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Preface

Welcome to the Coling Workshop on South and Southeast Asian Natural Language Processing
(WSSANLP).
South Asia comprises of the countries- Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal,
Pakistan and Sri Lanka. Southeast Asia, on the other hand, consists of Brunei, Burma, Cambodia, East
Timor, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand and Vietnam.

There thousands of languages that belong to different language families like Indo-Aryan, Indo-
Iranian, Dravidian, Sino-Tibetan, Austro-Asiatic, Kradai, Hmong-Mien, etc. In terms of population,
South Asia and Southeast Asia represent 34.94 percent of the total population of the world. Some of
the languages of these regions have a large number of native speakers: Hindi (5th largest according to
number of its native speakers), Bengali (6th), Punjabi (12th), Tamil (18th), Urdu (20th), etc.

A characteristic of these languages is that they are under-resourced. But the words of these
languages show rich variations in morphology. Moreover they are often heavily agglutinated and
synthetic, making segmentation an important issue. The intellectual motivation for this workshop
comes from the need to explore ways of harnessing the morphology of these Source (Lewis, 2009)
languages for higher level processing. Table 1: Population and Number of Living Languages of The
task of morphology, however, is South and Southeast Asia intimately linked with segmentation for
these languages.

The goal of WSSANLP is:
Providing a platform to linguistic and NLP communities for sharing and discussing ideas and work on
South and Southeast Asian languages and combining efforts.
Development of useful and high quality computational resources for under resourced South and
Southeast Asian languages.

We are delighted to present you this volume of proceedings of 1st Workshop on South and
Southeast Asian NLP. We have received total 18 long and short paper submissions. On the basis of our
review process, we have competitively selected 13 papers, but unfortunately 6 papers were withdrawn
from the workshop due to double submission and authors chose to present their paper in other events.
We hope that we will be able to make this workshop so successful that people would like to present
their papers in this workshop in future.

M. G. Abbas Malik, Chair of Organizing Committee WSSANLP
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Abstract

Automatic  word  segmentation  errors, 
for  languages  having  a  writing  system 
without word boundaries, negatively af-
fect the performance of language mod-
els.  As a solution, the use of  multiple, 
instead of unique, segmentation has re-
cently  been  proposed.  This  approach 
boosts  N-gram  counts  and  generates 
new  N-grams.  However,  it  also  pro-
duces bad N-grams that  affect the lan-
guage models' performance. In this pa-
per, we study more deeply the contribu-
tion  of  our  multiple  segmentation  ap-
proach  and experiment on an efficient 
solution to minimize the effect of adding 
bad N-grams.

1 Introduction

A language model  is  a  probability assignment 
over  all  possible  word  sequences  in  a  natural 
language. It assigns a relatively large probabili-
ty to meaningful, grammatical, or frequent word 
sequences and a low probability or a zero proba-
bility  to  nonsensical,  ungrammatical  or  rare 
ones.  The statistical  approach used in N-gram 
language modeling requires a large amount of 
text data in order to make an accurate estimation 
of probabilities. These data are not available in 
large  quantities  for  under-resourced  languages 
and the lack of text data has a direct impact on 
the performance of language models. While the 
word is  usually  a  basic  unit  in  statistical  lan-
guage  modeling,  word  identification  is  not  a 
simple  task  even  for  languages  that  separate 
words by a special character (a white space in 
general).  For  unsegmented  languages,  which 

have a writing system without obvious word de-
limiters, the N-grams of words are usually esti-
mated  from  the  text  corpus  segmented  into 
words employing automatic methods. Automat-
ic segmentation of text is not a trivial task and 
introduces errors due to the ambiguities in natu-
ral language and the presence of out of vocabu-
lary words in the text. 

While the lack of text resources has a nega-
tive  impact  on  the  performance  of  language 
models,  the  errors  produced by the  word seg-
mentation make those data even less usable. The 
word N-grams not found in the training corpus 
could be due not only to the errors introduced 
by the automatic segmentation but  also to the 
fact  that  a  sequence  of  characters  could  have 
more than one correct segmentation. 

In  previous  article  (Seng  et  al.,  2009),  we 
have proposed a method to estimate an N-gram 
language  model  from  the  training  corpus  on 
which each sentence is segmented into multiple 
ways instead of a unique segmentation. The ob-
jective of multiple segmentation is to generate 
more N-grams from the training corpus to use in 
language modeling. It was possible to show that 
this  approach  generates  more  N-grams  (com-
pared  to  the  classical  dictionary-based  unique 
segmentation method) that are potentially useful 
and relevant in language modeling. The applica-
tion of multiple segmentation in language mod-
eling  for  Khmer  and  Vietnamese  showed im-
provement in terms of tri-gram hits and recogni-
tion error rate in Automatic Speech Recognition 
(ASR) systems. 

This work is a continuation of our previous 
work on the use of multiple segmentation. It is 
conducted on Vietnamese only. A close analysis 
of N-gram counts shows that the approach has 
in fact two contributions: boosting the N-gram 
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counts that are generated with first best segmen-
tation  and  generating  new N-grams.  We have 
also identified that there are N-grams that nega-
tively  affect  the  performance  of  the  language 
models. In this paper, we study the contribution 
of boosting N-gram counts and  of new N-grams 
to the performance of the language models and 
consequently  to  the  recognition  performance. 
We also present experiments where rare or bad 
N-grams are cut off in order to minimize their 
negative effect on the performance of the lan-
guage models.

The paper is organized as follows: section 2 
presents the theoretical background of our mul-
tiple  segmentation  approach;  in  section  3  we 
point out the set up of our experiment; in sec-
tion 4 we present the results of our detailed sta-
tistical analysis of N-grams generated by multi-
ple  segmentation  systems.  Section  5  presents 
the  evaluation  results  of  our  language  models 
for  ASR  and  finally,  we  give  concluding  re-
marks.

