
Deterministic Statistical Mapping of
Sentences to Underspecified Semantics

Hiyan Alshawi
Google, Inc.

(hiyan@google.com)

Pi-Chuan Chang
Google, Inc.

(pichuan@google.com)

Michael Ringgaard
Google, Inc.

(ringgaard@google.com)

Abstract

We present a method for training a statistical model for mapping natural language sentences to
semantic expressions. The semantics are expressions of an underspecified logical form that has prop-
erties making it particularly suitable for statistical mapping from text. An encoding of the semantic
expressions into dependency trees with automatically generated labels allows application of exist-
ing methods for statistical dependency parsing to the mapping task (without the need for separate
traditional dependency labels or parts of speech). The encoding also results in a natural per-word
semantic-mapping accuracy measure. We report on the results of training and testing statistical mod-
els for mapping sentences of the Penn Treebank into the semantic expressions, for which per-word
semantic mapping accuracy ranges between 79% and 86% depending on the experimental condi-
tions. The particular choice of algorithms used also means that our trained mapping is deterministic
(in the sense of deterministic parsing), paving the way for large-scale text-to-semantic mapping.

1 Introduction

Producing semantic representations of text is motivated not only by theoretical considerations but also
by the hypothesis that semantics can be used to improve automatic systems for tasks that are intrinsically
semantic in nature such as question answering, textual entailment, machine translation, and more gen-
erally any natural language task that might benefit from inference in order to more closely approximate
human performance. Since formal logics have formal denotational semantics, and are good candidates
for supporting inference, they have often been taken to be the targets for mapping text to semantic
representations, with frameworks emphasizing (more) tractable inferencechoosing first order predicate
logic (Stickel, 1985) while those emphasizing representational power favoring one of the many available
higher order logics (van Benthem, 1995).

It was later recognized that in order to support some tasks, fully specifying certain aspects of a logic
representation, such as quantifier scope, or reference resolution, isoften not necessary. For example, for
semantic translation, most ambiguities of quantifier scope can be carried overfrom the source language
to the target language without being resolved. This led to the development ofunderspecified semantic
representations (e.g. QLF, Alshawi and Crouch (1992) and MRS, Copestake et al (2005)) which are
easier to produce from text without contextual inference but which canbe further specified as necessary
for the task being performed.

While traditionally mapping text to formal representations was predominantly rule-based, for both
the syntactic and semantic components (Montague (1973), Pereira and Shieber (1987), Alshawi (1992)),
good progress in statistical syntactic parsing (e.g. Collins (1999), Charniak (2000)) led to systems that
applied rules for semantic interpretation to the output of a statistical syntactic parser (e.g. Bos et al.
(2004)). More recently researchers have looked at statistical methodsto provide robust and trainable
methods for mapping text to formal representations of meaning (Zettlemoyer and Collins, 2005).

In this paper we further develop the two strands of work mentioned above,i.e. mapping text to
underspecified semantic representations and using statistical parsing methods to perform the analysis.

15

Here we take a more direct route, starting from scratch by designing an underspecified semantic repre-
sentation (Natural Logical Form, or NLF) that is purpose-built for statistical text-to-semantics mapping.
An underspecified logic whose constructs are motivated by natural language and that is amenable to
trainable direct semantic mapping from text without an intervening layer of syntactic representation. In
contrast, the approach taken by (Zettlemoyer and Collins, 2005), for example, maps into traditional logic
via lambda expressions, and the approach taken by (Poon and Domingos, 2009) depends on an initial
step of syntactic parsing.

In this paper, we describe a supervised training method for mapping text to NLF, that is, producing
a statistical model for this mapping starting from training pairs consisting of sentences and their corre-
sponding NLF expressions. This method makes use of an encoding of NLFexpressions into dependency
trees in which the set of labels is automatically generated from the encoding process (rather than being
pre-supplied by a linguistically motivated dependency grammar). This encoding allows us to perform the
text-to-NLF mapping using any existing statistical methods for labeled dependency parsing (e.g. Eisner
(1996), Yamada and Matsumoto (2003), McDonald, Crammer, Pereira (2005)). A side benefit of the
encoding is that it leads to a natural per-word measure for semantic mappingaccuracy which we use for
evaluation purposes. By combing our method with deterministic statistical dependency models together
with deterministic (hard) clusters instead of parts of speech, we obtain a deterministic statistical text-to-
semantics mapper, opening the way to feasible mapping of text-to-semantics at alarge scale, for example
the entire web.

