
Coling 2010

23rd International Conference on
Computational Linguistics

Proceedings of the

1st Workshop on South and southeast
Asian Natural Language Processing

24 August 2010
Beijing International Convention Center

Produced by
Chinese Information Processing Society of China
All rights reserved for Coling 2010 CD production.

To order the CD of Coling 2010 and its Workshop Proceedings, please contact:

Chinese Information Processing Society of China
No.4, Southern Fourth Street
Haidian District, Beijing, 100190
China
Tel: +86-010-62562916
Fax: +86-010-62562916
cips@iscas.ac.cn

ii

Preface

Welcome to the Coling Workshop on South and Southeast Asian Natural Language Processing
(WSSANLP).
South Asia comprises of the countries- Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal,
Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists of Brunei, Burma, Cambodia, East
Timor, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand and Vietnam.

There thousands of languages that belong to different language families like Indo-Aryan, Indo-
Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai, Hmong-Mien, etc. In terms of population,
South Asia and Southeast Asia represent 34.94 percent of the total population of the world. Some of
the languages of these regions have a large number of native speakers: Hindi (5th largest according to
number of its native speakers), Bengali (6th), Punjabi (12th), Tamil (18th), Urdu (20th), etc.

A characteristic of these languages is that they are under-resourced. But the words of these
languages show rich variations in morphology. Moreover they are often heavily agglutinated and
synthetic, making segmentation an important issue. The intellectual motivation for this workshop
comes from the need to explore ways of harnessing the morphology of these Source (Lewis, 2009)
languages for higher level processing. Table 1: Population and Number of Living Languages of The
task of morphology, however, is South and Southeast Asia intimately linked with segmentation for
these languages.

The goal of WSSANLP is:
Providing a platform to linguistic and NLP communities for sharing and discussing ideas and work on
South and Southeast Asian languages and combining efforts.
Development of useful and high quality computational resources for under resourced South and
Southeast Asian languages.

We are delighted to present you this volume of proceedings of 1st Workshop on South and
Southeast Asian NLP. We have received total 18 long and short paper submissions. On the basis of our
review process, we have competitively selected 13 papers, but unfortunately 6 papers were withdrawn
from the workshop due to double submission and authors chose to present their paper in other events.
We hope that we will be able to make this workshop so successful that people would like to present
their papers in this workshop in future.

M. G. Abbas Malik, Chair of Organizing Committee WSSANLP

iii

Workshop Chair:

Aravin K. Joshi, Chair of the Worskhop, University of Pennsylvania, (USA)

Organizers:

M. G. Abbas Malik, (Chair of Organizing Committee), GETALP-LIG, University of Grenoble
(France)
Aasim Ali, CRULP, National University of Computer and Emerging Sciences (Pakistan)
Asif Ekbal, Dept. of Computational Linguistics, University of Heidelberg (Germany)
Dulip Herath, University of Colombo School of Computing (Sri Lanka)
Hong-Thi Nguyen, GETALP-LIG, University of Grenoble (France)
Muhammad Humayoun, LAMA, Universit de Savoie (France)
Menaka Sankaralingam AUKBC Research Centre, Chennai (India)
Monojit Choudhury, Researcher, Microsoft Research (India)
Sadaf Abdul Rauf, Universit du Maine (France)
Smriti Singh, Indian Institute of Technology Bombay (India)

Program Committee:

Ranaivo-Malanon Bali, Multimedia University (Malaysia)
Sivaji Bandyopadhyay, Jadavpur University (India)
Vincent Berment, GETALP-LIG / INALCO (France)
Laurent Besacier, GETALP-LIG, Universit de Grenoble (France)
Pushpak Bhattacharyya, IIT Bombay (India)
Christian Boitet, GETALP-LIG, Universit de Grenoble (France)
Nicola Cancedda, Xerox Research Center Europe (France)
Eric Castelli, International Research Center MICA (Vietnam)
Luong Chi Mai, Institute of IT, Vietnamese Academy of Science and Technology (Vietnam)
Laurence Danlos, University Paris 7 (France)
Georges Fafiotte, GETALP-LIG, Universit de Grenoble (France)
John A. Goldsmith, University of Chicago (USA)
Grard Huet, INRIA (France)
San San Hnin Tun, Cornell University (USA)
Sarmad Hussain, National University (Pakistan)
Abid Khan, University of Peshawar (Pakistan)
Wunna Ko Ko, Northern Illinois University (USA)
Bal Krishna Bal, University of Kathmandu (Nepal)
A. Kumaran, Microsoft Research (India)
Gurpreet Singh Lehel, Punjabi University Patiala (India)
Haizhou Li, Institute for Infocomm Research (Singapore)
Alec Marantz, New York University (USA)

iv

Christian Monson, OHSU (USA)
Annie Montaut, INALCO Paris (France)
Hammam Riza, Agency for the Assessment and Application of Technology (Indonesia)
Rajeev Sangal, IIIT Hyderabad (India)
Anne Schiller, Xerox Research Center Europe (France)
L. Sobha, AU-KBC Research Centre (India)
Chan Somnoble, Royal University of Phnom Penh (Cambodia)
Virach Sornlertlamvanich, TCL, National Institute of Information and Communication Technol-
ogy (Thailand)
Ruvan Weerasinghe, University of Colombo School of Computing (Sri Lanka)
Khaver Zia, Beacon House National University (Pakistan)

Invited Speaker:

Rajeev Sangal, IIIT Hyderabad (India)

v

Table of Contents

Boosting N-gram Coverage for Unsegmented Languages Using Multiple Text Segmentation Approach
Solomon Teferra Abate, Laurent Besacier and Sopheap Seng . 1

Thai Sentence-Breaking for Large-Scale SMT
Glenn Slayden, Mei-Yuh Hwang and Lee Schwartz . 8

Clause Identification and Classification in Bengali
Aniruddha Ghosh, Amitava Das and Sivaji Bandyopadhyay . 17

A Paradigm-Based Finite State Morphological Analyzer for Marathi
Mugdha Bapat, Harshada Gune and Pushpak Bhattacharyya . 26

Web Based Manipuri Corpus for Multiword NER and Reduplicated MWEs Identification using SVM
Thoudam Doren Singh and Sivaji Bandyopadhyay . 35

A Word Segmentation System for Handling Space Omission Problem in Urdu Script
Gurpreet Lehal . 43

Hybrid Stemmer for Gujarati
Pratikkumar Patel, Kashyap Popat and Pushpak Bhattacharyya . 51

vi

Conference Program

Tuesday, August 24, 2010

16:00–16:10 Opening Remarks

16:10–16:40 Invited Talk by Dr. Rajeev Sangal

16:40–17:00 Boosting N-gram Coverage for Unsegmented Languages Using Multiple Text Seg-
mentation Approach
Solomon Teferra Abate, Laurent Besacier and Sopheap Seng

17:00–17:20 Thai Sentence-Breaking for Large-Scale SMT
Glenn Slayden, Mei-Yuh Hwang and Lee Schwartz

17:20–17:40 Clause Identification and Classification in Bengali
Aniruddha Ghosh, Amitava Das and Sivaji Bandyopadhyay

17:40–17:50 break

17:50–18:10 A Paradigm-Based Finite State Morphological Analyzer for Marathi
Mugdha Bapat, Harshada Gune and Pushpak Bhattacharyya

18:10–18:30 Web Based Manipuri Corpus for Multiword NER and Reduplicated MWEs Identifi-
cation using SVM
Thoudam Doren Singh and Sivaji Bandyopadhyay

18:30–18:40 A Word Segmentation System for Handling Space Omission Problem in Urdu Script
Gurpreet Lehal

18:40–18:50 Hybrid Stemmer for Gujarati
Pratikkumar Patel, Kashyap Popat and Pushpak Bhattacharyya

18:50–19:00 Closing Remarks

vii

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 1–7,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Boosting N-gram Coverage for Unsegmented Languages Using
Multiple Text Segmentation Approach

Solomon Teferra Abate
LIG Laboratory,

CNRS/UMR-5217

solomon.abate@imag.fr

Laurent Besacier
LIG Laboratory,

CNRS/UMR-5217

laurent.besacier@imag.fr

Sopheap Seng
LIG Laboratory,

CNRS/UMR-5217
MICA Center, CNRS/UMI-

2954

sopheap.seng@imag.fr

Abstract

Automatic word segmentation errors,
for languages having a writing system
without word boundaries, negatively af-
fect the performance of language mod-
els. As a solution, the use of multiple,
instead of unique, segmentation has re-
cently been proposed. This approach
boosts N-gram counts and generates
new N-grams. However, it also pro-
duces bad N-grams that affect the lan-
guage models' performance. In this pa-
per, we study more deeply the contribu-
tion of our multiple segmentation ap-
proach and experiment on an efficient
solution to minimize the effect of adding
bad N-grams.

1 Introduction

A language model is a probability assignment
over all possible word sequences in a natural
language. It assigns a relatively large probabili-
ty to meaningful, grammatical, or frequent word
sequences and a low probability or a zero proba-
bility to nonsensical, ungrammatical or rare
ones. The statistical approach used in N-gram
language modeling requires a large amount of
text data in order to make an accurate estimation
of probabilities. These data are not available in
large quantities for under-resourced languages
and the lack of text data has a direct impact on
the performance of language models. While the
word is usually a basic unit in statistical lan-
guage modeling, word identification is not a
simple task even for languages that separate
words by a special character (a white space in
general). For unsegmented languages, which

have a writing system without obvious word de-
limiters, the N-grams of words are usually esti-
mated from the text corpus segmented into
words employing automatic methods. Automat-
ic segmentation of text is not a trivial task and
introduces errors due to the ambiguities in natu-
ral language and the presence of out of vocabu-
lary words in the text.

While the lack of text resources has a nega-
tive impact on the performance of language
models, the errors produced by the word seg-
mentation make those data even less usable. The
word N-grams not found in the training corpus
could be due not only to the errors introduced
by the automatic segmentation but also to the
fact that a sequence of characters could have
more than one correct segmentation.

In previous article (Seng et al., 2009), we
have proposed a method to estimate an N-gram
language model from the training corpus on
which each sentence is segmented into multiple
ways instead of a unique segmentation. The ob-
jective of multiple segmentation is to generate
more N-grams from the training corpus to use in
language modeling. It was possible to show that
this approach generates more N-grams (com-
pared to the classical dictionary-based unique
segmentation method) that are potentially useful
and relevant in language modeling. The applica-
tion of multiple segmentation in language mod-
eling for Khmer and Vietnamese showed im-
provement in terms of tri-gram hits and recogni-
tion error rate in Automatic Speech Recognition
(ASR) systems.

This work is a continuation of our previous
work on the use of multiple segmentation. It is
conducted on Vietnamese only. A close analysis
of N-gram counts shows that the approach has
in fact two contributions: boosting the N-gram

1

counts that are generated with first best segmen-
tation and generating new N-grams. We have
also identified that there are N-grams that nega-
tively affect the performance of the language
models. In this paper, we study the contribution
of boosting N-gram counts and of new N-grams
to the performance of the language models and
consequently to the recognition performance.
We also present experiments where rare or bad
N-grams are cut off in order to minimize their
negative effect on the performance of the lan-
guage models.

The paper is organized as follows: section 2
presents the theoretical background of our mul-
tiple segmentation approach; in section 3 we
point out the set up of our experiment; in sec-
tion 4 we present the results of our detailed sta-
tistical analysis of N-grams generated by multi-
ple segmentation systems. Section 5 presents
the evaluation results of our language models
for ASR and finally, we give concluding re-
marks.

2 Multiple Text Segmentation

Text segmentation is a fundamental task in nat-
ural language processing (NLP). Many NLP ap-
plications require the input text segmented into
words before making further progress because
the word is considered the basic semantic unit in
natural languages. For unsegmented languages
segmenting text into words is not a trivial task.
Because of ambiguities in human languages, a
sequence of characters may be segmented in
more than one way to produce a sequence of
valid words. This is due to the fact that there
are different segmentation conventions and the
definition of word in a language is often am-
biguous.

Text segmentation techniques generally use
an algorithm which searches in the text the
words corresponding to those in a dictionary. In
case of ambiguity, the algorithm selects the one
that optimizes a parameter dependent on the
chosen strategy. The most common optimiza-
tion strategies consist of maximizing the length
of words (“longest matching”) or minimizing
the number of words in the entire sentence
(“maximum matching”). These techniques rely
heavily on the availability and the quality of the
dictionaries and while it is possible to automati-
cally generate a dictionary from an unsegment-

ed text corpus using unsupervised methods, dic-
tionaries are often created manually. The state-
of-the-art methods generally use a combination
of hand-crafted, dictionary and statistical tech-
niques to obtain a better result. However, statis-
tical methods need a large corpus segmented
manually beforehand. Statistical methods and
complex training methods are not appropriate in
the context of under-resourced languages as the
resources needed to implement these methods
do not exist. For an under-resourced language,
we seek segmentation methods that allow better
exploitation of the limited resources. In our pre-
vious paper (Seng et al., 2009) we have indicat-
ed the problems of existing text segmentation
approaches and introduced a weighted finite
state transducer (WFST) based multiple text
segmentation algorithm.

Our approach is implemented using the AT &
T FSM Toolkit (Mohri et al., 1998). The algo-
rithm is inspired with the work on the segmen-
tation of Arabic words (Lee et al., 2003). The
multiple segmentation of a sequence of charac-
ters is made using the composition of three con-
trollers. Given a finite list of words we can
build a finite state transducer M (or word trans-
ducer) that, once composed with an acceptor I
of the input string that represent a single charac-
ter with each arc, generates a lattice of the
words that represent all of the possible segmen-
tations. To handle out-of-vocabulary entries, we
make a model of any string of characters by a
star closure operation over all the possible char-
acters. Thus, the unknown word WFST can
parse any sequence of characters and generate a
unique unk word symbol. The word transducer
can, therefore, be described in terms of the
WFST operations as M = (WD UNK)+∪
where WD is a WFST that represents the dictio-
nary and UNK represents the unknown word
WFST. Here, and + are the union and Kleene∪
“+” closure operations. A language model L is
used to score the lattice of all possible segmen-
tations obtained by the composition of our word
transducer M and the input string I. A language
model of any order can be represented by a
WFST. In our case, it is important to note that
only a simple uni-gram language model is used.
The uni-gram model is estimated from a small
training corpus segmented automatically into
words using a dictionary based method. The
composition of the sequence of input string I

2

with the word transducer M yields a transducer
that represents all possible segmentations. This
transducer is then composed with the language
model L, resulting in a transducer that repre-
sents all possible segmentations for the input
string I, scored according to L. The highest
scoring paths of the compound transducer is the
segmentation m that can be defined as:

P m =maxP mk 
The segmentation procedure can then be ex-

pressed formally as:
 m=bestpath  I◦M◦L 
where ◦ is the composition operator. The N-

best segmentations are obtained by decoding the
final lattice to output the N-best highest scoring
paths and will be used for the N-gram count.

3 Experimental Setup

3.1 Language Modeling

First, it is important to note that Vietnamese
texts are naturally segmented into syllables (not
words). Each syllable tends to have its own
meaning and thus a strong identity. However,
the Vietnamese monosyllable is not automati-
cally a word as we would define a word in Eng-
lish. Often, two syllables go together to form a
single word, which can be identified by the way
it functions grammatically in a sentence. To
have a word-based language model, word seg-
mentation would, therefore, be a must in Viet-
namese.

A Vietnamese training corpus that contains 3
millions sentences from broadcast news domain
has been used in this experiment. A Vietnamese
dictionary of 30k words has been used both for
the segmentation and counting the N-grams.
Therefore, in the experiments, the ASR vocabu-
lary always remains the same and only the lan-
guage model is changing. The segmentation of
the corpus with dictionary based, “longest
matching” unique segmentation method gives a
corpus of 46 millions words. A development
corpus of 1000 sentences, which has been seg-
mented automatically to obtain 44k words, has
been used to evaluate the tri-gram hits and the
perplexity. The performance of each language
model produced will be evaluated in terms of
the tri-gram hits and perplexity on the develop-
ment corpus and in terms of ASR performance

on a separate speech test set (different from the
development set).

First of all, a language model named lm_1 is
trained using the SRILM toolkit (Stolcke 2002)
from the first best segmentation (Segmul1),
which has the highest scoring paths (based on
the transducer explained in section 2) of each
sentence in the whole corpus. Then, additional
language models have been trained using the
corpus segmented with N-best segmentation:
the number of N-best segmentations to generate
for each sentence is fixed to 2, 5, 10, 50, 100
and 1000. The resulting texts are named accord-
ingly as Segmul2, Segmul5, Segmul10, Seg-
mul50, Segmul100, Segmul1000. Using these
as training data, we have developed different
language models. Note that a tri-gram that ap-
pears several times in multiple segmentations of
a single sentence has a count set to one.

3.2 ASR System

Our automatic speech recognition systems use
the CMU’s Sphinx3 decoder. The decoder uses
Hidden Markov Models (HMM) with continu-
ous output probability density functions. The
model topology is a 3-state, left-to-right HMM
with 16 Gaussian mixtures per state. The pre-
processing of the system consists of extracting a
39 dimensional features vector of 13 MFCCs,
the first and second derivatives. The CMU’s
SphinxTrain has been used to train the acoustic
models used in our experiment.

The Vietnamese acoustic modeling training
corpus is made up of 14 hours of transcribed
read speech. More details on the automatic
speech recognition system for Vietnamese lan-
guage can be found in (Le et al., 2008). While
the evaluation metric WER (Word Error Rate)
is generally used to evaluate and compare the
performance of the ASR systems, this metric
does not fit well for unsegmented languages be-
cause the errors introduced during the segmen-
tation of the references and the output hypothe-
sis may prevent a fair comparison of different
ASR system outputs. We, therefore, used the
Syllable Error Rate (SER) as Vietnamese text is
composed of syllables naturally separated by
white space. The automatic speech recognition
is done on a test corpus of 270 utterances
(broadcast news domain).

3

4 Statistical Analysis of N-grams in
Multiple Text Segmentation

The change in the N-gram count that results
from multiple segmentation is two fold: first
there is a boosting of the counts of the N-grams
that are already found with the first best seg-
mentation, and secondly new N-grams are
added. As we have made a closed-vocabulary
counting, there are no new uni-grams resulting
from multiple segmentation. For the counting,
the SRILM toolkit (Stolcke 2002) is used set-
ting the -gtnmin option to zero so that all the N-
gram counts can be considered.

Figure 1 shows the distribution of tri-gram
counts for the unique and multiple segmentation
of the training corpus. It can be seen that the
majority of the tri-grams have counts in the
range of one to three.

Figure 1: Distribution of tri-gram counts

The boosting (the counts of the tri-grams that
are already found with the first best segmenta-
tion) effect of the multiple segmentation is indi-
cated in table 1. We can see from the table that
Segmul2, for example, reduced the number of
rare tri-grams (count range 1-3) from 19.04 to
16.15 million. Consequently, the ratio of rare
tri-grams to all tri-grams that are in Segmul1 is
reduced from 94% (19.04/20.31*100) of Seg-
mul1 only to 79% (15.96/20.31*100) by the
boosting effect of Segmul1000, which increased

the number of tri-grams with count range of 4-9
from 0.91M to 3.34M. This implies, in the con-
text of under-resourced languages, that multiple
segmentation is boosting the N-gram counts.
However, one still has to verify if this boosting
is relevant or not for ASR.

Multiple
Seg.

Counts Range
1–3
(M)

4-9
(M)

10-99
(M)

100-999
(M)

≥1000
(M)

Segmul1 19.04 0.91 0.34 0.016 0.00054
Segmul2 16.15 3.23 0.89 0.043 0.0017
Segmul5 16.06 3.28 0.92 0.045 0.0017
Segmul10 16.03 3.30 0.93 0.045 0.0017
Segmul50 15.99 3.33 0.95 0.046 0.0017

Segmul100 15.98 3.33 0.95 0.046 0.0017
Segmul1000 15.96 3.34 0.96 0.046 0.0017

Table 1. boosting tri-gram counts

We have also analyzed the statistical behav-
ior of the newly added tri-grams with regard to
their count distribution (see figure 2). As we can
see from the figure, the distribution of the new
tri-grams is somehow similar to the distribution
of the whole tri-grams that is indicated in figure
1.

As shown in table 2, the total number of
newly added tri-grams is around 15 millions.
We can see from the table that the rate of new
tri-gram contribution of each segmentation in-
creases as N increases in the N-best segmenta-
tion. However, as it is indicated in figure 2, the
major contribution is in the area of rare tri-
grams.

Figure 2: Distribution of new tri-gram counts

1—3 4—9 10—99 100-999 ≥1000

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

Segmul1
Segmul2
Segmul5
Segmul10
Segmul50
Segmul100
Segmul1000

Counts Range

N
o

. o
f t

ri
-g

ra
m

s

1—3 4—9 10—99 100-999 ≥1000

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

Segmul 2
Segmul 5
Segmul 10
Segmul 50
Segmul 100
Segmul 1000

Counts Range

N
u

m
b

e
r

o
f t

ri
-g

ra
m

s

4

Mul. Segmentation No. %
Segmul2 4,125,881 26,05
Segmul5 8,249,684 52,09
Segmul10 10,355,433 65,39
Segmul50 13,002,700 82,11

Segmul100 14,672,827 92,65
Segmul1000 15,836,120 100,0

Table 2. tri-gram contribution of multiple seg-
mentation

5 Experimental Results

In this section we present the various language
models we have developed and their perfor-
mance in terms of perplexity, tri-gram hits and
ASR performance (syllable error rate).

We use the results obtained with the method
presented in (Seng et al., 2009) as baseline. This
method consists in re-estimating the N-gram
counts using the multiple segmentation of the
training data and add one to the count of a tri-
gram that appears several times in multiple seg-
mentations of a single sentence. These baseline
results are presented in Table 3. The results
show an increase of the tri-gram coverage and
slight improvements of the ASR performance.

Language
Models

3gs(M) 3g hit(%) Ppl SER

Lm_1 20.31 46.9 126.6 27
lm_2 24.06 48.6 118.1 26.2
Lm_5 28.92 49.2 125.9 27

Lm_10 32.82 49.4 129.0 26.5
Lm_50 34.20 49.7 133.4 26.7
lm_100 34.93 49.7 134.8 26.9

lm_1000 36.11 49.88 137.7 27.3

Table 3. Results of experiments using the base-
line method presented in (Seng et al., 2009)

5.1 Separate effect of boosting tri-gram
counts

To see the effect of boosting tri-gram counts
only, we have updated the counts of the tri-
grams obtained from the 1-best segmentation
(baseline approach) by the tri-gram counts of
different multiple segmentations. Note that no
new tri-grams are added here, and we evaluate
only the effect and, therefore, the tri-gram hit
remains the same as that of lm_1.

