
Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 116–123,
The University of Tokyo, September 24-25, 2010. c©2010 Association for Computational Linguistics

Parameter estimation for agenda-based user simulation

Simon Keizer, Milica Gašić, Filip Jur č́ıček, François Mairesse,
Blaise Thomson, Kai Yu, and Steve Young∗

University of Cambridge, Department of Engineering, Cambridge (UK)
{sk561,mg436,fj228,farm2,brmt2,ky219,sjy}@cam.ac.uk

Abstract

This paper presents an agenda-based user
simulator which has been extended to be
trainable on real data with the aim of more
closely modelling the complex rational be-
haviour exhibited by real users. The train-
able part is formed by a set ofrandom de-
cision points that may be encountered dur-
ing the process of receiving a system act
and responding with a user act. A sample-
based method is presented for using real
user data to estimate the parameters that
control these decisions. Evaluation results
are given both in terms of statistics of gen-
erated user behaviour and the quality of
policies trained with different simulators.
Compared to a handcrafted simulator, the
trained system provides a much better fit
to corpus data and evaluations suggest that
this better fit should result in improved di-
alogue performance.

1 Introduction

In spoken dialogue systems research, modelling
dialogue as a (Partially Observable) Markov Deci-
sion Process ((PO)MDP) and using reinforcement
learning techniques for optimising dialogue poli-
cies has proven to be an effective method for de-
veloping robust systems (Singh et al., 2000; Levin
et al., 2000). However, since this kind of optimi-
sation requires a simulated user to generate a suffi-
ciently large number of interactions to learn from,
this effectiveness depends largely on the quality
of such a user simulator. An important require-
ment for a simulator is for it to be realistic, i.e., it
should generate behaviour that is similar to that of
real users. Trained policies are then more likely to
perform better on real users, and evaluation results
on simulated data are more likely to predict results
on real data more accurately.

∗This research was partly funded by the UK EPSRC un-
der grant agreement EP/F013930/1 and by the EU FP7 Pro-
gramme under grant agreement 216594 (CLASSiC project:
www.classic-project.org).

This is one of the reasons why learning user
simulation models from data on real user be-
haviour has become an important direction of re-
search (Scheffler and Young, 2001; Cuayáhuitl et
al., 2005; Georgila et al., 2006). However, the data
driven user models developed so far lack the com-
plexity required for training high quality policies
in task domains where user behaviour is relatively
complex. Handcrafted models are still the most
effective in those cases.

This paper presents an agenda-based user simu-
lator which is handcrafted for a large part, but ad-
ditionally can be trained with data from real users
(Section 2). As a result, it generates behaviour that
better reflects the statistics of real user behaviour,
whilst preserving the complexity and rationality
required to effectively train dialogue management
policies. The trainable part is formed by a set of
random decision points, which, depending on the
context, may or may not be encountered during
the process of receiving a system act and decid-
ing on a response act. If such a point is encoun-
tered, the simulator makes a random decision be-
tween a number of options which may directly or
indirectly influence the resulting output. The op-
tions for each random decision point are reason-
able in the context in which it is encountered, but
a uniform distribution of outcomes might not re-
flect real user behaviour.

We will describe a sample-based method for es-
timating the parameters that define the probabili-
ties for each possible decision, using data on real
users from a corpus of human-machine dialogues
(Section 3). Evaluation results will be presented
both in terms of statistics on generated user be-
haviour and the quality of dialogue policies trained
with different user simulations (Section 4).

2 Agenda-based user simulation

In agenda-based user simulation, user acts are gen-
erated on the basis of auser goal and anagenda
(Schatzmann et al., 2007a). The simulator pre-
sented here is developed and used for a tourist in-

116

formation application, but is sufficiently generic to
accommodate slot-filling applications in any do-
main.1 The user goal consists of the type of venue,
for examplehotel, bar or restaurant, a list
of constraints in the form of slot value pairs, such
asfood=Italian or area=east, and a list
of slots the user wants to know the value of, such
as the address (addr), phone number (phone),
or price information (price) of the venue. The
user goals for the simulator are randomly gener-
ated from the domain ontology describing which
combinations of venue types and constraints are
allowed and what are the possible values for each
slot. The agenda is a stack-like structure contain-
ing planned user acts. When the simulator receives
a system act, the status of the user goal is updated
as well as the agenda, typically by pushing new
acts onto it. In a separate step, the response user
act is selected by popping one or more items off
the agenda.

