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Abstract

In this paper we present ULISSE, an unsu-
pervised linguistically–driven algorithm to se-
lect reliable parses from the output of a de-
pendency parser. Different experiments were
devised to show that the algorithm is robust
enough to deal with the output of different
parsers and with different languages, as well
as to be used across different domains. In
all cases, ULISSE appears to outperform the
baseline algorithms.

1 Introduction

While the accuracy of state–of–the–art parsers is in-
creasing more and more, this is still not enough for
their output to be used in practical NLP–based ap-
plications. In fact, when applied to real–world texts
(e.g. the web or domain–specific corpora such as
bio–medical literature, legal texts, etc.) their accu-
racy decreases significantly. This is a real problem
since it is broadly acknowledged that applications
such as Information Extraction, Question Answer-
ing, Machine Translation, and so on can benefit sig-
nificantly from exploiting the output of a syntactic
parser. To overcome this problem, over the last few
years a growing interest has been shown in assessing
the reliability of automatically produced parses: the
selection of high quality parses represents nowadays
a key and challenging issue. The number of stud-
ies devoted to detecting reliable parses from the out-
put of a syntactic parser is spreading. They mainly
differ with respect to the kind of selection algo-
rithm they exploit. Depending on whether training
data, machine learning classifiers or external parsers

are exploited, existing algorithms can be classified
into i) supervised–based, ii) ensemble–based and iii)
unsupervised–based methods.

The first is the case of the construction of a ma-
chine learning classifier to predict the reliability of
parses on the basis of different feature types. Yates
et al. (2006) exploited semantic features derived
from the web to create a statistical model to de-
tect unreliable parses produced by a constituency
parser. Kawahara and Uchimoto (2008) relied on
features derived from the output of a supervised de-
pendency parser (e.g. dependency lengths, num-
ber of unknown words, number of coordinated con-
junctions, etc.), whereas Ravi et al. (2008) exploited
an external constituency parser to extract text–based
features (e.g. sentence length, unknown words, etc.)
as well as syntactic features to develop a super-
vised predictor of the target parser accuracy. The
approaches proposed by Reichart and Rappoport
(2007a) and Sagae and Tsujii (2007) can be classi-
fied as ensemble–based methods. Both select high
quality parses by computing the level of agreement
among different parser outputs: wheras the former
uses several versions of a constituency parser, each
trained on a different sample from the training data,
the latter uses the parses produced by different de-
pendency parsing algorithms trained on the same
data. However, a widely acknowledged problem of
both supervised–based and ensemble–based meth-
ods is that they are dramatically influenced by a) the
selection of the training data and b) the accuracy and
the typology of errors of the used parser.

To our knowledge, Reichart and Rappoport
(2009a) are the first to address the task of high qual-
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ity parse selection by resorting to an unsupervised–
based method. The underlying idea is that syntactic
structures that are frequently created by a parser are
more likely to be correct than structures produced
less frequently. For this purpose, their PUPA (POS–
based Unsupervised Parse Assessment Algorithm)
uses statistics about POS tag sequences of parsed
sentences produced by an unsupervised constituency
parser.

In this paper, we address this unsupervised sce-
nario with two main novelties: unlike Reichart and
Rappoport (2009a), a) we address the reliable parses
selection task using an unsupervised method in a
supervised parsing scenario, and b) we operate on
dependency–based representations. Similarly to Re-
ichart and Rappoport (2009a) we exploit text inter-
nal statistics: but whereas they rely on features that
are closely related to constituency representations,
we use linguistic features which are dependency–
motivated. The proposed algorithm has been eval-
uated for selecting reliable parses from English and
Italian corpora; to our knowledge, this is the first
time that such a task has been applied to a less re-
sourced language such as Italian. The paper is or-
ganised as follows: in Section 2 we illustrate the
ULISSE algorithm; sections 3 and 4 are devoted to
the used parsers and baselines. Section 5 describes
the experiments and discusses achieved results.

2 The ULISSE Algorithm

The ULISSE (Unsupervised LInguiStically–driven
Selection of dEpendency parses) algorithm takes as
input a set of parsed sentences and it assigns to each
dependency tree a score quantifying its reliability. It
operates in two different steps: 1) it collects statis-
tics about a set of linguistically–motivated features
extracted from a corpus of parsed sentences; 2) it
calculates a quality (or reliability) score for each an-
alyzed sentence using the feature statistics extracted
from the whole corpus.

