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Abstract

We present a method for training a statistical model for nrappatural language sentences to
semantic expressions. The semantics are expressions nflarspecified logical form that has prop-
erties making it particularly suitable for statistical npaqm from text. An encoding of the semantic
expressions into dependency trees with automatically rgéed labels allows application of exist-
ing methods for statistical dependency parsing to the mapiaisk (without the need for separate
traditional dependency labels or parts of speech). Thediéngalso results in a natural per-word
semantic-mapping accuracy measure. We report on thesesuitining and testing statistical mod-
els for mapping sentences of the Penn Treebank into the $ieneapressions, for which per-word
semantic mapping accuracy ranges between 79% and 86% degemdthe experimental condi-
tions. The particular choice of algorithms used also melaatsdur trained mapping is deterministic
(in the sense of deterministic parsing), paving the waydagé-scale text-to-semantic mapping.

1 Introduction

Producing semantic representations of text is motivated not only by thesdreticsiderations but also
by the hypothesis that semantics can be used to improve automatic systemsstiaaske intrinsically
semantic in nature such as question answering, textual entailment, machsiativan and more gen-
erally any natural language task that might benefit from inference irr tvdaore closely approximate
human performance. Since formal logics have formal denotational ses\aamid are good candidates
for supporting inference, they have often been taken to be the targetsafgping text to semantic
representations, with frameworks emphasizing (more) tractable infeokioosing first order predicate
logic (Stickel, 1985) while those emphasizing representational powerifigvone of the many available
higher order logics (van Benthem, 1995).

It was later recognized that in order to support some tasks, fully sjpegifertain aspects of a logic
representation, such as quantifier scope, or reference resolutdterinot necessary. For example, for
semantic translation, most ambiguities of quantifier scope can be carriett@avethe source language
to the target language without being resolved. This led to the developmendefspecified semantic
representations (e.g. QLF, Alshawi and Crouch (1992) and MRS, stalge et al (2005)) which are
easier to produce from text without contextual inference but whichbeaiurther specified as necessary
for the task being performed.

While traditionally mapping text to formal representations was predominantiyoaged, for both
the syntactic and semantic components (Montague (1973), Pereira andrghihy), Alshawi (1992)),
good progress in statistical syntactic parsing (e.g. Collins (1999), Gthaf2000)) led to systems that
applied rules for semantic interpretation to the output of a statistical syntacterp@.g. Bos et al.
(2004)). More recently researchers have looked at statistical metbquevide robust and trainable
methods for mapping text to formal representations of meaning (ZettlemogeéZaltins, 2005).

In this paper we further develop the two strands of work mentioned albh@emapping text to
underspecified semantic representations and using statistical parsingdsmahmerform the analysis.
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Here we take a more direct route, starting from scratch by designingdarspecified semantic repre-
sentation (Natural Logical Form, or NLF) that is purpose-built for staistiext-to-semantics mapping.
An underspecified logic whose constructs are motivated by natural dgegand that is amenable to
trainable direct semantic mapping from text without an intervening layerragsyic representation. In
contrast, the approach taken by (Zettlemoyer and Collins, 2005), for dxamaps into traditional logic
via lambda expressions, and the approach taken by (Poon and Domif@83,d2pends on an initial
step of syntactic parsing.

In this paper, we describe a supervised training method for mapping textFpthit is, producing
a statistical model for this mapping starting from training pairs consisting aésees and their corre-
sponding NLF expressions. This method makes use of an encoding oédirEssions into dependency
trees in which the set of labels is automatically generated from the encodingssr(rather than being
pre-supplied by a linguistically motivated dependency grammar). This engatiows us to perform the
text-to-NLF mapping using any existing statistical methods for labeled depeyngarsing (e.g. Eisner
(1996), Yamada and Matsumoto (2003), McDonald, Crammer, Perei@b)YR0A side benefit of the
encoding is that it leads to a natural per-word measure for semantic maauingacy which we use for
evaluation purposes. By combing our method with deterministic statistical dapgna®dels together
with deterministic (hard) clusters instead of parts of speech, we obtain anitgic statistical text-to-
semantics mapper, opening the way to feasible mapping of text-to-semantlasggt scale, for example
the entire web.

