
Proceedings of SSST-4, Fourth Workshop on Syntax and Structure in Statistical Translation, pages 43–51,
COLING 2010, Beijing, August 2010.

Seeding Statistical Machine Translation with Translation Memory 
Output through Tree-Based Structural Alignment

Ventsislav Zhechev Josef van Genabith
EuroMatrixPlus, CNGL

School of Computing, Dublin City University
EuroMatrixPlus, CNGL

School of Computing, Dublin City University
contact@VentsislavZhechev.eu josef@computing.dcu.ie

Abstract
With the steadily increasing demand for 
high-quality translation, the localisation 
industry is constantly searching for tech-
nologies that would increase translator 
throughput, with the current focus on the 
use of high-quality Statistical Machine 
Translation (SMT) as a supplement to the 
established Translation Memory (TM) 
technology. In this paper we present a 
novel modular approach that utilises 
state-of-the-art sub-tree alignment to pick 
out pre-translated segments from a TM 
match and seed with them an SMT sys-
tem to produce a final translation. We 
show that the presented system can out-
perform pure SMT when a good TM 
match is found. It can also be used in a 
Computer-Aided Translation (CAT) envi-
ronment to present almost perfect transla-
tions to the human user with markup 
highlighting the segments of the transla-
tion that need to be checked manually for 
correctness.

1. Introduction

As the world becomes increasingly intercon-
nected, the major trend is to try to deliver ideas 
and products to the widest audience possible. 
This requires the localisation of products for as 
many countries and cultures as possible, with 
translation being one of the main parts of the lo-
calisation process. Because of this, the amount of 
data that needs professional high-quality transla-
tion is continuing to increase well beyond the 
capacity of the world’s human translators.

Thus, current efforts in the localisation indus-
try are mostly directed at the reduction of the 
amount of data that needs to be translated from 
scratch by hand. Such efforts mainly include the 
use of Translation Memory (TM) systems, where 
earlier translations are stored in a database and 
offered as suggestions when new data needs to 
be translated. As TM systems were originally 
limited to providing translations only for (al-
most) exact matches of the new data, the integra-
tion of Machine Translation (MT) techniques is 
seen as the only feasible development that has 
the potential to significantly reduce the amount 
of manual translation required.

At the same time, the use of SMT is frowned 
upon by the users of CAT tools as they still do 
not trust the quality of the SMT output. There are 
two main reasons for that. First, currently there is 
no reliable way to automatically ascertain the 
quality of SMT-generated translations, so that the 
user could at a glance make a judgement as to the 
amount of effort that might be needed to post-
edit the suggested translation (Simard and Isa-
belle, 2009). Not having such automatic quality 
metrics also has the side effect of it being impos-
sible for a Translation-Services Provider (TSP) 
company to reliably determine in advance the 
increase in translator productivity due to the use 
of MT and to adjust their resources-allocation 
and cost models correspondingly.

The second major problem for users is that SMT-
generated translations are as a rule only obtained 
for cases where the TM system could not produce 
a good-enough translation (cf. Heyn, 1996). Given 
that the SMT system used is usually trained only 
on the data available in the TM, expectedly it also 
has few examples from which to construct the 
translation, thus producing low quality output.
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In this paper, we combine a TM, SMT and an 
automatic Sub-Tree Alignment (STA) backends 
in a single integrated tool. When a new sentence 
that needs to be translated is supplied, first a 
Fuzzy-Match Score (FMS – see Section 2.2) is 
obtained from the TM backend, together with the 
suggested matching sentence and its translation. 
For sentences that receive a reasonably high 
FMS, the STA backend is used to find the corre-
spondences between the input sentence and the 
TM-suggested translation, marking up the parts 
of the input that are correctly translated by the 
TM. The SMT backend is then employed to ob-
tain the final translation from the marked-up in-
put sentence. In this way we expect to achieve a 
better result compared to using pure SMT.

In Section 2, we present the technical details 
of the design of our system, together with moti-
vation for the particular design choices. Section 3 
details the experimental setup and the data set 
used for the evaluation results in Section 4. We 
present improvements that we plan to investigate 
in further work in Section 5, and provide con-
cluding remarks in Section 6.

2. System Framework

We present a system that uses a TM-match to 
pre-translate parts of the input sentence and 
guide an SMT system to the generation of a 
higher-quality translation.