Although the agenda-based user simulator in-
troduced by Schatzmann et al. (2007a) was en-
tirely handcrafted, it was realistic enough to suc-
cessfully test a prototype POMDP dialogue man-
ager and train a dialogue policy that outperformed
a handcrafted baseline (Young et al., 2009). A
method to train an agenda-based user simula-
tor from data was proposed by Schatzmann et
al. (2007b). In this approach, operations on
the agenda are controlled by probabilities learned
from data using a variation of the EM algorithm.
However, this approach does not readily scale to
more complex interactions in which users can, for
example, change their goal midway through a dia-
logue.

2.1 Random decision parameters

Each time the user simulator receives a system act,
a complex, two-fold process takes place involving
several decisions, made on the basis of both the
nature of the incoming system act and the infor-
mation state of the user, i.e., the status of the user
goal and agenda. The first phase can be seen as
an information state update and involves actions
like filling requested slots or checking whether the
provided information is consistent with the user
goal constraints. In the second phase, the user de-
cides which response act to generate, based on the
updated agenda. Many of the decisions involved
are deterministic, allowing only one possible op-
tion given the context. Other decisions allow for
some degree of variation in the user behaviour and
are governed by probability distributions over the

1We have to date also implemented systems in appoint-
ment scheduling and bus timetable inquiries.

options allowed in that context. For example, if
the system has offered a venue that matches the
user’s goal, the user can randomly decide to either
change his goal or to accept the venue and ask for
additional information such as the phone number.

The non-deterministic part of the simulator is
formalised in terms of a set ofrandom decision
points (RDPs) embedded in the decision process.
If an RDP is encountered (depending on the con-
text), a random choice between the options de-
fined for that point is made by sampling from a
probability distribution. Most of the RDPs are
controlled by a multinomial distribution, such as
deciding whether or not to change the goal after
a system offer. Some RDPs are controlled by a
geometric distribution, like in the case where the
user is planning to specify one of his constraints
(with an inform act popped from the agenda) and
then repeatedly adds an additional constraint to the
act (by combining it with an additional inform act
popped from the agenda) until it randomly decides
not to add any more constraints (or runs out of
constraints to specify). The parameter for this dis-
tribution thus controls how cautious the user is in
providing information to the system.

Hence, the user simulator can be viewed as
a ‘decision network’, consisting of deterministic
and random decision points. This is illustrated in
Figure 1 for the simplified case of a network with
only four RDPs; the actual simulator has 23 RDPs,
with 27 associated parameters in total. Each time
the simulator receives a system act, it follows a
path through the network, which is partly deter-
mined by that system act and the user goal and
agenda, and partly by random decisions made ac-
cording to the probability distributions for each
random decision pointi given by its parameters
θi.

3 Training the simulator from data

The parameterisation of the user simulator as de-
scribed in Section 2.1 forms the basis for a method
for training the simulator with real user data. The
parameters describing the probability distributions
for each RDP are estimated in order to generate
user behaviour that fits the user behaviour in the
corpus as closely as possible. In order to do so,
a sample based maximum likelihood approach is
taken, in which the simulator is run repeatedly
against the system acts in the corpus, and the ran-
dom decisions that lead to simulated acts matching
the true act in the corpus are recorded. The param-
eters are then estimated using the counts for each
of the random decision points.

117

incoming
system act

outgoing
user act

user goal + agenda

θ
2

θ
1

θ
3

θ
4

Figure 1: User simulator viewed as a ‘decision network’: square nodes indicate deterministic decision
points; round nodes indicate random decision points, and have associated parametersθi; the loop on one
of the nodes indicates it has a geometric distribution associated with it.