2.1 Selection of features

The features exploited by ULISSE are all linguis-
tically motivated and rely on the dependency tree
structure. Different criteria guided their selection.
First, as pointed out in Roark et al. (2007), we
needed features which could be reliably identified

within the automatic output of a parser. Second,
we focused on dependency structures that are widely
agreed in the literature a) to reflect sentences’ syn-
tactic and thus parsing complexity and b) to impose
a high cognitive load on the parsing of a complete
sentence.

Here follows the list of features used in the exper-
iments reported in this paper, which turned out to be
the most effective ones for the task at hand.
Parse tree depth: this feature is a reliable indicator
of sentence complexity due to the fact that, with sen-
tences of approximately the same length, parse tree
depth can be indicative of increased sentence com-
plexity (Yngve, 1960; Frazier, 1985; Gibson, 1998;
Nenkova, 2010).
Depth of embedded complement ‘chains’: this
feature is a subtype of the previous one, focusing on
the depth of chains of embedded complements, ei-
ther prepositional complements or nominal and ad-
jectival modifiers. Long chains of embedded com-
plements make the syntactic structure more complex
and their analysis much more difficult.
Arity of verbal predicates: this feature refers to the
number of dependency links sharing the same ver-
bal head. Here, there is no obvious relation between
the number of dependents and sentence complexity:
both a small number and a high number of depen-
dents can make the sentence processing quite com-
plex, although for different reasons (elliptical con-
structions in the former case, a high number of mod-
ifiers in the latter).
Verbal roots: this feature counts the number of ver-
bal roots with respect to number of all sentence roots
in the target corpus.
Subordinate vs main clauses: subordination is gen-
erally considered to be an index of structural com-
plexity in language. Two distinct features are con-
sidered for monitoring this aspect: one measuring
the ratio between main and subordinate clauses and
the other one focusing on the relative ordering of
subordinate clauses with respect to the main clause.
It is a widely acknowledged fact that highly com-
plex sentences contain deeply embedded subordi-
nate clauses; however, subordinate clauses are easier
to process if they occur in post–verbal rather than in
pre–verbal position (Miller, 1998).
Length of dependency links: McDonald and Nivre
(2007) report that statistical parsers have a drop in
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accuracy when analysing long distance dependen-
cies. This is in line with Lin (1996) and Gibson
(1998) who claim that the syntactic complexity of
sentences can be predicted with measures based on
the length of dependency links, given the memory
overhead of very long distance dependencies. Here,
the dependency length is measured in terms of the
words occurring between the syntactic head and the
dependent.
Dependency link plausibility (henceforth, Arc-
POSFeat): this feature is used to calculate the plausi-
bility of a dependency link given the part–of–speech
of the dependent and the head, by also considering
the PoS of the head father and the dependency link-
ing the two.

2.2 Computation Score
The quality score (henceforth, QS) of parsed sen-
tences results from a combination of the weights as-
sociated with the monitored features. ULISSE is
modular and can use several weights combination
strategies, which may be customised with respect to
the specific task exploiting the output of ULISSE.

For this study, QS is computed as a simple prod-
uct of the individual feature weights. This follows
from the necessity to recognize high quality parses
within the input set of parsed sentences: the prod-
uct combination strategy is able to discard low qual-
ity parse trees even in presence of just one low
weight feature. Therefore, QS for each sentence i
in the set of input parsed sentences I is QS(Si) =∏n

y=1 Weight(Si, fy), where Si is the i–th sentence
of I , n is the total number of selected features and
Weight(Si, fy) is the computed weight for the y–th
feature.

Selected features can be divided into two classes,
depending on whether they are computed with re-
spect to each sentence and averaged over all sen-
tences in the target corpus (global features), or they
are computed with respect to individual dependency
links and averaged over all of them (local features).
The latter is the case of the ArcPOSFeat feature,
whereas the all other ones represent global features.