We have then developed different language
models using the uni-gram and bi-gram counts
of the first best segmentation and the updated
trigram counts after multiple segmentation. The
performance of the language models have been

evaluated in terms of perplexity and their contri-
bution to the performance improvement of a
speech recognition system. We have observed
(detailed results are not reported here) that
boosting only the tri-gram counts has not con-
tributed any improvement in the performance of
the language models. The reason is probably
due to the fact that simply updating tri-gram
counts without updating the uni-grams and the
bi-grams lead to a biased and inefficient LM.

5.2 Separate effect of new tri-grams

To explore the contributions of only newly
added tri-grams, we have added their counts to
the N-gram counts of Segmul1. It is important
to note that the model obtained in that case is
different from the baseline model whose results
are presented in Table 3 (the counts of the tri-
grams already found in the unique segmentation
are different between models). As it is presented
in table 4, including only the newly added tri-
grams consistently improved tri-gram hits,
while the improvement in perplexity stopped at
Segmul10. Moreover, the use of only new tri-
grams do not reduce the speech recognition er-
ror rate.

Language
Models

3gs
(M)

3g
hit(%)

ppl SER

lm_1 20.3 46.9 126.6 27
lm_2_new 24.4 48.7 119.1 26.9
lm_5_new 28.6 49.0 122.5 27.8
lm_10_new 30.7 49.2 124.2 27.9
lm_50_new 33.3 49.4 126.8 27.8

lm_100_new 35 49.8 127.8 28
lm_1000_new 36.1 49.9 129.7 27.9

Table 4. Contributions of new tri-grams

5.3 Pooling unique and multiple segmenta-
tion models

We have developed language models by pooling
unique and multiple segmentation models alto-
gether. For instance, all the N-grams of lm_5
multiple segmentation are pooled with all N-
grams of lm_1 unique segmentation before esti-
mating the language model probabilities. In oth-
er words, ngram-count command is used with
multiple count files. The results are presented in
table 5.

As it can be noted from table 5, we have got a
significant improvement in all the evaluation
criteria as compared with the performance of
lm_1 that has perplexity of 126.6, tri-gram hit

5

of 46.91% and SER of 27. The best result ob-
tained (25.4) shows a 0.8 absolute SER reduc-
tion compared to the best result presented in
(Seng et al., 2009).

Language
Models

3gs
(M)

3g
hit(%)

ppl SER

lm_1 20.31 46.9 126.6 27
lm_2+lm_1 24.4 48.7 120.9 25.4
lm_5+lm_1 29.12 49.2 123.2 26.2
lm_10+lm_1 31.4 49.4 124.2 26
lm_50+lm_1 34.3 49.7 126 26

lm_100+lm_1 35 49.8 126.5 26.2
lm_1000+lm_1 36.2 49.9 128 26.2

Table 5. Performance with pooling

5.4 Cutting off rare tri-grams

With the assumption that bad N-grams occur
rarely, we cut off rare tri-grams from the counts
in developing language models. We consider all
tri-grams with a count of 1 to be rare. Our hope,
here, is that using this cut off we will remove
bad N-grams introduced by the multiple seg-
mentation approach, while keeping correct new
N-grams in the model. Table 6 shows the per-
formance of the language models developed
with or without tri-gram cut off for the baseline
method (the results presented on the lines indi-
cating All3gs are the same as the ones presented
in Table 3) .

Language models Evaluation Criteria
3gs
(M)

3g hit
(%)

ppl SER

lm_1 All 3gs 20.31 46.91 126.6 27
Cut off 4.17 38.09 129.3 26.6

lm_2 All 3gs 24.06 48.6 118.1 26.2
Cut off 5.11 39.6 121.0 26.7

lm_5 All 3gs 28.92 49.2 125.9 27
Cut off 6.4 40.11 129.2 26.6

lm_10 All 3gs 32.82 49.41 129.0 26.5
Cut off 6.98 40.27 132.4 26.6

lm_50 All 3gs 34.20 49.68 133.4 26.7
Cut off 7.8 40.51 136.9 26.9

lm_100 All 3gs 34.93 49.74 134.8 26.9
Cut off 7.98 40.59 138.4 26.8

lm_1000 All 3gs 36.11 49.88 137.7 27.3
Cut off 8.33 40.71 141.3 26.8

Table 6. Performance with cut off.

The result shows that cutting off reduced the
number of tri-grams highly (4 tri-grams over 5
are removed in that case). It, therefore, reduces
the size of the language models significantly.
Although the results obtained are not conclu-
sive, a reduction of recognition error rate has

been observed in four out of the seven cases
while the perplexity increased and the tri-gram
hits decreased in all cases.

5.5 Hybrid of pooling and cutting off
methods

As it has been already indicated, cutting off in-
creased the perplexity of the language models
and decreased the tri-gram hits. To reduce the
negative effect of cutting off on tri-gram hits
and perplexity, we have developed language
models using both pooling and cut off methods.
We then cut off tri-grams of count 1 from the
pooled N-grams. The result, as presented in ta-
ble 7, shows that we can gain significant reduc-
tion in recognition error rate and improvement
in tri-gram hits as compared to lm_1 that is de-
veloped with cut off, even if no improvement in
perplexity is observed.

The best result obtained (25.9) shows a 0.3
absolute SER reduction compared to the best
system presented in (Seng et al., 2009).

Language Models 3gs
(M)

3g hit
(%)

ppl SE
R

lm_1 (no cutoff) 20.3 46.9 126.6 27
lm_1 (cutoff) 4.2 38.1 129.3 26.6

lm_2+lm_1 (cutoff) 5.2 39.7 126.4 26.8
lm_5+lm_1 (cutoff) 6.4 40.2 129.5 25.9
lm_10+lm_1 (cutoff) 7.0 40.3 131.1 26.3
lm_50+lm_1 (cutoff) 7.8 40.5 133.5 26.4

lm_100+lm_1 (cutoff) 8.0 40.6 134.3 26.4
lm_1000+lm_1 (cutoff) 8.3 40.7 161.5 26.7

Table 7. Performance with hybrid method

6 Conclusion

The two major contributions of multiple seg-
mentation are generation of new N-grams and
boosting N-gram counts of those found in first
best segmentation. However, it also produces
bad N-grams that affect the performance of lan-
guage models. In this paper, we studied the con-
tribution of multiple segmentation approach
more deeply and conducted experiments on effi-
cient solutions to minimize the effect of adding
bad N-grams. Since only boosting the tri-gram
counts of first best segmentation and adding
only new tri-grams did not reduce recognition
error rate, we have proposed to pool all N-
grams of N-best segmentations to that of first
best segmentation and got a significant im-
provement in perplexity and tri-gram hits from

6

which we obtained the maximum (0.8 absolute)
reduction in recognition error rate.

To minimize the effect of adding bad N-
grams, we have cut off rare tri-grams in lan-
guage modeling and got reduction in recogni-
tion error rate. The significant reduction of tri-
grams that resulted from the cut off revealed
that the majority of tri-grams generated by mul-
tiple segmentation have counts 1. Cutting off
such a big portion of the trigrams reduced tri-
gram hits and as a solution, we proposed a hy-
brid of both pooling and cutting off tri-grams
from which we obtained a significant reduction
in recognition error rate.

It is possible to conclude that our methods
make the multiple segmentation approach more
useful by minimizing the effect of bad N-grams
that it generates and utilizing the contribution of
different multiple segmentations.

However, we still see rooms for improve-
ment. A systematic selection of new tri-grams
(for example, based on the probabilities of the
N-grams and/or application of simple linguistic
criteria to evaluate the usefulness of new tri-
grams), with the aim of reducing bad tri-grams,
might lead to performance improvement. Thus,
we will do experiments in this line. We will also
apply these methods to other languages, such as
Khmer.

References

Lee, Young-Suk, Papineni, Kishore, Roukos, Salim
Emam, Ossama and Hassan, Hany. 2003. Lan-
guage model based arabic word segmentation. In
Proceedings of the ACL’03, pp. 399–406.

Le, Viet-Bac, Besacier, Laurent, Seng, Sopheap,
Bigi, Brigite and Do, Thi-Ngoc-Diep. 2008. Re-
cent advances in automatic speech recognition
for vietnamese. SLTU’08, Hanoi Vietnam.

Mohri, Mehryar, Fernando C. N. Pereira, and
Michael Riley, “A rational design for a weighted
finite-state transducer library,” in Lecture Notes in
Computer Science. Springer, 1998, pp. 144–158.

Seng, Sopheap, Besacier, Laurent, Bigi, Brigitte,
Castelli, Eric. 2009. Multiple Text Segmentation
for Statistical Language Modeling. InterSpeech,
Brighton, UK,

Stolcke, Andreas. 2002. SRILM: an extensible lan-
guage modeling toolkit. Proceedings of Interna-
tional Conference on Spoken Language Process-
ing, volume II, 901–904 . 129.88.65.115

7

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 8–16,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Thai Sentence-Breaking for Large-Scale SMT

Glenn Slayden

thai-language.com
glenn@thai-language.com

Mei-Yuh Hwang
Microsoft Research

mehwang@microsoft.com

Lee Schwartz
Microsoft Research

leesc@microsoft.com

Abstract

Thai language text presents challenges
for integration into large-scale multi-
language statistical machine translation
(SMT) systems, largely stemming from
the nominal lack of punctuation and in-
ter-word space. For Thai sentence break-
ing, we describe a monolingual maxi-
mum entropy classifier with features that
may be applicable to other languages
such as Arabic, Khmer and Lao. We ap-
ply this sentence breaker to our large-
vocabulary, general-purpose, bidirec-
tional Thai-English SMT system, and
achieve BLEU scores of around 0.20,
reaching our threshold of releasing it as a
free online service.

1 Introduction

NLP research has consolidated around the notion
of the sentence as the fundamental unit of trans-
lation, a consensus which has fostered the devel-
opment powerful statistical and analytical ap-
proaches which incorporate an assumption of
deterministic sentence delineation. As such sys-
tems become more sophisticated, languages for
which this assumption is challenged receive in-
creased attention. Thai is one such language,
since it uses space neither to distinguish syl-
lables from words or affixes, nor to unambi-
guously signal sentence boundaries.

Written Thai has no sentence-end punctuation,
but a space character is always present between
sentences. There is generally no space between
words, but a space character may appear within a
sentence according to linguistic or prescriptive
orthographic motivation (Wathabunditkul 2003),
and these characteristics disqualify sentence-
breaking (SB) methods used for other languages,
such as Palmer and Hearst (1997). Thai SB has

therefore been regarded as the task of classifying
each space that appears in a Thai source text as
either sentence-breaking (sb) or non-sentence-
breaking (nsb).

Several researchers have investigated Thai
SB. Along with a discussion of Thai word break-
ing (WB), Aroonmanakun (2007) examines the
issue. With a human study, he establishes that
sentence breaks elicited from Thai informants
exhibit varying degrees of consensus. Mittra-
piyanuruk and Sornlertlamvanich (2000) define
part-of-speech (POS) tags for sb and nsb and
train a trigram model over a POS-annotated cor-
pus. At runtime, they use the Viterbi algorithm
to select the POS sequence with the highest
probability, from which the corresponding space
type is read back. Charoenpornsawat and Sornler-
tlamvanich (2001) apply Winnow, a multiplica-
tive trigger threshold classifier, to the problem.
Their model has ten features: the number of
words to the left and right, and the left-two and
right-two POS tags and words.

We present a monolingual Thai SB based on a
maximum entropy (ME) classifier (Ratnaparkhi
1996; Reynar and Ratnaparkhi, 1997) which is
suitable for sentence-breaking SMT training data
and runtime inputs. Our model uses a four token
window of Thai lemmas, plus categorical fea-
tures, to describe the proximal environment of
the space token under consideration, allowing
runtime classification of space tokens with pos-
sibly unseen contexts.

As our SB model relies on Thai WB, we re-
view our approach to this problem, plus related
preprocessing, in the next section. Section 2 also
discusses the complementary operation to WB,
namely, the re-spacing of Thai text generated by
SMT output. Section 3 details our SB model and
evaluates its performance. We describe the inte-
gration of this work with our large-scale SMT
system in Section 4. We draw conclusions in
Section 5.

8

2 Pre- and Post-processing

As will be shown in Section 3, our sentence
breaker relies on Thai WB. In turn, with the aim
of minimizing WB errors, we perform Unicode
character sequence normalization prior to WB.
As output byproducts, our WB analysis readily
identifies certain types of named entities which
we propagate into our THA-ENG SMT; in this
section, we briefly summarize these preliminary
processing steps, and we conclude the section
with a discussion of Thai text re-spacing.

2.1 Character Sequence Normalization
Thai orthography uses an alphabet of 44 conso-
nants and a number of vowel glyphs and tone
marks. The four Thai tone marks and some Thai
vowel characters are super- and/or sub-scripted
with respect to a base character. For example,
the อิ ้ sequence consists of three code points:
อ ◌ ิ ◌ ้. When two or more of these combining
marks are present on the same base character, the
ordering of these code points in memory should
be consistent so that orthographically identical
entities are recognized as equivalent by comput-
er systems. However, some computer word pro-
cessors do not enforce the correct sequence or do
not properly indicate incorrect sequences to the
user visually. This often results in documents
with invalid byte sequences.

Correcting these errors is desirable for SMT
inputs. In order to normalize Thai input character
sequences to a canonical Unicode form, we de-
veloped a finite state transducer (FST) which
detects and repairs a number of sequencing er-
rors which render Thai text either orthographi-
cally invalid, or not in a correct Unicode se-
quence.

For example, a superscripted Thai tone mark
should follow a super- or sub-scripted Thai vo-
wel when they both apply to the same consonant.
When the input has the tone mark and the vowel
glyph swapped, the input can be fully repaired:

อ า ◌ ่ น → อ ◌ ่ า น → อา่น
อ ◌ ้ ◌ ิ น → อ ◌ ิ ◌ ้ น → อิน้

Figure 1. Two unambiguous repairs

Other cases are ambiguous. The occurrence of
multiple adjacent vowel glyphs is an error where
the intention may not be clear. We retain the
first-appearing glyph, unless it is a pre-posed
vowel, in which case we retain the last-appearing

instance. These two treatments are contrasted in
Figure 2. Miscoding (Figure 3) is another variety
of input error that is readily repaired.

จะะา → จะ
ใเไป → ไป

Figure 2. Two ambiguous repairs

Within the Infoquest Thai newswire corpus, a
low-noise corpus, about 0.05% of the lines exhi-
bit at least one of the problems mentioned here.
For some chunks of broad-range web scraped
data, we observe rates as high as 4.1%. This
measure is expected to under-represent the utility
of the filter to WB, since Thai text streams, lack-
ing intra-word spacing and permitting two un-
written vowels, have few re-alignment check-
points, allowing tokenization state machines to
linger in misaligned states.

อ ◌ ํ า → อ ◌าํ → อํา
เ เ อ → แ อ → แอ

Figure 3. Two common mis-codings

2.2 Uniscribe Thai Tokenization

Thai text does not normally use the space cha-
racter to separate words, except in certain specif-
ic contexts. Although Unicode offers the Zero-
Width Space (ZWSP) as one solution for indicat-
ing word breaks in Thai, it is infrequently used.
Programmatic tokenization has become a staple
of Thai computational linguistics. The problem
has been well studied, with precision and recall
near 95% (Haruechaiyasak et al. 2008).

In our SMT application, both the sentence
breaker and the SMT system itself require Thai
WB, and we use the same word breaker for these
tasks (although the system design currently pro-
hibits directly passing tokens between these two
components). Our method is to apply post-
processing heuristics to the output of Uniscribe
(Bishop et al. 2003), which is provided as part of
the Microsoft® WindowsTM operating system
interface. Our heuristics fall into two categories:
“re-gluing” words that Uniscribe broke too ag-
gressively, and a smaller class of cases of further
breaking of words that Uniscribe did not break.

Re-gluing is achieved by comparing Uniscribe
output against a Thai lexicon in which desired
breaks within a word are tagged. Underbreaking
by Uniscribe is less common and is restricted to
a number of common patterns which are repaired
explicitly.

9

2.3 Person Name Entities

In written Thai, certain types of entities employ
prescriptive whitespace patterns. By removing
these recognized patterns from consideration, SB
precision can be improved. Furthermore, be-
cause our re-gluing procedure requires a lookup
of every syllable proposed by Uniscribe, it is
efficient to consider, during WB, additional
processing that can be informed by the same
lookup. Accordingly, we briefly mention some
of the entity types that our WB identifies, focus-
ing on those that incorporate distinctive spacing
patterns.

Person names in Thai adhere to a convention
for the use of space characters. This helps Thai
readers to identify the boundaries of multi-
syllable surnames that they may not have seen
before. The following grammar summarizes the
prescriptive conventions for names appearing in
Thai text:
<name-entity> ::= <honorific> <full-name>
<full-name> ::= <first-name> [<last-name>]
<first-name> ::= <name-text> space
<last-name> ::= <name-text> space
<name-text> ::= <thai-alphabetic-char>+
<thai-alphabetic-char> ::= ก | ข | ฃ | ค | ...

Figure 4. Name entity recognition grammar

The re-glue lookup also determines if a sylla-
ble matches one of the following predefined spe-
cial categories: name-introducing honorific (h),
Thai or foreign given name (g), token which is
likely to form part of a surname (s), or token
which aborts the gathering of a name (i.e. is un-
likely to form part of a name).

.../วา่/นาย/จ/ิระ/นุช/ /ว/ินจิ/จก/ูล/ /วา่/...
วา่ นาย จ ิ ระ นุช ว ิ นจิ จก ู ล วา่

 h g0 g1 g2 sp0 s0 s1 s2 s3 sp1

th
at

M
r.

<o
ov

>

hi
t

be
lo

ve
d

 <o
ov

>
st

ab
le

<o
ov

>

<o
ov

>
 sa

i d

...that Mr. Chiranut Winichotkun said...

Figure 5. Thai person-name entity recognition

Figure 5 shows a Thai name appearing within
a text fragment, with Uniscribe detected token
boundaries indicated by slashes. In the third row
we have identified the special category, if any,
for each token. The fourth line shows the Eng-
lish translation gloss, or <oov> if none. The bot-
tom row is the desired translation output.

Our name identifier first notes the presence of
an honorific {h} นาย followed by a pattern of
tokens {g0-gn}, {s0-sn} and spaces {sp0, sp1}
that is compatible with a person name and sur-
name of sensible length.

Next, we determine which of those tokens in
the ranges {g} and {s} following the honorific
do not have a gloss translation (i.e., are not
found in the lexicon). These tokens are indicated
by <oov> in the gloss above. When the number
of unknown tokens exceeds a threshold, we hy-
pothesize that these tokens form a name. The
lack of lexical morphology in Thai facilitates
this method because token (or syllable) lookup
generally equates with the lookup of a stemmed
lemma.

2.4 Calendar Date Entities

Our WB also identifies Thai calendar dates, as
these also exhibit a pattern which incorporates
spaces. As a prerequisite to identifying dates, we
map Thai orthographic digits {๐ ๑ ๒ ๓ ๔ ๕ ๖
๗ ๘ ๙} to Arabic digits 0 through 9, respec-
tively. For example, our system would interpret
the input text ๒๕๔๐ as equivalent to “2540.”

.../ใน/วนั/ที/่ /14/ มนีาคม/ /๒๕๔๐/ /และ/...
ใน วนั ที่ sp 14 มนีาคม sp ๒๕๔๐ sp และ
on day which 14 March 2540 and

...on March 14th, 1997 and...

Figure 6. Date entity recognition

Figure 6 shows a fragment of Thai text which
contains a calendar date for which our system
will emit a single token. As shown in the exam-
ple, our system detects and adjusts for the use of
Thai Buddhist year dates when necessary. Ga-
thering of disparate and optional parts of the
Thai date is summarized by the grammar in Fig-
ure 7.
<date-entity> ::= [<cardinal-words>] [space] <date>
<cardinal-words> ::= วนัที ่| ที ่
<date> ::= month-date [space] year
<year> ::= <tha-digit> <tha-digit> <tha-digit> <tha-digit>
<year> ::= <ara-digit> <ara-digit> <ara-digit> <ara-digit>
<month-date> ::= <day> [space] <month>
<day> ::= <thai-digit>+
<day> ::= <ara-digit>+
<month> ::= <month-full> | <month-abbr>
<month-full> ::= มกราคม | กมุภาพันธ ์| มนีาคม | ...
<month-abbr> ::= ม.ค. | ก.พ. | ม.ีค. | ...
<tha-digit> ::= ๐ | ๑ | ๒ | ๓ | ๔ | ๕ | ๖ | ๗ | ๘ | ๙
<ara-digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 7. Date recognition grammar

10

2.5 Thai Text Re-spacing

To conclude this section, we mention an opera-
tion complementary to Thai WB, whereby Thai
words output by an SMT system must be re-
spaced in accordance with Thai prescriptive
convention. As will be mentioned in Section 4.2,
for each input sentence, our English-Thai system
has access to an English dependency parse tree,
as well as links between this tree and a Thai
transfer dependency tree. After using these links
to transfer syntactic information to the Thai tree,
we are able to apply prescriptive spacing rules
(Wathabunditkul 2003) as closely as possible.
Human evaluation showed satisfactory results
for this process.

3 Maximum Entropy Sentence-Breaking

We now turn to a description of our statistical
sentence-breaking model. We train an ME clas-
sifier on features which describe the proximal
environment of the space token under considera-
tion and use this model at runtime to classify
space tokens with possibly unseen contexts.

3.1 Modeling

Under the ME framework, let B={sb, nsb}
represent the set of possible classes we are inter-
ested in predicting for each space token in the
input stream. Let C={linguistic contexts}
represent the set of possible contexts that we can
observe, which must be encoded by binary fea-
tures, 𝑓௝(𝑏, 𝑐), 1 ≤ 𝑗 ≤ 𝑘, such as: 𝑓ଵ(𝑏, 𝑐) = ቄ 1 if the previous word is English 𝑎𝑛𝑑 𝑏 = 𝐧𝐬𝐛.0 otherwise.

This feature helps us learn that the space after an
English word is usually not a sentence boundary.

𝑓ଶ(𝑏, 𝑐) = ൝ 1 if the distance to the previous honorific is less than 15 tokens 𝑎𝑛𝑑 𝑏 = 𝐧𝐬𝐛0 otherwise.