2 Multiple Text Segmentation

Text segmentation is a fundamental task in nat-
ural language processing (NLP). Many NLP ap-
plications require the input text segmented into 
words before making further progress because 
the word is considered the basic semantic unit in 
natural  languages.  For unsegmented languages 
segmenting text into words is not a trivial task. 
Because of ambiguities in human languages, a 
sequence  of  characters  may  be  segmented  in 
more than one way to  produce a  sequence of 
valid words.  This is due to the fact  that there 
are different segmentation conventions and the 
definition of  word in a language is  often am-
biguous. 

Text  segmentation  techniques  generally  use 
an  algorithm  which  searches  in  the  text  the 
words corresponding to those in a dictionary. In 
case of ambiguity, the algorithm selects the one 
that  optimizes  a  parameter  dependent  on  the 
chosen  strategy.  The  most  common optimiza-
tion strategies consist of maximizing the length 
of  words  (“longest  matching”)  or  minimizing 
the  number  of  words  in  the  entire  sentence 
(“maximum matching”). These techniques rely 
heavily on the availability and the quality of the 
dictionaries and while it is possible to automati-
cally generate a dictionary from an unsegment-

ed text corpus using unsupervised methods, dic-
tionaries are often created manually. The state-
of-the-art methods generally use a combination 
of hand-crafted, dictionary and statistical tech-
niques to obtain a better result. However, statis-
tical  methods  need  a  large  corpus  segmented 
manually  beforehand.  Statistical  methods  and 
complex training methods are not appropriate in 
the context of under-resourced languages as the 
resources  needed to  implement  these  methods 
do not exist. For an under-resourced language, 
we seek segmentation methods that allow better 
exploitation of the limited resources. In our pre-
vious paper (Seng et al., 2009) we have indicat-
ed the  problems of  existing text  segmentation 
approaches  and  introduced  a  weighted  finite 
state  transducer  (WFST)  based  multiple  text 
segmentation algorithm.

Our approach is implemented using the AT & 
T FSM Toolkit (Mohri et al., 1998). The algo-
rithm is inspired with the work on the segmen-
tation of Arabic words (Lee et al., 2003).  The 
multiple segmentation of a sequence of charac-
ters is made using the composition of three con-
trollers.  Given  a  finite  list  of  words  we  can 
build a finite state transducer M (or word trans-
ducer) that, once composed with an acceptor I 
of the input string that represent a single charac-
ter  with  each  arc,  generates  a  lattice  of  the 
words that represent all of the possible segmen-
tations. To handle out-of-vocabulary entries, we 
make a model of any string of characters by a 
star closure operation over all the possible char-
acters.  Thus,  the  unknown  word  WFST  can 
parse any sequence of characters and generate a 
unique  unk word symbol. The word transducer 
can,  therefore,  be  described  in  terms  of  the 
WFST  operations  as  M  =  (WD   UNK)+∪  
where WD is a WFST that represents the dictio-
nary  and  UNK  represents  the  unknown  word 
WFST. Here,  and + are the union and Kleene∪  
“+” closure operations. A language model L is 
used to score the lattice of all possible segmen-
tations obtained by the composition of our word 
transducer M and the input string I. A language 
model  of  any  order  can  be  represented  by  a 
WFST. In our case, it is important to note that 
only a simple uni-gram language model is used. 
The uni-gram model is estimated from a small 
training  corpus  segmented  automatically  into 
words  using  a  dictionary  based  method.  The 
composition  of  the  sequence  of  input  string  I 
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with the word transducer M yields a transducer 
that represents all possible segmentations. This 
transducer is then composed with the language 
model  L,  resulting  in  a  transducer  that  repre-
sents  all  possible  segmentations  for  the  input 
string  I,  scored  according  to  L.  The  highest 
scoring paths of the compound transducer is the 
segmentation m that can be defined as:

P m =maxP mk   
The segmentation procedure can then be ex-

pressed formally as:
 m=bestpath  I◦M◦L 
where ◦ is the composition operator. The N-

best segmentations are obtained by decoding the 
final lattice to output the N-best highest scoring 
paths and will be used for the N-gram count.

3 Experimental Setup

3.1 Language Modeling

First,  it  is  important  to  note  that  Vietnamese 
texts are naturally segmented into syllables (not 
words). Each  syllable  tends  to  have  its  own 
meaning and thus  a  strong identity.  However, 
the  Vietnamese  monosyllable  is  not  automati-
cally a word as we would define a word in Eng-
lish. Often, two syllables go together to form a 
single word, which can be identified by the way 
it  functions  grammatically  in  a  sentence.  To 
have a word-based language model, word seg-
mentation would, therefore, be a must in Viet-
namese.

A Vietnamese training corpus that contains 3 
millions sentences from broadcast news domain 
has been used in this experiment. A Vietnamese 
dictionary of 30k words has been used both for 
the  segmentation  and  counting  the  N-grams. 
Therefore, in the experiments, the ASR vocabu-
lary always remains the same and only the lan-
guage model is changing. The segmentation of 
the  corpus  with  dictionary  based,  “longest 
matching” unique segmentation method gives a 
corpus  of  46  millions  words.  A  development 
corpus of 1000 sentences, which has been seg-
mented automatically to obtain 44k words, has 
been used to evaluate the tri-gram hits and the 
perplexity.  The performance of  each language 
model  produced will  be evaluated in  terms of 
the tri-gram hits and perplexity on the develop-
ment corpus and in terms of ASR performance 

on a separate speech test set (different from the 
development set).