2.1. Related Approaches

We are not aware of any published research 
where TM output is used to improve the per-
formance of an SMT system in a manner similar 
to the system presented in this paper.

Most closely related to our approach are the 
systems by Biçici and Dymetman (2008) and 
Simard and Isabelle (2009), where the authors 
use the TM output to extract new phrase pairs 
that supplement the SMT phrase table. Such an 
approach, however, does not guarantee that the 
SMT system will select the TM-motivated 
phrases even if a heavy bias is applied to them.

Another related system is presented in (Smith 
and Clark, 2009). Here the authors use a syntax-
based EBMT system to pre-translate and mark-

up parts of the input sentence and then supply 
this marked-up input to an SMT system. This 
differs to our system in two ways. First, Smith 
and Clark use EMBT techniques to obtain partial 
translations of the input from the complete ex-
ample base, while we are only looking at the best 
TM match for the given input. Second, the authors 
use dependency structures for EMBT matching, 
while we employ phrase-based structures.

2.2. Translation Memory Backend

Although the intention is to use a full-scale TM 
system as the translation memory backend, to 
have complete control over the process for this 
initial research we decided to build a simple pro-
totype TM backend ourselves.

We employ a database setup using the Post-
greSQL v.8.4.31 relational database management 
(RDBM) system. The segment pairs from a given 
TM are stored in this database and assigned 
unique IDs for further reference. When a new 
sentence is supplied for translation, the database 
is searched for (near) matches, using an FMS 
based on normalised character-level Levenshtein 
edit distance (Levenshtein, 1965).

Thus for each input sentence, from the data-
base we obtain the matching segment with the 
highest FMS, its translation and the score itself.

2.3. Sub-Tree Alignment Backend

The system presented in this paper uses phrase-
based sub-tree structural alignment (Zhechev, 
2010) to discover parts of the input sentence that 
correspond to parts of the suggested translation 
extracted from the TM database. We chose this 
particular tool, because it can produce aligned 
phrase-based-tree pairs from unannotated (i.e. 
unparsed) data. It can also function fully auto-
matically without the need for any training data. 
The only auxiliary requirement it has is for a 
probabilistic dictionary for the languages that are 
being aligned. As described later in this section, 
in our case this is obtained automatically from the 
TM data during the training of the SMT backend.

The matching between the input sentence and 
the TM-suggested translation is done in a three-
step process. First, the plain TM match and its 

1 http://www.postgresql.org/
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translation are aligned, which produces a sub-
tree-aligned phrase-based tree pair with all non-
terminal nodes labelled ‘X’ (cf. Zhechev, 2010). 
As we are only interested in the relations be-
tween the lexical spans of the non-terminal 
nodes, we can safely ignore their labels. We call 
this first step of our algorithm bilingual alignment.

In the second step, called monolingual align-
ment, the phrase-based tree-annotated version of 
the TM match is aligned to the unannotated input 
sentence. The reuse of the tree structure for the 
TM match allows us to use it in the third step as 
an intermediary to establish the available sub-
tree alignments between the input sentence and 
the translation suggested from the TM.

During this final alignment, we identify 
matched and mismatched portions of the input 
sentence and their possible translations in the 
TM suggestion and, thus, this step is called 
matching. Additionally, the sub-tree alignments 
implicitly provide us with reordering informa-
tion, telling us where the portions of the input 
sentence that we translate should be positioned in 
the final translation.

The alignment process is exemplified in Figure 1. 
The tree marked ‘I’ corresponds to the input sen-
tence, the one marked ‘M’ to the TM match and 
the one marked ‘T’ to the TM translation. Due to 
space constraints, we only display the node ID 
numbers of the non-terminal nodes in the phrase-
structure trees — in reality all nodes carry the 
label ‘X’. These IDs are used to identify the sub-
sentential alignment links. The lexical items cor-
responding to the leaves of the trees are pre-
sented in the table below the graph.