This paper concentrates on the text-to-semantics mapping which depends, inpart, on some properties
of NLF. We will not attempt to defend the semantic representation choices forspecific constructions il-
lustrated here. NLF is akin to a variable-free variant of QLF or an MRS in which some handle constraints
are determined during parsing. For the purposes of this paper it is sufficient to note that NLF has roughly
the same granularity of semantic representation as these earlier underspecified representations.

We outline the steps of our text-to-semantics mapping method in Section 2, introduce NLF in Sec-
tion 3, explain the encoding of NLF expressions as formal dependency trees in Section 4, and report on
experiments for training and testing statistical models for mapping text to NLF expressions in Section 5.

2 Direct Semantic Mapping

Our method for mapping text to natural semantics expressions proceeds asfollows:

1. Create a corpus of pairs consisting of text sentences and their corresponding NLF semantic ex-
pressions.

2. For each of the sentence-semantics pairs in the corpus, align the wordsof the sentence to the tokens
of the NLF expressions.

3. “Encode” each alignment pair as an ordered dependency tree in which the labels are generated by
the encoding process.

4. Train a statistical dependency parsing model with the set of dependency trees.

5. For a new input sentenceS, apply the statistical parsing model toS, producing a labeled depen-
dency treeDS .

6. “Decode”DS into a semantic expression forS.

For step 1, the experiments in this paper (Section 5) obtain the corpus by converting an existing
constituency treebank into semantic expressions. However, direct annotation of a corpus with semantic
expressionsis a viable alternative, and indeed we are separately exploring that possibilityfor a different,
open domain, text corpus.

16

For steps 4 and 5, any method for training and applying a dependency modelfrom a corpus of labeled
dependency trees may be used. As described in Section 5, for the experiments reported here we use an
algorithm similar to that of Nivre (2003).

For steps 2, 3 and 6, the encoding of NLF semantic expressions as dependency trees with automati-
cally constructed labels is described in Section 4.

3 Semantic Expressions

NLF expressions are by design amenable to facilitating training of text-to-semantics mappings. For this
purpose, NLF has a number of desirable properties:

1. Apart from a few built-in logical connectives, all the symbols appearing in NLF expressions are
natural language words.

2. For an NLF semantic expression corresponding to a sentence, the word tokens of the sentence
appear exactly once in the NLF expression.

3. The NLF notation is variable-free.

Technically, NLF expressions are expression of an underspecified logic, i.e. a semantic representation
that leaves open the interpretation of certain constructs (for example the scope of quantifiers and some
operators and the referents of terms such as anaphora, and certain implicitrelations such as those for
compound nominals). NLF is similar in some ways to Quasi Logical Form, or QLF (Alshawi, 1992), but
the properties listed above keep NLF closer to natural language than QLF,hencenatural logical form. 1

There is no explicit formal connection between NLF and Natural Logic (van Benthem, 1986), though it
may turn out that NLF is a convenient starting point for some Natural Logic inferences.

In contrast to statements of a fully specified logic in which denotations are typically taken to be
functionsfrom possible worlds to truth values (Montague, 1973), denotations of a statement in an under-
specified logic are typically taken to berelationsbetween possible worlds and truth values (Alshawi and
Crouch (1992), Alshawi (1996)). Formal denotations for NLF expressions are beyond the scope of this
paper and will be described elsewhere.