This feature enables us to learn that spaces
which follow an honorific are less likely to mark
sentence boundaries. Assume the joint probabili-
ty p(b,c) is modeled by 𝑝(𝑏, 𝑐) = 𝑍 ෑ 𝜶௝௙ೕ(௕,௖)௞௝ୀଵ

where we have k free parameters {𝜶௝} to esti-
mate and Z is a normalization factor to make ∑ 𝑝(𝑏, 𝑐) = 1.௕,௖ The ME learning algorithm

finds a solution {𝜶௝} representing the most un-
certain commitment max 𝐻(𝑝) = − ෍ 𝑝(𝑏, 𝑐) log 𝑝(𝑏, 𝑐)
that satisfies the observed distribution �̂�(𝑏, 𝑐) of
the training data
 ∑ 𝑝(𝑏, 𝑐)𝑓௝(𝑏, 𝑐) = ∑ �̂�(𝑏, 𝑐)𝑓௝(𝑏, 𝑐), 1 ≤ 𝑗 ≤ 𝑘 .
This is solved via the Generalized Iterative Scal-
ing algorithm (Darroch and Ratcliff 1972). At
run-time, a space token is considered an sb, if
and only if p(sb|c) > 0.5, where 𝑝(𝒔𝒃|𝑐) = 𝑝(𝒔𝒃, 𝑐)𝑝(𝒔𝒃, 𝑐) + 𝑝(𝒏𝒔𝒃, 𝑐) .
3.2 Feature Selection

The core context of our model, {w, x, y, z}, is a
window spanning two tokens to the left (posi-
tions w and x) and two tokens to the right (posi-
tions y and z) of a classification candidate space
token.

c token characteristic
yk Yamok (syllable reduplication) symbol ๆ
sp space
๐๙ Thai numeric digits
num Arabic numeric digits
ABC Sequence of all capital ASCII characters
cnn single character (derived from hex)
ckkmmnn single character (derived from UTF8 hex)
ascii any amount of non-Thai text
(Thai text) Thai word (derived from lemma)

Table 1. Categorical and derived feature names

The possible values of each of the window
positions {w, x, y, z} are shown in Table 1,
where the first match to the token at the desig-
nated position is assigned as the feature value for
that position. Foreign-text tokens plus any inter-
vening space are merged, so a single “ascii” fea-
ture may represent an arbitrary amount of non-
Thai script with interior space.

Figure 8 shows an example sentence that has
been tokenized. Token boundaries are indicated
by slashes. Although there are three space tokens
in the original input, we extract four contexts.
The shaded boxes in the source text—and the
shaded line in the figure—indicate the single sb
context that is synthesized by wrapping, to be
described in Section 3.4.

For each context, in addition to the {w, x, y, z}
features, we extract two more features indicated
by {l ,r} in Figure 8. They are the number of

11

tokens between the previous space token (wrap-
ping as necessary) and the current one, and the
number of tokens between the current space to-
ken and the next space token (wrapping as ne-
cessary). These features do not distinguish
whether the bounding space token is sb or nsb.
This is because, processing left-to-right, it is
permissible to use a feature such as “number of
tokens since last sb,” but not “number of tokens
until next sb,” which would be available during
training but not at runtime.
ลกัษณะการอา้งองิแบบ R1C1 ถกูแปลงไปเป็นลักษณะการ
อา้งองิแบบ A1
“R1C1 reference style was converted to A1 reference style.”
__/ลกัษณะ/การ/อา้ง/องิ/แบบ/ /R1C1/ /ถกู/แปลง/ไป/
เป็น/ลกัษณะ/การ/อา้ง/องิ/แบบ/ /A1/__

 b c=w c=x c=y c=z c=l c=r

nsb องิ แบบ ABC sp 5 1

nsb sp ABC ถกู แปลง 1 9

nsb องิ แบบ ABC sp 9 1

sb sp ABC ลกัษณะ การ 1 5

Figure 8. A Thai sentence and the training contexts extracted. Hig-
hlighting shows the context for sb.

In addition to the above core features, our
model emits certain extra features only if they
appear:
• An individual feature for each English punc-

tuation mark, since these are sometimes used
in Thai. For example, there is one feature for
the sentence end period (i.e. full-stop);

• The current nest depth for paired glyphs with
directional variation, such as brackets, braces,
and parentheses;

• The current parity value for paired glyphs
without directional distinction such as
“straight” quotation marks.

The following example illustrates paired direc-
tional glyphs (in this case, parentheses):

.../ยนูลิเิวอร/์ /(/ประเทศ/__/ไทย/)/ /จํากดั/ /เปิดเผย/วา่/...
...Unilever (Thailand) Ltd. disclosed that...

 b c=w c=x c=y c=z c=pn

nsb (ประเทศ ไทย) 1
Figure 9. Text fragment illustrating paired directional glyphs and

the context for the highlighted space

 In Figure 9, the space between ประเทศ
“country” and ไทย “Thai,” generates an nsb
context which includes the features shown,
where “pn” is an extra feature which indicates

the parenthesis nesting level. This feature helps
the model learn that spaces which occur within
parentheses are likely to be nsb.

Parity features for the non-directional paired
glyphs, which do nest, are true binary features.
Since these features have only two possible val-
ues (inside or outside), they are only emitted
when their value is “inside,” that is, when the
space under consideration occurs between such a
pair.

3.3 Sentence Breaker Training Corpus

Thai corpora which are marked with sentence
breaks are required for training. We assembled a
corpus of 361,802 probable sentences. This cor-
pus includes purchased, publicly available, and
web-crawled content. In total it contains 911,075
spaces, a figure which includes one inter-
sentence space per sentence, generated as de-
scribed below.

3.4 Out-of-context Sentences

For SB training, paragraphs are first tokenized
into words as described in Section 2.2. This
process does not introduce new spaces between
tokens; only original spaces in the text are classi-
fied as sb/nsb and used for the context features
described below. To keep this distinction clear,
token boundaries are indicated by a slash rather
than space in the examples shown in this paper.

For 91% of our training sentences, the para-
graphs from which they originate are inaccessi-
ble. In feature extraction for each of these sen-
tences, we wrap the sentence’s head around to its
tail to obtain its sb context. In other words, for a
sentence of tokens t0-tn-1, the context of sb (the
last space) is given by

{ w=tn-2, x=tn-1, y=t0, z=t1 }.

 This process was illustrated in Figure 8. Al-
though not an ideal substitute for sentences in
context, this ensures that we extract at least one
sb context per sentence. The number of nsb con-
texts extracted per sentence is equal to the num-
ber of interior space tokens in the original sen-
tence. Sentence wrapping is not needed when
training with sentence-delimited paragraph
sources. Contexts sb and nsb are extracted from
the token stream of the entire paragraph and
wrapping is used only to generate one additional
sb for the entire paragraph.

12

3.5 Sentence Breaker Evaluation
Although evaluation against a single-domain
corpus does not measure important design re-
quirements of our system, namely resilience to
broad-domain input texts, we evaluated against
the ORCHID corpus (Charoenporn et al. 1997)
for the purpose of comparison with the existing
literature. Following the methodology of the stu-
dies cited below, we use 10-fold ×10% averaged
testing against the ORCHID corpus.

Our results are consistent with recent work us-
ing the Winnow algorithm, which itself com-
pares favorably with the probabilistic POS tri-
gram approach. Both of these studies use evalua-
tion metrics, attributed to Black and Taylor
(1997), which aim to more usefully measure sen-
tence-breaker utility. Accordingly, the following
definitions are used in Table 2: space-correct = (#correct sb+#correct nsb)total # of space tokens

false break= #sb false positivestotal # of space tokens

 It was generally possible to reconstruct preci-
sion and recall figures from these published re-
sults1 and we present a comprehensive table of
results. Reconstructed values are marked with a
dagger and the optimal result in each category is
marked in boldface.
 Mittrapiyanuruk

et al.
Charoenpornsawat

et al.
Our result

method POS
Trigram Winnow MaxEnt

#sb in reference 10528 1086† 2133

#space tokens 33141 3801 7227

nsb-precision 90.27† 91.48† 93.18

nsb-recall 87.18† 97.56† 94.41

sb-precision 74.35† 92.69† 86.21

sb-recall 79.82 77.27 83.50

“space-correct” 85.26 89.13 91.19

“false-break” 8.75 1.74 3.94

Table 2. Evaluation of Thai Sentence Breakers against
ORCHID

Finally, we would be remiss in not acknowl-
edging the general hazard of assigning sentence
breaks in a language such as Thai, where source

1 Full results for Charoenpornsawat et al. are reconstructed based
on remarks in their text, including that “the ratio of the number of
[nsb to sb] is about 5:2.”

text authors may intentionally include or omit
spaces in order to create syntactic or semantic
ambiguity. We defer to Mittrapiyanuruk and
Sornlertlamvanich (2000) and Aroonmanakun
(2007) for informed commentary on this topic.

4 SMT System and Integration

The primary application for which we developed
the Thai sentence breaker described in this work
is the Microsoft® BING™ general-domain ma-
chine translation service. In this section, we pro-
vide a brief overview of this large-scale SMT
system, focusing on Thai-specific integration
issues.

4.1 Overview

Like many multilingual SMT systems, our sys-
tem is based on hybrid generative/discriminative
models. Given a sequence of foreign words, f, its
best translation is the sequence of target words,
e, that maximizes 𝒆∗ = argmax𝒆 𝑝(𝒆|𝒇) = argmax𝒆 𝑝(𝒇|𝒆)𝑝(𝒆) = argmaxe { log 𝑝(𝒇|𝒆) + log 𝑝(𝒆)}

where the translation model 𝑝(𝒇|𝒆) is computed
on dozens to hundreds of features. The target
language model (LM), 𝑝(𝒆), is represented by a
smoothed n-grams (Chen 1996) and sometimes
more than one LM is adopted in practice. To
achieve the best performance, the log likelihoods
evaluated by these features/models are linearly
combined. After 𝑝(𝒇|𝒆) and 𝑝(𝒆) are trained, the
combination weights 𝜆௜ are tuned on a held-out
dataset to optimize an objective function, which
we set to be the BLEU score (Papineni et al.
2002): {𝜆௜∗} = max{ఒ௜} BLEU({𝑒∗}, {𝑟}) 𝒆∗ = argmaxe {෍ 𝜆௜log௜ 𝑝௜(𝒇|𝒆) + ෍ 𝜆௝log୨ 𝑝௝(𝒆)}

where {r} is the set of gold translations for the
given input source sentences. To learn 𝜆௜ we use
the algorithm described by Och (2003), where
the decoder output at any point is approximated
using n-best lists, allowing an optimal line
search to be employed.

4.2 Phrasal and Treelet Translation

Since we have a high-quality real-time rule-
based English parser available, we base our Eng-

13

lish-to-Thai translation (ENG-THA) on the
“treelet” concept suggested in Menezes and
Quirk (2008). This approach parses the source
language into a dependency tree which includes
part-of-speech labels.
 Lacking a Thai parser, we use a purely statis-
tical phrasal translator after Pharaoh (Koehn
2004) for THA-ENG translation, where we
adopt the name and date translation described in
Sections 2.3 and 2.4.
 We also experimented with phrasal ENG-
THA translation. Though we actually achieved a
slightly better BLEU score than treelet for this
translation direction, qualitative human evalua-
tion by native speaker informants was mixed.
We adopted the treelet ENG-THA in the final
system, for its better re-spacing (Section 2.5).

4.3 Training, Development and Test Data

Naturally, our system relies on parallel text cor-
pora to learn the mapping between two languag-
es. The parallel corpus contains sentence pairs,
corresponding to translations of each other. For
Thai, quality corpora are generally not available
in sufficient quality for training a general-
domain SMT system. For the ENG-THA pair,
we resort to Internet crawls as a source of text.
We first identify paired documents, break each
document into sentences, and align sentences in
one document against those in its parallel docu-
ment. Bad alignments are discarded. Only sen-
tence pairs with high alignment confidence are
kept in our parallel corpus. Our sentence align-
ment algorithm is based on Moore (2002).

For our ENG-THA translation system, we as-
sembled three resources: a parallel training cor-
pus, a development bitext (also called the lamb-
da set) for training the feature combination
weights {𝜆௜}, and a test corpus for BLEU and
human evaluation. Both the lambda and the test
sets have single reference translations per sen-
tence.

Data Set #Sentences

(ENG||THA) training 725K
(ENG,THA) lambda 2K
(ENG,THA) test 5K
THA LM text 10.3M
ENG LM text 45.6M

Table 3. Corpus size of parallel and monolingual data

Although it is well known that language trans-
lation pairs are not symmetric, we use these
same resources to build our THA-ENG transla-
tion system due to the lack of additional corpora.

Our parallel MT corpus consists of approx-
imately 725,000 English-Thai sentence pairs
from various sources. Additionally we have 9.6
million Thai sentences, which are used to train a
Thai 4-gram LM for ENG-THA translation, to-
gether with the Thai sentences in the parallel
corpus. Trigrams and 4-grams that occur only
once are pruned, and n-gram backoff weights are
re-normalized after pruning, with the surviving
KN smoothed probabilities intact (Kneser and
Ney 1995). Similarly, a 4-gram ENG LM is
trained for THA-ENG translation, on a total of
45.6M English sentences.

For both the lambda and test sets, THA LM
incurs higher out-of-vocabulary (OOV) rates
(1.6%) than ENG LM (0.7%), due to its smaller
training set and thus smaller lexicon. Both trans-
lation directions define the maximum
phrase/treelet length to be 4 and the maximum
re-ordering jump to be 4 as well.

4.4 BLEU Scores

To evaluate our end-to-end performance, we
compute case insensitive 4-gram BLEU scores.
Translation outputs are WB first according to the
Thai/English tokenizer, before BLEU scores are
computed. The BLEU scores on the test sets are
shown in Table 4. We are not aware of any pre-
viously published BLEU results for either direc-
tion of this language pair.

 BLEU
THA-ENG 0.233
ENG-THA 0.194

Table 4. Four-gram case-insensitive BLEU scores.

Figures 10 and 11 illustrate sample outputs for
the each translation direction, with reference
translations.

INPUT: ในประเทศไทยมกีลว้ยไมป้ระมาณ ๑๗๕ ชนดิ ถา้
สญูพันธุไ์ปจากประเทศไทย ก็หมายถงึสญูพันธุไ์ปจากโลก
OUTPUT: In Thailand a Orchid approximately 175 type if
extinct from Thailand. It means extinct from the world.
REF: In Thailand, there are about 175 species of Orchid. If
they disappear from Thailand, they will be gone from the
world.

Figure 10. THA-ENG Sample Translation Output

14

INPUT: In our nation the problems and barriers we face are
just problems and barriers of law not selection or develop-
ment.
OUTPUT: ในประเทศชาตขิองเรา ปัญหาและอปุสรรคทีเ่รา
เผชญิอยูเ่พยีงปัญหาและอปุสรรคของกฎหมายไมเ่ลอืกหรอื
พัฒนา
REF: ในประเทศของเราปัญหาและอปุสรรค ก็เป็นปัญหา
อปุสรรคทางดา้นกฎหมาย แตไ่มเ่ป็นปัญหาอปุสรรคในการ
คดัเลอืกและพัฒนาพันธุ ์

Figure 11. ENG-THA Sample Translation Output

Although the translation quality is far from being
perfect, SMT is making good process on build-
ing useful applications.

5 Conclusion and Future Work

Our maximum entropy model for Thai sentence-
breaking achieves results which are consistent
with contemporary work in this task, allowing us
to overcome this obstacle to Thai SMT integra-
tion. This general approach can be applied to
other South-East Asian languages in which space
does not deterministically delimit sentence
boundaries.

In Arabic writing, commas are often used to
separate sentences until the end of a paragraph
when a period is finally used. In this case, the
comma character is similar to the space token in
Thai where its usage is ambiguous. We can use
the same approach (perhaps with different lin-
guistic features) to identify which commas are
sentence-breaking and which are not.

Our overall system incorporates a range of in-
dependent solutions to problems in Thai text
processing, including character sequence norma-
lization, tokenization, name and date identifica-
tion, sentence-breaking, and Thai text re-
spacing. We successfully integrated each solu-
tion into an existing large-scale SMT frame-
work, obtaining sufficient quality to release the
Thai-English language pair in a high-volume,
general-domain, free public online service.

There remains much room for improvement.
We need to find or create true Thai-English di-
rectional corpora to train the lambdas and to test
our models. The size of our parallel corpus for
Thai should increase by at least an order of mag-
nitude, without loss of bitext quality. With a
larger corpus, we can consider longer phrase
length, higher-order n-grams, and longer re-
ordering distance.

References

W. Aroonmanakun. 2007. Thoughts on Word
and Sentence Segmentation in Thai. In Pro-
ceedings of the Seventh International Sympo-
sium on Natural Language Processing, Pat-
taya, Thailand, 85-90.

F. Avery Bishop, David C. Brown and David M.
Meltzer. 2003. Supporting Multilanguage
Text Layout and Complex Scripts with Win-
dows 2000. http://www.microsoft.com/typo-
graphy/developers/uniscribe/intro.htm

A. W. Black and P. Taylor. 1997. Assigning
Phrase Breaks from Part-of-Speech Se-
quences. Computer Speech and Language,
12:99-117.

Thatsanee Charoenporn, Virach Sornlertlamva-
nich, and Hitoshi Isahara. 1997. Building A
Thai Part-Of-Speech Tagged Corpus (ORC-
HID).

Paisarn Charoenpornsawat and Virach Sornler-
tlamvanich. 2001. Automatic sentence break
disambiguation for Thai. In International
Conference on Computer Processing of
Oriental Languages (ICCPOL), 231-235.

S. F. Chen and J. Goodman. 1996. An empirical
study of smoothing techniques for language
modeling. In Proceedings of the 34th Annual
Meeting on Association for Computational
Linguistics, 310-318. Morristown, NJ: ACL.

J. N. Darroch and D. Ratcliff. 1972. Generalized
Iterative Scaling for Log-Linear Models. The
Annals of Mathematical Statistics, 43(5):
1470-1480.

Choochart Haruechaiyasak, Sarawoot Kon-
gyoung, and Matthew N. Dailey. 2008. A
Comparative Study on Thai Word Segmenta-
tion Approaches. In Proceedings of ECTI-
CON 2008. Pathumthani, Thailand: ECTI.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved Backing-Off for M-Gram Language
Modeling. In Proceedings of International
Conference on Acoustics, Speech and Signal
Procesing (ICASSP), 1:181-184.

Philipp Koehn. 2004. Pharaoh: a Beam Search
Decoder for Phrase-Based Statistical Machine
Translation Models. In Proceedings of the As-

15

sociation of Machine Translation in the Amer-
icas (AMTA-2004).

Arul Menezes, and Chris Quirk. 2008. Syntactic
Models for Structural Word Insertion and De-
letion during Translation. In Proceedings of
the 2008 Conference on Empirical Methods in
Natural Language Processing.

P. Mittrapiyanuruk and V. Sornlertlamvanich.
2000. The Automatic Thai Sentence Extrac-
tion. In Proceedings of the Fourth Symposium
on Natural Language Processing, 23-28.

Robert C. Moore. 2002. Fast and Accurate Sen-
tence Alignment of Bilingual Corpora. In Ma-
chine Translation: From Research to Real
Users (Proceedings, 5th Conference of the As-
sociation for Machine Translation in the
Americas, Tiburon, California), Springer-
Verlag, Heidelberg, Germany, 135-244

Franz Josef Och. 2003. Minimum error rate
training in statistical machine translation. In
Proceedings of the 41th Annual Meeting of the
Association for Computational Linguistics.
Stroudsburg, PA: ACL.

David D. Palmer and Marti A. Hearst. 1997.
Adaptive Multilingual Sentence Boundary
Disambiguation. Computational Linguistics,
23:241-267.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-jing Zhu. 2002. BLEU: a method for
automatic evaluation of machine translation.
In Proceedings of the 40th Annual meeting of
the Association for Computational Linguistics,
311–318. Stroudsburg, PA: ACL.

Adwait Ratnaparkhi, 1996. A Maximum Entropy
Model for Part-of-Speech Tagging. In Pro-
ceedings of the Conference on Empirical Me-
thods in Natural Language Processing, 133-
142.

Jeffrey C. Reynar and Adwait Ratnaparkhi.
1997. A Maximum Entropy Approach to Iden-
tifying Sentence Boundaries, In Proceedings
of the Fifth Conference on Applied Natural
Language Processing, 16-19.

Suphawut Wathabunditkul. 2003. Spacing in the
Thai Language. http://www.thailanguage.com/
ref/spacing

16

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 17–25,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Clause Identification and Classification in Bengali

Aniruddha Ghosh
1
 Amitava Das

2
 Sivaji Bandyopadhyay

3

Department of Computer Science and Engineering

Jadavpur University

arghyaonline@gmail.com
1
 amitava.santu@gmail.com

2
 si-

vaji_cse_ju@yahoo.com
3

Abstract

This paper reports about the develop-

ment of clause identification and classi-

fication techniques for Bengali language.

A syntactic rule based model has been

used to identify the clause boundary. For

clause type identification a Conditional

random Field (CRF) based statistical

model has been used. The clause identi-

fication system and clause classification

system demonstrated 73% and 78% pre-

cision values respectively.

1 Introduction

The clause identification is one of the shallow

semantic parsing tasks, which is important in

various NLP applications such as Machine

Translation, parallel corpora alignment, Informa-

tion Extraction and speech applications. Gram-

matically a clause is a group of words having a

subject and a predicate of its own, but forming

part of a sentence. Clause boundary identifica-

tion of natural language sentences poses consi-

derable difficulties due to the ambiguous nature

of natural languages. Clause classification is a

convoluted task as natural language is generally

syntactically rich in formation of sentences or

clauses.

By the classical theory of Panini (Paul and

Staal, 1969) a clause is the surface level basic

syntactic element which holds the basic depen-

dent semantics (i.e. lexical semantic have no

dependency) to represent the overall meaning of

any sentence. This syntactic to semantic deriva-

tion proceeds through two intermediate stages:

the level of karaka relations, which are compa-

rable to the thematic role types and the level of

inflectional or derivational morphosyntax.

Fillmore’s Case Grammar (Fillmore et. al,

2003), and much subsequent work, revived the

Panini’s proposals in a modern setting. A main

objective of Case Grammar was to identify syn-

tactic positions of semantic arguments that may

have different realizations in syntax.

In the year of 1996 Bharati et al. (1996) de-

fines the idea of Chunk or local word group for

Indian languages. After the successful imple-

mentation of Shakti
1
 , the first publicly available

English-Hindi machine translation system the

idea of chunk became the most acceptable syn-

tactic/semantic representation format for Indian

languages, known as Shakti Standard Format

(SSF).

In 2009 Bali et al. (2009) redefines the idea of

chunk and establishes that the idea of chunking

varies with prosodic structure of a language.

Boundary of chunk level is very ambiguous it-

self and can differ by writer or speaker accord-

ing to their thrust on semantic.