First of all, a language model named lm_1 is 
trained using the SRILM toolkit (Stolcke 2002) 
from  the  first  best  segmentation  (Segmul1), 
which has the highest scoring paths (based on 
the transducer explained in section 2) of  each 
sentence in the whole corpus. Then,  additional 
language  models  have  been  trained  using  the 
corpus  segmented  with  N-best  segmentation: 
the number of N-best segmentations to generate 
for each sentence is fixed to 2, 5, 10, 50, 100 
and 1000. The resulting texts are named accord-
ingly  as  Segmul2,  Segmul5,  Segmul10,  Seg-
mul50,  Segmul100,  Segmul1000.  Using  these 
as  training  data,  we  have  developed  different 
language models. Note that a tri-gram that ap-
pears several times in multiple segmentations of 
a single sentence has a count set to one. 

3.2 ASR System

Our automatic speech recognition systems use 
the CMU’s Sphinx3 decoder. The decoder uses 
Hidden Markov Models (HMM) with continu-
ous  output  probability  density  functions.  The 
model topology is a 3-state, left-to-right HMM 
with 16 Gaussian mixtures per state.  The pre-
processing of the system consists of extracting a 
39 dimensional  features vector  of  13 MFCCs, 
the  first  and  second  derivatives.  The  CMU’s 
SphinxTrain has been used to train the acoustic 
models used in our experiment. 

The  Vietnamese  acoustic  modeling  training 
corpus is  made up of  14 hours  of  transcribed 
read  speech.  More  details  on  the  automatic 
speech recognition system for Vietnamese lan-
guage can be found in (Le et al., 2008). While 
the evaluation metric WER (Word Error Rate) 
is  generally used to evaluate and compare the 
performance  of  the  ASR  systems,  this  metric 
does not fit well for unsegmented languages be-
cause the errors introduced during the segmen-
tation of the references and the output hypothe-
sis may prevent a fair comparison of different 
ASR system outputs.  We,  therefore,  used  the 
Syllable Error Rate (SER) as Vietnamese text is 
composed  of  syllables  naturally  separated  by 
white space. The automatic speech recognition 
is  done  on  a  test  corpus  of  270  utterances 
(broadcast news domain). 
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4 Statistical  Analysis  of  N-grams  in 
Multiple Text Segmentation

The  change  in  the  N-gram  count  that  results 
from  multiple  segmentation  is  two  fold:  first 
there is a boosting of the counts of the N-grams 
that  are  already found with the first  best  seg-
mentation,  and  secondly  new  N-grams  are 
added.  As  we have made a  closed-vocabulary 
counting, there are no new uni-grams resulting 
from  multiple segmentation. For the counting, 
the SRILM toolkit  (Stolcke 2002) is used set-
ting the -gtnmin option to zero so that all the N-
gram counts can be considered.

Figure  1  shows  the  distribution  of  tri-gram 
counts for the unique and multiple segmentation 
of the training corpus.  It  can be seen that  the 
majority  of  the  tri-grams  have  counts  in  the 
range of one to three.

Figure 1: Distribution of tri-gram counts

The boosting (the counts of the tri-grams that 
are already found with the first best segmenta-
tion) effect of the multiple segmentation is indi-
cated in table 1. We can see from the table that 
Segmul2, for example, reduced the  number of 
rare tri-grams (count range 1-3) from 19.04 to 
16.15  million.  Consequently,  the  ratio  of  rare 
tri-grams to all tri-grams that are in Segmul1 is 
reduced  from 94% (19.04/20.31*100)  of  Seg-
mul1  only  to  79%  (15.96/20.31*100)  by  the 
boosting effect of Segmul1000, which increased 

the number of tri-grams with count range of 4-9 
from 0.91M to 3.34M. This implies, in the con-
text of under-resourced languages, that multiple 
segmentation  is  boosting  the  N-gram  counts. 
However, one still has to verify if this boosting 
is relevant or not for ASR.

Multiple
Seg.

Counts Range
1–3 
(M)

4-9 
(M) 

10-99
(M)

100-999
(M)

≥1000
(M)

Segmul1 19.04 0.91 0.34 0.016 0.00054
Segmul2 16.15 3.23 0.89 0.043 0.0017
Segmul5 16.06 3.28 0.92 0.045 0.0017
Segmul10 16.03 3.30 0.93 0.045 0.0017
Segmul50 15.99 3.33 0.95 0.046 0.0017

Segmul100 15.98 3.33 0.95 0.046 0.0017
Segmul1000 15.96 3.34 0.96 0.046 0.0017

Table 1. boosting tri-gram counts 

We have also analyzed the statistical behav-
ior of the newly added tri-grams with regard to 
their count distribution (see figure 2). As we can 
see from the figure, the distribution of the new 
tri-grams is somehow similar to the distribution 
of the whole tri-grams that is indicated in figure 
1. 

As  shown  in  table  2,  the  total  number  of 
newly  added  tri-grams  is  around  15  millions. 
We can see from the table that the rate of new 
tri-gram contribution of each segmentation in-
creases as N increases in the N-best segmenta-
tion. However, as it is indicated in figure 2, the 
major  contribution  is  in  the  area  of  rare  tri-
grams.

Figure 2: Distribution of new tri-gram counts
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Mul. Segmentation No. %
Segmul2 4,125,881 26,05
Segmul5 8,249,684 52,09
Segmul10 10,355,433 65,39
Segmul50 13,002,700 82,11

Segmul100 14,672,827 92,65
Segmul1000 15,836,120 100,0

Table 2. tri-gram contribution of multiple seg-
mentation

5 Experimental Results

In this section we present the various language 
models  we  have  developed  and  their  perfor-
mance in terms of perplexity, tri-gram hits and 
ASR performance (syllable error rate).

We use the results obtained with the method 
presented in (Seng et al., 2009) as baseline. This 
method  consists  in  re-estimating  the  N-gram 
counts  using the  multiple  segmentation of  the 
training data and add one to the count of a tri-
gram that appears several times in multiple seg-
mentations of a single sentence. These baseline 
results  are  presented  in  Table  3. The  results 
show an increase of the tri-gram coverage and 
slight improvements of the ASR performance.