3.1 Parameter estimation

Before starting the process of matching simulated
acts with true acts and collecting counts for the
RDPs, the parameters are initialised to values cor-
responding to uniform distributions. Then, the
simulator is run against all dialogues in the cor-
pus in such a way that for each turn in a dialogue
(consisting of a system act and a user act), the user
simulator is provided with the system act and is
run repeatedly to generate several simulated user
response acts for that turn. For the first turn of a di-
alogue, the simulator is initialised with the correct
user state (see Section 3.2). For each response, the
simulator may make different random decisions,
generally leading to different user acts. The deci-
sions that lead to a simulated act that matches the
true act are recorded as successful. By generating
a sufficiently large number of simulated acts, all
possible combinations of decisions are explored to
find a matching act. Given the high complexity of
the simulator, this sampling approach is preferred
over directly enumerating all decision combina-
tions to identify the successful ones. If none of
the combinations are successful, then either a) the
processing of the dialogue is ended, or b) the cor-
rect context is set for the next turn and processing
is continued. Whereas the former approach aims at
matching sequences of turns, the latter only aims
at matching each user turn separately. In either
case, after all data is processed, the parameters are
estimated using the resulting counts of successful
decisions for each of the RDPs.

For each RDPi, let DPi represent the decision
taken, anddij the j’th possible decision. Then, for
each decision pointi that is controlled by a multi-

nomial distribution, the corresponding parameter
estimatesθij are obtained as follows from the de-
cision frequenciesc(DPi = dij):

θij =
c(DPi = dij)

∑

j c(DPi = dij)
(1)

Random decision points that are controlled
by geometric distributions involve potentially
multiple random decisions between two options
(Bernoulli trials). The parameters for such RDPs
are estimated as follows:

θi =

(

1

n

n
∑

k=1

bik

)

−1

(2)

where bik is the number of Bernoulli trials re-
quired at the k’th time decision pointi was en-
countered. In terms of the decision network, this
estimate is correlated with the average number of
times the loop of the node was taken.

3.2 User goal inference

In order to be able to set the correct user goal
state in any given turn, a set of update rules is
used to infer the user’s goals from a dialogue be-
forehand, on the basis of the entire sequence of
system acts and ‘true’ user acts (see Section 4.1)
in the corpus. These update rules are based on
the notion ofdialogue act preconditions, which
specify conditions of the dialogue context that
must hold for a dialogue agent to perform that
act. For example, a precondition for the act
inform(area=central) is that the speaker
wants a venue in the centre. The user act model

118

of the HIS dialogue manager is designed accord-
ing to this same notion (Keizer et al., 2008). In this
model, the probability of a user act in a certain dia-
logue context (the last system act and a hypothesis
regarding the user goal) is determined by checking
the consistency of its preconditions with that con-
text. This contributes to updating the system’s be-
lief state on the basis of which it determines its re-
sponse action. For the user goal inference model,
the user act is given and therefore its precondi-
tions can be used to directly infer the user goal.
So, for example, in the case of observing the user
act inform(area=central), the constraint
(area=central) is added to the user goal.

In addition to using the inferred user goals, the
agenda is corrected in cases where there is a mis-
match between real and simulated user acts in the
previous turn.

In using this offline goal inference model, our
approach takes a position between (Schatzmann et
al., 2007b), in which the user’s goal is treated as
hidden, and (Georgila et al., 2006), in which the
user’s goal is obtained directly from the corpus an-
notation.

4 Evaluation

The parameter estimation technique for training
the user simulator was evaluated in two differ-
ent ways. The first evaluation involved compar-
ing the statistics of simulated and real user be-
haviour. The second evaluation involved compar-
ing dialogue manager policies trained with differ-
ent simulators.

4.1 Data

The task of the dialogue systems we are develop-
ing is to provide tourist information to users, in-
volving venues such as bars, restaurants and hotels
that the user can search for and ask about. These
venues are described in terms of features such as
price range, area, type of food, phone number,
address, and so on. The kind of dialogues with
these systems are commonly called slot-filling di-
alogues.

Within the range of slot-filling applications the
domain is relatively complex due to its hierarchi-
cal data structure and relatively large number of
slots and their possible values. Scalability is in-
deed one of the primary challenges to be addressed
in statistical approaches to dialogue system devel-
opment, including user simulation.

The dialogue corpus that was used for training
and evaluating the simulator was obtained from
the evaluation of a POMDP spoken dialogue sys-
tem with real users. All user utterances in the

resulting corpus were transcribed and semanti-
cally annotated in terms of dialogue acts. Dia-
logue acts consist of a series of semantic items,
including the type (describing the intention of
the speaker, e.g.,inform or request) and a
list of slot value pairs (e.g.,food=Chinese or
area=south). An extensive analysis of the an-
notations from three different people revealed a
high level of inter-annotator agreement (ranging
from 0.81 to 0.94, depending on which pair of an-
notations are compared), and a voting scheme for
selecting a single annotation for each turn ensured
the reliability of the ‘true’ user acts used for train-
ing the simulator.