Therefore it is evident that automatic clause

identification for Indian languages needs more

research efforts. In the present task, clause

boundary identification is attempted using the

classical theory of Panini and the Case Grammar

approach of Fillmore on the shallow parsed out-

put in SSF structure. It may be worth mentioning

that several basic linguistic tools in Indian lan-

guages such as part of speech tagger, chunker,

and shallow parser follow SSF
2
 as a standard.

Previous research on clause identification was

done mostly on the English language (Sang and

Dejean, 2001). There have been limited efforts

on clause identification for Indian languages.

One such effort is proposed in Ram and Devi,

1
 http://shakti.iiit.ac.in/

2
 http://ltrc.iiit.ac.in/MachineTrans/research/tb/shakti-

analy-ssf.pdf

17

(2008) with statistical method. The idea of ge-

nerative grammar based on rule-based descrip-

tions of syntactic structures introduced by

Chomsky (Chomsky, 1956) points out that every

language has its own peculiarities that cannot be

described by standard grammar. Therefore a new

concept of generative grammar has been pro-

posed by Chomsky. Generative grammar can be

identified by statistical methods. In the present

task, conditional random field (CRF)
3

 -based

machine learning method has been used in

clause type classification. According to the best

of our knowledge this is the first effort to identi-

fy and classify clauses in Bengali.

The present system is divided into two parts.

First, the clause identification task aims to iden-

tify the start and the end boundaries of the claus-

es in a sentence. Second, Clause classification

system identifies the clause types.

Analysis of corpus and standard grammar of

Bengali revealed that clause boundary identifica-

tion depends mostly on syntactic dependency.

For this reason, the present clause boundary

identification system is rule based in nature.

Classification of clause is a semantic task and

depends on semantic properties of Bengali lan-

guage. Hence we follow the theory of

Chomsky’s generative grammar to disambiguate

among possible clause types. The present classi-

fication system of clause is a statistics-based

approach. A conditional random field (CRF)

based machine learning method has been used in

the clause classification task. The output of the

rule based identification system is forwarded to

the machine learning model as input.

The rest of the paper is organized as follows.

In section 2 we elaborate the rule based clause

boundary identification. The next section 3 de-

scribes the implementation detail with all identi-

fied features for the clause classification prob-

lem. Result section 4 reports about the accuracy

of the hybrid system. In error analysis section

we reported the limitations of the present sys-

tem. The conclusion is drawn in section 5 along

with the future task direction.

2 Resource Acquisition

Bengali belongs to Indo-Aryan language family.

A characteristic of Bengali is that it is under-

3
 http://crf.sourceforge.net/

resourced. Language research for Bengali got

attention recently. Resources like annotated cor-

pus and linguistics tools for Bengali are very

rarely available in the public domain.

2.1 Corpus

We used the NLP TOOLS CONTEST: ICON

2009
4
 dependency relation marked training data-

set of 980 sentences for training of the present

system. The data has been further annotated at

the clause level. According to the standard

grammar there are two basic clause types such as

Principal clause and Subordinate clause. Subor-

dinate clauses have three variations as Noun

clause, Adjective clause and Adverbial clause.

The tagset defined for the present task consists

of four tags as Principal clause (PC), Noun

clause (NC), Adjective clause (AC) and Adver-

bial clause (RC). The annotation tool used for

the present task is Sanchay
5
. The detailed statis-

tics of the corpus are reported in Table 1.

 Train Dev Test

No of Sentences 980 150 100

Table 1: Statistics of Bengali Corpus

2.1.1 Annotation Agreement

Two annotators (Mr. X and Mr. Y) participated

in the present task. Annotators were asked to

identify the clause boundaries as well as the type

of the identified clause. The agreement of anno-

tations among two annotators has been eva-

luated. The agreements of tag values at clause

boundary level and clause type levels are listed

in Table 2.

 Boundary Type

Percentage 76.54% 89.65%

Table 2: Agreement of annotators at clause

boundary and type level

It is observed from the Table 2 that clause

boundary identification task has lower agree-

ment value. A further analysis reveals that there

are almost 9% of cases where clause boundary

has nested syntactic structure. These types of

clause boundaries are difficult to identify. One

of such cases is Inquisitive semantic (Groenen-

dijk, 2009) cases, ambiguous for human annota-

4
 http://ltrc.iiit.ac.in/nlptools2009/

5
 http://ltrc.iiit.ac.in/nlpai_contest07/Sanchay/

18

tors too. It is better to illustrate with some spe-

cific example.
If John goes to the party,

will Mary go as well?

In an inquisitive semantics for a language of

propositional logic the interpretation of disjunc-

tion is the source of inquisitiveness. Indicative

conditionals and conditional questions are

treated both syntactically and semantically. The

semantics comes with a new logical-

pragmatically notion that judges and compares

the compliance of responses to an initiative in

inquisitive dialogue (Groenendijk, 2009). Hence

it is evident that these types of special cases

need special research attention.

2.2 Shallow Parser

Shallow parser
6
 for Indian languages, developed

under a Government of India funded consortium

project named Indian Language to Indian Lan-

guage Machine Translation System (IL-ILMT),

are now publicly available. It is a well developed

linguistic tool and produce good credible analy-

sis. For the present task the linguistic analysis is

done by the tool and it gives output as pruned

morphological analysis at each word level, part

of speech at each word level, chunk boundary

with type-casted chunk label, vibhakti computa-

tion and chunk head identification.

2.3 Dependency parser

A dependency parser for Bengali has been used

as described in Ghosh et al. (2009). The depen-

dency parser follows the tagset
7
 identified for

Indian languages as a part of NLP TOOLS

CONTEST 2009 as a part of ICON 2009.

3 Rule-based Clause Boundary Identi-

fication

Analysis of a Bengali corpus and standard

grammar reveals that clause boundaries are di-

rectly related to syntactic relations at sentence

level. The present system first identifies the

number of verbs present in a sentence and sub-

sequently finds out dependant chunks to each

verb. The set of identified chunks that have rela-

tion with a particular verb is considered as a

clause. But some clauses have nested syntactic

6
 http://ltrc.iiit.ac.in/analyzer/bengali/

7
 http://ltrc.iiit.ac.in/nlptools2009/CR/intro-husain.pdf

formation, known as inquisitive semantic. These

clauses are difficult to identify by using only

syntactic relations. The present system has limi-

tations on those inquisitive types of clauses.

Bengali is a verb final language. Most of the

Bengali sentences follow a Subject-Object-Verb

(SOV) pattern. In Bengali, subject can be miss-

ing in a clause formation. Missing subjects and

missing keywords lead to ambiguities in clause

boundary identification. In sentences which do

not follow the SOV pattern, chunks that appear

after the finite verb are not considered with that

clause. For example:

wAra AyZawana o parimANa

xeKe buJawe asubiXA hayZa ei

paWa hAwi geCe.

After seeing the size and

effect, it is hard to under-

stand that an elephant went

through this way.

In the above example, there is hardly any clue

to find beginning of subordinate clause. To solve

this type of problem, capturing only the tree

structure of a particular sentence has been

treated as the key factor to the goal of disambig-

uation. One way to capture the regularity of

chunks over different sentences is to learn a ge-

nerative grammar that explains the structure of

the chunks one finds. These types of language

properties make the clause identification prob-

lem difficult.

3.1 Karaka relation

Dependency parsing generates the inter chunk

relation and generates the tree structure. The de-

pendency parser as described in Section 2.3 used

as a supportive tool for the present problem.

In the output of the dependency parsing sys-

tems, most of the chunks have a dependency

relation with the verb chunk. These relations are

called as karaka relation. Using dependency re-

lations, the chunks having dependency relation

i.e. karaka relation with same verb chunk are

grouped. The set of chunks are the members of a

clause. Using this technique, identification of

chunk members of a certain clause becomes in-

dependent of SOV patterns of sentences. An ex-

ample is shown in Figure 1.

19

Figure 1: Karaka Relations

3.2 Compound verbs

In Bengali language a noun chunk with an infi-

nite verb chunk or a finite verb chunk can form a

compound verb. An example is shown in Figure

2.

Figure 2: Compound Verb

In the above example, the noun chunk and the

VGF chunk form a compound verb. These two

consecutive noun and verb chunks appearing in

a sentence are merged to form a compound verb.

These chunks are connected with a part-of rela-

tion in Dependency Parsing. The set of related

chunks with these noun and verb chunks are

merged.

3.3 Shasthi Relation (r6)

In dependency parsing the genitive relation are

marked with shasthi (r6) relation. The chunk

with shasthi (r6) (see the tagset of NLP Tool

Contest: ICON 2009) relation always has a rela-

tion with the succeeding chunk. An example is

shown in Figure 3.

In the example as mentioned in Figure 3, the

word “wadera”(their) has a genitive relation

with the word in the next chunk “manera”(of

mind). These chunks are placed in a set. It forms

a set of two chunks members. The system gene-

rates two different types of set. In one forms a

set of members having relation with verb

chunks. Another set contains two noun chunks

with genitive relation. Now the sets containing

only noun chunks with genitive relation does not

form a clause. Those sets are merged with the set

containing verb chunk and having dependency

relation with the noun chunks. An example is

shown in Figure 3.

Figure 3: Shasthi Relation

Consider ω is set of all sets containing two

chunk members connected with genitive marker.

Consider β is a set of all sets consisting of re-

lated chunks with a verb chunk. λ is a element of

ω. α is a element of β. Now, If a set λ which can

have common chunks from a α set then λ set is

associated with the proper α set. So, λ ∩ α ≠

Null then α = α ∪ λ. If a set λ which can have

common chunks from two α sets which leads to

ambiguity of associability of the λ set with the

proper α set. If λ ∩ α = verb chunk, then λ set

will be associated with α set containing the verb

chunk. From the related set of chunk of verb

chunks, system has identified the clauses in the

sentence. Afterwards, the clauses are marked

with the B-I-E (Beginning-Intermediate-End)

notation.

4 Case Grammar-Identification of Ka-

raka relations

The classical Sanskrit grammar Astadhyayi
8

(‘Eight Books’), written by the Indian gramma-

8

http://en.wikipedia.org/wiki/P%C4%81%E1%B9%87

ini

20

rian Panini sometime during 600 or 300 B.C.

(Robins, 1979), includes a sophisticated theory

of thematic structure that remains influential till

today. Panini’s Sanskrit grammar is a system of

rules for converting semantic representations of

sentences into phonetic representations (Ki-

parsky, 1969). This derivation proceeds through

two intermediate stages: the level of karaka rela-

tions, which are comparable to the thematic role

types described above; and the level of morpho-

syntax.

Fillmore’s Case Grammar (Fillmore, 1968),

and much subsequent work, revived the Panini’s

proposals in a modern setting. A main objective

of Case Grammar was to identify semantic ar-

gument positions that may have different realiza-

tions in syntax. Fillmore hypothesized ‘a set of

universal, presumably innate, concepts which

identify certain types of judgments human be-

ings are capable of making about the events that

are going on around them’. He posited the fol-

lowing preliminary list of cases, noting however

that ‘additional cases will surely be needed’.

• Agent: The typically animate perceived

instigator of the action.

• Instrument: Inanimate force or object

causally involved in the action or state.

• Dative: The animate being affected by

the state or action.

• Factitive: The object or being resulting

from the action or state.

• Locative: The location or time-spatial

orientation of the state or action.

• Objective: The semantically most neu-

tral case, the concept should be limited to

things which are affected by the action or

state.

The SSF specification handles this syntactic

dependency by a coarse-grain tagset of Nomini-

tive, Accusative, Genitive and Locative case

markers. Bengali shallow parser identifies the

chunk heads as part of the chunk level analysis.

Dependency parsing followed by a rule based

module has been developed to analyze the inter-

chunk relationships depending upon each verb

present in a sentence. Described theoretical as-

pect can well define the problem definition of

clause boundary identification but during prac-

tical implementation of the solution we found

some difficulties. Bengali has explicit case

markers and thus long distant chunk relations are

possible as valid grammatical formation. As an

example:
bAjAre yAoyZAra samayZa xeKA

kare gela rAma.

bAjAre yAoyZAra samayZa rAma

xeKA kare gela.

rAma bAjAre yAoyZAra samayZa

xeKA kare gela.

Rama came to meet when he

was going to market.

In the above example rAma could be placed

anywhere and still all the three syntactic forma-

tion are correct. For these feature of Bengali

many dependency relation could be missed out

located at far distance from the verb chunk in a

sentence. Searching for uncountable numbers of

chunks have dependency relation with a particu-

lar verb may have good idea theoretically but we

prefer a checklist strategy to resolve the problem

in practice. At this level we decided to check all

semantic probable constituents by the definition

of universal, presumably innate, concepts list.

We found this is a nice fall back strategy to iden-

tify the clause boundary. Separately rules are

written as described below.

4.1 Agent

Bengali is a verb final language. Most of the

Bengali sentences follow a Subject-Object-Verb

(SOV) pattern. In Bengali, subject can be miss-

ing in a clause formation. Missing subjects and

missing keywords lead to ambiguities in clause

boundary identification.

������ �� �	��।
Close the door.

In the previous case system marks

“������/door” as an “Agent” whereas the

“Agent” is “you” (2
nd

 person singular number),

silent here.

We developed rules using case marker, Gend-

er-Number-Person (GNP), morphological fea-

ture and modality features to disambiguate these

21

types of phenomena. These rules help to stop

false hits by identifying no 2
nd

 person phrase

was there in the example type sentences and em-

power to identify proper phrases by locating

proper verb modality matching with the right

chunk.

4.2 Instrument

Instrument identification is ambiguous for the

same type of case marker (nominative) taken by

agent and instrument. There is no ani-

mate/inanimate information is available at syn-

tactic level.

��	�� ��
�
� ��� �������।
The music of Shyam’s messme-

rized me.

����� ����।
The umbrella of Sumi.

Bengali sentences follow a Subject-Object-

Verb (SOV) pattern. Positional information is

helpful to disambiguate between agent and in-

strument roles.

4.3 Dative

G
en

er
a

l

Bengali English Gloss

����/�	��/���/���
�...

Morn-

ing/evening/night/da

wn…

_���

���/���/�����/

�����/��	��...

O

clock/time/hour/min

ute/second…

�������/������/�
�����...

Mon-

day/Tuesday/Sunday

…

��
��/�� /... Bengali months…

�������!/�"#���! January/February…

���/���/���... Day/month/year…

���/$�/%�... Long

time/moment…

R
el

a
ti

v
e

&	'/%	�... Before/After…

���	�/�%�	�... Upcoming/

Special

Cases
(ঠ	�/

*��	�..

.

When rise/When

stop…

Table 3: Categories of Time Expressions

Time expression identification has a different

aspect in NLP applications. People generally

studied time expression to track event or any

other kind of IR task. Time expressions could be

categorized in two types as General and Rela-

tive.

In order to apply rule-based process we de-

veloped a manually augmented list with pre de-

fined categories as described in Table 3. Still

there are many difficulties to identify special

cases of relative time expressions. As an exam-

ple:

+�
� (ঠ	� &��� �,�� -	��।
When moon rise we will start

our journey.

In the previous example the relative time ex-

pression is “(ঠ	�/when rise” is tagged as infinite

verb (for Bengali tag level is VGNF). Statistics

reveals that these special types of cases approx-

imately are only 1.8-2% in overall corpus.

These types of special cases are not handled

by the present system.

4.4 Factitive

The particular role assignment is the most chal-

lenging task as it separately known as argument

identification. To resolve this problem we need a

relatively large corpus to learn fruitful feature

similarities among argument structures.

A manually generated list of causative post-

positional words and pair wise conjuncts as re-

ported in Table 4 has been prepared to identify

argument phrases in sentences.

General

Bengali English Gloss

���/���	�/�-�� ... Hence/Reason/

Reason

Relative
য��_�	� If_else

য��,_���, If_else

Table 4: Categories of Causative Expressions

4.5 Locative

Rules have been written using a manually edited

list as described in Table 5. Morphological loca-

tive case marker feature have been successfully

used in identification of locative marker. There

is an ambiguity among Agent, Dative and Loca-

tive case marker as they orthographically gene-

rates same type of surface form (using common

22

suffixes as: �◌, �◌� etc). There is less differences

we noticed among their syntactic dependency

structure throughout the corpus. Positional in-

formation helps in many cases to disambiguate

these cases.

��	
 ��� ��0 ����।
There is unemployment in

country side.

A different type of problem we found where

verb plays locative role. As an example:

���	� �য��	� ��� �	� ����	�।
Where people works there.

Here “�য��	� ��� �	�/Where people works”

should be identified as locative marker. But this

is a verb chunk and leads difficulty. Corpus sta-

tistics reveals that this type of syntactic forma-

tion is approximately 0.8-1.0% only and not

been handled by the present system.

Gen-

eral

Bengali English Gloss

��	ঠ/��	�/��1�� Morn-

ing/evening/night

/dawn…

Rela-

tive

&	'/%	�... Before/After…

���	�/�%�	�... Front/Behind

Table 5: Categories of Locative Expressions

4.6 Objective

The concept of objectivity is limited to things or

human which are affected by the action or state.

Statistical parser is a best way out for the present

problem. The karma karaka (k2) identified by

the dependency parser is simply the objective

constituent of any clause.

5 Identification the Type of Clauses

After marking of the clause boundaries, clause

types are identified. According to the clause

structure and functions in a sentence, clauses are

classified in to four types as principal clause,

noun clause, adverbial clause and adjective

clause. To identify the clause types, a CRF based

statistical approach has been adopted.

5.1 Generative Grammar

In theoretical linguistics, generative grammar

refers to a particular approach to the study of

syntax. A generative grammar of a language at-

tempts to give a set of rules that will correctly

predict which combinations of words will form

grammatical sentences. Chomsky has argued

that many of the properties of a generative

grammar arise from an "innate" universal gram-

mar. Proponents of generative grammar have

argued that most grammar is not the result of

communicative function and is not simply

learned from the environment. Strongly moti-

vated by Chomsky’s generative grammar we

adopt the CRF based machine learning to learn

the properties of a language and apply the know-

ledge to typecast clause classification as well.

5.2 Conditional Random Fields (CRF)

CRFs are undirected graphical models which

define a conditional distribution over a label se-

quence given an observation sequence. CRF

usually trained based on input features. Maxi-

mum likelihood is being calculated on chosen

features for training.

5.2.1 Features

The vitality of using any machine learning ap-

proach is in identification of proper feature set.

Conditional Random Field (CRF) works on a

conditional distribution over a label sequence

given an observation sequence. Hence CRF used

here to statistically capture the prosodic structure

of the language. The features experimentally

found useful are chosen as listed below.

5.2.2 Chunk Label

An n-gram chunk label window has been fixed

to capture internal arrangement of any particular

clause type.

5.2.3 Chunk Heads

Chunk head pattern is the vital clue to identify

the any clause pattern.

5.2.4 Word

In the clause type identification task words play

a crucial part as word carries the information of

the clause type.

 From the input file in the SSF format, all the

morphological information like root word, chunk

heads are retrieved. The clause type identifica-

tion depends on the morphological information

along with the position in the sentences and also

the surrounding chunk labels. Therefore the CRF

based statistical tool calculates the probability of

23

the morphological information along with the

dependency relations of the previous three and

next three chunks. For the present task a quad-

gram technique is used as most of the sentences

have around 10 chunks.

The input file in the SSF format includes

Chunk labels and word. The clause information

in the input files are in B-I-E format so that the

begin (B) / inside (I) / end (E) information for a

clause are associated as a feature. The chunk

heads, words are identified from the training file

and noted as an input feature in the CRF based

system. Each sentence is represented as a feature

vector for the CRF machine learning task. The

input features associated with each word in the

training set are the word, clause boundary tags,

chunk tag and clause type tags.

6 Error Analysis

During the development stage of the system we

had studied the various clause boundary labeling

errors committed by the system. In the above

examples, the system faces ambiguity to derive

the rules for the identification of the clause

members when a noun chunk acts as a noun

modifier of a clause. In complex sentences, the

verb chunk of the subordinate clause may have

noun modifier relation with the principal clause.

As System forms the groups the chunks with

dependency relation, system merges the subor-

dinate clause with principal clause. An example

is shown in Figure 4.

Figure 4: Shasthi Relation

7 Experimental results

System Precision Recall

Boundary 73.12% 75.34%

Classification 78.07% 78.92%

Table 6: Performance of present System

The accuracy of the rule-based clause boundary

identification system is 73.12% and 78.07% is

the accuracy clause type classification system as

reported in Table 6.

8 Conclusion

This paper reports about our works on clause

identification and classification in Bengali lan-

guage. We have used the rule based system to

identify clause boundary and a statistical CRF

based model is used to decide the type of a

clause.

In future we would like to study different se-

mantic relations which can regulate clause type

and boundary.

24

References

A. Ghosh, A. Das, P. Bhaskar, S. Bandyopadhyay.

Dependency Parser for Bengali: the JU System at

ICON 2009, In NLP Tool Contest ICON 2009,

December 14th-17th, 2009, Hyderabad.

Akshar Bharati, Vineet Chaitanya , Rajeev Sangal.

Natural Language Processing A Paninian Perspec-

tive. Prentice Hall of India (1995).

Charles J. Fillmore, Christopher R. Johnson, and Mi-

riam R. L. Petruck. 2003. Background to Frame-

Net. International Journal of Lexicography,

16:235–250.

Chomsky, Noam (1956). "Three models for the de-

scription of language". IRE Transactions on In-

formation Theory 2: 113–124.

Erik F. Tjong kim sang and Herve Dejean Introduc-

tion to CoNLL-2001 shared task: clause identifica-

tion.

Groenendijk, J.: (2009), ‘Inquisitive Semantics: Two

Possibilities for Disjunction’. In Lecture Notes in

Computer Science. ISBN- 978-3-642-00664-7.

Volume- 5422/2009. Berlin, Heidelberg. Pages-

80-94.

Kalika Bali, Monojit Choudhury, Diptesh Chatterjee,

Arpit Maheswari, Sankalan Prasad. Correlates be-

tween Performance, Prosodic and Phrase Struc-

tures in Bangla and Hindi: Insights from a Psycho-

linguistic Experiment. In Proceeding of ICON

2009. Hyderabad. India.

Kiparsky, Paul and J. F. Staal (1969). ‘Syntactic and

semantic relations in Panini.’ Foundations of Lan-

guage 5, 83-117.

Robins, R. H. (1979). A Short History of Linguistics

(2nd Edition). London: Longman.

Vijay Sundar Ram. R and Sobha Lalitha Devi, 2008

Clause Boundary Identification Using Conditional

Random Fields.

