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Abstract

WordsEye is a system for automatically converting natural language text into 3D scenes repre-

senting the meaning of that text. At the core of WordsEye is the Scenario-Based Lexical Knowledge

Resource (SBLR), a unified knowledge base and representational system for expressing lexical and

real-world knowledge needed to depict scenes from text. To enrich a portion of the SBLR, we need to

fill out some contextual information about its objects, including information about their typical parts,

typical locations and typical objects located near them. This paper explores our proposed method-

ology to achieve this goal. First we try to collect some semantic information by using Amazon’s

Mechanical Turk (AMT). Then, we manually filter and classify the collected data and finally, we

compare the manual results with the output of some automatic filtration techniques which use several

WordNet similarity and corpus association measures.

1 Introduction

WordsEye (Coyne and Sproat, 2001), (Coyne et al., 2010) is a system for automatically converting natural

language text into 3D scenes representing the meaning of that text. A version of WordsEye has been

tested online (www.wordseye.com) with several thousand real-world users. The system works by first

parsing each input sentence into a dependency structure. These dependency structures are then processed

to resolve anaphora and other coreferences. The lexical items and dependency links are then converted

to semantic nodes and roles drawing on lexical valence patterns and other information in the Scenario-

Based Lexical Knowledge Resource (SBLR) (Coyne et al., 2010). The resulting semantic relations are

then converted to a final set of graphical constraints representing the position, orientation, size, color,

texture, and poses of objects in the scene. Finally, the scene is composed from these constraints and

rendered in OpenGL (http://www.opengl.org).

The SBLR is the core of the text-to-scene conversion mechanism. It is a unified knowledge base and

representational system for expressing lexical and real-world knowledge needed to depict scenes from

text. The SBLR will ultimately include information on the semantic categories of words; the semantic

relations between predicates (verbs, nouns, adjectives, and prepositions) and their arguments; the types

of arguments different predicates typically take; additional contextual knowledge about the visual scenes

various events and activities occur in; and the relationship between this linguistic information and the 3D

objects in our objects library.

To enrich a portion of the SBLR we need to fill out some contextual information about several

hundred objects in WordsEye’s database, including information about their typical parts, typical location

and typical objects nearby them. Such information can in principle be extracted from online corpora

(e.g. Sproat (2001)), but such data is invariably noisy and requires hand editing. Furthermore, precisely

because much of the information is common sense it is rarely explicitly stated in text. Ontologies of

common sense information such as Cyc are effectively useless for extracting such information.

This paper explores our proposed methodology to achieve this goal. First we try to collect some

semantic information by Amazon’s Mechanical Turk (AMT). Then, we manually filter and classify the
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collected data and finally, we compare the manual results with the output of some automatic filtration

techniques which use WN similarity and corpus association measures.

2 Data collection from Amazon’s Mechanical Turk

Amazon’s Mechanical Turk is an online marketplace that provides a way to pay people small amounts

of money to perform tasks that are simple for humans but difficult for computers. Examples of these

Human Intelligence Tasks (HITs) range from labeling images to moderating blog comments to providing

feedback on the relevance of results for a search query. The highly accurate, cheap and efficient results

of several NLP tasks (Callison-Burch and Dredze, 2010) have encouraged us to explore using AMT.

We designed three separate tasks to collect information about typical nearby objects, typical location

and typical parts of the objects of our library. For task 1, we asked the workers to name 10 common

objects that they might typically find around or near a given object. For task 2, we asked the workers to

name 10 locations in which they might typically find a given object and in task 3, we asked the workers

to list 10 parts of a given object. Given that some objects might not consist of 10 parts, (i.e, they are

very simple objects), we wanted the worker to name as many parts as possible. We collected 17,200

responses from the AMT tasks and paid $106.90 overall for completion of the three tasks. Table 1 shows

a summary of the AMT tasks, payments, and completion time.

Task TW UI AA RPA EHR ACT

Objects 342 6850 2´ $0.05 $1.54 5

Locations 342 6850 2´ $0.05 $1.26 5

Parts 245 3500 1´ $0.07 $2.29 5

TW: Number of Target Words; UI: Number of User Inputs; AA: Average Time Per Assignment;

RPA: Reward Per Assignment; EHR: Effective Hourly Rate; ACT: Approximate Completion Days

Table 1: Summary of AMT tasks, payments and the completion time

The data that we collected in this step was in raw format. The next step was filtering out undesirable

data entered by the workers and mapping it into entities and relations contained within the SBLR.

3 Manual filtering and classifying the data

Data collected from AMT tasks was manually filtered via removal of undesirable target item-response

item pairs and classified via definition of the relations between the remaining target item-response item

pairs. Response items given in their plural form were lemmatized to the singular form of the word.

