
Proceedings of SSST-4, Fourth Workshop on Syntax and Structure in Statistical Translation, pages 10–18,
COLING 2010, Beijing, August 2010.

A Systematic Comparison between Inversion Transduction Grammar
and Linear Transduction Grammar for Word Alignment

Markus Saers and Joakim Nivre

Dept. of Linguistics & Philology
Uppsala University

first.last@lingfil.uu.se

Dekai Wu
HKUST

Human Language Technology Center
Dept. of Computer Science & Engineering
Hong Kong Univ. of Science & Technology

dekai@cs.ust.hk

Abstract

We present two contributions to gram-
mar driven translation. First, since both
Inversion Transduction Grammar and
Linear Inversion Transduction Gram-
mars have been shown to produce bet-
ter alignments then the standard word
alignment tool, we investigate how the
trade-off between speed and end-to-end
translation quality extends to the choice
of grammar formalism. Second, we
prove that Linear Transduction Gram-
mars (LTGs) generate the same transduc-
tions as Linear Inversion Transduction
Grammars, and present a scheme for ar-
riving at LTGs by bilingualizing Linear
Grammars. We also present a method for
obtaining Inversion Transduction Gram-
mars from Linear (Inversion) Transduc-
tion Grammars, which can speed up
grammar induction from parallel corpora
dramatically.

1 Introduction

In this paper we introduce Linear Transduction
Grammars (LTGs), which are the bilingual case
of Linear Grammars (LGs). We also show that
LTGs are equal to Linear Inversion Transduction
Grammars (Saers et al., 2010). To be able to in-
duce transduction grammars directly from par-
allel corpora an approximate search for parses is
needed. The trade-off between speed and end-to-
end translation quality is investigated and com-
pared to Inversion Transduction Grammars (Wu,
1997) and the standard tool for word alignment,

GIZA++ (Brown et al., 1993; Vogel et al., 1996;
Och and Ney, 2003). A heuristic for converting
stochastic bracketingLTGs into stochastic brack-
eting ITGs is presented, and fitted into the speed–
quality trade-off.

In section 3 we give an overview of transduc-
tion grammars, introduceLTGs and show that
they are equal toLITGs. In section 4 we give
a short description of the rational for the trans-
duction grammar pruning used. In section 5 we
describe a way of seeding a stochastic bracketing
ITG with the rules and probabilities of a stochas-
tic bracketingLTG. Section 6 describes the setup,
and results are given in section 7. Finally, some
conclusions are offered in section 8

2 Background

Any form of automatic translation that relies on
generalizations of observed translations needs to
align these translations on a sub-sentential level.
The standard way of doing this is by aligning
words, which works well for languages that use
white space separators between words. The stan-
dard method is a combination of the family of
IBM -models (Brown et al., 1993) and Hidden
Markov Models (Vogel et al., 1996). These
methods all arrive at a function (A) from lan-
guage 1 (F) to language 2 (E). By running the
process in both directions, two functions can be
estimated and then combined to form an align-
ment. The simplest of these combinations are in-
tersection and union, but usually, the intersection
is heuristically extended. Transduction gram-
mars on the other hand, impose a shared struc-
ture on the sentence pairs, thus forcing a consis-
tent alignment in both directions. This method

10

has proved successful in the settings it has been
tried (Zhang et al., 2008; Saers and Wu, 2009;
Haghighi et al., 2009; Saers et al., 2009; Saers
et al., 2010). Most efforts focus on cutting down
time complexity so that larger data sets than toy-
examples can be processed.

3 Transduction Grammars

Transduction grammars were first introduced in
Lewis and Stearns (1968), and further devel-
oped in Aho and Ullman (1972). The origi-
nal notation called for regularCFG-rules in lan-
guageF with rephrasedE productions, either in
curly brackets, or comma separated. The bilin-
gual version ofCFGs is called Syntax-Directed
Transduction Grammars (SDTGs). To differenti-
ate identical nonterminal symbols, indices were
used (the bag of nonterminals for the two pro-
ductions are equal by definition).