Language 
Models

3gs(M) 3g hit(% ) Ppl SER 

Lm_1 20.31 46.9 126.6 27
lm_2 24.06 48.6 118.1 26.2
Lm_5 28.92 49.2 125.9 27

Lm_10 32.82 49.4 129.0 26.5
Lm_50 34.20 49.7 133.4 26.7
lm_100 34.93 49.7 134.8 26.9

lm_1000 36.11 49.88 137.7 27.3

Table 3. Results of experiments using the base-
line method presented in (Seng et al., 2009)

5.1 Separate  effect  of  boosting  tri-gram 
counts

To see  the  effect  of  boosting  tri-gram counts 
only,  we  have  updated  the  counts  of  the  tri-
grams  obtained  from  the  1-best  segmentation 
(baseline  approach)  by  the  tri-gram counts  of 
different  multiple  segmentations.  Note  that  no 
new tri-grams are added here, and we evaluate 
only the effect  and,  therefore,  the tri-gram hit 
remains the same as that of lm_1.

We have then developed different  language 
models using the uni-gram and bi-gram counts 
of  the first  best  segmentation and the updated 
trigram counts after multiple segmentation. The 
performance of the language models have been 

evaluated in terms of perplexity and their contri-
bution  to  the  performance  improvement  of  a 
speech recognition system.  We have observed 
(detailed  results  are  not  reported  here)  that 
boosting only the tri-gram counts has not con-
tributed any improvement in the performance of 
the  language  models.  The  reason  is  probably 
due  to  the  fact  that  simply  updating  tri-gram 
counts without updating the uni-grams and the 
bi-grams lead to a biased and inefficient LM.

5.2 Separate effect of new tri-grams

To  explore  the  contributions  of  only  newly 
added tri-grams, we have added their counts to 
the N-gram counts of Segmul1. It is important 
to note that the model obtained in that case is 
different from the baseline model whose results 
are presented in Table 3 (the counts of the tri-
grams already found in the unique segmentation 
are different between models). As it is presented 
in table 4, including only the newly added tri-
grams  consistently  improved  tri-gram  hits, 
while the improvement in perplexity stopped at 
Segmul10. Moreover, the use of only new tri-
grams do not reduce the speech recognition er-
ror rate.

Language 
Models

3gs
(M)

3g 
hit(% )

ppl SER 

lm_1 20.3 46.9 126.6 27
lm_2_new 24.4 48.7 119.1 26.9
lm_5_new 28.6 49.0 122.5 27.8
lm_10_new 30.7 49.2 124.2 27.9
lm_50_new 33.3 49.4 126.8 27.8

lm_100_new 35 49.8 127.8 28
lm_1000_new 36.1 49.9 129.7 27.9

Table 4. Contributions of new tri-grams

5.3 Pooling unique and multiple segmenta-
tion models

We have developed language models by pooling 
unique and multiple segmentation models alto-
gether.  For  instance,  all  the  N-grams of  lm_5 
multiple  segmentation  are  pooled  with  all  N-
grams of lm_1 unique segmentation before esti-
mating the language model probabilities. In oth-
er  words,  ngram-count  command is  used with 
multiple count files. The results are presented in 
table 5.

As it can be noted from table 5, we have got a 
significant  improvement  in  all  the  evaluation 
criteria  as  compared  with  the  performance  of 
lm_1 that has perplexity of 126.6, tri-gram hit 
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of 46.91% and SER of 27. The best result ob-
tained (25.4) shows a 0.8 absolute SER reduc-
tion  compared  to  the  best  result  presented  in 
(Seng et al., 2009).

Language 
Models

3gs
(M)

3g 
hit(% )

ppl SER 

lm_1 20.31 46.9 126.6 27
lm_2+lm_1 24.4 48.7 120.9 25.4
lm_5+lm_1 29.12 49.2 123.2 26.2
lm_10+lm_1 31.4 49.4 124.2 26
lm_50+lm_1 34.3 49.7 126 26

lm_100+lm_1 35 49.8 126.5 26.2
lm_1000+lm_1 36.2 49.9 128 26.2

Table 5. Performance with pooling

5.4 Cutting off rare tri-grams

With  the  assumption  that  bad  N-grams  occur 
rarely, we cut off rare tri-grams from the counts 
in developing language models. We consider all 
tri-grams with a count of 1 to be rare. Our hope, 
here, is that using this cut off we will remove 
bad  N-grams  introduced  by  the  multiple  seg-
mentation approach, while keeping correct new 
N-grams in the model. Table 6 shows the per-
formance  of  the  language  models  developed 
with or without tri-gram cut off for the baseline 
method (the results presented on the lines indi-
cating All3gs are the same as the ones presented 
in Table 3) . 

Language models Evaluation Criteria
3gs
(M)

3g hit 
(%)

ppl SER

lm_1 All 3gs 20.31 46.91 126.6 27
Cut off 4.17 38.09 129.3 26.6

lm_2 All 3gs 24.06 48.6 118.1 26.2
Cut off 5.11 39.6 121.0 26.7

lm_5 All 3gs 28.92 49.2 125.9 27
Cut off 6.4 40.11 129.2 26.6

lm_10 All 3gs 32.82 49.41 129.0 26.5
Cut off 6.98 40.27 132.4 26.6

lm_50 All 3gs 34.20 49.68 133.4 26.7
Cut off 7.8 40.51 136.9 26.9

lm_100 All 3gs 34.93 49.74 134.8 26.9
Cut off 7.98 40.59 138.4 26.8

lm_1000 All 3gs 36.11 49.88 137.7 27.3
Cut off 8.33 40.71 141.3 26.8

Table 6. Performance with cut off.

The result shows that cutting off reduced the 
number of tri-grams highly (4 tri-grams over 5 
are removed in that case). It, therefore, reduces 
the  size  of  the  language  models  significantly. 
Although  the  results  obtained  are  not  conclu-
sive, a reduction of  recognition error rate has 

been  observed  in  four  out  of  the  seven  cases 
while the perplexity increased and the tri-gram 
hits decreased in all cases. 