This paper concentrates on the text-to-semantics mapping which depepald, on some properties
of NLF. We will not attempt to defend the semantic representation choicespéaific constructions il-
lustrated here. NLF is akin to a variable-free variant of QLF or an MRShitlwvsome handle constraints
are determined during parsing. For the purposes of this paper it is suffizieote that NLF has roughly
the same granularity of semantic representation as these earlier undexdpepresentations.

We outline the steps of our text-to-semantics mapping method in Section 2, irgrdidikcin Sec-
tion 3, explain the encoding of NLF expressions as formal dependesey itn Section 4, and report on
experiments for training and testing statistical models for mapping text to NLfessipns in Section 5.

2 Direct Semantic Mapping

Our method for mapping text to natural semantics expressions procefalloas:

1. Create a corpus of pairs consisting of text sentences and theirpmmmoésg NLF semantic ex-
pressions.

2. For each of the sentence-semantics pairs in the corpus, align theafittidsentence to the tokens
of the NLF expressions.

3. “Encode” each alignment pair as an ordered dependency tree ih thigidabels are generated by
the encoding process.

4. Train a statistical dependency parsing model with the set of depgntiers.

5. For a new input sentencg apply the statistical parsing model £y producing a labeled depen-
dency treeDg.

6. “Decode”Dg into a semantic expression 6t

For step 1, the experiments in this paper (Section 5) obtain the corpus fgriog an existing
constituency treebank into semantic expressions. However, dirediadioncof a corpus with semantic
expressionss a viable alternative, and indeed we are separately exploring that posdimiléydifferent,
open domain, text corpus.
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For steps 4 and 5, any method for training and applying a dependency friodel corpus of labeled
dependency trees may be used. As described in Section 5, for thénesptsrreported here we use an
algorithm similar to that of Nivre (2003).

For steps 2, 3 and 6, the encoding of NLF semantic expressions asdéepgrirees with automati-
cally constructed labels is described in Section 4.

3 Semantic Expressions

NLF expressions are by design amenable to facilitating training of text-torgemanappings. For this
purpose, NLF has a number of desirable properties:

1. Apart from a few built-in logical connectives, all the symbols appeginnNLF expressions are
natural language words.

2. For an NLF semantic expression corresponding to a sentence, thdetakens of the sentence
appear exactly once in the NLF expression.

3. The NLF notation is variable-free.

Technically, NLF expressions are expression of an underspecifjied ie®. a semantic representation
that leaves open the interpretation of certain constructs (for exampledpe st quantifiers and some
operators and the referents of terms such as anaphora, and certain irefdidiins such as those for
compound nominals). NLF is similar in some ways to Quasi Logical Form, or QLsh@hvi, 1992), but
the properties listed above keep NLF closer to natural language tharh®h&enatural logical form.®
There is no explicit formal connection between NLF and Natural Logio @anthem, 1986), though it
may turn out that NLF is a convenient starting point for some Natural Lo@gcences.

In contrast to statements of a fully specified logic in which denotations areatiypiaken to be
functionsfrom possible worlds to truth values (Montague, 1973), denotationstatensent in an under-
specified logic are typically taken to bbelationsbetween possible worlds and truth values (Alshawi and
Crouch (1992), Alshawi (1996)). Formal denotations for NLF egpi@ns are beyond the scope of this
paper and will be described elsewhere.

3.1 Connectives and Examples
A NLF expression for the sentence

In 2002, Chirpy Systems stealthily acquired two profitable companiesipirgl pet acces-
sories.

is shown in Figure 1.