4.2 Corpus statistics results

A first approach to evaluating user simulations is
to look at the statistics of the user behaviour that
is generated by a simulator and compare it with
that of real users as observed in a dialogue cor-
pus. Several metrics for such evaluations have
been considered in the literature, all of which have
both strong points and weaknesses. For the present
evaluation, a selection of metrics believed to give
a reasonable first indication of the quality of the
user simulations was considered2.

4.2.1 Metrics

The first corpus-based evaluation metric is theLog
Likelihood (LL) of the data, given the user simu-
lation model. This is what is in fact maximised by
the parameter estimation algorithm. The log like-
lihood can be computed by summing the log prob-
abilities of each user turndu in the corpus dataD:

ll(D|{θij}, {θi}) =
∑

u

log P (du|{θij}, {θi})

(3)

The user turn probability is given by the prob-
ability of the decision paths (directed paths in the
decision network of maximal length, such as the
one indicated in Figure 1 in bold) leading to a sim-
ulated user act in that turn that matches the true
user act. The probability of a decision path is ob-
tained by multiplying the probabilities of the de-
cisions made at each decision pointi that was en-
countered, which are given by the parametersθij

2Note that not all selected metrics are metrics in the strict
sense of the word; the term should therefore be interpreted as
a more general one.

119

andθi:

log P (du|{θij}, {θi}) =

∑

i∈Im(u)

log
(

∑

j

θij · δij(u)
)

+ (4)

∑

i∈Ig(u)

log
(

∑

k

(1 − θi)
k−1 · θi · µik(u)

)

whereIm(u) = {i ∈ Im|
∑

j δij(u) > 0} and
Ig(u) = {i ∈ Ig|

∑

k µik(u) > 0} are the subsets
of the multinomial (Im) and geometric (Ig) de-
cision points respectively containing those points
that were encountered in any combination of deci-
sions resulting in the given user act:

δij(u) =











1 if decisionDPi = dij was
taken in any of the
matching combinations

0 otherwise

(5)

µik(u) =











1 if any of the matching
combinations required
k > 0 trials

0 otherwise

(6)

It should be noted that the log likelihood only
represents those turns in the corpus for which the
simulated user can produce a matching simulated
act with some probability. Hence, it is impor-
tant to also take into account thecorpus cover-
age when considering the log likelihood in cor-
pus based evaluation. Dividing by the number of
matched turns provides a useful normalisation in
this respect.

The expectedPrecision (PRE), Recall (RCL),
andF-Score (FS)are obtained by comparing the
simulated user acts with the true user acts in the
same context (Georgila et al., 2006). These scores
are obtained by pairwise comparison of the simu-
lated and true user act for each turn in the corpus
at the level of the semantic items:

PRE =
#(matched items)

#(items in simulated act)
(7)

RCL =
#(matched items)

#(items in true act)
(8)

FS =
2 · PRE · RCL

PRE + RCL
(9)

By sampling a sufficient number of simulated
acts for each turn in the corpus and comparing
them with the corresponding true acts, this results
in an accurate measure on average.

The problem with precision and recall is that
they are known to heavily penalise unseen data.
Any attempt to generalise and therefore increase
the variability of user behaviour results in lower
scores.

Another way of evaluating the user simulator
is to look at the global user act distributions it
generates and compare them to the distributions
found in the real user data. A common metric
for comparing such distributions is theKullback-
Leibler (KL) distance . In (Cuayáhuitl et al.,
2005) this metric was used to evaluate an HMM-
based user simulation approach. The KL dis-
tance is computed by taking the average of the
two KL divergences3 DKL(simulated||true) and
DKL(true||simulated), where:

DKL(p||q) =
∑

i

pi · log2(
pi

qi

) (10)

KL distances are computed for both full user act
distributions (taking into account both the dia-
logue act type and slot value pairs) and user act
type distributions (only regarding the dialogue act
type), denoted by KLF and KLT respectively.