5.5 Hybrid  of  pooling  and  cutting  off 
methods

As it has been already indicated, cutting off in-
creased the perplexity of  the language models 
and decreased the tri-gram hits. To reduce the 
negative  effect  of  cutting  off  on  tri-gram hits 
and  perplexity,  we  have  developed  language 
models using both pooling and cut off methods. 
We then cut off tri-grams of count 1 from the 
pooled N-grams. The result, as presented in ta-
ble 7, shows that we can gain significant reduc-
tion in recognition error rate and  improvement 
in tri-gram hits as compared to lm_1 that is de-
veloped with cut off, even if no improvement in 
perplexity is observed. 

The best  result  obtained (25.9) shows a 0.3 
absolute  SER reduction  compared  to  the  best 
system presented in (Seng et al., 2009).

Language Models 3gs
(M)

3g hit
(% )

ppl SE
R 

lm_1 (no cutoff) 20.3 46.9 126.6 27
lm_1 (cutoff) 4.2 38.1 129.3 26.6

lm_2+lm_1 (cutoff) 5.2 39.7 126.4 26.8
lm_5+lm_1 (cutoff) 6.4 40.2 129.5 25.9
lm_10+lm_1 (cutoff) 7.0 40.3 131.1 26.3
lm_50+lm_1 (cutoff) 7.8 40.5 133.5 26.4

lm_100+lm_1 (cutoff) 8.0 40.6 134.3 26.4
lm_1000+lm_1 (cutoff) 8.3 40.7 161.5 26.7

Table 7. Performance with hybrid method

6 Conclusion

The  two  major  contributions  of  multiple  seg-
mentation are generation of new N-grams and 
boosting N-gram counts of those found in first 
best  segmentation.  However,  it  also  produces 
bad N-grams that affect the performance of lan-
guage models. In this paper, we studied the con-
tribution  of  multiple  segmentation  approach 
more deeply and conducted experiments on effi-
cient solutions to minimize the effect of adding 
bad N-grams. Since only boosting the tri-gram 
counts  of  first  best  segmentation  and  adding 
only new tri-grams did not  reduce recognition 
error  rate,  we  have  proposed  to  pool  all  N-
grams of N-best  segmentations to that  of  first 
best  segmentation  and  got  a  significant  im-
provement in perplexity and tri-gram hits from 
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which we obtained the maximum (0.8 absolute) 
reduction in recognition error rate. 

To   minimize  the  effect  of  adding  bad  N-
grams,  we  have  cut  off  rare  tri-grams in  lan-
guage modeling and got  reduction in  recogni-
tion error rate. The significant reduction of tri-
grams that  resulted  from the  cut  off  revealed 
that the majority of tri-grams generated by mul-
tiple  segmentation  have  counts  1.  Cutting  off 
such a big portion of the trigrams reduced tri-
gram hits and as a solution, we  proposed a hy-
brid of both pooling  and cutting off tri-grams 
from which we obtained a significant reduction 
in recognition error rate. 

It  is  possible  to  conclude  that  our  methods 
make the multiple segmentation approach more 
useful by minimizing the effect of bad N-grams 
that it generates and utilizing the contribution of 
different multiple segmentations. 

However,  we  still  see  rooms  for  improve-
ment.  A systematic selection of new tri-grams 
(for example, based on the probabilities of the 
N-grams and/or application of simple linguistic 
criteria  to  evaluate  the  usefulness  of  new tri-
grams), with the aim of reducing bad tri-grams, 
might lead to performance improvement. Thus, 
we will do experiments in this line. We will also 
apply these methods to other languages, such as 
Khmer.
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Abstract 

Thai language text presents challenges 
for integration into large-scale multi-
language statistical machine translation 
(SMT) systems, largely stemming from 
the nominal lack of punctuation and in-
ter-word space. For Thai sentence break-
ing, we describe a monolingual maxi-
mum entropy classifier with features that 
may be applicable to other languages 
such as Arabic, Khmer and Lao. We ap-
ply this sentence breaker to our large-
vocabulary, general-purpose, bidirec-
tional Thai-English SMT system, and 
achieve BLEU scores of around 0.20, 
reaching our threshold of releasing it as a 
free online service. 

1 Introduction 

NLP research has consolidated around the notion 
of the sentence as the fundamental unit of trans-
lation, a consensus which has fostered the devel-
opment powerful statistical and analytical ap-
proaches which incorporate an assumption of 
deterministic sentence delineation. As such sys-
tems become more sophisticated, languages for 
which this assumption is challenged receive in-
creased attention. Thai is one such language, 
since it uses space neither to distinguish syl-
lables from words or affixes, nor to unambi-
guously signal sentence boundaries. 

Written Thai has no sentence-end punctuation, 
but a space character is always present between 
sentences. There is generally no space between 
words, but a space character may appear within a 
sentence according to linguistic or prescriptive 
orthographic motivation (Wathabunditkul 2003), 
and these characteristics disqualify sentence-
breaking (SB) methods used for other languages, 
such as Palmer and Hearst (1997). Thai SB has 

therefore been regarded as the task of classifying 
each space that appears in a Thai source text as 
either sentence-breaking (sb) or non-sentence-
breaking (nsb). 

Several researchers have investigated Thai 
SB. Along with a discussion of Thai word break-
ing (WB), Aroonmanakun (2007) examines the 
issue. With a human study, he establishes that 
sentence breaks elicited from Thai informants 
exhibit varying degrees of consensus. Mittra-
piyanuruk and Sornlertlamvanich (2000) define 
part-of-speech (POS) tags for sb and nsb and 
train a trigram model over a POS-annotated cor-
pus. At runtime, they use the Viterbi algorithm 
to select the POS sequence with the highest 
probability, from which the corresponding space 
type is read back. Charoenpornsawat and Sornler-
tlamvanich (2001) apply Winnow, a multiplica-
tive trigger threshold classifier, to the problem. 
Their model has ten features: the number of 
words to the left and right, and the left-two and 
right-two POS tags and words. 