The NLF constructs and connectives are explained in Table 1. For lefiale abstraction, an NLF
expressiorip, ~, a] corresponds tdz.p(x, a). Note that some common logical operators are not
built-in since they will appear directly as words suchas.? We currently use the unknown/unspecified
operator,% mainly for linguistic constructions that are beyond the coverage of a plartisamantic
mapping model. A simple example that includés our converted WSJ corpus @ther analysts are
nearly as pessimistifor which the NLF expression is

[are, analysts.other, pessimistic%nearly%as]

In Section 5 we give some statistics on the number of semantic expressidamiowoin the data used
for our experiments and explain how it affects our accruracy results.

The term QLF is now sometimes used informally (e.g. Liakata and Puln@d2)2Poon and Domingos (2009)) for any
logic-like semantic representation without explicit quantifier scope.

2NLF does include Horn clauses, which implictly encode negation, but $ioce clauses are not part of the experiments
reported in this paper, we will not discuss them further here.
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[acquired
[stealthily
:[in, 7, 2002],
Chirpy+Systems,
companies.two

:profitable
:[producing,
pet+accessories]]
Figure 1: Example of an NLF semantic expression.

Operator Example Denotation L anguage Constructs
[...] [sold, Chirpy, Growler] predication tuple clauses, prepositions, ...
: company:profitable intersection adjectives, relative clauses, ...
. companies.two (unscoped) quantification  determiners, measure terms
" [in, °, 2005] variable-free abstract prepositions, relatives, ...
_ [eating, _, apples] unspecified argument missing verb arguments, ...
{.} and{Chirpy, Growler} collection noun phrase coordination, ...
/ acquired/stealthily type-preserving operator  adverbs, modals, ...
+ Chirpy+Systems implicit relation compound nominals, ...
@ meeting@yesterday temporal restriction bare temporal modifiers, ...
& [...] & [..] conjunction sentences, ...
[ [Dublin, Paris, Bonn| sequence paragraphs, fragments, lists, ...
% met%as uncovered op constructs not covered

Table 1: NLF constructs and connectives.

4 Encoding Semantics as Dependencies

We encode NLF semantic expressions as labeled dependency trees lintéhiabel set is generated
automatically by the encoding process. This is in contrast to conventiopahdency trees for which

the label sets are presupplied (e.g. by a linguistic theory of dependeagynar). The purpose of
the encoding is to enable training of a statistical dependency parser anerting the output of that

parser for a new sentence into a semantic expression. The encodihgitloee aspects: Alignment,
headedness, and label construction.

4.1 Alignment

Since, by design, each word token corresponds to a symbol tokeraftieewgord type) in the NLF ex-
pression, the only substantive issue in determining the alignment is the owm@émultiple tokens
of the same word type in the sentence. Depending on the source of thaceehteF pairs used for
training, a particular word in the sentence may or may not already be asslogittidts corresponding
word position in the sentence. For example, in some of the experiments ckjpoittés paper, this corre-
spondence is provided by the semantic expressions obtained by cognedimstituency treebank (the
well-known Penn WSJ treebank). For situations in which the pairs arédaawithout this informa-
tion, as is the case for direct annotation of sentences with NLF expressiercurrently use a heuristic
greedy algorithm for deciding the alignment. This algorithm tries to ensurelépendents are near their
heads, with a preference for projective dependency trees. To guagmportance of including correct
alignments in the input pairs (as opposed to training with inferred alignmergsyjilpresent accuracy
results for semantic mapping for both correct and automatically infererrathadigts.
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4.2 Headedness

The encoding requires a definition of headedness for words in an kfession, i.e., a head-function
h from dependent words to head words. We defina terms of a head-functiog from an NLF
(sub)expression to a wordw appearing in that (sub)expression, so that, recursively:

Then a head word(w) for a dependentv is defined in terms of the smallest (sub)expression
containingw for which

h(w) = gle) # w

For example, for the NLF expression in Figure 1, this yields the heads sinciable 3. (The labels
shown in that table will be explained in the following section.)