3.1 Connectives and Examples

A NLF expression for the sentence

In 2002, Chirpy Systems stealthily acquired two profitable companies producing pet acces-
sories.

is shown in Figure 1.
The NLF constructs and connectives are explained in Table 1. For variable-free abstraction, an NLF

expression[p, ˆ, a] corresponds toλx.p(x, a). Note that some common logical operators are not
built-in since they will appear directly as words such asnot.2 We currently use the unknown/unspecified
operator,%, mainly for linguistic constructions that are beyond the coverage of a particular semantic
mapping model. A simple example that includes%in our converted WSJ corpus isOther analysts are
nearly as pessimisticfor which the NLF expression is

[are, analysts.other, pessimistic%nearly%as]

In Section 5 we give some statistics on the number of semantic expressions containing%in the data used
for our experiments and explain how it affects our accruracy results.

1The term QLF is now sometimes used informally (e.g. Liakata and Pulman (2002), Poon and Domingos (2009)) for any
logic-like semantic representation without explicit quantifier scope.

2NLF does include Horn clauses, which implictly encode negation, but sinceHorn clauses are not part of the experiments
reported in this paper, we will not discuss them further here.

17

[acquired
/stealthily
:[in, ˆ, 2002],

Chirpy+Systems,
companies.two

:profitable
:[producing,

ˆ,
pet+accessories]]

Figure 1: Example of an NLF semantic expression.

Operator Example Denotation Language Constructs
[...] [sold, Chirpy, Growler] predication tuple clauses, prepositions, ...
: company:profitable intersection adjectives, relative clauses, ...
. companies.two (unscoped) quantification determiners, measure terms
ˆ [in, ˆ, 2005] variable-free abstract prepositions, relatives, ...
_ [eating, _, apples] unspecified argument missing verb arguments, ...
{...} and{Chirpy, Growler} collection noun phrase coordination, ...
/ acquired/stealthily type-preserving operator adverbs, modals, ...
+ Chirpy+Systems implicit relation compound nominals, ...
@ meeting@yesterday temporal restriction bare temporal modifiers, ...
& [...] & [...] conjunction sentences, ...
|...| |Dublin, Paris, Bonn| sequence paragraphs, fragments, lists, ...
% met%as uncovered op constructs not covered

Table 1: NLF constructs and connectives.

4 Encoding Semantics as Dependencies

We encode NLF semantic expressions as labeled dependency trees in which the label set is generated
automatically by the encoding process. This is in contrast to conventional dependency trees for which
the label sets are presupplied (e.g. by a linguistic theory of dependency grammar). The purpose of
the encoding is to enable training of a statistical dependency parser and converting the output of that
parser for a new sentence into a semantic expression. The encoding involves three aspects: Alignment,
headedness, and label construction.

4.1 Alignment

Since, by design, each word token corresponds to a symbol token (the same word type) in the NLF ex-
pression, the only substantive issue in determining the alignment is the occurrence of multiple tokens
of the same word type in the sentence. Depending on the source of the sentence-NLF pairs used for
training, a particular word in the sentence may or may not already be associated with its corresponding
word position in the sentence. For example, in some of the experiments reported in this paper, this corre-
spondence is provided by the semantic expressions obtained by converting a constituency treebank (the
well-known Penn WSJ treebank). For situations in which the pairs are provided without this informa-
tion, as is the case for direct annotation of sentences with NLF expressions, we currently use a heuristic
greedy algorithm for deciding the alignment. This algorithm tries to ensure thatdependents are near their
heads, with a preference for projective dependency trees. To guagethe importance of including correct
alignments in the input pairs (as opposed to training with inferred alignments), we will present accuracy
results for semantic mapping for both correct and automatically infererred alignments.

18

4.2 Headedness

The encoding requires a definition of headedness for words in an NLF expression, i.e., a head-function
h from dependent words to head words. We defineh in terms of a head-functiong from an NLF
(sub)expressione to a wordw appearing in that (sub)expression, so that, recursively:

g(w) = w
g([e1, ..., en]) = g(e1)
g(e1 : e2) = g(e1)
g(e1.e2) = g(e1)
g(e1/e2) = g(e1)
g(e1@e2) = g(e1)
g(e1&e2) = g(e1)
g(|e1, ..., en|) = g(e1)
g(e1{e2, ..., en}) = g(e1)
g(e1 + ...+ en) = g(en)
g(e1%e2) = g(e1)

Then a head wordh(w) for a dependentw is defined in terms of the smallest (sub)expressione
containingw for which

h(w) = g(e) 6= w

For example, for the NLF expression in Figure 1, this yields the heads shownin Table 3. (The labels
shown in that table will be explained in the following section.)