4.2.2 Results
For the experiments, the corpus data was ran-
domly split into a training set, consisting of 4479
user turns in 541 dialogues, used for estimat-
ing the user simulator parameters, and a test set,
consisting of 1457 user turns in 175 dialogues,
used for evaluation only. In the evaluation, the
following parameter settings were compared: 1)
non-informative, uniform parameters (UNIF); 2)
handcrafted parameters (HDC); 3) parameters es-
timated from data (TRA); and 4) deterministic pa-
rameters (DET), in which for each RDP the prob-
ability of the most probable decision according to
the estimated parameters is set to 1, i.e., at all
times, the most likely decision according to the es-
timated parameters is chosen.

For both trained and deterministic parameters,
a distinction is made between the two approaches
to matching user acts during parameter estimation.
Recall that in the turn-based approach, in each
turn, the simulator is run with the corrected con-
text to find a matching simulated act, whereas in
the sequence-based approach, the matching pro-
cess for a dialogue is stopped in case a turn
is encountered which cannot be matched by the
simulator. This results in estimated parameters
TRA-T and deterministic parameters DET-T for

3Before computing the distances, add-one smoothing was
applied in order to avoid zero-probabilities.

120

PAR nLL-T nLL-S PRE RCL FS KLF KLT
UNIF −3.78 −3.37 16.95 (±0.75) 9.47 (±0.59) 12.15 3.057 2.318

HDC −4.07 −2.22 44.31 (±0.99) 34.74 (±0.95) 38.94 1.784 0.623

TRA-T −2.97 - 37.60 (±0.97) 28.14 (±0.90) 32.19 1.362 0.336

DET-T −∞ - 47.70 (±1.00) 40.90 (±0.98) 44.04 2.335 0.838

TRA-S - −2.13 43.19 (±0.99) 35.68 (±0.96) 39.07 1.355 0.155

DET-S - −∞ 49.39 (±1.00) 43.04 (±0.99) 46.00 2.310 0.825

Table 1: Results of the sample-based user simulator evaluation on the Mar’09 training
corpus (the corpus coverage was59% for the turn-based and33% for the sequence-based
matching approach).

PAR nLL-T nLL-S PRE RCL FS KLF KLT
UNIF −3.61 −3.28 16.59 (±1.29) 9.32 (±1.01) 11.93 2.951 2.180

HDC −3.90 −2.19 45.35 (±1.72) 36.04 (±1.66) 40.16 1.780 0.561

TRA-T −2.84 - 38.22 (±1.68) 28.74 (±1.57) 32.81 1.405 0.310

DET-T −∞ - 49.15 (±1.73) 42.17 (±1.71) 45.39 2.478 0.867

TRA-S - −2.12 43.90 (±1.72) 36.52 (±1.67) 39.87 1.424 0.153

DET-S - −∞ 50.73 (±1.73) 44.41 (±1.72) 47.36 2.407 0.841

Table 2: Results of the sample-based user simulator evaluation on the Mar’09 test corpus
(corpus coverage59% for the turn-based, and36% for sequence-based matching).

the turn-based approach and analogously TRA-S
and DET-S for the sequence-based approach. The
corresponding normalised (see Section 4.2.1) log-
likelihoods are indicated by nLL-T and nLL-S.

Tables 1 and 2 give the results on the training
and test data respectively. The results show that in
terms of log-likelihood and KL-distances, the es-
timated parameters outperform the other settings,
regardless of the matching method. In terms of
precision/recall (given in percentages with 95%
confidence intervals), the estimated parameters
are worse than the handcrafted parameters for
turn-based matching, but have similar scores for
sequence-based matching.

The results for the deterministic parameters il-
lustrate that much better precision/recall scores
can be obtained, but at the expense of variability as
well as the KL-distances. It will be easier to train
a dialogue policy on such a deterministic simula-
tor, but that policy is likely to perform significantly
worse on the more varied behaviour generated by
the trained simulator, as we will see in Section 4.3.

Out of the two matching approaches, the
sequence-based approach gives the best results:
TRA-S outperforms TRA-T on all scores, except
for the coverage which is much lower for the
sequence-based approach (33% vs. 59%).