A → B(1) a B(2) {x B(1) B(2)}
= A → B(1) a B(2), x B(1) B(2)

The semantics of the rules is that one nontermi-
nal rewrites into a bag of nonterminals that is dis-
tributed independently in the two languages, and
interspersed with any number of terminal sym-
bols in the respective languages. As withCFGs,
the terminal symbols can be factored out into
preterminals with the added twist that they are
shared between the two languages, since preter-
minals are formally nonterminals. The above
rule can thus be rephrased as

A → B(1) Xa/x B(2), Xa/x B(1) B(2)

Xa/x → a, x

In this way, rules producing nonterminals and
rules producing terminals can be separated.
Since only nonterminals are allowed to move,
their movement can be represented as the orig-
inal sequence of nonterminals and a permutation
vector as follows:

A → B Xa/x B ; 1, 0, 2

Xa/x → a, x

To keep the reordering as monotone as possible,
the terminalsa andx can be produced separately,

but doing so eliminates any possibility of param-
eterizing their lexical relationship. Instead, the
individual terminals are pair up with the empty
string (ǫ).

A → Xx B Xa B ; 0, 1, 2, 3
Xa → a, ǫ
Xx → ǫ, x

Lexical rules involving the empty string are re-
ferred to as singletons. Whenever a preterminal
is used to pair up two terminal symbols, we refer
to that pair of terminals as abiterminal, which
will be written ase/f .

Any SDTG can be rephrased to contain per-
muted nonterminal productions and biterminal
productions only, and we will call this the nor-
mal form of SDTGs. Note that it is not possi-
ble to produce a two-normal form forSDTGs,
as there are some rules that are not binarizable
(Wu, 1997; Huang et al., 2009). This is an
important point to make, since efficient parsing
for CFGs is based on either restricting parsing
to only handle binary grammars (Cocke, 1969;
Kasami, 1965; Younger, 1967), or rely on on-
the-fly binarization (Earley, 1970). When trans-
lating with a grammar, parsing only has to be
done inF , which is binarizable (since it is a
CFG), and can therefor be computed in polyno-
mial time (O(n3)). Once there is a parse tree
for F , the corresponding tree forE can be eas-
ily constructed. When inducing a grammar from
examples, however, biparsing (finding an anal-
ysis that is consistent across a sentence pair) is
needed. The time complexity for biparsing with
SDTGs isO(n2n+2), which is clearly intractable.

Inversion Transduction Grammars orITGs
(Wu, 1997) are transduction grammars that have
a two-normal form, thus guaranteeing binariz-
ability. Defining the rank of a rule as the number
of nonterminals in the production, and the rank
of a grammar as the highest ranking rule in the
rule set, ITGs area) any SDTG of rank two, b)
anySDTG of rank three orc) anySDTG where no
rule has a permutation vector other than identity
permutation or inversion permutation. It follows
from this definition thatITGs have a two-normal
form, which is usually expressed asSDTG rules,

11

with brackets around the production to distin-
guish the different kinds of rules from each other.

A → B C ; 0, 1 = A → [B C]
A → B C ; 1, 0 = A → 〈 B C 〉
A → e/f = A → e/f

By guaranteeing binarizability, biparsing time
complexity becomesO(n6).

There is an even more restricted version of
SDTGs called Simple Transduction Grammar
(STG), where no permutation at all is allowed,
which can also biparse a sentence pair inO(n6)
time.

A Linear Transduction Grammar (LTG) is a
bilingual version of a Linear Grammar (LG).

Definition 1. An LG in normal form is a tuple

GL = 〈N,Σ, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols,R is a finite
set of rules andS ∈ N is the designated start
symbol. The rule set is constrained so that

R ⊆ N × (Σ ∪ {ǫ})N(Σ ∪ {ǫ}) ∪ {ǫ}

Whereǫ is the empty string.

To bilingualize a linear grammar, we will take
the same approach as taken when a finite-state
automaton is bilingualized into a finite-state
transducer. That is: to replace all terminal sym-
bols with biterminal symbols.

Definition 2. An LTG in normal form is a tuple

T GL = 〈N,Σ,∆, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols in language
E, ∆ is a finite set of terminal symbols in lan-
guageF , R is a finite set of linear transduction
rules andS ∈ N is the designated start symbol.
The rule set is constrained so that

R ⊆ N ×ΨNΨ ∪ {〈ǫ, ǫ〉}

WhereΨ = Σ∪{ǫ}×∆∪{ǫ} andǫ is the empty
string.