This definition of headedness is not the only possible one, and othetimasiaould be argued for.
The specific definition for NLF heads turns out to be fairly close to the naifdmead in traditional
dependency grammars. This is perhaps not surprising since traditigpahdency grammars are often
partly motivated by semantic considerations, if only informally.

4.3 Labed Construction

As mentioned, the labels used during the encoding of a semantic expregsiand@pendency tree are
derived so as to enable reconstruction of the expression from a latheeshdency tree. In a general
sense, the labels may be regarded as a kind of formal semantic label, thougkpecifically, a label is
interpretable as a sequence of instructions for constructing the pageshantic expression that links a
dependent to its head, given that part of the semantic expression,inghhat derived from the head,
has already been constructed. The string for a label thus consisteqltiaree of atomic instructions,
where the decoder keeps track of a current expression and the phtieat expression in the expression
tree being constructed. When a new expression is created it becomesrdre expression whose parent
is the old current expression. The atomic instructions (each expregsedibgle character) are shown
in Table 2.

A sequence of instructions in a label can typically (but not always) bapbaased informally as
“starting from head wordy;,, move to a suitable node (at or abavg) in the expression tree, add speci-
fied NLF constructs (connectives, tuples, abstracted arguments)emedbhw, as a tuple or connective
argument.”

Continuing with our running example, the labels for each of the words anersim Table 3.

Algorithmically, we find it convenient to transform semantic expressions iapeddency trees and
vice versa via a derivation tree for the semantic expression in which the atwtriection symbols listed
above are associated with individual nodes in the derivation tree.

The output of the statistical parser may contain inconsistent trees with féabels, in particular
trees in which two different arguments are predicated to fill the same positems@mantic expression
tuple. For such cases, the decoder that produces the semantic expesgsies the simple heuristic
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Instruction

Decoding action

[ {1

:1/1-1+1&1@%

Set the current expression to a
newly created tuple, collection,

or sequence.

Attach the current subexpression
to its parent with the specified
connective.

Set the current expression to a
newly created symbol from the
dependent word.

Add the current expression at the
specified parent tuple position.

Set the current subexpression to

a newly created abstracted-over or
unspecfied argument.

Set the current subexpression to be
the parent of the current expression.

Table 2: Atomic instructions in formal label sequences.

Dependent Head Label

In acquired [F1- =0
2002 in -*2
Chirpy Systems  *+
Systems acquired -=*1
stealthily acquired =/
acquired [+0

two companies *.
profitable companies *:
companies acquired -=*2
producing  companies [:"1- *0
pet accessories * +
accessories producing - * 2

Table 3: Formal labels for an example sentence.
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Dataset Null Labels? Auto Align? WSJ sections Sentences

Train+Null-AAlign  yes no 2-21 39213
Train-Null-AAlign  no no 2-21 24110
Train+Null+AAlign  yes yes 2-21 35778
Train-Null+AAlign  no yes 2-21 22611
Test+Null-AAlign yes no 23 2416
Test-Null-AAlign no no 23 1479

Table 4: Datasets used in experiments.

of using the next available tuple position when such a conflicting configuréipredicated. In our
experiments, we are measuring per-word semantic head-and-labeh@gccso this heuristic does not
play a part in that evaluation measure.

5 Experiments

5.1 Data Preparation

In the experiments reported here, we derive our sentence-semantg$opdraining and testing from
the Penn WSJ Treebank. This choice reflects the lack, to our knowleflgeset of such pairs for a
reasonably sized publicly available corpus, at least for NLF expressiOur first step in preparing the
data was to convert the WSJ phrase structure trees into semantic expgesdiis conversion is done
by programming the Stanford treebank toolkit to produce NLF trees bottofrenmpthe phrase structure
trees. This conversion process is not particularly noteworthy in itseifi@be traditional rule-based
syntax-to-semantics translation process) except perhaps to the eatdahttbloseness of NLF to natural
language perhaps makes the conversion somewhat easier thannsaysiom to a fully resolved logical
form.