This definition of headedness is not the only possible one, and other variations could be argued for.
The specific definition for NLF heads turns out to be fairly close to the notionof head in traditional
dependency grammars. This is perhaps not surprising since traditional dependency grammars are often
partly motivated by semantic considerations, if only informally.

4.3 Label Construction

As mentioned, the labels used during the encoding of a semantic expression into a dependency tree are
derived so as to enable reconstruction of the expression from a labeleddependency tree. In a general
sense, the labels may be regarded as a kind of formal semantic label, thoughmore specifically, a label is
interpretable as a sequence of instructions for constructing the part of asemantic expression that links a
dependent to its head, given that part of the semantic expression, including that derived from the head,
has already been constructed. The string for a label thus consists of a sequence of atomic instructions,
where the decoder keeps track of a current expression and the parent of that expression in the expression
tree being constructed. When a new expression is created it becomes the current expression whose parent
is the old current expression. The atomic instructions (each expressed by a single character) are shown
in Table 2.

A sequence of instructions in a label can typically (but not always) be paraphrased informally as
“starting from head wordwh, move to a suitable node (at or abovewh) in the expression tree, add speci-
fied NLF constructs (connectives, tuples, abstracted arguments) and then addwd as a tuple or connective
argument.”

Continuing with our running example, the labels for each of the words are shown in Table 3.
Algorithmically, we find it convenient to transform semantic expressions into dependency trees and

vice versa via a derivation tree for the semantic expression in which the atomicinstruction symbols listed
above are associated with individual nodes in the derivation tree.

The output of the statistical parser may contain inconsistent trees with formallabels, in particular
trees in which two different arguments are predicated to fill the same position ina semantic expression
tuple. For such cases, the decoder that produces the semantic expression applies the simple heuristic

19

Instruction Decoding action
[, { , | Set the current expression to a

newly created tuple, collection,
or sequence.

: , / , . , +, &, @, % Attach the current subexpression
to its parent with the specified
connective.

* Set the current expression to a
newly created symbol from the
dependent word.

0, 1, ... Add the current expression at the
specified parent tuple position.

ˆ , _ Set the current subexpression to
a newly created abstracted-over or
unspecfied argument.

- Set the current subexpression to be
the parent of the current expression.

Table 2: Atomic instructions in formal label sequences.

Dependent Head Label
In acquired [:ˆ1- * 0
2002 in - * 2
Chirpy Systems * +
Systems acquired - * 1
stealthily acquired * /
acquired [* 0
two companies * .
profitable companies * :
companies acquired - * 2
producing companies [:ˆ1- * 0
pet accessories * +
accessories producing - * 2

Table 3: Formal labels for an example sentence.

20

Dataset Null Labels? Auto Align? WSJ sections Sentences
Train+Null-AAlign yes no 2-21 39213
Train-Null-AAlign no no 2-21 24110
Train+Null+AAlign yes yes 2-21 35778
Train-Null+AAlign no yes 2-21 22611
Test+Null-AAlign yes no 23 2416
Test-Null-AAlign no no 23 1479

Table 4: Datasets used in experiments.

of using the next available tuple position when such a conflicting configuration is predicated. In our
experiments, we are measuring per-word semantic head-and-label accuracy, so this heuristic does not
play a part in that evaluation measure.