We present a monolingual Thai SB based on a 
maximum entropy (ME) classifier (Ratnaparkhi 
1996; Reynar and Ratnaparkhi, 1997) which is 
suitable for sentence-breaking SMT training data 
and runtime inputs. Our model uses a four token 
window of Thai lemmas, plus categorical fea-
tures, to describe the proximal environment of 
the space token under consideration, allowing 
runtime classification of space tokens with pos-
sibly unseen contexts. 

As our SB model relies on Thai WB, we re-
view our approach to this problem, plus related 
preprocessing, in the next section. Section 2 also 
discusses the complementary operation to WB, 
namely, the re-spacing of Thai text generated by 
SMT output. Section 3 details our SB model and 
evaluates its performance. We describe the inte-
gration of this work with our large-scale SMT 
system in Section 4. We draw conclusions in 
Section 5. 
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2 Pre- and Post-processing 

As will be shown in Section 3, our sentence 
breaker relies on Thai WB. In turn, with the aim 
of minimizing WB errors, we perform Unicode 
character sequence normalization prior to WB. 
As output byproducts, our WB analysis readily 
identifies certain types of named entities which 
we propagate into our THA-ENG SMT; in this 
section, we briefly summarize these preliminary 
processing steps, and we conclude the section 
with a discussion of Thai text re-spacing.  

2.1 Character Sequence Normalization 
Thai orthography uses an alphabet of 44 conso-
nants and a number of vowel glyphs and tone 
marks. The four Thai tone marks and some Thai 
vowel characters are super- and/or sub-scripted 
with respect to a base character. For example, 
the อิ ้ sequence consists of three code points: 
อ  ◌ ิ ◌ ้. When two or more of these combining 
marks are present on the same base character, the 
ordering of these code points in memory should 
be consistent so that orthographically identical 
entities are recognized as equivalent by comput-
er systems. However, some computer word pro-
cessors do not enforce the correct sequence or do 
not properly indicate incorrect sequences to the 
user visually. This often results in documents 
with invalid byte sequences. 

Correcting these errors is desirable for SMT 
inputs. In order to normalize Thai input character 
sequences to a canonical Unicode form, we de-
veloped a finite state transducer (FST) which 
detects and repairs a number of sequencing er-
rors which render Thai text either orthographi-
cally invalid, or not in a correct Unicode se-
quence. 

For example, a superscripted Thai tone mark 
should follow a super- or sub-scripted Thai vo-
wel when they both apply to the same consonant. 
When the input has the tone mark and the vowel 
glyph swapped, the input can be fully repaired: 

อ  า  ◌ ่ น →  อ  ◌ ่ า  น  →  อา่น 
อ  ◌ ้ ◌ ิ น  →  อ  ◌ ิ ◌ ้ น  →  อิน้ 

Figure 1. Two unambiguous repairs 

Other cases are ambiguous. The occurrence of 
multiple adjacent vowel glyphs is an error where 
the intention may not be clear. We retain the 
first-appearing glyph, unless it is a pre-posed 
vowel, in which case we retain the last-appearing 

instance. These two treatments are contrasted in 
Figure 2. Miscoding (Figure 3) is another variety 
of input error that is readily repaired. 

จะะา  →  จะ 
ใเไป →  ไป 

Figure 2. Two ambiguous repairs 

Within the Infoquest Thai newswire corpus, a 
low-noise corpus, about 0.05% of the lines exhi-
bit at least one of the problems mentioned here. 
For some chunks of broad-range web scraped 
data, we observe rates as high as 4.1%. This 
measure is expected to under-represent the utility 
of the filter to WB, since Thai text streams, lack-
ing intra-word spacing and permitting two un-
written vowels, have few re-alignment check-
points, allowing tokenization state machines to 
linger in misaligned states. 

อ   ◌ ํ า  →  อ   ◌าํ   →  อํา 
เ   เ   อ  →  แ  อ  →  แอ 

Figure 3. Two common mis-codings 

2.2 Uniscribe Thai Tokenization 

Thai text does not normally use the space cha-
racter to separate words, except in certain specif-
ic contexts. Although Unicode offers the Zero-
Width Space (ZWSP) as one solution for indicat-
ing word breaks in Thai, it is infrequently used. 
Programmatic tokenization has become a staple 
of Thai computational linguistics. The problem 
has been well studied, with precision and recall 
near 95% (Haruechaiyasak et al. 2008).  

In our SMT application, both the sentence 
breaker and the SMT system itself require Thai 
WB, and we use the same word breaker for these 
tasks (although the system design currently pro-
hibits directly passing tokens between these two 
components). Our method is to apply post-
processing heuristics to the output of Uniscribe 
(Bishop et al. 2003), which is provided as part of 
the Microsoft® WindowsTM operating system 
interface. Our heuristics fall into two categories: 
“re-gluing” words that Uniscribe broke too ag-
gressively, and a smaller class of cases of further 
breaking of words that Uniscribe did not break. 

Re-gluing is achieved by comparing Uniscribe 
output against a Thai lexicon in which desired 
breaks within a word are tagged. Underbreaking 
by Uniscribe is less common and is restricted to 
a number of common patterns which are repaired 
explicitly. 
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2.3 Person Name Entities 

In written Thai, certain types of entities employ 
prescriptive whitespace patterns. By removing 
these recognized patterns from consideration, SB 
precision can be improved. Furthermore, be-
cause our re-gluing procedure requires a lookup 
of every syllable proposed by Uniscribe, it is 
efficient to consider, during WB, additional 
processing that can be informed by the same 
lookup. Accordingly, we briefly mention some 
of the entity types that our WB identifies, focus-
ing on those that incorporate distinctive spacing 
patterns. 