25

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 26–34,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

A Paradigm-Based Finite State Morphological Analyzer for Marathi

Mugdha Bapat

Harshada Gune

Pushpak Bhattacharyya

Department of Computer Science and Engineering,

Indian Institute of Technology Bombay

 {harshadag,mbapat,pb}@cse.iitb.ac.in

Abstract

A morphological analyzer forms the

foundation for many NLP applications of

Indian Languages. In this paper, we pro-
pose and evaluate the morphological

analyzer for Marathi, an inflectional lan-

guage. The morphological analyzer ex-
ploits the efficiency and flexibility of-

fered by finite state machines in model-

ing the morphotactics while using the

well devised system of paradigms to
handle the stem alternations intelligently

by exploiting the regularity in inflection-

al forms. We plug the morphological
analyzer with statistical pos tagger and

chunker to see its impact on their per-

formance so as to confirm its usability as
a foundation for NLP applications.

1 Motivation and Problem Definition

A highly inflectional language has the capability

of generating hundreds of words from a single
root. Hence, morphological analysis is vital for

high level applications to understand various

words in the language. Morphological analyzer

forms the foundation for applications like infor-
mation retrieval, POS tagging, chunking and

ultimately the machine translation. Morphologi-

cal analyzers for various languages have been
studied and developed for years. But, this re-

search is dominated by the morphological ana-

lyzers for agglutinative languages or for the lan-
guages like English that show low degree of in-

flection. Though agglutinative languages show

high morpheme per word ratio and have com-

plex morphotactic structures, the absence of fu-

sion at morpheme boundaries makes the task of
segmentation fluent once the model for imple-

mentation of morphotactics is ready. On this

background, a morphological analyzer for highly

inflectional language like Marathi which has the
tendency to overlay the morphemes in a way that

aggravates the task of segmentation presents an

interesting case study.
Eryiğit and Adalı (2004) propose a suf-

fix stripping approach for Turkish. The rule

based and agglutinative nature of Turkish allows
the language to be modeled using FSMs and

does not need a lexicon. The morphological ana-

lyzer does not face the problem of the changes

taking place at morpheme boundaries which is
not the case with inflectional languages. Hence,

although apprehensible this model is not suffi-

cient for handling the morphology of Marathi.
Many morphological analyzers have

been developed using the two-level morphologi-

cal model (Koskenniemi, 1983) for

morphological analysis. (Oflazer, 1993; Kim et
al., 1994) have been developed using PC-

Kimmo (Antworth, 1991), a morphological

parser based on the two-level model. Concep-
tually, the model segments the word in its con-

stituent parts, and accounts for phonological and

orthographical changes within a word. While,
the model proves to be very useful for develop-

ing the morphological analyzers for agglutina-

tive languages or the languages with very less

degree of inflection, it fails to explicitly capture
the regularities within and between paradigms

present in the inflectional languages. Marathi

has a well defined paradigm-based system of
inflection. Hence, we decided to develop our

own model which works on the similar lines of

PC-Kimmo (Antworth, 1991) but exploits the

26

usefulness of paradigm-based inflectional sys-

tem.
Bharati et al. (2004) propose a paradigm

based algorithm for morphological analysis of

Hindi, an inflecting language. In Hindi, the in-

flected forms of roots do not allow further at-
tachment of any other suffixes. In contrast, in

Marathi once the root is transformed into its in-

flected form it is followed by suffixes to show
its agreement with the other words in the sen-

tence. Some postpositions derive new words

which themselves may undergo inflection and
allow attachment of other suffixes. This makes

the simple paradigm-based model proposed in

this work unfit for Marathi morphological analy-

sis.
Dixit et al. (2006) developed a morphological

analyzer with a purpose of using it for spell

checking. Though their analyzer successfully
analyzes the words with a single suffix, its scope

is restricted to the handling of only first level

suffixes.

1.1 Our Approach

In this paper, we present the morphological
analyzer for Marathi which is official language

of the state of Maharashtra (India). With 90

million fluent speakers worldwide, Marathi
ranks as the 4

th
 most spoken language in India

and the 15
th
 most in the world. The methodology

is based on the use of paradigm-based
inflectional system combined with finite state

machines (FSMs) for modeling the

morphotactics. To the best of our knowledge,

such an approach has never been tried out for
Marathi. The crux of the system lies in the

detailed study of morphosyntactic phenomena,

the morphotactic structure of the language and
the use of paradigm-based inflectional system.

The approach can be used for other inflection-

al languages by developing the resources like
language specific inflection rules and the FSM

that models the morphotactics for the language.

1.2 Marathi Morphology

Marathi is a morphologically rich language. It is

highly inflectional and also shows derivation to
a high degree. Like other synthetic languages,

Marathi morphological analysis faces some

well-known challenges. Words contain multiple
morphemes fused together in such a way that, it

becomes difficult to segment them. A single

morpheme contains a bunch of grammatical
attributes associated with it which creates a chal-

lenge for morphological parsing. A single root is

capable of generating hundreds of words by

combining with the other morphemes.
The complexity involved in the formation of a

polymorphemic word can be better illustrated

using an example. Consider the word

 {devaasaarakhyaalaa} (to the one

like the god). The nominal root ‘ ’ {deva}

(god) gets inflected to the oblique case, singular

form ‘ ’ {devaa} which is then followed by

the adjectival suffix ‘ ’ {saarakhaa} (alike).

This derives the adjective ‘ ’ {devaa-

saarakhaa} (the one like the god) which then

starts behaving like a noun. This noun on getting
inflected to the oblique case, singular form

 {devasaarakhyaa} is followed by the

case marker {laa} (to). This gives the word

 {devaasaarakhyaalaa} (to the one

like the god). Equation 1 illustrates this process.

Equation 1. Formation of {de-

vaasaarakhyaalaa} (to the one like the god)

This suggests that the process of formation of
polymorphemic words is recursive in nature with

inflection taking place at every level of recur-

sion.
Section 2 discusses the design of the morpho-

logical analyzer which tries to overcome the

problems discussed above with respect to Mara-
thi language. Sections 3 and 4 discuss the lin-

guistic resources and the processing of words

belonging to various categories respectively.

Sections 5 and discuss the classification of suf-
fixes and development of automata based on this

classification respectively. Section 7 briefs on

the experimental setup and the results.

27

2 Morphological Analyzer for Marathi

The formation of polymorphemic words leads to

complexities which need to be handled during

the analysis process. FSMs prove to be elegant

and computationally efficient tools for modeling
the suffix ordering in such words. However, the

recursive process of word formation in Marathi

involves inflection at the time of attachment of
every new suffix. The FSMs need to be capable

of handling them. Koskenniemi (1983) suggests

the use of separate FSMs to model the ortho-

graphic changes. But, Marathi has a well devised
system of paradigms to handle them. One of our

observations led us to a solution that combines

paradigm-based inflectional system with FSM
for modeling. The observation was that, during

the i
th

 recursion only (i-1)
th
 morpheme changes

its form which can be handled by suitably mod-
ifying the FSM. The formation of the same word

devaasaarakhyaalaa described above can be

viewed as illustrated in Equation 2.

Equation 2. Simulating the formation of

 {devaasaarakhyaalaa} (to the

one like the god)

Generalizing the word formation process we ar-
rived at the formulation specified by Equation 3.

Equation 3. Formulation of Polymorphemic

Word Formation

This requires a morphotactic FSM which is

aware of the inflected forms of morphemes in
addition to the actual morphemes to handle the

above recursive process of word formation. We

use the paradigm-based system to generate the

inflected form of the morphemes and feed them
to the FSM. Figure 1 shows the architecture of

the morphological analyzer based on this philos-

ophy.
Inflector inflects all morphemes in the lex-

icon using the inflection rules associated with

the paradigms to which they belong.
Given a word, Morphological Recognizer

recognizes the constituent morphemes in their

inflected forms using finite state machine that

models the morphotactics. For example, the out-
put of the Morphological Recognizer for the

word devaasaarakhyaalaa is devaa + saarakhyaa

+ laa. Morphological Parser outputs per mor-
pheme analysis of the word using the mor-

phemes recognized by the Morphological Re-

cognizer.

3 Linguistic Resources

The linguistic resources required by the morpho-

logical analyzer include a lexicon and inflection
rules for all paradigms.

3.1 Lexicon

An entry in lexicon consists of a tuple <root,

paradigm, category>. The category specifies the

grammatical category of the root and the para-
digm helps in retrieving the inflection rules as-

sociated with it. Our lexicon contains in all

24035 roots belonging to different categories.

Figure 1. Architecture of Marathi Morphological Analyzer

28

3.2 Inflection Rules

Inflection rules specify the inflectional suffixes
to be inserted (or deleted) to (or from) different

positions in the root to get its inflected form. An

inflectional rule has the format: <inflectional

suffixes, morphosyntactic features, label>. The
element morphosyntactic features specifies the
set of morphosyntactic features associated with
the inflectional form obtained by applying the
given inflection rule. Following is the exhaustive
list of morphosyntactic features to which differ-
ent morphemes get inflected:

1) Case: Direct, Oblique

2) Gender: Masculine, Feminine, Neuter,

Non-specific
3) Number: Singular, Plural, Non-specific

4) Person: 1st, 2nd, 3rd

5) Tense: Past, Present, Future

6) Aspect: Perfective, Completive, Fre-
quentative, Habitual, Durative, Incep-

tive, Stative

7) Mood: Imperative, Probabilitive, Sub-

junctive, Conditional, Deontic, Abiltive,

Permissive

The label specifies the morphotactic class to
which the inflected form (generated by applying

the inflection rule) belongs. It is used by the

Morphological Recognizer.

4 Category Wise Morphological For-

mulation

The grammatical categories observed in Marathi
include nouns, pronouns, verbs, adjectives, ad-

verbs, conjunctions, interjections and postposi-

tions. The morphemes belonging to different
categories undergo different treatment.

4.1 Noun Morphology

Marathi nouns inflect for number and case.

Postpositions get attached to the oblique forms
of the nouns (known as stems) to show their re-

lationship with other words in the sentence. A

single stem is used for the attachment of all

postpositions which makes nominal morphology
absolute economic in nature. For example vari-

ous forms of the word {daara} (door) are

 {daaraasa} (to the door), {daa-

raane} (by the door), {daaraashejarii}

(besides the door). Please note that the same

stem {daaraa} is used for the attachment of

various postpositions.
Depending upon their ending, gender

and the inflectional patterns, the nouns in Mara-

thi can be classified into various paradigms. A

paradigm is a complete set of related inflectional
forms associated with a given root. All words

that share the similar inflectional forms fall in

the same paradigm. Table 1 presents the para-

digm {daara} (door).

 Case

 Direct Oblique

Number Singular {daa-

ra}

 {daaraa}

Plural

{daare}

 {daa-

raaN}

Table 1. Paradigm Table for {daara}

(door)

 {kaapaDa} (cloth), {paana} (leaf),

 {pustaka} (book), {kapaaTa} (cup-

board) are the few nouns that fall into this para-

digm.

Every paradigm has a set of inflection rules
associated with it one corresponding to every

inflectional form of the word. A noun has four

inflectional forms each one corresponding to a
case-number pair. Hence, every paradigm has

four inflectional rules associated with it.

An inflectional rule for Marathi consists of a

tuple specifying the inflectional suffixes that
should be inserted and deleted from ultimate and

penultimate position of the root. Table 2 lists the

inflectional suffixes that collectively form an
inflectional rule.

The procedure to obtain the inflected form

of the given root R belonging to paradigm P by
applying the inflectional rule I <UD, UI, PUD,

PUI> is as follows:

i. R =R - PUD

ii. R = R + PUI

iii. R = R – UD

iv. R = R + UI

Suffix Description

Ultimate

Deletion

Suffix to be deleted from the ul-

timate position of the root

29

(UD)

Ultimate

Insertion
(UI)

Suffix to be inserted at the ulti-

mate position of the root

Penultimate

Deletion
(PUD)

Suffix to be deleted from the pe-

nultimate position of the root

Penultimate

Insertion

(PUI)

Suffix to be inserted at the ulti-

mate position of the root

Table 2. Suffixes in an Inflectional Rule

For a given word, even if a single rule out of the

four is different from the set of available para-

digms, a new paradigm needs to be created. Ta-

ble 3 shows the paradigm {bhakta} (devo-

tee). Note that, the only difference between the

two paradigm tables is in the direct case plural

form.

 Case

 Direct Oblique

Number Singular

{bhakta}

 {bhak-

taa}

Plural

{bhakta}

 {bhak-

taaN}

Table 3. Paradigm Table for {bhakta}

(devotee)

In this way, our lexicon contains 16448 nouns

categorized into 76 paradigms. Out of the 76
paradigms, 30 correspond to feminine gender, 29

to masculine and 17 to neuter gender. This set of

paradigms includes three null paradigms, one
corresponding to each gender. In modern Mara-

thi, the stem of the proper nouns or foreign

words transliterated in Marathi is same as the

root. In short, postpositions can be directly at-
tached to these roots without any modification.

Such nouns belong to the null paradigm.

4.2 Postposition Morphology

Postpositions follow the stems of nouns and
pronouns. Postpositions in Marathi can be

broadly classified into case markers and shab-

dayogi avyayas. Shabdayogi avyayas show the

relationship of nouns and pronouns with the oth-
er words in the sentence while deriving the ad-

jectives or adverbs in most of the cases. Depend-

ing upon the category of the word derived by
them they are classified as adjectival and adver-

bial suffixes respectively. We have 142 postpo-

sitions listed in our lexicon.

4.3 Classification of Postpositions

The first step towards defining the morphotactics

of a language is the classification of various suf-

fixes into classes depending upon the mor-

phemes they can follow and the morphemes that
can follow them. Given the list of 142 postposi-

tions, we carefully examined each one to under-

stand its morphotactic behavior and came up
with the classification of Marathi postpositions

as presented in the Table 4.

Class Ordering Rules Ex-

ample

Case

markers

They can follow any ob-

lique form. No other suf-
fixes can follow them.

{ne}

(by)

Adjectival
Suffixes

They can follow an obli-
que form of a root. Since

they derive an adjective,

they can be followed by
any other suffixes.

{saa-

rak-

haa}

(alike

Possessive

case

marker

It can follow any oblique

form. It can be followed

by any other suffixes.

{chaa}

(the

one

belong

ing to

some-

thing)

Closing

suffixes

They can follow any ob-

lique form. No other suf-

fixes can follow them.

{pek-

shaa}

(in-

stead
of)

 {chaa}

adjectival

suffix

It can follow Peculiar

NSTs and Nearly closing
postpositions. It can be

followed by case mark-

ers.

{chaa}

(the
one)

Peculiar They can follow any ob-

30

NSTs lique form. They can be

followed only by Exclu-

sive postpositions and

{chaa} adjectival suffix.

{ja-

waLa}
(near)

Exclusive

postposi-

tions

They can follow peculiar

NSTs. They close the

word.

 {ii}

(in-

side)

Nearly
closing

postposi-

tions

They can follow oblique
forms of nouns and pro-

nouns. They can be fol-

lowed by {chaa} ad-

jectival suffix.

{pa-
ryan-

ta}

(uptil)

Shuddha-
shabdayo-

gi avyayas

They can follow almost
any morpheme except

oblique forms of nouns.

They can be followed by
some postpositions. But,

this behavior is quite ir-

regular and needs more

investigation. In most of
the cases, these suffixes

close the word. Hence,

we consider them to be
occurring only at the end

of the word.

{cha}
(only)

Table 4. Classification of Postpositions

4.4 Verbs

The verbs inflect for gender, number and person
of the subject and the direct object in a sentence.

They also inflect for tense and aspect of the ac-

tion as well as mood of the speaker in an illocu-
tionary act. They may even undergo derivation.

Further discussion on verbal morphology will be

based on Aakhyaata theory (inflection) and Kru-

danta theory (derivation) (Damale, 1970). Our
lexicon contains 1160 verb roots classified into

22 paradigms.

Aakhyaata Theory forms the basis of

verbal inflection in Marathi. Aakhyaata

refers to tense, aspect, and mood. Aakhyaata is

realized through an aakhyaata suffix which is a

closing suffix, attached to the verb root. There
are 8 types of aakhyaatas named after the pho-

nemic shape of the aakhyaata suffix. Associated

with every aakhyaata are various aakhyaata-

arthas which indicate the features: tense, aspect
and mood. An aakhyaata may or may not agree

with gender. There are around 80 Aakhyaata

suffixes in Marathi.
Krudanta Theory forms the basis of

verbal derivation in Marathi. Krudanta refers to

the word ending in a krut-pratyaya (a suffix

which refers to an action). Krut-pratyayas are
attached at the end of verbs to form non-

infinitive verb forms. These forms usually be-

long to one of the categories: noun, adverb or
adjective. They contribute to the aspect of the

verb from which they are derived. We cover on-

ly the krudanta forms which are regular in beha-
vior.

Irregular Verbs: Some verbs in Marathi have

different behavior as compared to the other

verbs (regular verbs). These verbs are present in
some inflected forms for which no definite stem

exists.

4.5 Adjectives

Marathi adjectives can be classified into two
categories: ones that do not inflect and others

that inflect for gender, number and case where

such an inflection agrees with the gender and

number of the noun modified by them. The in-
flectional forms of the adjectives are generated

using similar procedure as that of nouns.

4.6 Pronouns

There are nine types of pronouns in Marathi.
Pronouns possess very irregular behavior result-

ing into a large number of suppletive forms. In

addition to these forms every pronoun has a spe-
cific oblique form (one each for singular and

plural) to which shabdayogi avyayas can be at-

tached.

4.7 Indeclinable Words

Adverbs, conjunctions and interjections are the
indeclinable words. Some adverbs can be fol-

lowed by a subset of postpositions.

5 Morphotactics and Automata

Along with the postpositions mentioned in the

Table 4 the complete set of morphemes in Mara-

thi includes the roots and their inflectional
forms. Every morpheme is labeled according to

the class it belongs to. These labels are used to

define the ‘Morphotactic FSM’ that models Ma-

31

rathi language. Table 5 enlists various labels

used in the Morphotactic FSM.

Type of Suffix Label

Nouns, pronouns, nominal or

adjectival krudantas

DF 1

OF 2

Case markers 3

Adjectival postpositions DF 4

OF 5

Possessive case marker DF 6

OF 7

Closing postpositions 8

Peculiar NSTs 9

Exclusive postpositions 10

Nearly closing postpositions 11

 {chaa} adjectival suffix 12

Adjective 1

Aakhyaatas 1

Adverbial krudantas 1

Adverbs-1 1

Adverbs-2 13

Shuddhashabdayogi avyayas 14

Table 5. Morphotactic Labels of Morphemes

DF: Direct form of a root or a suffix

OF: Oblique form of a root or a suffix
Adverb-1: The adverbs those cannot be followed

by any postpositions

Adverb-2: The adverbs those can be followed by
some postpositions

Note that, the label field mentioned in the inflec-

tion rules refers to the corresponding labels of
the morphemes mentioned in Table 5.

Figure 2 shows the FSM for morphological

recognition of Marathi. The input symbols are
the labels of the morphemes as mentioned in the

Table 5. The classification of the suffixes as

specified in Table 5 explains the construction of
FSM. We use SFST

1
 (Stuttgart Finite State

Transducer) for implementing the FSM.

6 Experiments

Morphological analysis caters to the needs of

variety of application like machine translation,

information retrieval, spell-checking. Different
applications are interested in different bit of in-

formation provided by the analyzer like the

stem, the root, the suffixes or the morphosyntac-

tic features. Hence, the performance evaluation
of a morphological analyzer has to be observed

in terms of its impact on the performance of the

applications that use it. Hence, we carry out the
evaluation in two parts: In direct evaluation we

directly measure the accuracy of morphological

analyzer on the given data. In indirect evalua-

tion, we observe the improvement in the per-
formances of statistical pos tagger and chunker

1
 http://www.ims.uni-

stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html

Figure 2. Morphotactic FSM

32

by using the morphological analyzer to generate

the morphological features that help in boosting
their accuracies. We used the corpora in TOUR-

ISM and NEWS domain for all our experiments.

6.1 Direct Evaluation

We used Marathi Morphological Analyzer for

the analysis of 21096 unique words. We manual-
ly measured the accuracy of the morphological

analyzer by counting the number of correctly

analyzed words out of the total number of
words. In the cases where a word has multiple

analyses, the word was counted as correctly ana-

lyzed only when all of the correct analyses are
present. Note that, in order to emphasize more

on the usefulness of our approach towards mor-

phological analysis of Marathi, we added most

of the roots used in the corpus to the lexicon be-
fore starting the experiments. For a language like

Marathi, it is required to build a very rich lex-

icon which can be done over a larger period of
time.

 Out of the 21096 unique words, 20503

(97.18%) were found to be correctly analyzed.

Of the remaining 593 words, 394 words could
not be recognized by Morphological Recognizer

and 199 words were assigned the incorrect or

insufficient analyses.
By taking a closer look at the 394 words

which were not recognized (segmented) we

could come up with the causes of recognition
failure as listed in Table 6.

Cause Number of

Words

Lexicon Coverage 82 (20.81%)

Absence of Rules 69 (17.51%)

Acronyms 66 (16.75%)

Compound words 55 (13.96%)

Irregular forms needing
further investigation

47 (11.92%)

Transliterated words which

are uncommon

25 (6.34%)

Unidentified words 20 (5.08%)

Dialect words/ words used

in spoken language

20 (5.08%)

Use of common nouns as

proper nouns

5 (1.27%)

Missing Paradigm 3 (0.76%)

Fusion (Sandhii) 2 (0.51%)

Table 6. Causes of Recognition Failure

6.2 Indirect Evaluation

CRF based sequence labelers (pos tagger

and chunker) were trained using morpholog-

ical features and the other elementary features

like (contextual words and bigram tags). The

morphological features include ambiguity

scheme (set of all possible categories of a word)
and the suffixes for the pos tagger whereas just

the suffixes in case of chunker.

 To throw the light of role played by morpho-
logical analyzer in improving the accuracies of

the sequence labelers, we performed the experi-

ments using two sets of features: The Learning

Based (LB) labeler was trained using only ele-
mentary features whereas Morphologically Dri-

ven Learning Based (MDLB) labeler used the

morphological features along with the elementa-
ry features. The results were obtained by per-

forming 4-fold cross validation over the corpora.

The average accuracy of MDLB Pos tagger
turned out to be 95.03 as compared to 85% of

LB. The average accuracy of MDLB chunker

was found to be 97.87% whereas that of LB was

found to be 96.91%. .

7 Conclusion and Future Work

We presented a high accuracy morphological
analyzer for Marathi that exploits the regularity

in the inflectional paradigms while employing

the Finite State Systems for modeling the lan-

guage in an elegant way. The accuracy figures as
high as 97.18% in direct evaluation and the per-

formance improvement in shallow parsing speak

about the performance of the morphological ana-
lyzer. We gave detailed description of the mor-

phological phenomena present in Marathi. The

classification of postpositions and the develop-

ment of morphotactic FSA is one of the impor-
tant contributions since Marathi has complex

morphotactics. As a next step the morphological

analyzer can be further extended to handle the
derivation morphology and compound words.