Graphically, we will representLTG rules as pro-
duction rules with biterminals:

〈A, 〈x, p〉B〈y, q〉〉 = A → x/p B y/q
〈A, 〈ǫ, ǫ〉〉 = B → ǫ/ǫ

Like STGs, LTGs do not allow any reordering,
and are monotone, but because they are linear,
this has no impact on expressiveness, as we shall
see later.

Linear Inversion Transduction Grammars
(LITGs) were introduced in Saers et al. (2010),
and representITGs that are allowed to have at
most one nonterminal symbol in each produc-
tion. These are attractive because they can bi-
parse a sentence pair inO(n4) time, which can
be further reduced to linear time by severely
pruning the search space. This makes them
tractable for large parallel corpora, and a viable
way to induce transduction grammars from large
parallel corpora.

Definition 3. An LITG in normal form is a tuple

T GLI = 〈N,Σ,∆, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols from lan-
guageE, ∆ is a finite set of terminal symbols
from languageF , R is a set of rules andS ∈ N
is the designated start symbol. The rule set is
constrained so that

R ⊆ N × {[], 〈〉} ×ΨN ∪NΨ ∪ {〈ǫ, ǫ〉}

Where[] represents identity permutation and〈〉
represents inversion permutation,Ψ = Σ∪{ǫ}×
∆ ∪ {ǫ} is a possibly empty biterminal, andǫ is
the empty string.

Graphically, a rule will be represented as anITG

rule:

〈A, [], B〈e, f〉〉 = A → [B e/f]
〈A, 〈〉, 〈e, f〉B〉 = A → 〈 e/f B 〉

〈A, [], 〈ǫ, ǫ〉〉 = A → ǫ/ǫ

As with ITGs, productions with only biterminals
will be represented without their permutation, as
any such rule can be trivially rewritten into in-
verted or identity form.

12

Definition 4. An ǫ-free LITG is an LITG where
no rule may rewrite one nonterminal into another
nonterminal only. Formally, the rule set is con-
strained so that

R ∩N × {[], 〈〉} × ({〈ǫ, ǫ〉}B ∪B{〈ǫ, ǫ〉}) = ∅

The LITG presented in Saers et al. (2010) is
thus anǫ-free LITG in normal form, since it has
the following thirteen rule forms (of which 8 are
meaningful, 1 is only used to terminate genera-
tion and 4 are redundant):

A → [e/f B]
A → 〈 e/f B 〉
A → [B e/f]
A → 〈 B e/f 〉
A → [e/ǫ B] | A → 〈 e/ǫ B 〉
A → [B e/ǫ] | A → 〈 B e/ǫ 〉
A → [ǫ/f B] | A → 〈 B ǫ/f 〉
A → [B ǫ/f] | A → 〈 ǫ/f B 〉
A → ǫ/ǫ

All the singleton rules can be expressed either in
straight or inverted form, but the result of apply-
ing the two rules are the same.

Lemma 1. Any LITG in normal form can be ex-
pressed as an LTG in normal form.

Proof. The aboveLITG can be rewritten inLTG

form as follows:

A → [e/f B] = A → e/f B
A → 〈 e/f B 〉 = A → e/ǫ B ǫ/f
A → [B e/f] = A → B e/f
A → 〈 B e/f 〉 = A → ǫ/f B e/ǫ
A → [e/ǫ B] = A → e/ǫ B
A → [B e/ǫ] = A → B e/ǫ
A → [ǫ/f B] = A → ǫ/f B
A → [B ǫ/f] = A → B ǫ/f
A → ǫ/ǫ = A → ǫ/ǫ

To account for allLITGs in normal form, the fol-
lowing two non-ǫ-free rules also needs to be ac-
counted for:

A → [B] = A → B
A → 〈 B 〉 = A → B

Lemma 2. Any LTG in normal form can be ex-
pressed as an LITG in normal form.