The alignment process can be visually repre-
sented as starting at a linked node in the I tree 
and following the link to the M tree. Then, if 
available, we follow the link to the T tree and 
this leads us to the T-tree node corresponding to 
the I-tree node we started from. In Figure 1, this 
results in the I–T alignments I1–T18, I2–T2, I3–
T1, I4–T32 and I6–T34. The first three links are 
matches, because the lexical items covered by 
the I nodes correspond exactly to the lexical 
items covered by their M node counterparts. 
Such alignments provide us with direct TM 
translations for our input. The last two links in 
the group are mismatched, because there is no 
lexical correspondence between the I and M 

nodes (node I4  corresponds to the phrase sender 
email, while the linked node M10  corresponds to 
sender ’s email). Such alignments can only be 
used to infer reordering information. In particular 
in this case, we can infer that the target word or-
der for the input sentence is address email 
sender, which produces the translation adresse 
électronique de l’ expéditeur.
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Figure 1. Example of sub-tree alignment between 
an input sentence, TM match and TM translation

We decided to use sub-tree-based alignment, 
rather than plain word alignment (e.g. GIZA++ – 
Och and Ney, 2003), due to a number of factors. 
First, sub-tree-based alignment provides much 
better handling of long-distance reorderings, 
while word– and phrase-based alignment models 
always have a fixed limit on reordering distance 
that tends to be relatively low to allow efficient 
computation.

The alignments produced by a sub-tree align-
ment model are also precision-oriented, rather 
than recall-oriented (cf. Tinsley, 2010). This is 
important in our case, where we want to only 
extract those parts of the translation suggested by 
the TM for which we are most certain that they 
are good translations.
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As stated earlier, the only resource necessary 
for the operation of this system is a probabilistic 
bilingual dictionary covering the data that needs 
to be aligned. For the bilingual alignment step, 
such a bilingual dictionary is produced as a by-
product of the training of the SMT backend and 
therefore available. For the monolingual align-
ment step, the required probabilistic dictionary is 
generated by simply listing each unique token 
seen in the source-language data in the TM as 
translating only as itself with probability 1.

2.4. Statistical Machine Translation Backend

Once the matching  step is completed, we have 
identified and marked-up the parts of the input 
sentence for which translations will be extracted 
from the TM suggestions, as well as the parts 
that need to be translated from scratch. The 
lengths of the non-translated segments vary de-
pending on the FMS, but are in general relatively 
short (one to three tokens).

The further processing of the input relies on a 
specific feature of the SMT backend we use, 
namely the Moses system (Koehn et al., 2007). 
We decided to use this particular system as it is 
the most widely adopted open-source SMT sys-
tem, both for academic and commercial pur-
poses. In this approach, we annotate the seg-
ments of the input sentence for which transla-
tions have been found from the TM suggestion 
using XML tags with the translation correspond-
ing to each segment given as an attribute to the 
encapsulating XML tag, similarly to the system 
described in (Smith and Clark, 2009). The SMT 
backend is supplied with marked-up input in the 
form of a string consisting of the concatenation 
of the XML-enclosed translated segments and 
the plain non-translated segments in the target-
language word order, as established by the 
alignment process. The SMT backend is in-
structed to translate this input, while keeping the 
translations supplied via the XML annotation.  
This allows the SMT backend to produce transla-
tions informed by and conforming to actual ex-
amples from the TM, which should result in im-
provements in translation quality.

2.5. Auxilliary Tools

It must be noted that in general the SMT backend 
sees the data it needs to translate in the target-
language word order (e.g. it is asked to translate 
an English sentence that has French word order). 
This, however, does not correspond to the data 
found in the TM, which we use for deriving the 
SMT models. Because of this discrepancy, we 
developed a pre-processing tool that goes over 
the TM data performing bilingual alignment and 
outputting reordered versions of the sentences it 
processes by using the information implicitly 
encoded in the sub-tree alignments. In this way 
we obtain the necessary reordered data to train a 
translation model where the source language al-
ready has the target-language word order. In our 
system we than use this model — together with 
the proper-word-order model — for translation.

One specific aspect of real-world TM data that 
we need to deal with is that they often contain 
meta-tag annotations of various sorts. Namely, 
annotation tags specific to the file format used for 
storing the TM data, XML tags annotating parts 
of the text as appearing in Graphical User Inter-
face (GUI) elements, formatting tags specific to 
the file format the TM data was originally taken 
from, e.g. RTF, OpenDoc, etc. Letting any MT 
system try to deal with these tags in a probabilis-
tic manner can easily result in ill-formed, mis-
translated and/or out-of-order meta-tags in the 
translation.