References
Antworth, E. L. 1990. PC-KIMMO: A Two-

level Processor for Morphological Analysis.

Occasional Publications in Academic Com-

puting. Summer Institute of Linguistics,

Dallas, Texas.

33

Bharati, Akshar, Vin eet Chaitanya, and

Rajeev Sanghal 1995. Natural Language
Processing: A Paninian Perspective. Pren-

tice Hall, India.

Damale, M. K. 1970. Shastriya Marathii

Vyaakarana. Deshmukh

and Company, Pune, India.

Dixit, Veena, Satish Dethe, and Rushikesh

K. Joshi. 2006. Design and Implementation

of a Morphology-based Spellchecker for

Marathi, an Indian Language.

In Special issue on Human Language Tech-

nologies as a challenge for Computer

Science

and Linguistics. Part I. 15, pages 309–316.

Archives of Control Sciences.

Eryiğit, Gülşen and Adalı Eşref. 2004. An

Affix Stripping Morphological Analyzer for

Turkish. In IASTED International Multi-

Conference on Artificial Intelligence and

Applications. Innsbruck, Austria, pages

299–304.

Kim, Deok-Bong., Sung-Jin Lee, Key-Sun

Choi, and Gil-Chang Kim (1994). A two-

level Morphological Analysis of Korean. In

Conference on Computational Linguistics

(COLING), pages 535–539.

Koskenniemi, Kimmo 1983. Two-level

Morphology: a general computational

model for word-form recognition and pro-

duction. University of Helsinki, Helsinki.

Oflazer, Kemal 1993. Two-level Description

of Turkish Morphology. In The European

Chapter of the ACL (EACL).

34

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 35–42,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Web Based Manipuri Corpus for Multiword NER and

Reduplicated MWEs Identification using SVM

Thoudam Doren Singh

Department of Computer Science and
Engineering

Jadavpur University

thoudam.doren@gmail.com

Sivaji Bandyopadhyay

Department of Computer Science and
Engineering

Jadavpur University

sivaji_cse_ju@yahoo.com

Abstract

A web based Manipuri corpus is devel-
oped for identification of reduplicated
multiword expression (MWE) and mul-
tiword named entity recognition (NER).
Manipuri is one of the rarely investi-
gated language and its resources for
natural language processing are not
available in the required measure. The
web content of Manipuri is also very
poor. News corpus from a popular Ma-
nipuri news website is collected. Ap-
proximately four and a half million Ma-
nipuri wordforms have been collected
from the web. The mode of corpus col-
lection and the identification of redupli-
cated MWEs and multiword NE based
on support vector machine (SVM)
learning technique are reported. The
SVM based reduplicated MWE system
is evaluated with recall, precision and F-
Score values of 94.62%, 93.53% and
94.07% respectively outperforming the
rule based approach. The recall, preci-
sion and F-Score for multiword NE are
evaluated as 94.82%, 93.12% and
93.96% respectively.

1 Introduction

The NER and MWE identification are important
tasks for natural language applications that in-
clude machine translation and information re-
trieval. The present work reports the NER and
reduplicated MWE identification of Manipuri
on web based news corpus. The use of web as a
corpus for teaching and research on languages

has been proposed several times (Rundell, 2000;
Fletcher, 2001; Robb, 2003; Fletcher 2004). A
special issue of the Computational Linguistics
journal on web as corpus (Kilgarriff and Gre-
fenstette, 2003) was published. Several studies
have used different methods to mine web data.
The web walked into the ACL meetings starting
in 1999. The special interest group of ACL on
web as corpus is promoting interest in the use of
the web as a source of linguistic data, and as an
object of study in its own right. India is a multi-
lingual country with a lot of cultural diversity.
Bharati et al. (2001) reports an effort to create
lexical resources such as transfer lexicon and
grammar from English to several Indian lan-
guages and dependency Treebank of annotated
corpora for several Indian languages. In Indian
context, a web based Bengali corpus develop-
ment work from web is reported in Ekbal and
Bandyopadhyay (2008) and Manipuri-English
semi automatic parallel corpora extraction by
Singh et. al., (2010). Newspaper is a huge
source of readily available documents. In the
present work, the Manipuri monolingual corpus
has been developed from web for NLP and re-
lated tasks.

Manipuri is a scheduled Indian language
spoken approximately by three million people
mainly in the state of Manipur in India and in
the neighboring countries namely Bangladesh
and Myanmar. It is a Tibeto-Burman language
and highly agglutinative in nature, influenced
and enriched by the Indo-Aryan languages of
Sanskrit origin and English. The affixes play the
most important role in the structure of the lan-
guage. In Manipuri, words are formed in three
processes called affixation, derivation and com-
pounding. The majority of the roots found in the

35

language are bound and the affixes are the de-
termining factor of the class of the words in the
language. Annotated corpus, bilingual dictiona-
ries, name dictionaries, WordNet, morphologi-
cal analyzers etc. are not yet available in Mani-
puri in the required measure.

In the present work, the tasks of identifica-
tion of Manipuri multiword named entity (MNE)
and reduplicated multiword expression (RMWE)
identification using support vector machine
(SVM) learning technique on the corpus col-
lected from web is reported.

Works on multiword expressions (MWEs)
have started with a momentum in different lan-
guages. In the Indian context, some of the
works can be seen in (Dandapat et. al., 2006;
Kunchukuttan and Damani, 2008; Kishorjit et.
al., 2010). The identification of MWEs in sev-
eral languages concentrate on compound nouns,
noun-verb combination, some on idioms and
phrases and so on but not much on RMWEs.
The reason may be that the reduplicated words
are either rare or easy to identify for these lan-
guages since only complete duplication and
some amount of partial reduplication may be
present in these languages. On the other hand,
reduplicated MWEs are quite large in number in
Manipuri and there are wide varieties of redup-
licated MWEs in Manipuri.

2 Manipuri News Corpus and Statis-

tics

The content of Manipuri language on the web is
very poor. One of the sources is the daily news
publications. Again, there is no repository. Thus,
the possibility of deploying web crawler and
mining the web corpus is not possible. The Ma-
nipuri news corpus is collected from
http://www.thesangaiexpress.com/ covering the
period from May 2008 to May 2010 on daily
basis. The Manipuri news is available in PDF
format. A tool has been developed to convert
contents from PDF documents to Unicode for-
mat. There are 15-20 articles in each day. Con-
sidering the Manipuri corpus covering the pe-
riod from May 2008 to May 2010, there are
4649016 wordforms collected

1
.

1
There are no publications on some occasions.

2.1 Conversion from PDF to UTF-8

The general Manipuri news collected is in PDF
format. A tool has been developed to convert
Manipuri news PDF articles to Bengali Unicode.
The Bengali Unicode characters are used to
represent Manipuri as well. The conversion of
PDF format into Unicode involves the conver-
sion to ASCII and then into Unicode using
mapping tables between the ASCII characters
and corresponding Bengali Unicode. The map-
ping tables have been prepared at different le-
vels with separate tables for single characters
and conjuncts with two or more than two cha-
racters. The single character mapping table con-
tains 72 entries and the conjunct characters
mapping table consists of 738 entries. There are
conjuncts of 2, 3 and 4 characters. Sub-tables
for each of the conjuncts are prepared. English
words are present on the Manipuri side of the
news and they are filtered to avoid unknown
character features.

2.2 Use of language resources

The Manipuri web corpus collected from the
web is cleaned by removing the unknown cha-
racters. After the cleaning process, the running
texts are picked up followed by spelling correc-
tion. The web based news corpus is POS tagged
using the 26 tagset

2
 defined for the Indian lan-

guages based on the work of (Singh et. al. ,
2008). The Manipuri news corpus developed in
this work has been used to identify MNE and
RMWEs identification.

3 Support Vector Machine

The SVM (Vapnik, 1995) is based on discr i-
minative approach and makes use of both pos i-
tive and negative examples to learn the distinc-
tion between the two classes. The SVMs are
known to robustly handle large feature sets and
to develop models that maximize their generali-
zability. Suppose we have a set of training data

for a two-class problem: 1 1{(,),.....(,)}N Nx y x y ,

where xi  RD is a feature vector of the i
th

 sam-

ple in the training data and yi  {+1, -1} is the
class to which xi belongs. The goal is to find a
decision function that accurately predicts class y

2
http://shiva.iiit.ac.in/SPSAL2007/iiit_tagset_guidelines.p

df

36

for an input vector x. A non-linear SVM clas-
sifier gives a decision function f (x)= sign (g (x))
for an input vector where,

1

() (,)i

m

i

i

g x wK x z b


 
 Here, f(x)=+1 means

x is a member of a certain class and f(x)=-1
means x is not a member. The support vector is
represented by zi and stands for the training ex-
amples; m is the number of support vectors
Therefore, the computational complexity of g(x)
is proportional to m. Support vectors and other
constants are determined by solving a certain

quadratic programming problem. (,)iK x z is a
kernel that implicitly maps vectors into a higher
dimensional space. Typical kernels use dot

products: (,) (.)iK x z k x z .A polynomial ker-

nel of degree d is given by (,)iK x z = (1+x)d.
We can use various kernels, and the design of
an appropriate kernel for a particular application
is an important research issue.

The MNE/RMWE tagging system includes
two main phases: training and classification.
The training process has been carried out by
YamCha

3
 toolkit, an SVM based tool for detect-

ing classes in documents and formulating the
MNE/RMWE tagging task as a sequence labe-
ling problem. Here, both one vs rest and pair-
wise multi-class decision methods have been
used. Different experiments with the various
degrees of the polynomial kernel function have
been carried out. In one vs rest strategy, K bi-
nary SVM classifiers may be created where
each classifier is trained to distinguish one class
from the remaining K-1 classes. In pairwise
classification, we constructed K (K-1)/2 clas-
sifiers considering all pairs of classes, and the
final decision is given by their weighted voting.
For classification, the TinySVM-0.07

4
 classifier

has been used that seems to be the best opti-
mized among publicly available SVM toolkits.

4 Multiword Named Entity Recogni-

tion

Named Entity Recognition for Manipuri is re-
ported in (Singh et. al., 2009). The present work
focuses and reports on the recognition of mul-
tiword NEs. In order to identify the MNEs,

3http://chasen-org/~taku/software/yamcha/
4http://cl.aist-nara.ac.jp/~taku-ku/software/TinySVM

28,629 wordforms from Manipuri news corpus
has been manually annotated and used as train-
ing data with the major named entity (NE) tags,
namely person name, location name, organiza-
tion name and miscellaneous name to apply
Support Vector Machine (SVM) based machine
learning technique. Miscellaneous name in-
cludes the festival name, name of objects, name
of building, date, time, measurement expression
and percentage expression etc. The SVM based
system makes use of the different contextual
information of the words along with the variety
of word-level orthographic features that are
helpful in predicting the MNE classes.

MNE identification in Indian languages as
well as in Manipuri is difficult and challenging
as:
 Unlike English and most of the European lan-

guages, Manipuri lacks capitalization infor-
mation, which plays a very important role in
identifying MNEs.
 A lot of MNEs in Manipuri can appear in the

dictionary with some other specific meanings.
 Manipuri is a highly inflectional language

providing one of the richest and most chal-
lenging sets of linguistic and statistical fea-
tures resulting in long and complex word-
forms.
 Manipuri is a relatively free word order lan-

guage. Thus MNEs can appear in subject and
object positions making the NER task more
difficult compared to others.
 Manipuri is a resource-constrained language.

Annotated corpus, name dictionaries, sophis-
ticated morphological analyzers, POS taggers
etc. are not yet available.

MNE

Tag

Meaning MNE Exam-

ples

B-LOC

Beginning,
Internal or the
End of
a multiword
location name

থাঙ্গা (Thanga)
I-LOC মমাইরাংথথম (Moi-

rangthem)
E-LOC লৈকায় (Leikai)

B-PER

Beginning,
Internal or the
End of a mul-
tiword person
name

ওইনাম (Oinam)

I-PER

ইথিাবি (Ibobi)

E-PER মীতৈ (Meetei)

 Table 1. Named entity examples

37

In the present work, the NE tagset used
have been further subdivided into the detailed
categories in order to denote the boundaries of
MNEs properly. Table 1 shows examples.

5 Reduplicated MWEs Identification

Manipuri is very rich in RMWEs like other Ti-
beto-Burman languages. The work of (Singh,
2000) describes the linguistic rules for identify-
ing reduplicated words. A rule based Manipuri
RMWE identification is reported in (Kishorjit
and Bandyopadhyay, 2010). The process of re-
duplication (Singh, 2000) is defined as: ‘redup-
lication is that repetition, the result of which
constitutes a unit word’. These single unit
words are the MWEs. The RMWEs in Manipuri
are classified as: 1) Complete RMWEs, 2) Par-
tial RMWEs, 3) Echo RMWEs and 4) Mimic
RMWEs. Apart from these four types of
RMWEs, there are also cases of a) Double
RMWEs and b) Semantic RMWEs.

Complete RMWEs: In the complete
RMWEs the single word or clause is repeated
once forming a single unit regardless of phono-
logical or morphological variations.

মরিক মরিক (‘marik marik’) which means

‘drop by drop’.
 অটেক অটেকপা (‘atek atek-pa’) which

means ‘fresh’
করি করি (‘kari kari’) means ‘what/which’.
Partial RMWEs: In case of partial

reduplication the second word carries some part
of the first word as an affix to the second word,
either as a suffix or a prefix.

For example, চটথাক চরসিন (‘chat-thok chat-

sin’) means ‘to go to and fro’; শামী লানমী (‘saa-mi

laan-mi’) means ‘army’.
Mimic RMWEs: In the mimic

reduplication the words are complete
reduplication but the morphemes are
onomatopoetic, usually emotional or natural
sounds. For example, কিক কিক (‘krak krak’)

means ‘cracking sound of earth in drought’.
Echo RMWEs: The second word does not

have a dictionary meaning and is basically an
echo word of the first word. For example, থকরি
খারি (‘thak-si kha-si‘) means ‘good manner’.

Double RMWEs: Such type of reduplica-
tion generally consists of three words where the
prefix or suffix of the first two words is redupli-

cated but in the third word the prefix or suffix is
absent. An example of double prefix reduplica-
tion is ইমনু ইমনু মনুবা (‘i-mun i-mun mun-ba’)

which means, ‘completely ripe’.
Semantic RMWEs: Both the reduplication

words have the same meaning and so also is the
MWE. Such types of MWEs are very special to
the Manipuri language. For example, পামবা কক

(‘paamba kei’) means ‘tiger’ and each of the
component words means ‘tiger’.

5.1 Role of suffix and prefix

Apart from the above cases meaningful prefixes
or suffixes are used with RMWEs otherwise
they are ungrammatical.

Suffixes/ wh- duplicating

words

Part of

Speech
দা (–da), রগ (–gi) and রক (–ki)

Beginning, Internal or the End
of
a multiword location name

Noun
বা (–ba) and পা (–pa) Adjective

না (–na) Adverb

করি করি (‘kari kari’), কনা কনা
(‘kanaa kanaa’), কদায় কদায়
(‘kadaay kadaay’) and কিম
কিম (‘karam karam’)

Wh- ques-
tion type

Table 2. Suffixes/wh- duplicating words list
used in Complete Reduplication and POS
tagging

Prefix: With such prefixes the semantic
shapes are different and sometimes even the
same prefix carries a different meaning. By
these prefixation, the root is reduplicated as
given below:

{[ই(i)-/পঙ(pang)-/খঙ(khang)-/ৈ(ta)-/পুম(pum)-/
শকু(suk)] + Root }


{[ই(i)-/পঙ(pang)-/খঙ(khang)-/ৈ(ta)-/পুম(pum)-/
শকু(suk)] + Root + Root}

মহাক্না ইৱাঙ ৱাঙই

 mahaak-na i-waang waang-ngi
 he/she-nom –tall tall-asp
 He/She is the tallest

Suffix: There are some suffixes that carry
certain meaning when used with RMWEs.
Commonly used suffixes are, রিক (-trik) / রিক (-

drik), থ্রাক (-throk), থ্িাং (-drong), শকু (-suk), শঙ (-

sang), রিং (-dring), রশত্ (-sit), রশন (-sin), থ্িং (-

38

dreng), থ্রাক (-sroke) etc. Generally these suffix-

es indicate a superlative degree or emphatic
meaning.

Some examples are as follows,
মনুরিক মনুবা

mun-trik mun-ba
ripe ripe

‘very ripe’

Role of affix in Partial Reduplication:
Character-wise comparisons are done with not
less than two characters either from front or rear
for both the words since the second word is not
a complete repetition.

Also the last few characters of the first
word and the same number of first characters of
the second word are compared to check the par-
tial reduplication. The prefixes or suffixes are
verified with a list of accepted suffixes and pre-
fixes (see table 2) to validated the reduplication.

Role of affix in Echo Reduplication:
Identification of echo reduplication is done by
comparing the equality of suffixes of consecu-
tive two words w1 and w2.

6 Best Feature Selection for SVM

The use of prefix/suffix information works well

for the highly inflected languages like the In-

dian languages. Different combinations from

the following set for identifying the best feature

set for MNE/RMWE are experimented:

F={ , .., 1, , 1,,i m i i i i nw w w w w    , |prefix|<=n,

|suffix|<=n, MNE/RMWE tag(s) of previous

word(s), POS tag(s) of the current and/or the

surrounding word(s), First word, Length of the

word, Digit information, Infrequent word},

where iw is the current word; i mw  is the

previous m
th

 word and i nw  is the next n
th

word. Following are the details of the features:

1 Context word feature: Preceding and fol-

lowing words of a particular word since

the surrounding words carry effective in-

formation for the identification of

MNE/RMWEs.

2 Word suffix: Word suffix information is

helpful to identify MNE/RMWEs. This is

based on the observation that the

MNE/RMWEs share some common suf-

fixes. The fixed length (say, n) word suf-

fix of the current and/or the surrounding

word(s) can be treated as the feature. If

the length of the corresponding word is

less than or equal to n − 1 then the feature

values are not defined and are denoted by

‘ND’. The feature value is also not de-

fined (ND) if the token itself is a punctua-

tion symbol or contains any special sym-

bol or digit. Word suffixes are the effec-

tive features and work well for the highly

inflective Indian languages like Manipuri.

3 Word prefix: Word prefixes are also help-

ful to identify MNE/RMWEs. It is based

on the observation that MNE/RMWEs

share some common prefix strings. This

feature has been defined in a similar way

as that of the fixed length suffixes.

4 MNE and RMWE Information: The

MNE/RMWE tag(s) of the previous

word(s) have been used as the only dy-

namic feature in the experiment. The out-

put tag of the previous word is very in-

formative in deciding the MNE/RMWE

tag of the current word.

5 Digit features: Several binary valued digit

features have been defined depending

upon the

(i). Presence and/or the exact number

of digits in a token.

(a). CntDgtCma: Token consists of

digits and comma

 (b). CntDgtPrd: Token consists of

digits and periods

(ii). Combination of digits and sym-

bols. For example,

(a). CntDgtSlsh: Token consists of

digit and slash

(b). CntDgtHph: Token consists of

digits and hyphen

(c). CntDgtPrctg: Token consists of

digits and percentages

(iii). Combination of digit and special

symbols. For example,

(a). CntDgtSpl: Token consists of

digit and special symbol such as $,

etc.

39

These binary valued digit features are
helpful in recognizing miscellaneous

NEs such as measurement expression

and percentage expression.
6 Infrequent word: The frequencies of the

words in the training corpus have been

calculated. A cut off frequency has been

chosen in order to consider the words that

occur with less than the cut off frequency

in the training corpus. A binary valued

feature ‘Infrequent’ is defined to check

whether the current word appears in this

infrequent word list or not. This is based

on the observation that the infrequent

words are most probably MNE/RMWEs.

7 Length of a word: This binary valued fea-

ture is used to check whether the length

of the current word is less than three or

not. We have observed that very short

words are most probably not the

MNE/RMWEs.

8 Part of Speech (POS) information:
We have used an SVM-based POS

tagger (Singh et. al., 2008) that was

originally developed with 26 POS
tags, defined for the Indian languages.

The POS information of the current

and/or the surrounding words can be
effective for MNE/RMWE identifica-

tion.

The Table 3 gives the statistics of training,

development and test sets. The various nota-
tions used in the experiments are presented in
Table 4. The Table 5 shows the recall (R), pre-
cision (P) and F-Score (FS) in percentage in the
development set.

Table 3. Statistics of the training, development

and test sets

Notation Meaning

W[-i,+j] Words spanning from the i
th

 left

position to the j
th

 right position

POS[-i, +j] POS tags of the words spanning

from the i
th

 left to the j
th

 right

positions

Pre Prefix of the word

Suf Suffix of the word

NE [-i, -j] NE tags of the words spanning

from the i
th

 left to the j
th

 left

positions

Table 4. Meaning of the notations

Feature R

%

P

%

FS

%

Static: W[-2,+2], POS[-

2,+2], |Pre|<=3, |Suf|<=3,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-2,-1]

94.

26

96.

72

95.

47

Static: W[-3,+3], POS[-

3,+3], |Pre|<=3, |Suf|<=3,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-3,-1]

88.

23

94.

82

91.

40

Static: W[-3,+2], POS[-

3,+2], |Pre|<=3, |Suf|<=3,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-3,-1]

90.

32

93.

18

91.

72

Static: W[-4,+3], POS[-

4,+3], |Pre|<=3, |Suf|<=3,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-2,-1]

88.

15

92.

62

90.

32

Static: W[-4,+3], POS[-

4,+3], |Pre|<=3, |Suf|<=3,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-3,-1]

86.

24

92.

31

89.

17

Static: W[-2,+2], POS[- 88. 91. 90.

 Training Devel-

opment

Test

of sentences 1235 732 189

#of wordforms 28,629 15,000 4,763

of distinct

wordforms

8671 4,212 2,207

40

2,+2], |Pre|<=4, |Suf|<=4,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-2,-1]

70 49 07

Static: W[-3,+3], POS[-

3,+3], |Pre|<=4, |Suf|<=4,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-3,-1]

85.

05

90.

09

87.

49

Static: W[-4,+3], POS[-

4,+2], |Pre|<=4, |Suf|<=4,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-2,-1]

78.

55

89.

54

83.

68

Static: W[-4,+4], POS[-

4,+4], |Pre|<=4, |Suf|<=4,

Length, Infrequent,

FirstWord, Digit

Dynamic:

MNE/RMWE[-3,-1]

73.

71

89.

44

80.

81

Table 5. Results on the development set

7 Results on the Test Set

The best feature set (F) of Manipuri MNER and
RMWE is identified as F=[prefixes and suffixes
of length upto three characters of the current
word, dynamic NE tags of the previous two
words, POS tags of the previous two and next
two words, digit information, length of the
word]. After the selection of the best feature set,
the SVM based system for MNE and RMWEs
is tested on the test set of 4,763 wordforms.