4.3 Policy evaluation results

Although the corpus-based evaluation results give
a useful indication of how realistic the behaviour
generated by a simulator is, what really should be
evaluated is the dialogue management policy that

is trained using that simulator. Therefore, differ-
ent parameter sets for the simulator were used to
train and evaluate different policies for the Hidden
Information State (HIS) dialogue manager (Young
et al., 2009). Four different policies were trained:
one policy using handcrafted simulation param-
eters (POL-HDC); two policies using simulation
parameters estimated (using the sequence-based
matching approach) from two data sets that were
obtained by randomly splitting the data into two
parts of 358 dialogues each (POL-TRA1 and POL-
TRA2); and finally, a policy using a determin-
istic simulator (POL-DET) constructed from the
trained parameters as discussed in Section 4.2.2.
The policies were then each evaluated on the sim-
ulator using the four parameter settings at different
semantic error rates.

The performance of a policy is measured in
terms of a reward that is given for each dialogue,
i.e. a reward of 20 for a successful dialogue, mi-
nus the number of turns. A dialogue is consid-
ered successful if the system has offered a venue
matching the predefined user goal constraints and
has given the correct values of all requested slots
for this venue. During the policy optimisation, in
which a reinforcement learning algorithm tries to
optimise the expected long term reward, this dia-
logue scoring regime was also used.

In Figures 2, 3, and 4, evaluation results are
given resulting from running 3000 dialogues at
each of 11 different semantic error rates. The
curves show average rewards with95% confidence
intervals. The error rate is controlled by a hand-

121

-2

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 r
ew

ar
d

Error rate

POL-HDC
POL-TRA1
POL-TRA2
POL-DET

Figure 2: Average rewards for each policy when
evaluated on UM-HDC.

-4

-2

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 r
ew

ar
d

Error rate

POL-HDC
POL-TRA1
POL-TRA2
POL-DET

Figure 3: Average rewards for each policy when
evaluated on UM-TRA1.

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 r
ew

ar
d

Error rate

POL-HDC
POL-TRA1
POL-TRA2
POL-DET

Figure 4: Average rewards for each policy when
evaluated on UM-DET.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 r
ew

ar
d

lo
ss

Error rate

POL-HDC
POL-TRA2
POL-DET

Figure 5: Average loss in reward for each policy,
across three different simulators.

crafted error model that converts the user act gen-
erated by the simulator into an n-best list of dia-
logue act hypotheses.

The policy that was trained using the hand-
crafted simulator (POL-HDC) outperforms the
other policies when evaluated on that same sim-
ulator (see Figure 2), and both policies trained us-
ing the trained simulators (POL-TRA1 and POL-
TRA2) outperform the other policies when evalu-
ated on either trained simulator (see Figure 3 for
the evaluation on UM-TRA1; the evaluation on
UM-TRA2 is very similar and therefore omitted).
There is little difference in performance between
policies POL-TRA1 and POL-TRA2, which can
be explained by the fact that the two trained
parameter settings are quite similar, in contrast
to the handcrafted parameters. The policy that
was trained on the deterministic parameters (POL-
DET) is competitive with the other policies when
evaluated on UM-DET (see Figure 4), but per-
forms significantly worse on the other parameter
settings which generate the variation in behaviour

that the dialogue manager did not encounter dur-
ing training of POL-DET.

In addition to comparing the policies when eval-
uated on each simulator separately, another com-
parison was made in terms of the average perfor-
mance across all simulators. For each policy and
each simulator, we first computed the difference
between the policy’s performance and the ‘maxi-
mum’ performance on that simulator as achieved
by the policy that was also trained on that simu-
lator, and then averaged over all simulators. To
avoid biased results, only one of the trained simu-
lators was included. The results in Figure 5 show
that the POL-TRA2 policy is more robust than
POL-DET, and has similar robustness as POL-
HDC. Similar results are obtained when including
UM-TRA1 only.

Given that the results of Section 4.2 show that
the dialogues generated by the trained simulator
more closely match real corpus data, and given
that the above simulation results show that the
POL-TRA policies are at least as robust as the

122

other policies, it seems likely that policies trained
using the trained user simulator will show im-
proved performance when evaluated on real users.

However, this claim can only be properly
demonstrated in a real user evaluation of the di-
alogue system containing different dialogue man-
agement policies. Such a user trial would also be
able to confirm whether the results from evalua-
tions on the trained simulator can more accurately
predict the actual performance expected with real
users.