This motivates the implementation of a rudi-
mentary handling of meta-tags in the system pre-
sented in this paper, in particular handling the 
XML tags found in the TM data we work with, 
as described in Section 3. The tool we developed 
for this purpose simply builds a map of all 
unique XML tags per language and replaces 
them in the data with short placeholders that are 
designed in such a way that they would not inter-
fere with the rest of the TM data.2 A special case 
that the tool has to take care of is when an XML 
tag contains an attribute whose value needs to be 
translated. In such situations, we decided to not 
perform any processing, but rather leave the 
XML tag as is, so that all text may be translated 
as needed. A complete treatment of meta-tags, 
however, is beyond the scope of the current paper.

2 In the current implementation, the XML tags are replaced with the string <tag_id>, where <tag_id> is a unique nu-
meric identifier for the XML tag that is being replaced.
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We also had to build a dedicated tokeniser/de-
tokeniser pair to handle real world TM data con-
taining meta-tags, e-mail addresses, file paths, 
etc., as described in Section 3. Both tools are 
implemented as a cascade of regular expression 
substitutions in Perl.

Finally, we use a tool to extract the textual 
data from the TM. That is, we strip all tags spe-
cific to the format in which the TM is stored, as 
they can in general be recreated and thus do not 
need to be present during translation. In our par-
ticular case the TM is stored in the XML-based 
TMX format.3

2.6. Complete Workflow
Besides the components described above, we 
also performed two further transformations on 
the data. First, we lowercase the TM data before 
using it to train the SMT backend models. This 
also means that the alignment steps from Section 
2.3 are performed on lowercased data, as the bi-
lingual dictionary used there is obtained during 
the SMT training process.4

Additionally, the SMT and sub-tree alignment 
systems that we use cannot handle certain char-
acters, which we need to mask in the data. For 
the SMT backend, this includes ‘|’, ‘<’ and ‘>’ 
and for the sub-tree aligner, ‘(’ and ‘)’. The rea-
son these characters cannot be handled is that the 
SMT system uses ‘|’ internally to separate data 
fields in the trained models and ‘<’ and ‘>’ can-
not be handled whilst using XML tags to anno-
tate pre-translated portions of the input. The sub-
tree aligner uses ‘(’ and ‘)’ to represent the 
phrase-based tree structures it generates and the 
presence of these characters in the data may cre-
ate ambiguity when parsing the tree structures. 
All these characters are masked by substituting 
in high-Unicode counterparts, namely ‘│’, ‘﹤’, 
‘﹥’, ‘﹙’ and ‘﹚’. Visually, there is a very slight 
distinction and this is intentionally so to simplify 
debugging. However, the fact that the character 
codes are different alleviates the problems dis-
cussed above. Of course, in the final output, the 
masking is reversed and the translation contains 
the regular versions of the characters.
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Figure 2. Pre-Processing Workflow

The complete pre-processing workflow is pre-
sented in Figure 2, where the rectangles with ver-
tical bars represent the use of open-source tools, 
while the plain rectangles represent tools devel-
oped by the authors of this paper.

First, the textual data is extracted from the 
original TM format, producing one plain-text file 
for each language side. These data can either be 
pre-loaded in a PostgreSQL database at this time, 
or during the first run of the translation system.

Next, the meta-tag-handling tool is used to 
generate the substitution tables for the source and 
target languages, as well as new files for each 
language with the tags substituted by the corre-
sponding identifiers (cf. Section 2.5). These files 
are then tokenised, lowercased and all conflicting 
characters are masked, as described above.

The pre-processed files are then used to pro-
duce a file containing pairs of sentences in the 
input format of the sub-tree aligner, as well as to 
generate the probabilistic dictionary required for 

3 http://www.lisa.org/fileadmin/standards/tmx1.4/tmx.htm
4 Currently, we do not use a recaser tool and the translations produced are always in lowercase. This component, however, 
will be added in a future version of the system.
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the monolingual alignment and to train the SMT 
model on the data in the proper word order. The 
SMT training produces the necessary bilingual 
dictionary for use by the sub-tree aligner, which 
is run to obtain a parallel-treebank version of the 
TM data. The parallel treebank is then used to 
retrieve bilingual alignments for the TM data, 
rather than generate them on the fly during trans-
lation. This is an important design decision, as 
the complexity of the alignment algorithm is high 
for plain-text alignment (cf. Zhechev, 2010).