Reduplicated

MWE type

Recall

%

Precision

%

F-

Score

%

Complete and

mimic

96.21 95.12 95.66

Partial 88.32 85.03 86.64

Echo 97.76 96.45 97.10

Double 93.23 94.23 93.72

Semantic 74.45 81.56 77.84

Table 6. Result on RMWE test set

In this work, SVM that parses from left to
right is considered. The break-up of the
RMWEs and the scores are given in Table 6.
The handling of semantic RMWEs requires fur-
ther investigation to improve the performance.
The rule based RMWE identification (Kishorjit
and Bandyopadhyay, 2010) shows a recall, pre-
cision and F-Score of 94.24%, 82.27% and
87.68% respectively.

Multiword

NE

Recall

%

Precision

%

F-

Score%

Person 94.21 95.12 94.66

Location 94.32 95.03 94.67

Organization 95.76 93.45 94.59

Miscellaneous 92.23 91.23 91.72

Table 7. Result on MNE test set

It is observed that the SVM based system

outperforms the rule based system. Table 7
shows the break-up scores of different types of
MNEs and Table 8 shows the overall scores of
MNE and RMWE.

 Recall

%

Precision

%

F-Score

%

MNE 94.82 93.12 93.96

RMWE 94.62 93.53 94.07

Table 8. Overall recall, precision and F-Scores

on test set

8 Conclusion

In this paper, the development of RMWEs iden-
tification and recognition of MNE for a re-
source-constrained language using web based
corpus of Manipuri is reported. This training
data of 28,629 is then manually annotated with
a coarse-grained tagset of four NE tags and six
RMWEs in order to apply SVM and tested with
4,763 wordforms. The SVM classifier makes
use of the different contextual information of
the words along with the various orthographic
word-level features. A number of experiments
have been carried out to find out the best set of
features for MWE in Manipuri. The SVM based
RMWE system outperforms the rule based ap-
proach. The SVM based RMWE shows recall,
precision and F-Score of 94.62%, 93.53% and
94.07% respectively. The rule based RMWE

41

identification shows a recall, precision and F-
Score of 94.24%, 82.27% and 87.68% respec-
tively. The overall performance of the system
shows reasonable output for both MNE and
RMWE.

References

Bharati, A., Sharma, D. M., Chaitanya, V., Kulkarni,

A. P., & Sangal, R., 2001. LERIL: Collaborative

effort fo r creating lexical resources. In Proceed-

ings of the 6th NLP Pacific Rim Symposium Post-

Conference Workshop, Japan.

Dandapat, S., Mitra, P., and Sarkar, S.,

2006. Statistical investigation of Bengali noun-

verb (N-V) collocations as multi-word-

expressions, In Proceedings of Modeling and

Shallow Parsing of Indian Languages (MSPIL),

Mumbai, pp 230-233

Ekbal, A., and Bandyopadhyay, S., 2008. A web

based Bengali news corpus for Named Entity

Recognition, Lang Resources & Evaluation

(2008) 42:173–182, Springer

Fletcher, W. H., 2001. Concordancing the web with

KWiCFinder. In Proceedings of the Third North

American Symposium on Corpus Linguistics and

Language Teaching, Boston, MA, 23–25 March

2001.

Fletcher, W. H., 2004. Making the web more use-ful

as source for linguists corpora. In U. Conor & T.

A. Upton (Eds.), Applied corpus linguists: A mul-

tidimensional perspective (pp. 191–205). Amster-

dam: Rodopi.

Kilgarriff, A., and Grefenstette, G., 2003. Introduc-

tion to the special issue on the web as corpus.

Computational Linguistics, 29(3), 333–347.

Kishorjit, N., and Bandyopadhyay, S., 2010. Identi-

fication of Reduplicated MWEs in Manipuri: A

Rule Based Approch, In proceedings of 23rd

International Conference on the Computer

Processing of Oriental Languages (ICCPOL

2010) - New Generation in Asian Information

Processing , Redmond City, CA

Kunchukuttan, A., and Damani, O. P., 2008. A Sys-

tem for Compound Nouns Multiword Expression

Extraction for Hindi, In Proceedings of 6
th

 Inter-

national conference on Natural Language

Processing (ICON 2008), Pune, India

Robb, T., 2003. Google as a corpus tool? ETJ

Journal, 4(1), Spring.

Rundell, M., 2000. The biggest corpus of all. Huma-

nising Language Teaching, 2(3)

Singh. Chungkham Y., 2000. Manipuri Grammar,

Rajesh Publications, Delhi, pp 190-204

Singh, Thoudam D., Ekbal, A., Bandyopadhyay, S.

2008. Manipuri POS tagging using CRF and

SVM: A language independent approach, In pro-

ceeding of 6
th

 International conference on Natural

Language Processing (ICON -2008), Pune, India,

pp 240-245

Singh, Thoudam D., Kishorjit, N., Ekbal, A., Ban-

dyopadhyay, S., 2009. Named Entity Recognition

for Manipuri using Support Vector Machine, In

proceedings of 23
rd

 Pacific Asia Conference on

Language, Information and Computation (PAC-

LIC 23), Hong Kong, pp 811-818

Singh, Thoudam D., Singh, Yengkhom R. and Ban-

dyopadhyay, S., 2010. Manipuri-English Semi

Automatic Parallel Corpora Extraction from Web,

In proceedings of 23rd International Conference

on the Computer Processing of Oriental Lan-

guages (ICCPOL 2010) - New Generation in

Asian Information Processing , Redmond City,

CA

Vapnik, Vladimir N. 1995: The nature of Statistical

learning theory. Springer

42

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 43–50,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

A Word Segmentation System for Handling Space Omission Problem
in Urdu Script

Gurpreet Singh Lehal

Department of Computer Science
Punjabi University, Patiala
gslehal@gmail.com

Abstract

Word Segmentation is the foremost
obligatory task in almost all the NLP
applications, where the initial phase requires
tokenization of input into words. Like other
Asian languages such as Chinese, Thai and
Myanmar, Urdu also faces word
segmentation challenges. Though the Urdu
word segmentation problem is not as severe
as the other Asian language, since space is
used for word delimitation, but the space is
not consistently used, which gives rise to
both space omission and space insertion
errors in Urdu. In this paper we present a
word segmentation system for handling
space omission problem in Urdu script with
application to Urdu-Devnagri Transliteration
system. Instead of using manually
segmented monolingual corpora to train
segmenters, we make use of bilingual
corpora and statistical word disambiguation
techniques. Though our approach is adapted
for the specific transliteration task at hand by
taking the corresponding target (Hindi)
language into account, the techniques
suggested can be adapted to independently
solve the space omission Urdu word
segmentation problems. The two major
components of our system are :
identification of merged words for
segmentation and proper segmentation of the
merged words. The system was tested on
1.61 million word Urdu test data. The recall
and precision for the merged word
recognition component were found to be
99.29% and 99.38% respectively. The
words are correctly segmented with 99.15%
accuracy.

1 Introduction

Word segmentation is the foremost obligatory
task in all NLP application, where the initial
phase requires tokenization of input into words.
For languages like English, French and Spanish
etc. tokenization is considered trivial because the
white space or punctuation marks between
words is a good approximation of where a word
boundary is. Whilst in various Asian languages
such as Chinese, Thai and Myanmar, white
spaces is rarely or never used to determine the
word boundaries, so one must resort to higher
levels of information such as: information of
morphology, syntax and statistical analysis to
reconstruct the word boundary information
(Papageorgiou, 1994; Nie et al, 1995; Wang et
al, 2000; Xu et al, 2005).
 Though the Urdu word segmentation problem is
not as severe as some of the other Asian
language, since space is used for word
delimitation, but the space is not consistently
used, which gives rise to both space omission
and space insertion errors in Urdu.
Durrani(2007) and Durrani and Hussain(2010)
have discussed in detail the various Urdu word
segmentation issues while Jawaid and
Ahmed(2009) and Abbas et al(2009) have
discussed the Hindi-Urdu transliteration issues.
A word segmentation system for handling space
insertion problem in Urdu script has been
presented by Lehal(2009).

Hindi and Urdu are variants of the same
language characterized by extreme digraphia:
Hindi is written in the Devanagari script from
left to right, Urdu in a script derived from a
Persian modification of Arabic script written
from right to left. Hindi and Urdu share
grammar, morphology, vocabulary, history,
classical literature etc. Because of their identical
grammar and nearly identical core vocabularies,

43

most linguists do not distinguish between Urdu
and Hindi as separate languages. The difference
in the two scripts has created a script wedge as
majority of Urdu speaking people in Pakistan
cannot read Devnagri, and similarly the majority
of Hindi speaking people in India cannot
comprehend Urdu script. To break this script
barrier an Urdu-Devnagri transliteration system
has been developed. The transliteration system
faced many problems related to word
segmentation of Urdu script as discussed above.

In this paper we present a word segmentation
system for handling space omission problem in
Urdu script with application to Urdu-Devnagri
Transliteration system. Instead of using
manually segmented monolingual corpora to
train segmenters, we make use of bilingual
corpora and statistical word disambiguation
techniques. Though our approach is adapted for
the specific transliteration task at hand by taking
the corresponding target (Hindi) language into
account, the techniques suggested can be
adapted to independently solve the space
omission Urdu word segmentation problems.

2 Urdu script: a brief overview

Urdu is a Central Indo-Aryan language of the
Indo-Iranian branch, belonging to the Indo-
European family of languages. It is the national
language of Pakistan. It is also one of the 22
scheduled languages of India and is an official
language of five Indian states.

Urdu script has 35 simple consonants, 15
aspirated consonants, one character for nasal
sound and 15 diacritical marks. Urdu characters
change their shapes depending upon neighboring
context. But generally they acquire one of these
four shapes, namely isolated, initial, medial and
final. Urdu characters can be divided into two
groups, non-joiners and joiners. The non-joiners
can acquire only isolated and final shape and do
not join with the next character. On contrary
joiners can acquire all the four shapes and get
merged with the following character. A group of
joiners and/or non-joiner joined together form a
ligature. A word in Urdu is a collection of one or
more ligatures. The isolated form of joiners and
non-joiners is shown in figures 1-2.

 ے و ژ ز ڑ ر ذ ڈ د آا
Figure 1. Non-Joiners in Urdu

 ک ق ف غ ع ظ ط ض ص ش س خ ح چ ج ث ٹ ت پ ب
 ه ی ه ن م ل گ

Figure 2. Joiners in Urdu

The space character is used in Urdu both to
generate correct shaping and also to separate
words. Though for words ending with non-
joiners correct shaping is generated even when
space is not typed and thus, many times a user
omits the space. The sequence of Urdu words
written together without space is still readable
because of the character joining property in
Urdu. As for example, consider the word cluster
 which is composed of four words , انکارکردياہے
 The Urdu readers can very .ہے and ديا , کر ,انکار
easily segment and read the four words
separately, but the computer will read them as a
single word since there is no space in between.
Similarly, the word cluster پرزوردياگياہے is
composed of five words(گيا ,ديا ,زور ,پر and ہے),
which can be easily read as five separate words
by Urdu readers but will be considered as a
single word by the computer.

Another unique feature of Urdu is that the
Urdu words are usually written without short
vowels or diacritic symbols. Any machine
transliteration or text to speech synthesis system
has to automatically guess and insert these
missing symbols. This is a non-trivial problem
and requires an in-depth statistical analysis.

An Urdu word is a combination of ligatures
(characters which join together) and isolated
characters. For example انکار is composed of
isolated characters ا and ر and ligature نکا . A
ligature or isolated character will be called as
Urdu character cluster (UCC) in this paper. A
Urdu word is thus a combination of UCCs . As
for example, the word انکار is composed of three
UCCs نکا , ا and ر . We borrow the term,
Orthographic Word used by Durrani and
Hussain(2010) to define our segmentation
process. An Orthographic Word (OW) is a
combination of UCCs separated by spaces or
punctuation marks. An OW may contain single
or multiple Urdu words. Our task is to identify if
an OW contains multiple words and in that case
properly segment the words.

As for example, consider the sentence:
 ميزبان ٹيم کی جانب سے رام نريش نے ہيروکاکرداراداکيا

44

It contains nine OWs
 ميزبان .1
 ٹيم .2
 کی .3
 جانب .4
ےس .5
 رام .6
 نريش .7
 نے .8
 ہيروکاکرداراداکيا .9
The first eight OWs contain single Urdu

words, while the last OW contains 5 Urdu
words(ادا ,کردار ,کا ,ہيرو and کيا)

3 Segmentation Model for Urdu

There are three major issues in the automatic
Urdu word segmentation. The first problem is to
decide if the orthographic word represents a
single word or a multiple word cluster. The
second is the ambiguity issue. Since a word
cluster can be segmented into words in multiple
ways, the correct word boundary detection
becomes a challenge. As for example the OW
 نا + گيا or اسے + گيان can be segmented as گياناسے
 The third problem is the segmentation of .سے +
unknown word. Unknown word refers to word
that does not exist in the dictionary or corpus.
Unknown words can be categorized into the
different types such as error words, abbreviation,
proper names, derived words, foreign words,
compounds etc. The unknown word causes
segmentation error since the word does not exist
in the dictionary, it could be incorrectly
segmented into shorter words. For example, the
word, رميٹالوجیڈ , which is a foreign word, gets
segmented into four words (لو , ميٹا , ڈر and جی)
after dictionary look-up as the word ڈرميٹالوجی is
not present in the corpus.

The input is an Urdu Orthographic Word and
the system first makes the decision if the OW
contains single or multiple Urdu words. In case
the OW contains multiple words, the individual
Urdu words are extracted from the OW. These
different stages are discussed in detail in
following sections. As can be seen from the
figure, at each stage we make use of lexical
resources both from Urdu and Hindi languages.
The details of the resources used are in Table 1.

The system architecture is shown in Fig. 3.

Figure 3. System Architecture

Table 1. Lexical resources used in system
Resource Count

Urdu Word Frequency
List

121,367 words

Hindi Word Frequency
List

159,426 words

Hindi Word Bigram List 2,382,511
bigrams

4 Decision Stage

In the decision stage, the system decides if the
OW contains single or multiple Urdu words. It
could so happen that the OW contains single
word only and we may break up into smaller
words. The decision is based on Urdu and Hindi,
word frequency lists analysis as well as
Urdu/English/Hindi Morphological rules. To
decide if the word cluster is containing multiple
words, we first search for OW in the Urdu word
list. If it is found then it means that the OW is a
valid Urdu word and does not need any further
segmentation and quit over there.

It could happen that the OW could be an
inflection, whose root form maybe present in the

45

Urdu word list. Even though the Urdu word list
contains inflected forms, but for many words all
the inflections may not be present. This problem
is more pronounced for English terms, which
have become part of Urdu language. For such
words, the inflections could follow both rules of
English and Urdu. For example plural of
 could be both universitiyon (university) يونيورسٹی
 .يونيورسٹيز as well as universities وںیورسѧѧѧٹیونی
The first form follows the Urdu infection rules
while the second form follows the English
inflection rules. Similarly we found both the
Urdu and English inflections for the English
word secretary in Urdu text (سيکرٹريوں and
 Thus if the OW is not found in the . (سيکرٹريز
Urdu word list, we use both Urdu and English
morphological rules to generate its root form and
search for the root form in the Urdu word list. If
the root form is found, we assume the word to be
a valid Urdu word and quit there.

It is widely reported in word segmentation
papers, that the greatest barrier to accurate word
Segmentation is in recognizing words that are
not in the lexicon of the segmenter. Thus if a
word or its root form is not present in the Urdu
word list it will be wrongly presumed to be a
multi word cluster. To alleviate this problem, the
Urdu corpus has been supplemented with Hindi
corpus, which has helped in increasing the word
segmentation as well as multi-word recognition
accuracy. It was found many times that the Urdu
word may be a proper noun, foreign word or
some valid out of vocabulary word, which is not
present in Urdu corpus but present in the Hindi
word list. Another advantage of checking in the
Hindi corpus is that many of the Hindi words,
which are written as single word are usually
written as two words in Urdu. For example,
 ايمانداری ,े(खेलत) کھيلتے ,(करेगा) کرےگا

(ईमानदारȣ), چئيرمين (चेयरमैन) etc. These Urdu
words are many times written as a single word
and in that case if passed to Hindi word list
would still report as correct. For checking the
OW in Hindi word list, we first transliterate it to
Hindi and then search for it in the Hindi
wordlist. If the transliterated word is found, then
the OW is not considered for segmentation. Like
Urdu, it may also happen that the root word of
OW may be present in the Hindi word list. So
like Urdu, we use both Urdu and English

morphological rules to generate its root form and
search for the root form in the Hindi word list. If
the root form is found, we assume the word to be
a valid Urdu word and quit there. If the OW
passes all the above stages, then it is considered
a candidate for segmentation.
The steps in brief are :

• Search for OW in Urdu List. If OW is
present in the list then quit. example :
 مطابق

• Determine the root form of OW using
Urdu Morphological rules and search for
the root form in Urdu List. If found then
quit. example : سيکرٹريوں

• Determine the root form of OW using
English Morphological rules and search
for the root form in Urdu List. If found
then quit. example : ٹورنامنٹس

• Let HW = Transliteration of OW in
Hindi. Search for HW in the Hindi Word
List. If HW is present in the list then
quit. example : ايمانداری

• Determine the root form of HW using
Hindi Morphological rules and search
for the root form in the Hindi List. If
found then quit. example : چيئرمينوں

• Determine the root form of HW using
English Morphological rules and search
for the root form in the Hindi List. If
found then quit. example : ہولڈرز

• Go to the segmentation stage. example :
 تھااس

5 Segmenting the Orthographic Word

The Urdu orthographic word is next broken into
Urdu Character Combinations (UCC) using
Urdu orthographic rules. Unlike word
segmentation that is a difficult task, segmenting
a text into UCCs is easily achieved by applying
the set of rules. These adjacent UCCs are then
combined to form a sequence of Urdu words.
We need to list all possible segmentations and
design a strategy to select the most probable
correct segmentation from them.

As for example, consider the OW توجواب: It is
segmented into four UCCs : ا .جو ,تو and ب . The
adjacent clusters can be combined to form 6
word segmentations:

 جواب + تو •
 اب + توجو •

46

 ب + توجوا •
 اب + جو + تو •
 ب + ا + توجو •
 ب + ا + جو + تو •

5.1 Longest Matching

The method scans an input sentence from left to
right, and select the longest match with a
dictionary entry at each point. In case that the
selected match cannot lead the algorithm to find
the rest of the words in the sentence, the
algorithm will backtrack to find the next longest
one and continue finding the rest and so on. This
algorithm fails to find the correct segmentation
in many cases because of its greedy
characteristic.

5.2 Maximum Matching

This method first generates all possible
segmentations for a sentence and then selects the
one that contain the fewest words, which can be
done efficiently by using dynamic programming
technique. When the alternatives have the same
number of words, the algorithm cannot
determine the best candidate and some other
heuristics have to be applied.

We tried both longest matching and maximum
matching and the smallest unit taken for
combining is UCC. But we found shortcomings
in both the matchings. For example the OW
 using ہے+ہا +کرار gets segmented as کرارہاہے
longest matching, while it should be ہے+رہا+کرا .
Similarly the OW بروزاتوارکودن gets segmented
as کودن+اتوار+بروز using maximum matching
while it should be دن+کو+اتوار+بروز.

Thus we see that both longest string match and
smallest words fail sometimes. If these
algorithms are supplemented by statistical
information such as frequency analysis and n-
grams then these failures can be avoided. So in
our present work, we apply maximal matching
algorithm along with these statistics. Initially we
used unigram frequency of occurrence for
deciding the best word combination. Each Urdu
word in the combination is formed by joining
adjacent UCCs. In each of the combination, we
first convert each of the Urdu word to Hindi.
The combination with highest combined product
of the unigram frequency of occurrences is

finally selected. Thus in the above example, the
OW توجواب: will be segmented as جواب + تو, as
shown in Table 2.

Table 2. Product of Frequency of Occurrence

Urdu
Combination

Hindi
Combination
(Frequency
of
occurrence)

Frequency
Product

 تو
 جواب

तो
(0.005161)
जवाब
(0.00026)

1.34221E-06

 توجو
 اب

तोजो
(4.16E-07)
अब
(0.001623)

6.75557E-10

 توجوا
 ب

तोजवा (0)

ब (4.48E-
05)

0

 تو
 جو
 اب

तो
(0.005161)
जो
(0.002602)
अब
(0.001623)

2.18028E-08

 توجو
 ا
 ب

तोजो
(4.16E-07)
अ (3.6E-05)

ब (4.48E-
05)

6.69866E-16

 تو
 جو
 ا
 ب

तो
(0.005161)
जो
(0.002602)
अ (3.6E-05)

ब (4.48E-
05)

2.16191E-14

It is interesting to see that for segmentation of
Urdu words, we used Hindi language statistical
analysis instead of Urdu language statistical
analysis. Since the current system is part of

47

Urdu-Hindi transliteration system, we prefer the
output to be segmented according to Hindi rules.
There are many words which are otherwise
joined in Hindi but written as separate words in
Urdu. So if we use the Urdu language modeling
for segmentation, the word gets broken. Some of
the examples are:
 is written as combination of two words اغواکار
 in Urdu but its equivalent Hindi word کار +اغوا
अग़वाकार is written as a single word. Similarly,
in Hindi text the verbs are concatenated with the
future auxiliaries “gaa”, “gii” and “ge”, while
they are written separately in Urdu. Thus کرين
 are written separately, but their equivalent گے+
Hindi form करगेɅ is written as single word. So
the advantage of using Hindi training data is that
the words get segmented according to the
desired Hindi rules. Another problem with Urdu
training data was that the Urdu training itself
contains merged words. So the words had to be
manually separated, though fortunately the Urdu
corpus compiled by CRULP (www.crulp.org)
has been quite clean, but many words were
missing particularly English ones. Another
problem is that the words are broken even in the
cleaned Urdu corpus. On the other hand when
we used the Hindi training data for word
segmentation, the problems of merged or broken
words in the training text were not encountered.
Also the Hindi corpus compiled by us had much
larger vocabulary coverage, while the Urdu
corpus we used for training purpose had many
common words such as گاندھی , خطرے ,اوباما,
 etc. missing. Thus the word segmentation جيکسن
algorithm which used the Hindi training set had
much better segmentation accuracy as compared
to the Urdu training set.