A total of 34 relations were defined within the Amazon Mechanical Turk data. Defining relations was

completed manually and determined by pragmatic cues about the relationship held between the target

item-response item pair. Restricting AMT workers to those within the United States ensured that actions

or items which might differ in their typically found location by cultural or geographical context were

restricted to the location(s) generally agreed upon by English speakers within the United States.

Generic, widely applicable relations were used in the general case for all sets of Mechanical Turk data

(e.g. the containment relation containing.r was used for generic instances of containment; the next-to.r

relation was used for target item-response item pairs for which the orientation of the items with respect to

one another was not a defining characteristic of their relationship). Finer distinctions were made within

these generic relations, e.g. habitat.r and residence.r within the overarching containment relation, which

specified that the relation held between two items was that of habitat or residence, respectively. More

semantically explicit relations were used for target item-response item pairs that tended to occur in more

specific relations. Specific relations of this type included those spatial relations from the following target

item-response item-relation triples:

javelin - dirt - embedded-in.r

binoculars - case - true-containing.r
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Another subsection of relations included functional relations such as those within the following

triples:

harmonica - hand - human-grip.r

earmuffs - head - wearing.r

Relation labels for meronymic (part-whole) relations were based off of already defined part-whole

classifications (Priss, 1996).

3.1 Data and results for each AMT task

Target item-response item pairs were usually rejected for misinterpretation of the potentially ambiguous

target item (e.g. misinterpreting mobile as a cell phone rather than as a decorative hanging structure,

prompting mobile - ear as an object-nearby object pair). Target item-response item pairs were also dis-

carded if the interpretation of the target item, though viable, was not contained within the SBLR library.

This was especially prevalent in instances where the target item was a plant or animal (e.g. crawfish)

that could be interpreted as either a live plant/animal or as food. With the exception of mushroom, the

SBLR does not contain the edible interpretation of these nouns; in the object-nearby object task, target

item-response item pairs such as crawfish - plate were discarded.

In the object-location task, the most common relation labels were derivatives of the generic spatial

containment relation. The containing.r relation accounted for 38.01% of all labeled target-response pairs;

habitat.r accounted for 11.02%, and on-surface.r accounted for 10.6%.

In the part-whole task, AMT workers provided responses that were predominantly labeled by part-

whole relations. When AMT responses were not relevant for part-whole relations, they tended to fall

under the generic containment relation. The object-part.r relation accounted for 79.12% of all labeled

target-response pairs; stuff-object.r accounted for 16.33%, and containing.r accounted for 1.48%.

As with the part-whole task, responses in the nearby objects task that were not relevant for the next-

to.r relation usually fell under the generic spatial containment relation. In the object-nearby object task,

the next-to.r relation was the most frequently utilized relation label, accounting for 75.66% of all target-

response pairs labeled. The on-surface.r relation was the second most common relation, with 5.69%,

and containing.r accounted for 4.44% of all labeled target-response pairs

4 Automatic filtering undesirable data

Manual processing of the data is a time-consuming and expensive approach. As a result, we are inves-

tigating different automatic techniques to filter out the undesirable responses from AMT, using current

manually annotated data as a gold standard for evaluation of automatic approaches.

4.1 WordNet Similarity measures

In the first approach, we computed some lexical similarity scores for the target and the response items

based on the following WN similarity measures. (It should be noted that not all of the target and responses

were present in WN. For such words, we used their nearest hypernyms).

WN Path Distance Similarity between each target word and each received response for that target

word. This score denotes how similar two word senses are, based on the shortest path that connects

the senses in the is-a (hypernym/hypnoym) taxonomy. We selected the maximum similarity score of

different senses of the target and the respond words.

Resnik Similarity between each target word and each of the received responses for that target word.

This score denotes how similar the two word senses are, based on the Information Content (IC) of the

Least Common Subsumer (most specific ancestor node) (Resnik, 1999).

The Average Pairwise Similarity Score which is computed based on WN path distance similarity

score. If we assume W1,W2...Wn to be n responses for target word T; and Sij to be the WN path distance

similarity between Wi and Wj , then the average pairwise similarity score for Wi will be Si1+Si2+...+Sin

n
.

This will provide us the average similarity of each response (i.e Wi) with the other responses (i.e. Wj
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so that i6= j). In this way we will reward the responses that are more semantically related to each other

(regardless of their similarity to the target word).

The WN Matrix Similarity which is a bag of words similarity matrix based on WN path distance

similarities. For target word T we have the following similarity matrix:

1 + S12 + ...+ S1n

S21 + 1 + ...+ S2n
...