5 Conclusion

In this paper, we presented an agenda-based user
simulator extended to be trainable on real user
data whilst preserving the necessary rationality
and complexity for effective training and evalu-
ation of dialogue manager policies. The exten-
sion involved the incorporation of random deci-
sion points in the process of receiving and re-
sponding to a system act in each turn. The deci-
sions made at these points are controlled by prob-
ability distributions defined by a set of parameters.

A sample-based maximum likelihood approach
to estimating these parameters from real user data
in a corpus of human-machine dialogues was dis-
cussed, and two kinds of evaluations were pre-
sented. When comparing the statistics of real ver-
sus simulated user behaviour in terms of a selec-
tion of different metrics, overall, the estimated pa-
rameters were shown to give better results than
the handcrafted baselines. When evaluating dia-
logue management policies trained on the simula-
tor with different parameter settings, it was shown
that: 1) policies trained on a particular parame-
ter setting outperform other policies when evalu-
ated on the same parameters, and in particular, 2)
a policy trained on the trained simulator outper-
forms other policies on a trained simulator. With
the general goal of obtaining a dialogue manager
that performs better in practice, these results are
encouraging, but need to be confirmed by an eval-
uation of the policies on real users.

Additionally, there is still room for improving
the quality of the simulator itself. For example,
the variation in user behaviour can be improved by
adding more random decision points, in order to
achieve better corpus coverage. In addition, since
there is no clear consensus on what is the best met-
ric for evaluating user simulations, additional met-
rics will be explored in order to get a more bal-
anced indication of the quality of the user simu-
lator and how the various metrics are affected by
modifications to the simulator. Perplexity (related
to the log likelihood, see (Georgila et al., 2005)),

accuracy (related to precision/recall, see (Zuker-
man and Albrecht, 2001; Georgila et al., 2006)),
and Cramér-von Mises divergence (comparing di-
alogue score distributions, see (Williams, 2008))
are some of the metrics worth considering.

References
H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shi-

modaira. 2005. Human-computer dialogue sim-
ulation using hidden markov models. InProc.
ASRU’05, pages 290–295.

K. Georgila, J. Henderson, and O. Lemon. 2005.
Learning user simulations for information state up-
date dialogue systems. InProc. Interspeech ’05.

K. Georgila, J. Henderson, and O. Lemon. 2006. User
simulation for spoken dialogue systems: Learning
and evaluation. InProc. Interspeech/ICSLP.

S. Keizer, M. Gašić, F. Mairesse, B. Thomson, K. Yu,
and S. Young. 2008. Modelling user behaviour in
the HIS-POMDP dialogue manager. InProc. SLT,
Goa, India.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A
stochastic model of human-machine interaction for
learning dialogue strategies.IEEE Transactions on
Speech and Audio Processing, 8(1).

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye,
and S. Young. 2007a. Agenda-based user simula-
tion for bootstrapping a POMDP dialogue system.
In Proceedings HLT/NAACL, Rochester, NY.

J. Schatzmann, B. Thomson, and S. Young. 2007b.
Statistical user simulation with a hidden agenda. In
Proc. SIGDIAL’07, pages 273–282, Antwerp, Bel-
gium.

K. Scheffler and S. Young. 2001. Corpus-based dia-
logue simulation for automatic strategy learning and
evaluation. InProceedings NAACL Workshop on
Adaptation in Dialogue.

S. Singh, M. Kearns, D. Litman, and M. Walker. 2000.
Reinforcement learning for spoken dialogue sys-
tems. In S. Solla, T. Leen, and K. Müller, editors,
Advances in Neural Information Processing Systems
(NIPS). MIT Press.

J. Williams. 2008. Evaluating user simulations with
the Cramér-von Mises divergence.Speech Commu-
nication, 50:829–846.

S. Young, M. Gašić, S. Keizer, F. Mairesse, B. Thom-
son, and K. Yu. 2009. The Hidden Information
State model: a practical framework for POMDP
based spoken dialogue management.Computer
Speech and Language, 24(2):150–174.

I. Zukerman and D. Albrecht. 2001. Predictive statis-
tical models for user modeling.User Modeling and
User-Adapted Interaction, 11:5–18.

123