5 Experiments

5.1 Data Preparation

In the experiments reported here, we derive our sentence-semantics pairs for training and testing from
the Penn WSJ Treebank. This choice reflects the lack, to our knowledge,of a set of such pairs for a
reasonably sized publicly available corpus, at least for NLF expressions. Our first step in preparing the
data was to convert the WSJ phrase structure trees into semantic expressions. This conversion is done
by programming the Stanford treebank toolkit to produce NLF trees bottom-upfrom the phrase structure
trees. This conversion process is not particularly noteworthy in itself (being a traditional rule-based
syntax-to-semantics translation process) except perhaps to the extent that the closeness of NLF to natural
language perhaps makes the conversion somewhat easier than, say, conversion to a fully resolved logical
form.

Since our main goal is to investigate trainable mappings from text strings to semantic expressions,
we only use the WSJ phrase structure trees in data preparation: the phrase structure trees are not used as
inputs when training a semantic mapping model, or when applying such a model. For the same reason,
in these experiments, we do not use the part-of-speech information associated with the phrase structure
trees in training or applying a semantic mapping model. Instead of parts-of-speech we use word cluster
features from a hierarchical clustering produced with the unsupervised Brown clustering method (Brown
et al, 1992); specifically we use the publicly available clusters reported in Koo et al. (2008).

Constructions in the WSJ that are beyond the explicit coverage of the conversion rules used for data
preparation result in expressions that include the unknown/unspecified(or ’Null’) operator%. We report
on different experimental settings in which we vary how we treat training ortesting expressions with
%. This gives rise to the data sets in Table 4 which have +Null (i.e., including%), and -Null (i.e., not
including%) in the data set names.

Another attribute we vary in the experiments is whether to align the words in the semantic expressions
to the words in the sentence automatically, or whether to use the correct alignment (in this case preserved
from the conversion process, but could equally be provided as part of a manual semantic annotation
scheme, for example). In our current experiments, we discard non-projective dependency trees from
training sets. Automatic alignment results in additional non-projective trees, giving rise to different
effective training sets when auto-alignment is used: these sets are markedwith +AAlign, otherwise -
AAlign. The training set numbers shown in Table 4 are the resulting sets afterremoval of non-projective
trees.

21

Training Test Accuracy(%)
+Null-AAlign +Null-AAlign 81.2
-Null-AAlign +Null-AAlign 78.9
-Null-AAlign -Null-AAlign 86.1
+Null-AAlign -Null-AAlign 86.5

Table 5: Per-word semantic accuracy when training with the correct alignment.

Training Test Accuracy(%)
+Null+AAlign +Null-AAlign 80.4
-Null+AAlign +Null-AAlign 78.0
-Null+AAlign -Null-AAlign 85.5
+Null+AAlign -Null-AAlign 85.8

Table 6: Per-word semantic accuracy when training with an auto-alignment.

5.2 Parser

As mentioned earlier, our method can make use of any trainable statistical dependency parsing algorithm.
The parser is trained on a set of dependency trees with formal labels as explained in Sections 2 and 4.
The specific parsing algorithm we use in these experiments is a deterministic shiftreduce algorithm
(Nivre, 2003), and the specific implementation of the algorithm uses a linear SVM classifier for predict-
ing parsing actions (Chang et al., 2010). As noted above, hierarchicalcluster features are used instead
of parts-of-speech; some of the features use coarse (6-bit) or finer(12-bit) clusters from the hierarchy.
More specifically, the full set of features is:

• The words for the current and next input tokens, for the top of the stack, and for the head of the
top of the stack.

• The formal labels for the top-of-stack token and its leftmost and rightmost children, and for the
leftmost child of the current token.

• The cluster for the current and next three input tokens and for the top of the stack and the token
below the top of the stack.

• Pairs of features combining 6-bit clusters for these tokens together with 12-bit clusters for the top
of stack and next input token.

5.3 Results

Tables 5 and 6 show theper-word semantic accuracyfor different training and test sets. This measure is
simply the percentage of words in the test set for which both the predicted formal label and the head word
are correct. In syntactic dependency evaluation terminology, this corresponds to the labeled attachment
score.