We observed that though the above scheme
worked fine in majority of the cases, but in a few
cases it failed to segment properly as it did not
take care of the context or adjacent words. As
for example consider the OW : مردياعورت. It
contains six CCs: ر ,عو ,يا ,د ,مر and ت. The word
combination selected by above methodology is :

 though the correct , عورت + ديا + مر
combination is عورت + يا + مرد. It was observed
that as we did not take care about adjacent
words, thus wrong combination was selected. If

the bigram information is added, then such
problems were reduced.

We thus use both unigram and bigram
frequency analysis for deciding the best word
combination. Each Urdu word in the
combination is formed by joining adjacent
UCCs. In each of the combination, we first
convert each of the Urdu word to Hindi. Next we
find the unigram and bigram frequency of
occurrence of each Hindi word and Hindi word
pair in the combination. The bigram frequencies
are normalized to avoid multiplication by zero.
The combination with highest combined product
of the unigram and bigram frequencies of
occurrences is finally selected. Using this
methodology we were able to generate the
sequence combination is عورت + يا + مرد in
above example.

As we are using Hindi training data, it was
observed that sometimes we had merged words
which did not had equivalent transliterated
words in our Hindi frequency list. As example,
the OW ترازابليس had to be segmented as تراز +
 but the equivalent transliterated Hindi ,ابليس
terms of تراز and ابليس, were not found in the
Hindi frequency list. As a result, the OW is not
segmented. To take care of such situations, if we
cannot segment using the Hindi frequency list,
our system then goes for maximal matching
using the Urdu training data. Thus in above
example, after search fails in Hindi training set,
the system searches for the minimum word
combination and on finding the above two words
in the Urdu training set segments the OW into
these words.

6 Over Segmentation

For wrongly spelled or OOV (out of vocabulary)
Urdu words, the system may forcibly break the
word into smaller words. As for example, our
system forcibly broke the OW گردوہر into دو + گر
 ,This problem proved difficult to tackle . ہر+
though we were able to partially solve it. It was
found that usually the OOV words were broken
into small unrelated words. So we put the
condition on the system to accept only those
word segments which contained at least one
word of length greater than three or at least one
bigram pair was present in the Hindi bigram list.
The presence of at least one bigram pair ensured
that all the words were not unrelated. Thus in the

48

above example, the OW gets split into three
words, all of length two. These words when
transliterated to Hindi get converted to ͬगर + दो
+ हर. On searching the bigram list, it was found

that neither of the bigram pair < ͬगर, दो > and <
दो , हर > was present and thus this word
segmentation was rejected.

7 Experiments

We tested our system on a test data of 1,613,991
Urdu words. In the decision stage, it was found
that 116,078 words, which make 7.19% of
original text were not found in the Urdu corpus
and were considered candidates for
segmentation. After morphological analysis of
these words, 2851 Urdu words were found to be
valid Uru words and were removed from the
segmentation candidate list. After converting the
remaining Urdu words to Hindi and checking
them in Hindi corpus, only 35,226 words were
left which were not present in Hindi corpus.
Therefore from original 16,13,991 only 35,226
(2.19%) were passed onto segmentation stage
for checking for merged words.

In the segmentation stage it was found that out
of 35,226 words, 24,001 words (68.13%) had
merged words. The number of merged words
varied from 2 to 6. Table 3 show the frequency
of number of merged words found in word
clusters. As can be seen from the table 96.71%
of merged word clusters had two merged words.

Table 3. Frequency of Merged Words
Number of merged
words

Frequency
Percentage

2 96.71%
3 2.99%
4 0.25%
5 0.037%
6 0.004%

The recall and precision for the decision
stage, which decides if the OW needs to be
segmented, were found to be 99.29% and
99.38% respectively.
The word segmentation algorithm was able to
correctly segment the words with 99.15%
accuracy.

8 Conclusions

In this paper, we have presented a system for
solving the space omission problem in Urdu text.
This system is part of the larger system designed
for transliteration of Urdu text to Hindi. We
have combined statistical language modeling of
both Urdu and Hindi languages in development
of the system. We have presented a new scheme
of using Hindi for segmenting Urdu text after
transliteration, because Hindi uses spaces
consistently versus Urdu which has both space
omission and insertion problems. This is the first
time such a segmentation scheme for handling
Urdu space omission problem has been
presented. The word segmentation algorithm
was able to correctly segment the words with
99.15% accuracy.

Acknowledgements

The author will like to acknowledge the support
provided by ISIF grants for carrying out this
research.

References

Durrani N. 2007. Typology of Word and Automatic

Word Segmentation in Urdu Text Corpus. National
University of Computer and Emerging Sciences,
Lahore, Pakistan.

Durrani N. and Hussain Sarmad. 2010. Urdu Word
Segmentation.http://www.crulp.org/Publication/pa
pers/2010/Urdu Word Segmentation NAACL.pdf
(accessed on 5th July 2010).

Jawaid Bushra and Ahmed Tafseer. 2009. Hindi to
Urdu Conversion: Beyond Simple Transliteration.
Proceedings of the Conference on Language &
Technology, Lahore,.Pakistan, 24-31.

Lehal G. S. 2009. A Two Stage Word Segmentation
System For Handling Space Insertion Problem In
Urdu Script. Proceedings of World Academy of
Science, Engineering and Technology, Bangkok,
Thailand, 60: 321-324.

Malik Abbas, Besacier Laurent, Boitet Christian and
Bhattacharyya Pushpak. 2009. A hybrid Model for
Urdu Hindi Transliteration. Proceedings of the

49

2009 Named Entities Workshop, ACL-IJCNLP
2009, Singapore, 177-185.

Nie, J.Y., Hannan, M.L. & Jin, W. 1995. Combining
dictionary, rules and statistical information in
segmentation of Chinese. Computer Processing of
Chinese and Oriental Languages, 9(2): 125-143.

Papageorgiou Constantine P. 1994. Japanese word
segmentation by hidden Markov model. Proc. of
the HLT Workshop, 283–288.

Wang Xiaolong, , Fu Guohong, Yeung Danial S., Liu
James N.K., and Luk Robert. 2000. Models and
algorithms of Chinese word segmentation.
Proceedings of the International Conference on
Artificial Intelligence (IC-AI’2000), Las Vegas,
Nevada, USA, 1279-1284.

Xu Jia, Matusov Evgeny, Zens Richard, and Ney.
2005. Hermann.Integrated Chinese word
segmentation in statistical machine translation.
Proceedings of the International Workshop on
Spoken Language Translation, Pittsburgh, PA,
141-147.

50

Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 51–55,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Hybrid Stemmer for Gujarati

Pratikkumar Patel Kashyap Popat
Department of Computer Engineering

Dharmsinh Desai University
pratikpat88@gmail.com
kan.pop@gmail.com

Pushpak Bhattacharyya
Department of Computer Science and

Engineering
Indian Institute of Technology Bombay

pb@cse.iitb.ac.in

Abstract

In this paper we present a lightweight
stemmer for Gujarati using a hybrid ap-
proach. Instead of using a completely
unsupervised approach, we have har-
nessed linguistic knowledge in the form
of a hand-crafted Gujarati suffix list in
order to improve the quality of the stems
and suffixes learnt during the training
phase. We used the EMILLE corpus for
training and evaluating the stemmer’s
performance. The use of hand-crafted
suffixes boosted the accuracy of our
stemmer by about 17% and helped us
achieve an accuracy of 67.86 %.

1 Introduction

Stemming is the process of conflating related
words to a common stem by chopping off the
inflectional and derivational endings. Stemming
plays an important role in Information Retrieval
(IR) systems by reducing the index size and in-
creasing the recall by retrieving results contain-
ing any of the various possible forms of a word
present in the query. This is especially true in
case of a morphologically rich language like
Gujarati, where a single word may take many
forms. The aim is to ensure that related words
map to common stem, irrespective of whether or
not the stem is a meaningful word in the voca-
bulary of the language.

Current state of the art approaches to stem-
ming can be classified into three categories, viz.,
rule based, unsupervised and hybrid. Building a
rule based stemmer for a morphologically rich
language is an uphill task considering the dif-
ferent inflectional and morphological variations
possible. Purely unsupervised approaches on the

other hand fail to take advantage of some lan-
guage phenomenon which can be easily ex-
pressed by simple rules. We thus follow a hybr-
id approach by enhancing an unsupervised sys-
tem with a list of hand-crafted Gujarati suffixes.

The remainder of this paper is organized as
follows. We describe related work in section 2.
Section 3 explains the morphological structure
of Gujarati. We describe our approach in section
4. The experiments and results are described in
section 5. Section 6 concludes the paper hig-
hlighting the future work.

2 Background and Related Work

The earliest English stemmer was developed by
Julie Beth Lovins in 1968. The Porter stemming
algorithm (Martin Porter, 1980), which was
published later, is perhaps the most widely used
algorithm for English stemming. Both of these
stemmers are rule based and are best suited for
less inflectional languages like English.

A lot of work has been done in the field of
unsupervised learning of morphology.
Goldsmith (2001, 2006) proposed an unsuper-
vised algorithm for learning the morphology of
a language based on the minimum description
length (MDL) framework which focuses on
representing the data in as compact manner as
possible. Creutz (2005, 2007) uses probabilistic
maximum a posteriori (MAP) formulation for
unsupervised morpheme segmentation.

Not much work has been reported for stem-
ming for Indian languages compared to English
and other European languages. The earliest
work reported by Ramanathan and Rao (2003)
used a hand crafted suffix list and performed
longest match stripping for building a Hindi
stemmer. Majumder et al. (2007) developed
YASS: Yet Another Suffix Stripper which uses
a clustering based approach based on string dis-

51

tance measures and requires no linguistic know-
ledge. They concluded that stemming improves
recall of IR systems for Indian languages like
Bengali. Dasgupta and Ng (2007) worked on
unsupervised morphological parsing for Benga-
li. Pandey and Siddiqui (2008) proposed an un-
supervised stemming algorithm for Hindi based
on Goldsmith's (2001) approach.

Unlike previous approaches for Indian lan-
guages which are either rule based or complete-
ly unsupervised, we propose a hybrid approach
which harnesses linguistic knowledge in the
form of a hand-crafted suffix list.

3 Gujarati Morphology

Gujarati has three genders (masculine, neuter
and feminine), two numbers (singular and plur-
al) and three cases (nominative, obli-
que/vocative and locative) for nouns. The gend-
er of a noun is determined either by its meaning
or by its termination. The nouns get inflected on
the basis of the word ending, number and case.
The Gujarati adjectives are of two types – dec-
linable and indeclinable. The declinable adjec-
tives have the termination -ũ (◌ુ◌ં) in neuter ab-
solute. The masculine absolute of these adjec-
tives ends in -o (◌ો) and the feminine absolute in
-ī (◌ી). For example, the adjective સાἘં (sārũ -
good) takes the form સાἘં (sārũ), સારો (sāro) and
સારી (sārī) when used for a neuter, masculine
and feminine object respectively. These adjec-
tives agree with the noun they qualify in gender,
number and case. The adjectives that do not end
in -ũ in neuter absolute singular are classified as
indeclinable and remain unaltered when affixed
to a noun.

The Gujarati verbs are inflected based upon a
combination of gender, number, person, aspect,
tense and mood.

There are several postpositions in Gujarati
which get bound to the nouns or verbs which
they postposition. e.g. -nũ (નંુ : genitive marker),
-mā̃ (માં : in), -e (◌ે : ergative marker), etc. These
postpositions get agglutinated to the nouns or
verbs and not merely follow them.

We created a list of hand crafted Gujarati suf-
fixes which contains the postpositions and the
inflectional suffixes for nouns, adjectives and
verbs for use in our approach.

4 Our Approach

Our approach is based on Goldsmith's (2001)
take-all-splits method. Goldsmith's method was
purely unsupervised, but we have used a list of
hand crafted Gujarati suffixes in our approach
to learn a better set of stems and suffixes during
the training phase. In our approach, we make
use of a list of Gujarati words extracted from
EMILLE corpus for the purpose of learning the
probable stems and suffixes for Gujarati during
the training phase. This set of stems and suffix-
es will be used for stemming any word provided
to the stemmer. We have described the details
of our approach below.

4.1 Training Phase
During the training phase, we try to obtain the
optimal split position for each word present in
the Gujarati word list provided for training. We
obtain the optimal split for any word by taking
all possible splits of the word (see Figure 1) and
choosing the split which maximizes the function
given in Eqn 1 as the optimal split position. The
suffix corresponding to the optimal split
position is verified against the list of 59 Gujarati
suffixes created by us. If it cannot be generated
by agglutination of the hand crafted suffixes,
then the length of the word is chosen as the
optimal split position. i.e. the entire word is
treated as a stem with no suffix.

The function used for finding the optimal

split position reflects the probability of a partic-
ular split since the probability of any split is
determined by the frequencies of the stem and
suffix generated by that split. The frequency of
shorter stems and suffixes is very high when
compared to the slightly longer ones. Thus the
multipliers i (length of stemi) and L-i (length of
suffixi) have been introduced in the function in
order to compensate for this disparity.

f(i) = i*log(freq(stemi)) + (L-i)*log(freq(suffixi))

(Eqn 1)
i: split position (varies from 1 to L)
L: Length of the word

Figure 1. All Possible Word Segmentations

{stem1+suffix1,stem2+suffix2, ... ,stemL+suffixL}
ઘરના= {ઘ + રના, ઘર + ના, ઘરન + ◌ા,ઘરના + NULL}

52

Once we obtain the optimal split of any word,
we update the frequencies of the stem and suffix
generated by that split. We iterate over the word
list and re-compute the optimal split position
until the optimal split positions of all the words
remain unchanged. The training phase was ob-
served to take three iterations typically.

4.2 Signatures
After the training phase, we have a list of stems
and suffixes along with their frequencies. We
use this list to create signatures. As shown in
Figure 2, each signature contains a list of stems
and a list of suffixes appearing with these stems.

The signatures which contain very few stems
or very few suffixes may not be useful in stem-
ming of unknown words, thus we eliminate the
signatures containing at most one stem or at
most one suffix. The stems and suffixes in the
remaining signatures will be used to stem new
words. An overview of the training algorithm is
shown in Figure 3.

4.3 Stemming of any unknown word
For stemming of any word given to the stemmer,
we evaluate the function in Eqn 1 for each poss-

ible split using the frequencies of stems and suf-
fixes obtained from the training process. The
word is stemmed at the position for which the
value of the function is maximum.

5 Experiments and Result

We performed various experiments to evaluate
the performance of the stemmer using EMILLE
Corpus for Gujarati. We extracted around ten
million words from the corpus. These words
also contained Gujarati transliterations of Eng-
lish words. We tried to filter out these words by
using a Gujarati to English transliteration engine
and an English dictionary. We obtained
8,525,649 words after this filtering process.

We have used five-fold cross validation for
evaluating the performance. We divided the ex-
tracted words into five equal parts of which four
were used for training and one for testing. In
order to create gold standard data, we extracted
thousand words from the corpus randomly and
tagged the ideal stem for these words manually.

For each of the five test sets, we measured
the accuracy of stemming the words which are
present in the test set as well as gold standard
data. Accuracy is defined as the percentage of
words stemmed correctly.

The experiments were aimed at studying the
impact of (i) using a hand-crafted suffix list, (ii)
fixing the minimum permissible stem size and
(iii) provide unequal weightage to the stem and
suffix for deciding the optimal split position.
Various results based on these experiments are
described in the following subsections.

5.1 Varying Minimum Stem Size
We varied the minimum stem size from one to
six and observed its impact on the system per-
formance. We performed the experiment with
and without using the hand-crafted suffix list.
The results of this experiment are shown in Ta-
ble 1 and Figure 4.

The results of this experiment clearly indicate
that there is a large improvement in the perfor-
mance of the stemmer with the use of hand-
crafted suffixes and the performance degrades if
we keep a restriction on the minimum stem size.
For higher values of minimum stem size, all the
valid stems which are shorter than the minimum
stem size do not get generated leading to a de-
cline in accuracy.

Stems Suffixes

પશ ુ(pashu - animal) ના (nā)

જંગ (jang - war) નો (no)

 ને (ne)

 નંુ (nũ)

 ની (nī)
Figure 2. Sample Signature

Step 1: Obtain the optimal split position for each
word in the word list provided for training
using Eqn 1 and the list of hand crafted suf-
fixes

Step 2: Repeat Step 1 until the optimal split posi-

tions of all the words remain unchanged

Step 3: Generate signatures using the stems and

suffixes generated from the training phase

Step 4: Discard the signatures which contain either

only one stem or only one suffix

Figure 3. Overview of training algorithm

53

Min Stem
Size

Accuracy

With hand-
crafted suffixes

Without hand-
crafted suffix-

es
1 67.86 % 50.04 %
2 67.70 % 49.80 %
3 66.43 % 49.60 %
4 59.46 % 46.35 %
5 51.65 % 41.22 %
6 43.81 % 36.89 %

Table 1. Effect of use of hand-crafted suffixes and
fixing min. stem size on stemmer’s performance

Figure 4. Variation stemmer’s accuracy with the var-

iation in min. stem size

There are several spurious suffixes which get

generated during the training phase and degrade
the performance of the stemmer when we don’t
use the hand-crafted suffix list. e.g. ‘ક’ is not a
valid inflectional Gujarati suffix but it does get
generated if we don’t use the hand-crafted suf-
fix list due to words such as ‘અનેક’ (anek - many)
and ‘અને’ (ane - and). A simple validation of the
suffixes generated during training against the
hand-crafted suffix list leads to learning of bet-
ter suffixes and in turn better stems during the
training phase thereby improving the system’s
performance.

Thus we decided to make use of the hand-
crafted suffix list during training phase and not
to put any restriction on the minimum stem size.

5.2 Providing unequal weightage to stem
and suffix

We have provided equal weightage to stem and
suffix in Eqn 1 which is responsible for deter-
mining the optimal split position of any word.
We obtained Eqn 2 from Eqn 1 by introducing a

parameter ‘α’ in order to provide unequal
weightage to the stem and suffix and observe its
effect on system performance. We used Eqn 2
instead of Eqn 1 and varied α from 0.1 to 0.9 in
this experiment. The results of this experiment
are shown in Table 2.

α Accuracy
0.1 53.52 %
0.2 61.71 %
0.3 65.43 %
0.4 67.30 %
0.5 67.86 %
0.6 67.48 %
0.7 67.49 %
0.8 67.72 %
0.9 66.45 %

Table 2. Effect of α on the stemmer’s performance

The accuracy was found to be maximum
when value of α was fixed to 0.5 i.e. stem and
suffix were given equal weightage for determin-
ing the optimal split of any word.

6 Conclusion and Future Work

We developed a lightweight stemmer for Guja-
rati using a hybrid approach which has an accu-
racy of 67.86 %. We observed that use of a
hand-crafted Gujarati suffix list boosts the accu-
racy by about 17 %. We also found that fixing
the minimum stem size and providing unequal
weightage to stem and suffix degrades the per-
formance of the system.

Our stemmer is lightweight and removes only
the inflectional endings as we have developed it
for use in IR system. The list of hand-crafted
suffixes can be extended to include derivational
suffixes for performing full fledged stemming
which may be required in applications such as
displaying words in a user interface.

We have measured the performance of the
stemmer in terms of accuracy as of now. We
plan to evaluate the stemmer in terms of the in-
dex compression achieved and the impact on
precision and recall of Gujarati IR system.

f(i) = α * i * log(freq(stemi)) +
 (1-α) * (L-i) * log(freq(suffixi))

(Eqn 2)

54

References
Creutz, Mathis, and Krista Lagus. 2005. Unsuper-

vised morpheme segmentation and morphology
induction from text corpora using Morfessor 1.0.
Technical Report A81, Publications in Computer
and Information Science, Helsinki University of
Technology.

Creutz, Mathis, and Krista Lagus. 2007. Unsuper-
vised models for morpheme segmentation and
morphology learning. Association for Computing
Machinery Transactions on Speech and Language
Processing, 4(1):1-34.

Dasgupta, Sajib, and Vincent Ng. 2006. Unsuper-
vised Morphological Parsing of Bengali. Lan-
guage Resources and Evaluation, 40(3-4):311-
330.

Goldsmith, John A. 2001. Unsupervised learning of
the morphology of a natural language. Computa-
tional Linguistics, 27(2):153-198

Goldsmith, John A. 2006. An algorithm for the un-
supervised learning of morphology. Natural Lan-
guage Engineering, 12(4):353-371

Jurafsky, Daniel, and James H. Martin. 2009. Speech
and Language Processing: An Introduction to
Natural Language Processing, Speech Recogni-
tion, and Computational Linguistics. 2nd edition.
Prentice-Hall, Englewood Cliffs, NJ.

Lovins, Julie B. 1968. Development of a stemming
algorithm. Mechanical Translation and Computa-
tional Linguistics, 11:22-31

Majumder, Prasenjit, Mandar Mitra, Swapan K. Pa-
rui, Gobinda Kole, Pabitra Mitra, and Kalyanku-
mar Datta. 2007. YASS: Yet another suffix strip-
per. Association for Computing Machinery Trans-
actions on Information Systems, 25(4):18-38.

Pandey, Amaresh K., and Tanveer J. Siddiqui. 2008.
An unsupervised Hindi stemmer with heuristic
improvements. In Proceedings of the Second
Workshop on Analytics For Noisy Unstructured
Text Data, 303:99-105.

Porter, Martin F. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130-137.

Ramanathan, Ananthakrishnan, and Durgesh D. Rao,
A Lightweight Stemmer for Hindi, Workshop on
Computational Linguistics for South-Asian Lan-
guages, EACL, 2003.

Tisdall, William St. Clair. 1892. A simplified gram-
mar of the Gujarati language : together with A
short reading book and vocabulary. D. B. Tarapo-
revala Sons & Company, Bombay.

The EMILLE Corpus,
http://www.lancs.ac.uk/fass/projects/corpus/emille/

55

Author Index

Abate, Solomon Teferra, 1

Bandyopadhyay, Sivaji, 17, 35
Bapat, Mugdha, 26
Besacier, Laurent, 1
Bhattacharyya, Pushpak, 26, 51

Das, Amitava, 17

Ghosh, Aniruddha, 17
Gune, Harshada, 26

Hwang, Mei-Yuh, 8

Lehal, Gurpreet, 43

Patel, Pratikkumar, 51
Popat, Kashyap, 51

Schwartz, Lee, 8
Seng, Sopheap, 1
Singh, Thoudam Doren, 35
Slayden, Glenn, 8

56

	Conference Program
	Boosting N-gram Coverage for Unsegmented Languages Using Multiple Text Segmentation Approach
	Thai Sentence-Breaking for Large-Scale SMT
	Clause Identification and Classification in Bengali
	A Paradigm-Based Finite State Morphological Analyzer for Marathi
	Web Based Manipuri Corpus for Multiword NER and Reduplicated MWEs Identification using SVM
	A Word Segmentation System for Handling Space Omission Problem in Urdu Script
	Hybrid Stemmer for Gujarati