Sn1 + Sn2 + ...+ Snn

In this matrix row i is the similarity vector of Wi represented as ~Vi = [Si1 + Si2 + ...+ Sin]. We

use cosine similarity to calculate the similarity measure of two words. So, the similarity measure of

Wi and Wj is the cosine of ~Vi and ~Vj and is computed by CSij = cos(θ) =
Vi.Vj

||Vi||.||Vj ||
. Then the WN

matrix similarity score of Wi will be CSi1+CSi2+...+CSin

n
. The more two words are semantically related

to similar set of words, the higher cosine similarity they will have. If a word is related to many different

words in the set, it will obtain higher WN matrix similarity score.

4.2 Corpus association measures

The next approach for filtering the raw data was finding association measures of target-response pairs

using Google’s 1-trillion 5-gram web corpus (LDC2006T13), by counting the frequency of each target

and response word in unigram and bigram portions of the corpus and then the number of times the two

words co-occur within a +/- 4-word window in the 5-gram portion of the corpus. We also computed the

sentential co-occurrences of each target-response pair (i.e. the number of sentences in which the target

or the response words appear and the number of sentences in which both words occur together) on the

English Gigaword corpus (LDC2007T07) which is a 1 billion word corpus of articles marked up from

English press texts (mainly the New York Times). Based on these counts, we used log-likelihood and

log-odds ratio (Dunning, 1993) to compute the association between the two words.

4.3 Discussion and evaluation of automatic filtaration techniques

The collected responses of each AMT task were ranked separately by each of the above similarity and

association measures. We classify the ranked responses into “keep” (higher-scoring) and “reject” (lower-

scoring) classes by defining a specific threshold for each list. Then we evaluated the accuracy of each

filtration approach by computing their precision and recall on correct “keep” items (see table 2). In this

table the baseline score shows the accuracy of the responses of each AMT task before using automatic

filtration techniques. It should be added that collecting data by using AMT is rather cheap and fast, so

we are more interested in higher precision (achieving highly accurate data) than higher recall. Lower

recall means we lose some data, which is not too expensive to collect.

Baseline Log-likelihood Log-odds WN Path Dist sim Resnik sim WN Pairwise sim WN Matrix sim

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

LOC 0.5527 1.0 0.7832 0.6690 0.7851 0.6684 0.5624 0.9724 0.5674 0.9784 0.6115 0.3657 0.4832 1.0

PAR 0.7887 1.0 0.7921 0.4523 0.8321 0.5022 0.8073 1.0 0.8234 1.0 0.9045 0.2859 0.9010 0.2516

OBJ 0.8934 1.0 0.9015 1.0 0.9286 0.9144 0.9123 1.0 0.9185 1.0 0.9855 0.3215 0.8925 1.0

Table 2: The accuracy of automatic filtering approaches

As can be seen in table 2, within the object-location data set, we gained the best precision (0.7832) by

using log-odds with relatively high recall (0.6690). Target-response pairs that were approved or rejected

contrary to automatic predictions were due primarily to the specificity of the response location.

In the part-whole task, the best precision (0.9010) was achieved by using WN matrix similarities

but again we lost a noticeable portion of data (recall= 0.2516). Rejected target-response pairs from the

higher-scoring part-whole set were often due to responses that named attributes, rather than parts, of

the target item (e.g. croissant - flaky). Many responses were too general (e.g, gong - material). Many

target-response pairs would have fallen under the next-to.r relation rather than any of the meronymic
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relations. The majority of the approved target-response pairs from the lower-scoring part-whole set were

due to obvious, “common sense responses that would usually be inferred rather than explicitly stated,

particularly body parts (e.g, bunny - brain).

The baseline accuracy of the nearby objects task is quite high (precision=0.8934, recall=1.0), and

we gain the best precision by using WN average pairwise similarity (0.9855) by removing lower-scoring

part of AMT responses (recall=0.3215). The high precision in all automatic techniques is due primarily

to the fact that the open-ended nature of the task resulted in a large number of target-response pairs that,

while not pertinent to the next-to.r relation, could be labeled by other relations. Again, the open-ended

nature of the nearby objects task resulted in the lowest percentage of rejected high-scoring pairs.

5 Conclusions

In this paper, we investigated the use Amazon’s Mechanical Turk for collecting semantic information for

a portion of our lexical knowledge resource. Manual evaluation of the AMT responses (baseline results

in table 2) confirms that we can collect highly accurate data in a cheap and efficient way by using AMT.

The accuracy of automatic filtration techniques sounds promising as we were able to filter out some

undesirable data, most of the time without loosing so much of collected responses.

Overall, we have shown a method which is very good in collecting semantic information and some

other methods which are very good at filtering out word pairs that are undesirable in this particular context

(i.e locations, nearby object and parts of our object library). This approach seems to have the potential

to be extended for more contexts. For the future work, we are planning to apply this methodology to

collect semantic information about action verbs, such as information about the locations of the action,

the participants, their relation to each other, the background objects and so on.
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