Proof. An LTG in normal form has two rules,
which can be rewritten inLITG form, either as
straight or inverted rules as follows

A → x/p B y/q = A → [x/p B̄]
B̄ → [B y/q]

= A → 〈 x/q B̄ 〉
B̄ → 〈 B y/p 〉

A → ǫ/ǫ = A → ǫ/ǫ

Theorem 1. LTGs in normal form and LITGs in
normal form express the same class of transduc-
tions.

Proof. Follows from lemmas 1 and 2.

By theorem 1 everything concerningLTGs is also
applicable toLITGs, and anLTG can be expressed
in LITG form when convenient, and vice versa.

4 Pruning the Alignment Space

The alignment space for a transduction grammar
is the combinations of the parse spaces of the
sentence pair. Lete be theE sentence, andf
be theF sentence. The parse spaces would be
O(|e|2) andO(|f |2) respectively, and the com-
bination of these spaces would beO(|e|2×|f |2),
or O(n4) if we assumen to be proportional
to the sentence lengths. In the case ofLTGs,
this space is searched linearly, giving time com-
plexity O(n4), and in the case ofITGs there
is branching within both parse spaces, adding
an order of magnitude each, giving a total time
complexity ofO(n6). There is, in other words,
a tight connection between the alignment space
and the time complexity of the biparsing al-
gorithm. Furthermore, most of this alignment
space is clearly useless. Consider the case where
the entireF sentence is deleted, and the entireE
sentence is simply inserted. Although it is pos-
sible that it is allowed by the grammar, it should
have a negligible probability (since it is clearly a
translation strategy that generalize poorly), and
could, for all practical reasons, be ignored.

13

Language pair Bisentences Tokens

Spanish–English 108,073 1,466,132
French–English 95,990 1,340,718
German–English 115,323 1,602,781

Table 1: Size of training data.

Saers et al. (2009) present a scheme for prun-
ing away most of the points in the alignment
space. Parse items are binned according to cov-
erage (the total number of words covered), and
each bin is restricted to carry a maximum ofb
items. Any items that do not fit in the bins are
excluded from further analysis. To decide which
items to keep, inside probability is used. This
pruning scheme effectively linearizes the align-
ment space, as is will be of sizeO(nb), regard-
less of what type grammar is used. AnITG can
thus be biparsed in cubic time, and anLTG in lin-
ear time.

5 Seeding anITG with an LTG

SinceLTGs are a subclass ofITGs, it would be
possible to convert anLTG to a ITG. This could
save a lot of time, sinceLTGs aremuch faster to
induce from corpora thanITGs.

Converting aBLTG to aBITG is fairly straight
forward. Consider theBLTG rule

X → [e/f X]

To convert it toBITG in two-normal form, the
biterminal has to be factored out. Replacing
the biterminal with a temporary symbol̄X , and
introducing a rule that rewrites this temporary
symbol to the replaced biterminal produces two
rules:

X → [X̄ X]
X̄ → e/f

This is no longer a bracketing grammar since
there are two nonterminals, but equatingX̄ toX
restores this property. An analogous procedure
can be applied in the case where the nonterminal
comes before the biterminal, as well as for the
inverting cases.

When converting stochasticLTGs, the proba-
bility mass of theSLTG rule has to be distributed

to two SITG rules. The fact that theLTG rule
X → ǫ/ǫ lacks correspondence inITGs has to
be weighted in as well. In this paper we took the
maximum entropy approach and distributed the
probability mass uniformly. This means defin-
ing the probability mass functionp′ for the new
SBITG from the probability mass functionp of
the originalSBLTG such that:

p′(X → [X X]) =
∑

e/f




√
p(X→[e/f X])
1−p(X→ǫ/ǫ)

+√
p(X→[X e/f])
1−p(X→ǫ/ǫ)




p′(X → 〈 X X 〉) =
∑

e/f




√
p(X→〈 e/f X 〉)
1−p(X→ǫ/ǫ)

+√
p(X→〈 X e/f 〉)
1−p(X→ǫ/ǫ)




p′(X → e/f) =




√
p(X→[e/f X])
1−p(X→ǫ/ǫ)

+√
p(X→[X e/f])
1−p(X→ǫ/ǫ)

+√
p(X→〈 e/f X 〉)
1−p(X→ǫ/ǫ)

+√
p(X→〈 X e/f 〉)
1−p(X→ǫ/ǫ)




6 Setup

The aim of this paper is to compare the align-
ments from SBITG and SBLTG to those from
GIZA++, and to study the impact of pruning
on efficiency and translation quality. Initial
grammars will be estimated by counting cooc-
currences in the training corpus, after which
expectation-maximization (EM) will be used to
refine the initial estimate. At the last iteration,
the one-best parse of each sentence will be con-
sidered as the word alignment of that sentence.