For the global features, the Weight(Si, fy) is de-
fined as:

Weight(Si, fy) =
F (V (fy), range(L(Si), r))

|range(L(Si), r)| ,

(1)

where V (fy) is the value of the y–th feature (ex-
tracted from Si), L(Si) is the length of the sen-
tence Si, range(L(Si), r) defines a range cov-
ering values from L(Si) − r and L(Si) + r,
F (V (fy), range(L(Si), r)) is the frequency of
V (fy) in all sentences in I that has a value of
length in range(L(Si), r1) and |range(L(Si), r)|
is the total number of sentences in I with length
in range(L(Si), r). For what concerns the lo-
cal feature ArcPOSFeat, ULISSE assigns a weight
for each arc in Si: in principle different strate-
gies can be used to compute a unique weight for
this feature for Si. Here, the sentence weight
for the feature ArcPOSFeat is computed as the
minimum weight among the weights of all arcs
of Si. Therefore, Weight(Si, ArcPOSFeat) =
min{weight((Pd, Ph, t)), ∀(Pd, Ph, t) ∈ Si},
where the triple (Pd, Ph, t) is an arc in Si in which
Pd is the POS of the dependent, Ph is the POS
of the syntactic head and t is the type of the de-
pendency relation and weight((Pd, Ph, t)) is the
weight of the specific arc (Pd, Ph, t). The individ-
ual arc weight is computed as follows:

weight((Pd, Ph, t)) =
F ((Pd, Ph, t))
F ((Pd, X, t))

·

· F ((Pd, Ph, t))
F ((X, Ph, t))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((Pd, Ph, t))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((Ph, Ph2, t2))

·

· F (((Pd, Ph, t)(Ph, Ph2, t2)))
F ((((Pd, X, t))(X,Ph2, t2)))

,

where F (x) is the frequency of x in I , X is a vari-
able and (arc1 arc2) represent two consecutive arcs
in the tree.

3 The Parsers

ULISSE was tested against the output of two really
different data–driven parsers: the first–order Max-
imum Spanning Tree (MST) parser (McDonald et
al., 2006) and the DeSR parser (Attardi, 2006) using
Support Vector Machine as learning algorithm. The

1We set r=0 in the in–domain experiments and r=2 in the
out–of–domain experiment reported in Sec 5.3.
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former is a graph–based parser (following the so–
called “all–pairs” approach Buchholz et al. (2006))
where every possible arc is considered in the con-
struction of the optimal parse tree and where depen-
dency parsing is represented as the search for a max-
imum spanning tree in a directed graph. The latter
is a Shift–Reduce parser (following a “stepwise” ap-
proach, Buchholz et al. (2006)), where the parser
is trained and learns the sequence of parsing actions
required to build the parse tree.

Although both parser models show a similar accu-
racy, McDonald and Nivre (2007) demonstrate that
the two types of models exhibit different behaviors.
Their analysis exemplifies how different the two
parsers behave when their accuracies are compared
with regard to some linguistic features of the ana-
lyzed sentences. To mention only a few, the Shift–
Reduce parser tends to perform better on shorter
sentences, while the MST parser guarantees a higher
accuracy in identifying long distance dependencies.
As regards the identification of dependency types,
the MST parser shows a better ability to identify
the dependents of the sentences’ roots whereas the
Shift–Reduce tends to better recognize specific rela-
tions (e.g. Subject and Object).

McDonald and Nivre (2007) describe how the
systems’ behavioral differences are due to the dif-
ferent parsing algorithms implemented by the Shift–
Reduce and the MST parsing models. The Shift
Reduce parser constructs a dependency tree by per-
forming a sequence of parser actions or transitions
through a greedy parsing strategy. As a result of
this parsing procedure, a Shift Reduce parser cre-
ates shorter arcs before longer arcs. The latter could
be the reason for the lower accuracy in identifying
longer arcs when compared to the MST parser. This
also influences a lower level of accuracy in the anal-
ysis of longer sentences that usually contain longer
arcs than shorter sentences. The MST parser’s abil-
ity to analyze both short and long arcs is invariant
as it employs a graph-based parsing method where
every possible arc is considered in the construction
of the dependency tree.

4 The Baselines

Three different increasingly complex baseline mod-
els were used to evaluate the performance of

ULISSE.
The first baseline is constituted by a Random Se-

lection (RS ) of sentences from the test sets. This
baseline is calculated in terms of the scores of the
parser systems on the test set.