Since our main goal is to investigate trainable mappings from text strings to Seragpressions,
we only use the WSJ phrase structure trees in data preparation: the ptrtecture trees are not used as
inputs when training a semantic mapping model, or when applying such a model.eFsartte reason,
in these experiments, we do not use the part-of-speech informatioriateslowith the phrase structure
trees in training or applying a semantic mapping model. Instead of parts-etispes use word cluster
features from a hierarchical clustering produced with the unsupersmavn clustering method (Brown
et al, 1992); specifically we use the publicly available clusters reporteddingkal. (2008).

Constructions in the WSJ that are beyond the explicit coverage of theision rules used for data
preparation result in expressions that include the unknown/unspefiédull’) operator% We report
on different experimental settings in which we vary how we treat trainintpsting expressions with
% This gives rise to the data sets in Table 4 which have +Null (i.e., inclu#ngnd -Null (i.e., not
including?) in the data set names.

Another attribute we vary in the experiments is whether to align the words inthergie expressions
to the words in the sentence automatically, or whether to use the correct atigfimiis case preserved
from the conversion process, but could equally be provided as parintanual semantic annotation
scheme, for example). In our current experiments, we discard rajaetive dependency trees from
training sets. Automatic alignment results in additional non-projective treesggise to different
effective training sets when auto-alignment is used: these sets are nwitketAAlign, otherwise -
AAlign. The training set numbers shown in Table 4 are the resulting setsafteval of non-projective
trees.
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Training Test Accuracy(%)
+Null-AAlign  +Null-AAlign  81.2
-Null-AAlign  +Null-AAlign  78.9
-Null-AAlign  -Null-AAlign  86.1
+Null-AAlign  -Null-AAlign  86.5

Table 5: Per-word semantic accuracy when training with the correct aliginme

Training Test Accuracy(%)
+Null+AAlign  +Null-AAlign  80.4
-Null+AAlign  +Null-AAlign  78.0
-Null+AAlign  -Null-AAlign  85.5
+Null+AAlign  -Null-AAlign  85.8

Table 6: Per-word semantic accuracy when training with an auto-alignment.

5.2 Parser

As mentioned earlier, our method can make use of any trainable statisticadésyy parsing algorithm.
The parser is trained on a set of dependency trees with formal labekplased in Sections 2 and 4.
The specific parsing algorithm we use in these experiments is a deterministiceshifte algorithm
(Nivre, 2003), and the specific implementation of the algorithm uses a linglslr Fssifier for predict-
ing parsing actions (Chang et al., 2010). As noted above, hierardicsdér features are used instead
of parts-of-speech; some of the features use coarse (6-bit) or(fidsit) clusters from the hierarchy.
More specifically, the full set of features is:

e The words for the current and next input tokens, for the top of the&kstaw for the head of the
top of the stack.

e The formal labels for the top-of-stack token and its leftmost and rightmost ehilémd for the
leftmost child of the current token.

e The cluster for the current and next three input tokens and for theftthe stack and the token
below the top of the stack.

e Pairs of features combining 6-bit clusters for these tokens together withit £Risters for the top
of stack and next input token.

5.3 Results

Tables 5 and 6 show thger-word semantic accuradgr different training and test sets. This measure is
simply the percentage of words in the test set for which both the predictecftabel and the head word
are correct. In syntactic dependency evaluation terminology, this comdspo the labeled attachment
score.

All tests are with respect to the correct alignment; we vary whether theaatlignment (Table 5)
or auto-alignment (Table 6) is used for training to give an idea of how mucheuristic alignment
is hurting the semantic mapping model. As shown by comparing the two tables, ¢him lascuracy
due to using the automatic alignment is only about 1%, so while the automatic aligalgerithm can
probably be improved, the resulting increase in accuracy would be réyediveall.