In order to keep the experiments comparable,
relatively small corpora will be used. If larger
corpora were used, it would not be possible to get
any results for unprunedSBITGs because of the
prohibitive time complexity. The Europarl cor-
pus (Koehn, 2005) was used as a starting point,
and then all sentence pairs where one of the sen-
tences were longer than 10 tokens were filtered

14

Figure 1: Trade-offs between translation quality (as measured byBLEU) and biparsing time (in
seconds plotted on a logarithmic scale) forSBLTGs, SBITGs and the combination.

Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.1234 0.2608 0.2655 0.2653 0.2661 0.2671 0.2663
SBLTG 0.2574 0.2645 0.2631 0.2624 0.2625 0.2633 0.2628
GIZA++ 0.2597 0.2597 0.2597 0.2597 0.2597 0.2597 0.2597

NIST

SBITG 3.9705 6.6439 6.7312 6.7101 6.7329 6.7445 6.6793
SBLTG 6.6023 6.6800 6.6657 6.6637 6.6714 6.6863 6.6765
GIZA++ 6.6464 6.6464 6.6464 6.6464 6.6464 6.6464 6.6464

Training times
SBITG 03:10 17:00 38:00 1:20:00 2:00:00 2:40:00 3:20:00
SBLTG 35 1:49 3:40 7:33 9:44 12:13 11:59

Table 2: Results for the Spanish–English translation task.

out (see table 1). TheGIZA++ system was built
according to the instructions for creating a base-
line system for the Fifth Workshop on Statistical
Machine Translation (WMT’10),1 but the above
corpora were used instead of those supplied by
the workshop. This includes word alignment
with GIZA++, a 5-gram language model built
with SRILM (Stolcke, 2002) and parameter tun-
ing with MERT (Och, 2003). To carry out the ac-
tual translations, Moses (Koehn et al., 2007) was
used. TheSBITG andSBLTG systems were built
in exactly the same way, except that the align-
ments fromGIZA++ were replaced by those from
the respective grammars.

In addition to trying out exhaustive biparsing

1http://www.statmt.org/wmt10/

for SBITGs andSBLTGs on three different trans-
lation tasks, several different levels of pruning
were tried (1, 10, 25, 50, 75 and 100). We also
used the grammar induced fromSBLTGs with a
beam size of 25 to seedSBITGs (see section 5),
which were then run for an additional iteration
of EM, also with beam size 25.

All systems are evaluated withBLEU (Pap-
ineni et al., 2002) andNIST (Doddington, 2002).

7 Results

The results for the three different translation
tasks are presented in Tables 2, 3 and 4. It is
interesting to note that the trend they portray is
quite similar. When the beam is very narrow,
GIZA++ is better, but already at beam size 10,
both transduction grammars are superior. Con-

15

Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.1268 0.2632 0.2654 0.2669 0.2668 0.2655 0.2663
SBLTG 0.2600 0.2638 0.2651 0.2668 0.2672 0.2662 0.2649
GIZA++ 0.2603 0.2603 0.2603 0.2603 0.2603 0.2603 0.2603

NIST

SBITG 4.0849 6.7136 6.7913 6.8065 6.8068 6.8088 6.8151
SBLTG 6.6814 6.7608 6.7656 6.7992 6.8020 6.7925 6.7784
GIZA++ 6.6907 6.6907 6.6907 6.6907 6.6907 6.6907 6.6907

Training times
SBITG 03:25 17:00 42:00 1:25:00 2:10:00 2:45:00 3:10:00
SBLTG 31 1:41 3:25 7:06 9:35 13:56 10:52

Table 3: Results for the French–English translation task.

Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.0926 0.2050 0.2091 0.2090 0.2091 0.2094 0.2113
SBLTG 0.2015 0.2067 0.2066 0.2073 0.2080 0.2066 0.2088
GIZA++ 0.2059 0.2059 0.2059 0.2059 0.2059 0.2059 0.2059

NIST

SBITG 3.4297 5.8743 5.9292 5.8947 5.8955 5.9086 5.9380
SBLTG 5.7799 5.8819 5.8882 5.8963 5.9252 5.8757 5.9311
GIZA++ 5.8668 5.8668 5.8668 5.8668 5.8668 5.8668 5.8668

Training times
SBITG 03:20 17:00 41:00 1:25:00 2:10:00 2:45:00 3:40:00
SBLTG 38 1:58 4:52 8:08 11:42 16:05 13:32

Table 4: Results for the German–English translation task.

sistent with Saers et al. (2009),SBITG has a sharp
rise in quality going from beam size 1 to 10,
and then a gentle slope up to beam size 25, af-
ter which it levels out.SBLTG, on the other hand
start out at a respectable level, and goes up a gen-
tle slope from beam size 1 to 10, after which is
level out. This is an interesting observation, as it
suggests thatSBLTG reaches its optimum with a
lower beam size (although that optimum is lower
than that ofSBITG). The trade-off between qual-
ity and time can now be extended beyond beam
size to include grammar choice. In Figure 1, run
times are plotted againstBLEU scores to illus-

trate this trade-off. It is clear thatSBLTGs are
indeed much faster thanSBITGs, the only excep-
tion is whenSBITGs are run withb = 1, but then
theBLEU score is so low that is is not worth con-
sidering.

The time may seem inconsistent betweenb =
100 and b = ∞ for SBLTG, but the extra time
for the tighter beam is because of beam manage-
ment, which the exhaustive search doesn’t bother
with.

In table 5 we compare the pure approaches
to one where anLTG was trained during 10 it-
erations ofEM and then used to seed (see sec-

16

Translation task System BLEU NIST Total time

SBLTG 0.2631 6.6657 36:40
Spanish–English SBITG 0.2655 6.7312 6:20:00

Both 0.2660 6.7124 1:14:40

SBLTG 0.2651 6.7656 34:10
French–English SBITG 0.2654 6.7913 7:00:00

Both 0.2625 6.7609 1:16:10

SBLTG 0.2066 5.8882 48:52
German–English SBITG 0.2091 5.9292 6:50:00

Both 0.2095 5.9224 1:29:40

Table 5: Results for seeding anSBITG with anSBLTG (Both) compared to the pure approach. Total
time refers to 10 iterations ofEM training for SBITG andSBLTG respectively, and 10 iterations of
SBLTG and one iteration ofSBITG training for the combined system.

tion 5) an SBITG, which was then trained for
one iteration ofEM. Although the differences
are fairly small, German–English and Spanish–
English seem to reach the level ofSBITG,
whereas French–English is actually hurt. The
big difference is in time, since the combined sys-
tem needs about a fifth of the time theSBITG-
based system needs. This phenomenon needs to
be more thoroughly examined.

It is also worth noting thatGIZA++ was beaten
by an aligner that used less than 20 minutes (less
than 2 minutes per iteration and at most 10 itera-
tions) to align the corpus.

8 Conclusions

In this paper we have introduced the bilingual
version of linear grammar: Linear Transduc-
tion Grammars, and found that they generate the
same class of transductions as Linear Inversion
Transduction Grammars. We have also com-
pared Stochastic Bracketing versions ofITGs and
LTGs to GIZA++ on three word alignment tasks.
The efficiency issues with transduction gram-
mars have been addressed by pruning, and the
conclusion is that there is a trade-off between
run time and translation quality. A part of the
trade-off is choosing which grammar framework
to use, asLTGs are faster but not as good asITGs.
It also seems possible to take a short-cut in this
trade-off by starting out with anLTG and convert-
ing it to an ITG. We have also showed that it is

possible to beat the translation quality ofGIZA++
with a quite fast transduction grammar.

Acknowledgments

This work was funded by the Swedish Na-
tional Graduate School of Language Technol-
ogy (GSLT), the Defense Advanced Research
Projects Agency (DARPA) under GALE Con-
tracts No. HR0011-06-C-0022 and No. HR0011-
06-C-0023, and the Hong Kong Research
Grants Council (RGC) under research grants
GRF621008, DAG03/04.EG09, RGC6256/00E,
and RGC6083/99E. Any opinions, findings and
conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views ofthe Defense Ad-
vanced Research Projects Agency. The computa-
tions were performed onUPPMAX resources un-
der project p2007020.