Person names in Thai adhere to a convention 
for the use of space characters. This helps Thai 
readers to identify the boundaries of multi-
syllable surnames that they may not have seen 
before. The following grammar summarizes the 
prescriptive conventions for names appearing in 
Thai text:  
<name-entity> ::= <honorific>  <full-name> 
<full-name> ::= <first-name> [<last-name>] 
<first-name> ::= <name-text> space 
<last-name> ::= <name-text> space 
<name-text> ::= <thai-alphabetic-char>+ 
<thai-alphabetic-char> ::= ก | ข | ฃ | ค | ... 

Figure 4. Name entity recognition grammar 

The re-glue lookup also determines if a sylla-
ble matches one of the following predefined spe-
cial categories: name-introducing honorific (h), 
Thai or foreign given name (g), token which is 
likely to form part of a surname (s), or token 
which aborts the gathering of a name (i.e. is un-
likely to form part of a name).  

.../วา่/นาย/จ/ิระ/นุช/ /ว/ินจิ/จก/ูล/ /วา่/... 
วา่ นาย จ ิ ระ นุช  ว ิ นจิ จก ู ล  วา่ 

 h g0 g1 g2 sp0 s0 s1 s2 s3 sp1  
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...that Mr. Chiranut Winichotkun said...

Figure 5. Thai person-name entity recognition 

Figure 5 shows a Thai name appearing within 
a text fragment, with Uniscribe detected token 
boundaries indicated by slashes. In the third row 
we have identified the special category, if any, 
for each token. The fourth line shows the Eng-
lish translation gloss, or <oov> if none. The bot-
tom row is the desired translation output. 

Our name identifier first notes the presence of 
an honorific {h} นาย followed by a pattern of 
tokens {g0-gn}, {s0-sn} and spaces {sp0, sp1} 
that is compatible with a person name and sur-
name of sensible length. 

Next, we determine which of those tokens in 
the ranges {g} and {s} following the honorific 
do not have a gloss translation (i.e., are not 
found in the lexicon). These tokens are indicated 
by <oov> in the gloss above. When the number 
of unknown tokens exceeds a threshold, we hy-
pothesize that these tokens form a name. The 
lack of lexical morphology in Thai facilitates 
this method because token (or syllable) lookup 
generally equates with the lookup of a stemmed 
lemma. 

2.4 Calendar Date Entities 

Our WB also identifies Thai calendar dates, as 
these also exhibit a pattern which incorporates 
spaces. As a prerequisite to identifying dates, we 
map Thai orthographic digits {๐ ๑ ๒ ๓ ๔ ๕ ๖ 
๗ ๘ ๙} to Arabic digits 0 through 9, respec-
tively. For example, our system would interpret 
the input text ๒๕๔๐ as equivalent to “2540.” 

.../ใน/วนั/ที/่ /14/ มนีาคม/ /๒๕๔๐/ /และ/...
ใน วนั ที่ sp 14 มนีาคม sp ๒๕๔๐ sp และ 
on day which  14 March  2540  and 

...on March 14th, 1997 and... 

Figure 6. Date entity recognition 

Figure 6 shows a fragment of Thai text which 
contains a calendar date for which our system 
will emit a single token. As shown in the exam-
ple, our system detects and adjusts for the use of 
Thai Buddhist year dates when necessary. Ga-
thering of disparate and optional parts of the 
Thai date is summarized by the grammar in Fig-
ure 7. 
<date-entity> ::= [<cardinal-words>] [space] <date> 
<cardinal-words> ::= วนัที ่| ที ่
<date> ::= month-date [space] year 
<year> ::= <tha-digit> <tha-digit> <tha-digit> <tha-digit> 
<year> ::= <ara-digit> <ara-digit> <ara-digit> <ara-digit> 
<month-date> ::= <day> [space] <month> 
<day> ::= <thai-digit>+ 
<day> ::= <ara-digit>+ 
<month> ::= <month-full> | <month-abbr> 
<month-full> ::= มกราคม | กมุภาพันธ ์| มนีาคม | ... 
<month-abbr> ::= ม.ค. | ก.พ. | ม.ีค. | ... 
<tha-digit> ::= ๐ | ๑ | ๒ | ๓ | ๔ | ๕ | ๖ | ๗ | ๘ | ๙ 
<ara-digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

Figure 7. Date recognition grammar 
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2.5 Thai Text Re-spacing 

To conclude this section, we mention an opera-
tion complementary to Thai WB, whereby Thai 
words output by an SMT system must be re-
spaced in accordance with Thai prescriptive 
convention. As will be mentioned in Section 4.2, 
for each input sentence, our English-Thai system 
has access to an English dependency parse tree, 
as well as links between this tree and a Thai 
transfer dependency tree. After using these links 
to transfer syntactic information to the Thai tree, 
we are able to apply prescriptive spacing rules 
(Wathabunditkul 2003) as closely as possible. 
Human evaluation showed satisfactory results 
for this process. 

3 Maximum Entropy Sentence-Breaking 

We now turn to a description of our statistical 
sentence-breaking model. We train an ME clas-
sifier on features which describe the proximal 
environment of the space token under considera-
tion and use this model at runtime to classify 
space tokens with possibly unseen contexts. 

3.1 Modeling 

Under the ME framework, let B={sb, nsb} 
represent the set of possible classes we are inter-
ested in predicting for each space token in the 
input stream. Let C={linguistic contexts} 
represent the set of possible contexts that we can 
observe, which must be encoded by binary fea-
tures, 𝑓௝(𝑏, 𝑐), 1 ≤ 𝑗 ≤ 𝑘, such as: 𝑓ଵ(𝑏, 𝑐) = ቄ 1 if the previous word is English 𝑎𝑛𝑑  𝑏 = 𝐧𝐬𝐛.0 otherwise.  

This feature helps us learn that the space after an 
English word is usually not a sentence boundary. 

