graphical modefaur investigation into language models as represen-
outperform the ngram representationMH_TypE_ tationS ShOWS that gl’aphica| mOdEIS can be Used to
R performs the best overall, and Brown clusteringombat polysemy and, especially, sparsity in rep-
with 1000 clusters is comparable (320 and 100 clugesentations for weakly-supervised classifiers. Our
ter perform slightly worse). novel factorial graphical model yields a state-of-the-
As with POS tagging, we expect that languag@'t POS tagger for domain adaptation, and HMMs
model representations improve performance on tHEWProve significantly over all other representations
IE task by providing informative features for sparsél an information extraction task. Important direc-
word types. However, because the IE task classifid@ns for future research include models for han-
word types rather than tokens, we expect the regling polysemy in IE, and richer language models
resentations to provide less benefit for polysemodat incorporate more linguistic intuitions about how
word types. To test these hypotheses, we measur¢@rds interact with their contexts.
how IE pgrformanc.e chgpged in sparse or pOIyS,%cknowledgments
mous settings. We identified polysemous categories
as those for which fewer than 90% of the categoryhis research was supported in part by NSF grant
members had the category as a clear dominant serke-1065397 and a Microsoft New Faculty Fellow-
(estimated manually); other categories were consighip.
ered non-polysemous. Categories whose members
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