All tests are with respect to the correct alignment; we vary whether the correct alignment (Table 5)
or auto-alignment (Table 6) is used for training to give an idea of how much our heuristic alignment
is hurting the semantic mapping model. As shown by comparing the two tables, the loss in accuracy
due to using the automatic alignment is only about 1%, so while the automatic alignmentalgorithm can
probably be improved, the resulting increase in accuracy would be relatively small.

As shown in the Tables 5 and 6, two versions of the test set are used: onethat includes the ’Null’
operator%, and a smaller test set with which we are testing only the subset of sentencesfor which the
semantic expressions do not include this label. The highest accuracies (mid80’s) shown are for the

22

Labels # Train Sents Accuracy(%)
151 (all) 22611 85.5
100 22499 85.5
50 21945 85.5
25 17669 83.8
12 7008 73.4

Table 7: Per-word semantic accuracy after pruning label sets in Train-Null+AAlign (and testing with
Test-Null-AAlign).

(easier) test set which excludes examples in which the test semantic expressions contain Null operators.
The strictest settings, in which semantic expressions with Null are not included in training but included
in the test set effectively treat prediction of Null operators as errors.The lower accuracy (high 70’s) for
such stricter settings thus incorporates a penalty for our incomplete coverage of semantics for the WSJ
sentences. The less strict Test+Null settings in which%is treated as a valid output may be relevant to
applications that can tolerate some unknown operators between subexpressions in the output semantics.

Next we look at the effect of limiting the size of the automatically generated formal label set prior
to training. For this we take the configuration using the TrainWSJ-Null+AAlign training set and the
TestWSJ-Null-AAlign test set (the third row in Table refPerWordSemanticAccuracyAAlign for which
auto-alignment is used and only labels without the NULL operator%are included). For this training
set there are 151 formal labels. We then limit the training set to instances that only include the most
frequentk labels, fork = 100, 50, 25, 12, while keeping the test set the same. As can be seen in Table 7,
the accuracy is unaffected when the training set is limited to the 100 most frequent or 50 most frequent
labels. There is a slight loss when training is limited to 25 labels and a large loss if itis limited to 12
labels. This appears to show that, for this corpus, the core label set needed to construct the majority
of semantic expressions has a size somewhere between 25 and 50. It is perhaps interesting that this is
roughly the size of hand-produced traditional dependency label sets.On the other hand, it needs to be
emphasized that since Table 7 ignores beyond-coverage constructionsthat presently include Null labels,
it is likely that a larger label set would be needed for more complete semantic coverage.

6 Conclusion and Further Work

We’ve shown that by designing an underspecified logical form that is motivated by, and closely related to,
natural language constructions, it is possible to train a direct statistical mapping from pairs of sentences
and their corresponding semantic expressions, with per-word accuracies ranging from 79% to 86% de-
pending on the strictness of the experimental setup. The input to training does not require any traditional
syntactic categories or parts of speech. We also showed, more specifically, that we can train a model that
can be applied deterministically at runtime (using a deterministic shift reduce algorithm combined with
deterministic clusters), making large-scale text-to-semantics mapping feasible.

In traditional formal semantic mapping methods (Montague (1973), Bos et al.(2004)), and even
some recent statistical mapping methods (Zettlemoyer and Collins, 2005), the semantic representation is
overloaded to performs two functions: (i) representing the final meaning,and (ii) composing meanings
from the meanings of subconstituents (e.g. through application of higher order lambda functions). In our
view, this leads to what are perhaps overly complex semantic representations of some basic linguistic
constructions. In contrast, in the method we presented, these two concerns (meaning representation and
semantic construction) are separated, enabling us to keep the semantics of constituents simple, while
turning the construction of semantic expressions into a separate structuredlearning problem (with its
own internal prediction and decoding mechanisms).

Although, in the experiments we reported here wedo prepare the training data from a traditional
treebank, we are encouraged by the results and believe that annotation of a corpus with only semantic

23

expressions is sufficient for building an efficient and reasonably accurate text-to-semantics mapper. In-
deed, we have started building such a corpus for a question answering application, and hope to report
results for that corpus in the future. Other further work includes a formaldenotational semantics of the
underspecified logical form and elaboration of practical inference operations with the semantic expres-
sions. This work may also be seen as a step towards viewing semantic interpretation of language as the
interaction between a pattern recognition process (described here) andan inference process.