The second baseline is represented by the Sen-
tence Length (SL ), starting from the assumption,
demonstrated by McDonald and Nivre (2007), that
long sentences are harder to analyse using statistical
dependency parsers than short ones. This is a strong
unsupervised baseline based on raw text features,
ranking the parser results from the shortest sentence
to the longest one.

The third and most advanced baseline, exploiting
parse features, is the PUPA algorithm (Reichart and
Rappoport, 2007a). PUPA uses a set of parsed sen-
tences to compute the statistics on which its scores
are based. The PUPA algorithm operates on a con-
stituency based representation and collects statistics
about the POS tags of the words in the yield of the
constituent and of the words in the yields of neigh-
boring constituents. The sequences of POS tags that
are more frequent in target corpus receive higher
scores after proper regularization is applied to pre-
vent potential biases. Therefore, the final score as-
signed to a constituency tree results from a combina-
tion of the scores of its extracted sequences of POSs.

In order to use PUPA as a baseline, we imple-
mented a dependency–based version, hencefoth re-
ferred to as dPUPA. dPUPA uses the same score
computation of PUPA and collects statistics about
sequences of POS tags: the difference lies in the fact
that in this case the POS sequences are not extracted
from constituency trees but rather from dependency
trees. To be more concrete, rather than represent-
ing a sentence as a collection of constituency–based
sequences of POSs, dPUPA represents each sen-
tence as a collection of sequences of POSs cov-
ering all identified dependency subtrees. In par-
ticular, each dependency tree is represented as the
set of all subtrees rooted by non–terminal nodes.
Each subtree is then represented as the sequence
of POS tags of the words in the subtree (reflect-
ing the word order of the original sentence) inte-
grated with the POS of the leftmost and rightmost
in the sentence (NULL when there are no neigh-
bors). Figure 1 shows the example of the depen-
dency tree for the sentence I will give you the ball.
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Figure 1: Example of dependency tree.

If we consider the subtree rooted by give (in the
dotted circle), the resulting POS sequence is as
follows: POS2 POS3 POS4 POS5 POS6 NULL,
where POS3 POS4 POS5 POS6 is the sequence of
POS tags in the subtree, POS2 is the left neighbor
POS tag and NULL marks the absence of a right
neighbor.

5 Experiments and Results

The experiments were organised as follows: a target
corpus was automatically POS tagged (Dell’Orletta,
2009) and dependency–parsed; the ULISSE and
baseline algorithms of reliable parse selection were
run on the POS–tagged and dependency–parsed tar-
get corpus in order to identify high quality parses;
results achieved by the selection algorithms were
evaluated with respect to a subset of the target cor-
pus of about 5,000 word–tokens (henceforth referred
to as “test set”) for which gold-standard annotation
was available. Different sets of experiments were
devised to test the robustness of our algorithm. They
were performed with respect to i) the output of the
parsers described in Section 3, ii) two different lan-
guages, iii) different domains.

For what concerns the languages, we chose Italian
and English for two main reasons. First of all, they
pose different challenges to a parser since they are
characterised by quite different syntactic features.
For instance, Italian, as opposed to English, is char-
acterised by a relatively free word order (especially
for what concerns subject and object relations with
respect to the verb) and by the possible absence of
an overt subject. Secondly, as it is shown in Section
5.1, Italian is a less resourced language with respect
to English. This is a key issue, since as demonstrated

by Reichart and Rappoport (2007b) and McClosky
et al. (2008), small and big treebanks pose different
problems in the reliable parses selection.

Last but not least, we aimed at demonstrating that
ULISSE can be successfully used not only with texts
belonging to the same domain as the parser train-
ing corpus. For this purpose, ULISSE was tested
on a target corpus of Italian legislative texts, whose
automatic linguistic analysis poses domain–specific
challenges (Venturi, 2010). Out–of–domain experi-
ments are being carried out also for English.

5.1 The Corpora

The Italian corpora Both parsers were trained on
ISST–TANL2, a dependency annotated corpus used
in Evalita’093, an evaluation campaign carried out
for Italian (Bosco et al., 2009). ISST–TANL in-
cludes 3,109 sentences (71,285 tokens) and consists
of articles from newspapers and periodicals.