As shown in the Tables 5 and 6, two versions of the test set are usedhatriacludes the 'Null’
operator% and a smaller test set with which we are testing only the subset of senfenedsich the
semantic expressions do not include this label. The highest accuracie8@isjcshown are for the
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#Labels #Train Sents Accuracy(%)

151 (all) 22611 85.5
100 22499 85.5
50 21945 85.5
25 17669 83.8
12 7008 73.4

Table 7: Per-word semantic accuracy after pruning label sets in TralirAAlign (and testing with
Test-Null-AAlign).

(easier) test set which excludes examples in which the test semanticeapsesontain Null operators.
The strictest settings, in which semantic expressions with Null are not irctindeaining but included
in the test set effectively treat prediction of Null operators as eribs. lower accuracy (high 70’s) for
such stricter settings thus incorporates a penalty for our incomplete gevefgdemantics for the WSJ
sentences. The less strict Test+Null settings in whigh treated as a valid output may be relevant to
applications that can tolerate some unknown operators between sudmapsan the output semantics.
Next we look at the effect of limiting the size of the automatically generated fidabal set prior
to training. For this we take the configuration using the TrainWSJ-Null+AAligiming set and the
TestWSJ-Null-AAlign test set (the third row in Table refPerWordSemanto#acyAAlign for which
auto-alignment is used and only labels without the NULL operééare included). For this training
set there are 151 formal labels. We then limit the training set to instancesrtlyainolude the most
frequentk labels, fork = 100, 50, 25, 12, while keeping the test set the same. As can be seen in Table 7,
the accuracy is unaffected when the training set is limited to the 100 mosefrequ50 most frequent
labels. There is a slight loss when training is limited to 25 labels and a large logs Iintited to 12
labels. This appears to show that, for this corpus, the core label setchézdonstruct the majority
of semantic expressions has a size somewhere between 25 and 50. hapgmteresting that this is
roughly the size of hand-produced traditional dependency label ®gtshe other hand, it needs to be
emphasized that since Table 7 ignores beyond-coverage construbtdpsesently include Null labels,
it is likely that a larger label set would be needed for more complete semamécage.

6 Conclusion and Further Work

We've shown that by designing an underspecified logical form that is/atetd by, and closely related to,
natural language constructions, it is possible to train a direct statisticalingajppm pairs of sentences
and their corresponding semantic expressions, with per-word agesiranging from 79% to 86% de-
pending on the strictness of the experimental setup. The input to trainisgdbesquire any traditional
syntactic categories or parts of speech. We also showed, more splgcifica we can train a model that
can be applied deterministically at runtime (using a deterministic shift reduce algaritmbined with
deterministic clusters), making large-scale text-to-semantics mapping feasible.

In traditional formal semantic mapping methods (Montague (1973), Bos €2G04)), and even
some recent statistical mapping methods (Zettlemoyer and Collins, 2005)nthetserepresentation is
overloaded to performs two functions: (i) representing the final meaaimg)(ii) composing meanings
from the meanings of subconstituents (e.g. through application of higtler l’imbda functions). In our
view, this leads to what are perhaps overly complex semantic represestatisnme basic linguistic
constructions. In contrast, in the method we presented, these two csifseraning representation and
semantic construction) are separated, enabling us to keep the semanticstitients simple, while
turning the construction of semantic expressions into a separate strutgaraohg problem (with its
own internal prediction and decoding mechanisms).

Although, in the experiments we reported here deeprepare the training data from a traditional
treebank, we are encouraged by the results and believe that annofagi@ompus with only semantic
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expressions is sufficient for building an efficient and reasonablyrate text-to-semantics mapper. In-
deed, we have started building such a corpus for a question answeptigation, and hope to report
results for that corpus in the future. Other further work includes a fodeabtational semantics of the
underspecified logical form and elaboration of practical inferenegaijpns with the semantic expres-
sions. This work may also be seen as a step towards viewing semantic itaeopref language as the
interaction between a pattern recognition process (described herahamigrence process.
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