References

Aho, Alfred V. Ullman, Jeffrey D. 1972.The Theory
of Parsing, Translation, and Compiling. Prentice-
Halll, Inc., Upper Saddle River, NJ.

Brown, Peter F., Stephen A. Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263–311.

Cocke, John. 1969.Programming languages and
their compilers: Preliminary notes. Courant Insti-

17

tute of Mathematical Sciences, New York Univer-
sity.

Doddington, George. 2002. Automatic eval-
uation of machine translation quality using n-
gram co-occurrence statistics. InProceedings of
Human Language Technology conference (HLT-
2002), San Diego, California.

Earley, Jay. 1970. An efficient context-free parsing
algorithm.Communications of the Association for
Comuter Machinery, 13(2):94–102.

Haghighi, Aria, John Blitzer, John DeNero, and Dan
Klein. 2009. Better word alignments with super-
vised ITG models. InProceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP, pages
923–931, Suntec, Singapore, August.

Huang, Liang, Hao Zhang, Daniel Gildea, and Kevin
Knight. 2009. Binarization of synchronous
context-free grammars.Computational Linguis-
tics, 35(4):559–595.

Kasami, Tadao. 1965. An efficient recognition
and syntax analysis algorithm for context-free lan-
guages. Technical Report AFCRL-65-00143, Air
Force Cambridge Research Laboratory.

Koehn, Philipp, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical ma-
chine translation. InProceedings of the 45th
Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic, June.

Koehn, Philipp. 2005. Europarl: A parallel cor-
pus for statistical machine translation. InMachine
Translation Summit X, Phuket, Thailand, Septem-
ber.

Lewis, Philip M. and Richard E. Stearns. 1968.
Syntax-directed transduction.Journal of the Asso-
ciation for Computing Machinery, 15(3):465–488.

Och, Franz Josef and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models.Computational Linguistics, 29(1):19–51.

Och, Franz Josef. 2003. Minimum error rate training
in statistical machine translation. In41st Annual
Meeting of the Association for Computational Lin-
guistics, pages 160–167, Sapporo, Japan, July.

Papineni, Kishore, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. InPro-
ceedings of 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 311–
318, Philadelphia, Pennsylvania, July.

Saers, Markus and Dekai Wu. 2009. Improving
phrase-based translation via word alignments from
Stochastic Inversion Transduction Grammars. In
Proceedings of the Third Workshop on Syntax
and Structure in Statistical Translation (SSST-3)
at NAACL HLT 2009, pages 28–36, Boulder, Col-
orado, June.

Saers, Markus, Joakim Nivre, and Dekai Wu. 2009.
Learning Stochastic Bracketing Inversion Trans-
duction Grammars with a cubic time biparsing al-
gorithm. InProceedings of the 11th International
Conference on Parsing Technologies (IWPT’09),
pages 29–32, Paris, France, October.

Saers, Markus, Joakim Nivre, and Dekai Wu. 2010.
Word alignment with Stochastic Bracketing Linear
Inversion Transduction Grammar. InProceedings
of Human Language Technologies: The 11th An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
Los Angeles, California, June.

Stolcke, Andreas. 2002. SRILM – an extensible
language modeling toolkit. InInternational Con-
ference on Spoken Language Processing, Denver,
Colorado, September.

Vogel, Stephan, Hermann Ney, and Christoph Till-
mann. 1996. Hmm-based word alignment in sta-
tistical translation. InProceedings of the 16th con-
ference on Computational linguistics, pages 836–
841, Morristown, New Jersey.

Wu, Dekai. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel cor-
pora.Computational Linguistics, 23(3):377–403.

Younger, Daniel H. 1967. Recognition and parsing
of context-free languages in timen3. Information
and Control, 10(2):189–208.

Zhang, Hao, Chris Quirk, Robert C. Moore, and
Daniel Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing.
In Proceedings of ACL-08: HLT, pages 97–105,
Columbus, Ohio, June.

18