Once we have generated the bilingual parallel 
treebank, we run the reordering tool, which gen-
erates a new plain-text file for the source lan-
guage, where the sentences are modified to con-
form to the target-language word order, as im-
plied by the data in the parallel treebank. This is 
then matched with the proper-order target-
language file to train the SMT backend for the 
actual use in the translation process.
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Figure 3. Translation Workflow

Once all the necessary files have been gener-
ated and all pre-processing steps have been com-
pleted, the system is ready for use for translation. 
The translation workflow is shown in Figure 3, 
‘I’, ‘M’ and ‘T’ having the same meanings as in 
Figure 1. Here, the first step after an input sen-
tence has been read in is to find the TM match 
with the highest FMS. This is done using the 

original plain non-pre-processed data to simulate 
real-life operation with a proper TM backend.

After the best TM match and its translation are 
extracted from the TM, they — together with the 
input sentence — are pre-processed by tokenisa-
tion, lowercasing, meta-tag and special-character 
substitution. Next, the corresponding tree pair is 
extracted from the bilingual parallel treebank to 
establish the tree structure for the TM source-
language match. This tree structure is then used 
to perform the monolingual alignment, which 
allows us to perform the matching step next. Af-
ter the matching is complete, we generate a final 
translation as described in Section 2.4. Finally, 
the translations are de-tokenised and the XML 
tags and special characters are unmasked.

3. Experimental Setup

We use real-life TM data from an industrial part-
ner. The TM was generated during the translation 
of RTF-formatted customer support documenta-
tion. The data is in TMX format and originally 
contains 108   967 English–French translation 
segments, out of which 14 segments either have 
an empty language side or have an extreme dis-
crepancy in the number of tokens for each lan-
guage side and were therefore discarded.

A particular real-life trait of the data is the 
presence of a large number of XML tags. Run-
ning the tag-mapping tool described in Section 
2.6, we gathered 2 049 distinct tags for the Eng-
lish side of the data and 2  653 for the French 
side. Still, there were certain XML tags that in-
cluded a label argument whose value was trans-
lated from one language to the other. These XML 
tags were left intact so that our system could 
handle the translation correctly.

The TM data also contain a large number of 
file paths, e-mail addresses, URLs and others, 
which makes bespoke tokenisation of the data 
necessary. Our tokenisation tool ensures that 
none of these elements are tokenised, keeps RTF 
formatting sequences non-tokenised and properly 
handles non-masked XML tags, minimising their 
fragmentation.

As translation segments rarely occur more than 
once in a TM, we observe a high number of unique 
tokens (measured after pre-processing) — 41 379 
for English and 49   971 for French — out of 
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108  953 segment pairs. The average sentence 
length is 13.2 for English and 15.0 for French.

For evaluation, we use a data set of 4977 Eng-
lish–French segments from the domain of the 
TM. The sentences in the test set are significantly 
shorter on average, compared to the TM — 9.2 
tokens for English and 10.9 for French.

It must be noted that we used SMT models 
with maximum phrase length of 3 tokens, rather 
than the standard 5 tokens, and for decoding we 
used a 3-gram language model. This results in 
much smaller models than the ones usually used 
in mainstream SMT applications. (The standard 
for some tools goes as far as 7-token phase-
length limit and 7-gram language models)

4. Evaluation Results

For the evaluation of our system, we used a 
number of widely accepted automatic metrics, 
namely BLEU (Papineni et al., 2002), METEOR 
(Banerjee and Lavie, 2005), TER (Snover et al., 
2006) and inverse F-Score based on token-level 
precision and recall.

We setup our system to only fully process in-
put sentences for which a TM match with an 
FMS over 50% was found, although all sen-

tences were translated directly using the SMT 
backend to check the overall pure SMT perform-
ance. The TM-suggested translations were also 
output for all input sentences.