Two different target corpora were used for the
in–domain and out–of–domain experiments. For
the former, we used a corpus of 1,104,237 sen-
tences (22,830,739 word–tokens) of newspapers
texts which was extracted from the CLIC-ILC Cor-
pus (Marinelli et al., 2003); for the legal domain,
we used a collection of Italian legal texts (2,697,262
word–tokens; 97,564 sentences) regulating a vari-
ety of domains, ranging from environment, human
rights, disability rights, freedom of expression to pri-
vacy, age disclaimer, etc. In the two experiments,
the test sets were represented respectively by: a) the
test set used in the Evalita’09 evaluation campaign,
constituted by 260 sentences and 5,011 tokens from
newpapers text; b) a set of 102 sentences (corre-
sponding to 5,691 tokens) from legal texts.

The English corpora For the training of parsers
we used the dependency–based version of Sections
2–11 of the Wall Street Journal partition of the
Penn Treebank (Marcus et al., 2003), which was de-
veloped for the CoNLL 2007 Shared Task on De-
pendency Parsing (Nivre et al., 2007): it includes
447,000 word tokens and about 18,600 sentences.

As target data we took a corpus of news, specif-
ically the whole Wall Street Journal Section of the

2http://medialab.di.unipi.it/wiki/SemaWiki
3http://evalita.fbk.eu/index.html
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Penn Treebank4, from which the portion of text cor-
responding to the training corpus was removed; the
English target corpus thus includes 39,285,425 to-
kens (1,625,606 sentences). For testing we used
the test set of the CoNLL 2007 Shared Task, cor-
responding to a subset of Section 23 of the Wall
Street Journal partition of the Penn Treebank (5,003
tokens, 214 sentences).

5.2 Evaluation Methodology
Performances of the ULISSE algorithm have been
evaluated i) with respect to the accuracy of ranked
parses and ii) in terms of Precision and Recall. First,
for each experiment we evaluated how the ULISSE
algorithm and the baselines classify the sentences in
the test set with respect to the “Labelled Attachment
Score” (LAS) obtained by the parsers, i.e. the per-
centage of tokens for which it has predicted the cor-
rect head and dependency relation. In particular, we
computed the LAS score of increasingly wider top
lists of k tokens, where k ranges from 500 word to-
kens to the whole size of the test set (with a step size
of 500 word tokens, i.e. k=500, k=1000, k=1500,
etc.).

As regards ii), we focused on the set of ranked
sentences showing a LAS ≥ α. Since imposing
a 100% LAS was too restrictive, for each experi-
ment we defined a different α threshold taking into
account the performance of each parser across the
different languages and domains. In particular, we
took the top 25% and 50% of the list of ranked sen-
tences and calculated Precision and Recall for each
of them. To this specific end, a parse tree showing
a LAS ≥ α is considered as a trustworthy analysis.
Precision has been computed as the ratio of the num-
ber of trustworthy analyses over the total number of
sentences in each top list. Recall has been computed
as the ratio of the number of trustworthy analyses
which have been retrieved over the total number of
trustworthy analyses in the whole test set.

In order to test how the ULISSE algorithm is able
to select reliable parses by relying on parse fea-
tures rather than on raw text features, we computed
the accuracy score (LAS) of a subset of the top list
of sentences parsed by both parsers and ranked by

4This corpus represents to the unlabelled data set distributed
for the CoNLL 2007 Shared Task on Dependency Parsing, do-
main adaptation track.

ULISSE: in particular, we focused on those sen-
tences which were not shared by the MST and DeSR
top lists.

5.3 Results

We will refer to the performed experiments as fol-
lows: “IT in–domain” and “IT out–of–domain” for
the Italian experiments using respectively the ISST–
TANL test set (henceforth ISST TS) and the Legal-
Corpus test set (henceforth Legal TS); “EN in–
domain” for the English experiment using the PTB
test set (PTB TS).