References

Hiyan Alshawi and Richard Crouch. 1992. Monotonic SemanticInterpretation.Proceedings of the 30th Annual
Meeting of the Association for Computational Linguistics. Newark, Delaware, 32–39.

Hiyan Alshawi, ed. 1992.The Core Language Engine. MIT Press, Cambridge, Massachusetts.
Hiyan Alshawi. 1996. Underspecified First Order Logics. InSemantic Ambiguity and Underspecification, edited

by Kees van Deemter and Stanley Peters, CSLI Publications, Stanford, California.
Johan van Benthem. 1986.Essays in Logical Semantics.Reidel, Dordrecht.
Johan van Benthem. 1995.Language in Action: Categories, Lambdas, and Dynamic Logic. MIT Press, Cam-

bridge, Massachusetts.
Bos, Johan, Stephen Clark, Mark Steedman, James R. Curran, and Julia Hockenmaier. 2004. Wide-coverage

semantic representations from a CCG parser.Proceedings of the 20th International Conference on Computa-
tional Linguistics. Geneva, Switzerland, 1240–1246.

P. Brown, V. Pietra, P. Souza, J. Lai, and R. Mercer. 1992. Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–479.

Eugene Charniak. 2000. A maximum entropy inspired parser.Proceedings of the 1st Conference of the North
American Chapter of the Association for Computational Linguistics, Seattle, Washington.

Michael Collins. 1999.Head Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

A. Copestake, D. Flickinger, I. Sag, C. Pollard. 2005. Minimal Recursion Semantics, An Introduction.Research
on Language and Computation, 3(23):281-332.

D. Davidson. 1967. The Logical Form of Action Sentences. InThe Logic of Decision and Action, edited by
N. Rescher, University of Pittsburgh Press, Pittsburgh, Pennsylvania.

Jason Eisner. 1996. Three New Probabilistic Models for Dependency Parsing: An Exploration.Proceedings of
the 16th International Conference on Computational Linguistics (COLING-96, 340–345.

T. Koo, X. Carreras, and M. Collins. 2008. Simple Semisupervised Dependency Parsing.Proceedings of the
Annual Meeting of the Association for Computational Linguistics.

Maria Liakata and Stephen Pulman. 2002. From trees to predicate-argument structures.Proceedings of the 19th
International Conference on Computational Linguistics. Taipei, Taiwan, 563–569.

Chang, Y.-W., C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. 2010. Training and Testing Low-degree
Polynomial Data Mappings via Linear SVM.Journal of Machine Learning Research, 11, 1471–1490.

Ryan McDonald, Koby Crammer and Fernando Pereira 2005. Online Large-Margin Training of Dependency
Parsers.Proceedomgs of the 43rd Annual Meeting of the Association for Computational Linguistics..

R. Montague. 1973. The Proper Treatment of Quantification inOrdinary English. InFormal Philosophy, edited
by R. Thomason, Yale University Press, New Haven.

Fernando Pereira and Stuart Shieber. 1987.Prolog and Natural Language Analysis.Center for the Study of
Language and Information, Stanford, California.

Joakim Nivre 2003 An Efficient Algorithm for Projective Dependency Parsing.Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies, 149–160.

H. Poon and P. Domingos 2009. Unsupervised semantic parsing. Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, Singapore, 2009.

Mark Stickel. 1985. Automated deduction by theory resolution. Journal of Automated Reasoning, 1, 4.
Hiroyasu Yamada and Yuji Matsumoto 2003. Statistical dependency analysis with support vector machines.

Proceedings of the 8th International Workshop on Parsing Technologies, 195–206.
Zettlemoyer, Luke S. and Michael Collins. 2005. Learning tomap sentences to logical form: Structured classifi-

cation with probabilistic categorial grammars.Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence. Edinburgh, Scotland, 658–666.

24