The results of the evaluation are given in Fig-
ure 4, where the tm and direct scores are also 
given for the FMS range [0%; 50%)∪{100%}. 
Across all metrics we see a uniform drop in the 
quality of TM-suggested translations, which is 
what we expected, given that these translations 
contain one or more wrong words. We believe 
that the relatively high scores recorded for the 
TM-suggested translations at the high end of the 
FMS scale are a result of the otherwise perfect 
word order and lexical choice. For n-gram-
match-based metrics like the ones we used such a 
result is expected and predictable. Although the 
inverse F-score results show the potential of our 
setup to translate the outstanding tokens in a 
90%–100% TM match, it appears that the SMT 
system produces word order that does not corre-
spond to the reference translation and because of 
this receives lower scores on the other metrics.

The unexpected drop in scores for perfect TM 
matches is due to discrepancies between the ref-
erence translations in our test set and the transla-
tions stored in the TM. We believe that this issue 

Figure 4. Evaluation results for English-to-French translation, broken down by FMS range
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affects all FMS ranges, albeit to a lower extent 
for non-perfect matches. Unfortunately, the exact 
impact cannot be ascertained without human 
evaluation.

We observe a significant drop-off in translation 
quality for the direct output below FMS 50%. 
This suggests that sentences with such low FMS 
should be translated either by a human translator 
from scratch, or by an SMT system trained on 
different/more data.

Our system (i.e. the xml setup) clearly outper-
forms the direct SMT translation for FMS be-
tween 80 and 100 and has comparable perform-
ance between FMS 70 and 80. Below FMS 70, 
the SMT backend has the best performance. Al-
though these results are positive, we still need to 
investigate why our system has poor perform-
ance at lower FMS ranges. Theoretically, it 
should outperform the SMT backend across all 
ranges, as its output is generated by supplying 
the SMT backend with good pre-translated frag-
ments. The Inverse F-Score graph suggest that 
this is due to worse lexical choice, but only man-
ual evaluation can provide us with clues for solv-
ing the issue.

The discrepancy in the results in the Inverse F-
Score graph with the other metrics suggest that 
the biggest problem for our system is producing 
output in the expected word-order.

5. Future Work

There are a number of possible directions for 
improvement that can be explored.

As mentioned earlier, we plan to integrate our 
system with a full-featured open-source or com-
mercial TM product that will supply the TM 
matches and translations. We expect this to im-
prove our results, as the quality of the TM matches 
will better correspond to the reported FMS.

Such an integration will also be the first neces-
sary step to perform a user study evaluating the 
effect of the use of our system on post-editing 
speeds. We expect the findings of such a study to 
show a significant increase of throughput that 
will significantly reduce the costs of translation 
for large-scale projects.

It would be interesting to also conduct a user 
study where our system is used to additionally 
mark up the segments that need to be edited in 

the final SMT translation. We expect this to pro-
vide additional speedup to the post-editing proc-
ess. Such a study will require tight integration 
between our system and a CAT tool and the 
modular design we presented will facilitate this 
significantly.

The proposed treatment of meta-tags is cur-
rently very rudimentary and may be extended 
with additional features and to handle additional 
types of tags. The design of our system currently 
allows the meta-tag-handling tool to be devel-
oped independently, thus giving the user the 
choice of using a different meta-tag tool for each 
type of data they work with.

In addition, the reordering tool needs to be 
developed further, with emphasis on properly 
handling situations where the appropriate posi-
tion of an input-sentence segment cannot be re-
liably established. In general, further research is 
needed into the reordering errors introduced by 
the SMT system into otherwise good translations.

6. Conclusions

In this paper, we presented a novel modular ap-
proach to the utilisation of Translation Memory 
data to improve the quality of Statistical Machine 
Translation.

The system we developed uses precise sub-
tree-based alignments to reliably determine and 
mark up correspondences between an input sen-
tence and a TM-suggested translation, which en-
sures the utilisation of the high-quality transla-
tion data stored in the TM database. An SMT 
backend then translates the marked-up input sen-
tence to produce a final translation with im-
proved quality.

Our evaluation shows that the system pre-
sented in this paper significantly improves the 
quality of SMT output when using TM matches 
with FMS above 80 and produces results on par 
with the pure SMT output for SMT between 70 
and 80. TM matches with FMS under 70 seem to 
provide insufficient reordering information and 
too few matches to improve on the SMT output. 
Still, further investigation is needed to properly 
diagnose the drop in quality for FMS below 70.

We expect further improvements to the reor-
dering functionality of our system to result in 
higher-quality output even for lower FMS ranges.
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