As a starting point let us consider the accuracy
of DeSR and MST parsers on the whole test sets,
reported in Table 1. The accuracy has been com-
puted in terms of LAS and of Unlabelled Attach-
ment Score (UAS), i.e. the percentage of tokens with
a correctly identified syntactic head. It can be no-
ticed that the performance of the two parsers is quite
similar for Italian (i.e. wrt ISST TS and Legal TS),
whereas there is a 2.3% difference between the MST
and DeSR accuracy as far as English is concerned.

ISST TS Legal TS PTB TS
Parser LAS UAS LAS UAS LAS UAS
DeSR 80.22 84.96 73.40 76.12 85.95 87.25
MST 79.52 85.43 73.99 78.72 88.25 89.55

Table 1: Overall accuracy of DeSR and MST parsers.

The plots in Figure 2 show the LAS of parses
ranked by ULISSE and the baselines across the dif-
ferent experiments. Each plot reports the results of a
single experiment: plots in the same row report the
LAS of DeSR and MST parsers with respect to the
same test set. In all experiments, ULISSE turned out
to be the best ranking algorithm since it appears to
select top lists characterised by higher LAS scores
than the baselines. As Figure 2 shows, all ranking
algorithms perform better than Random Selection
(RS), i.e. all top lists (for each k value) show a LAS
higher than the accuracy of DeSR and MST parsers
on the whole test sets. In the EN in–domain experi-
ment, the difference between the results of ULISSE
and the other ranking algorithms is smaller than in
the corresponding Italian experiment, a fact result-
ing from the higher accuracy of DeSR and MST
parsers (i.e. LAS 85.95% and 88.25% respectively)
on the PTB TS. It follows that, for example, the
first top list (with k=500) of the SL baseline has a
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Figure 2: LAS of parses ranked by ULISSE algorithm and by the three baselines.

LAS accuracy of 93.36% and 93.96% respectively
for DeSR and MST: even in this case, ULISSE out-
performs all baselines. This is also the case in the
IT out–of–domain experiment. As reported in Table
1, parsing legal texts is a quite challenging task due
to a number of domain–specific peculiarities at the
level of syntax: this is testified by the average sen-
tence length which in the Legal TS is 56 word to-
kens. Nevertheless, ULISSE is able also in this case
to highly rank long sentences showing a high LAS.
For example, while in the first top list of 500 word
tokens the sentences parsed by DeSR and ordered by
SL have an average sentence length of 24 words and
a LAS of 79.37%, ULISSE includes in the same top
list longer sentences (with average sentence length =

29) with a higher LAS (82.72%). Also dPUPA ranks
in the same top list quite long sentences (with 27 av-
erage sentence length), but compared to ULISSE it
shows a lower LAS (i.e. 73.56%).

IT in–domain IT out–of–domain EN in–domain
DeSR MST DeSR MST DeSR MST

MST top–list 80.93 80.27 68.84 74.58 83.37 90.39
DeSR top–list 82.46 77.82 75.47 74.88 86.50 86.74

Table 3: LAS of not–shared sentences in the DeSR and
MST top–lists.

Results in Table 2 show that in the top 25% of
the ranked sentences with a LAS ≥ α ULISSE has
the highest Precision and Recall in all experiments.
We believe that the low performance of dPUPA with
respect to all other ranking algorithms can be due to
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DeSR MST
25% 50% 25% 50%

Prec Rec LAS AvgSL Prec Rec LAS AvgSL Prec Rec LAS AvgSL Prec Rec LAS AvgSL
IT in–domain: LAS≥ 85% (DeSR: 120 sentences; MST: 112 sentences)

ULISSE 66.15 35.83 88.25 5.25 59.23 64.17 84.30 14.60 60 34.82 86.16 5.68 55.38 64.29 83.39 15.27
LS 63.08 34.17 84.54 4.15 53.08 57.50 82.07 11.90 58.46 33.93 82.73 4.45 53.08 61.61 82.14 12.75
dPUPA 61.54 33.33 86.89 6.68 59.23 64.17 84.36 14.82 53.85 31.25 82.26 8.61 50.00 58.04 79.94 17.04

IT out–of–domain: LAS≥ 75% (DeSR: 51 sentences; MST: 57 sentences)
ULISSE 73.08 37.25 80.75 16.71 69.23 70.59 79.17 41.80 69.23 31.58 81.47 13.63 67.31 61.40 78.36 36
LS 53.85 27.45 76.71 12.63 67.31 68.63 78.34 34.14 61.54 28.07 78.42 11.30 69.23 63.16 79.78 30.54
dPUPA 57.69 29.41 73.97 15.67 61.54 62.74 75.24 40.39 46.15 21.05 72.08 22.56 57.69 52.63 74.86 42.91

EN in–domain: LAS≥ 90% (DeSR: 118 sentences; MST: 120 sentences)
ULISSE 81.48 37.29 94.50 6.31 69.44 63.56 90.93 16.36 77.78 35 93.74 5.82 69.44 62.5 91.20 16.48
LS 77.78 35.59 93.39 4.87 65.74 60.17 91.01 13.67 75.92 34.17 93.55 4.79 68.52 61.67 90.84 13.44
dPUPA 74.07 33.90 89.76 7.95 65.74 60.17 88.37 18.14 77.78 35 93.43 5.08 68.52 61.67 91.03 14.49

Table 2: In all Tables: the number of sentences with a LAS≥ α parsed by DeSr and MST parsers (first row); Precision
(Prec), Recall (Rec), the corresponding parser accuracy (LAS) of the top 25% and 50% of the list of sentences and
ranked by the ULISSE algorithm, Length of Sentence (LS) and dependency PUPA (dPUPA) and the corresponding
average length in tokens of ranked sentence (AvgSL).

the fact that PUPA is based on constituency–specific
features that once translated in terms of dependency
structures may be not so effective.

In order to show that the ranking of sentences
does not follow from raw text features but rather
from parse features, we evaluated the accuracy of
parsed sentences that are not–shared by MST and
DeSR top–lists selected by ULISSE. For each test
set we selected a different top list: a set of 100
sentences in the IT and EN in–domain experiments
and of 50 sentences in the IT out–of–domain exper-
iment. For each of them we have a different number
of not–shared sentences: 24, 15 and 16 in the IT
in–domain, IT out–of–domain and EN in–domain
experiments respectively. Table 3 reports the LAS
of DeSR and MST for these sentences: it can be
observed that the LAS of not–shared sentences in
the DeSR top list is always higher than the LAS
assigned by the same parser to the not–shared sen-
tences in the MST top list, and viceversa. For in-
stance, in the English experiment the LAS achieved
by DeSR on the not–shared top list is higher (86.50)
than the LAS of DeSR on the not–shared MST top
list (83.37); viceversa, the LAS of MST on the not–
shared DeSR top list is higher (86.74) than the LAS
of MST on the not–shared MST top list (90.39). The
unique exception is MST in the IT out–of–domain
experiment, but the difference in terms of LAS be-
tween the parses is not statistically relevant (p–value
< 0.05). These results demonstrate that ULISSE is
able to select parsed sentences on the basis of the
reliability of the analysis produced by each parser.

6 Conclusion

ULISSE is an unsupervised linguistically–driven
method to select reliable parses from the output of
dependency parsers. To our knowledge, it repre-
sents the first unsupervised ranking algorithm oper-
ating on dependency representations which are more
and more gaining in popularity and are arguably
more useful for some applications than constituency
parsers. ULISSE shows a promising performance
against the output of two supervised parsers se-
lected for their behavioral differences. In all experi-
ments, ULISSE outperforms all baselines, including
dPUPA and Sentence Length (SL), the latter repre-
senting a very strong baseline selection method in a
supervised scenario, where parsers have a very high
performance with short sentences. The fact of car-
rying out the task of reliable parse selection in a su-
pervised scenario represents an important novelty:
however, the unsupervised nature of ULISSE could
also be used in an unsupervised scenario (Reichart
and Rappoport, 2010). Current direction of research
include a careful study of a) the quality score func-
tion, in particular for what concerns the combination
of individual feature weights, and b) the role and ef-
fectivess of the set of linguistic features. This study
is being carried out with a specific view to NLP tasks
which might benefit from the ULISSE algorithm.
This is the case, for instance, of the domain adap-
tation task in a self–training scenario (McClosky et
al., 2006), of the treebank construction process by
minimizing the human annotators’ efforts (Reichart
and Rappoport, 2009b), of n–best ranking methods
for machine translation (Zhang, 2006).
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