𝑓ଶ(𝑏, 𝑐) = ൝ 1 if the distance to the previous honorific is less than 15 tokens 𝑎𝑛𝑑 𝑏 = 𝐧𝐬𝐛0 otherwise.  

This feature enables us to learn that spaces 
which follow an honorific are less likely to mark 
sentence boundaries. Assume the joint probabili-
ty p(b,c) is modeled by 𝑝(𝑏, 𝑐) = 𝑍 ෑ 𝜶௝௙ೕ(௕,௖)௞௝ୀଵ  

where we have k free parameters {𝜶௝}  to esti-
mate and Z is a normalization factor to make ∑ 𝑝(𝑏, 𝑐) = 1.௕,௖  The ME learning algorithm 

finds a solution {𝜶௝} representing the most un-
certain commitment max  𝐻(𝑝) = − ෍ 𝑝(𝑏, 𝑐) log 𝑝(𝑏, 𝑐)  
that satisfies the observed distribution �̂�(𝑏, 𝑐) of 
the training data 
   ∑ 𝑝(𝑏, 𝑐)𝑓௝(𝑏, 𝑐) = ∑ �̂�(𝑏, 𝑐)𝑓௝(𝑏, 𝑐), 1 ≤ 𝑗 ≤ 𝑘 . 
This is solved via the Generalized Iterative Scal-
ing algorithm (Darroch and Ratcliff 1972). At 
run-time, a space token is considered an sb, if 
and only if p(sb|c) > 0.5, where 𝑝(𝒔𝒃|𝑐) = 𝑝(𝒔𝒃, 𝑐)𝑝(𝒔𝒃, 𝑐) + 𝑝(𝒏𝒔𝒃, 𝑐) . 
3.2 Feature Selection 

The core context of our model, {w, x, y, z}, is a 
window spanning two tokens to the left (posi-
tions w and x) and two tokens to the right (posi-
tions y and z) of a classification candidate space 
token. 

c token characteristic 
yk Yamok (syllable reduplication) symbol ๆ 
sp space 
๐๙ Thai numeric digits 
num Arabic numeric digits 
ABC Sequence of all capital ASCII characters 
cnn single character (derived from hex) 
ckkmmnn single character (derived from UTF8 hex) 
ascii any amount of non-Thai text 
(Thai text) Thai word (derived from lemma) 

Table 1. Categorical and derived feature names 

The possible values of each of the window 
positions {w, x, y, z} are shown in Table 1, 
where the first match to the token at the desig-
nated position is assigned as the feature value for 
that position. Foreign-text tokens plus any inter-
vening space are merged, so a single “ascii” fea-
ture may represent an arbitrary amount of non-
Thai script with interior space. 

Figure 8 shows an example sentence that has 
been tokenized. Token boundaries are indicated 
by slashes. Although there are three space tokens 
in the original input, we extract four contexts. 
The shaded boxes in the source text—and the 
shaded line in the figure—indicate the single sb 
context that is synthesized by wrapping, to be 
described in Section 3.4. 

For each context, in addition to the {w, x, y, z} 
features, we extract two more features indicated 
by {l ,r} in Figure 8. They are the number of 
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tokens between the previous space token (wrap-
ping as necessary) and the current one, and the 
number of tokens between the current space to-
ken and the next space token (wrapping as ne-
cessary). These features do not distinguish 
whether the bounding space token is sb or nsb. 
This is because, processing left-to-right, it is 
permissible to use a feature such as “number of 
tokens since last sb,” but not “number of tokens 
until next sb,” which would be available during 
training but not at runtime. 
ลกัษณะการอา้งองิแบบ R1C1  ถกูแปลงไปเป็นลักษณะการ
อา้งองิแบบ  A1 
“R1C1 reference style was converted to A1 reference style.” 
__/ลกัษณะ/การ/อา้ง/องิ/แบบ/  /R1C1/   /ถกู/แปลง/ไป/
เป็น/ลกัษณะ/การ/อา้ง/องิ/แบบ/  /A1/__ 

 b c=w c=x c=y c=z c=l c=r 

nsb องิ แบบ ABC sp 5 1 

nsb sp ABC ถกู แปลง 1 9 

nsb องิ แบบ ABC sp 9 1 

sb sp ABC ลกัษณะ การ 1 5 

Figure 8. A Thai sentence and the training contexts extracted. Hig-
hlighting shows the context for sb.  

In addition to the above core features, our 
model emits certain extra features only if they 
appear: 
• An individual feature for each English punc-

tuation mark, since these are sometimes used 
in Thai. For example, there is one feature for 
the sentence end period (i.e. full-stop); 

• The current nest depth for paired glyphs with 
directional variation, such as brackets, braces, 
and parentheses; 

• The current parity value for paired glyphs 
without directional distinction such as 
“straight” quotation marks. 

The following example illustrates paired direc-
tional glyphs (in this case, parentheses): 

.../ยนูลิเิวอร/์  /(/ประเทศ/__/ไทย/)/  /จํากดั/  /เปิดเผย/วา่/... 
...Unilever (Thailand) Ltd. disclosed that... 

 b c=w c=x c=y c=z c=pn 

nsb ( ประเทศ ไทย ) 1 
Figure 9. Text fragment illustrating paired directional glyphs and 

the context for the highlighted space 

     In Figure 9, the space between ประเทศ 
“country” and ไทย “Thai,” generates an nsb 
context which includes the features shown, 
where “pn” is an extra feature which indicates 

the parenthesis nesting level. This feature helps 
the model learn that spaces which occur within 
parentheses are likely to be nsb. 

Parity features for the non-directional paired 
glyphs, which do nest, are true binary features. 
Since these features have only two possible val-
ues (inside or outside), they are only emitted 
when their value is “inside,” that is, when the 
space under consideration occurs between such a 
pair. 

3.3 Sentence Breaker Training Corpus 

Thai corpora which are marked with sentence 
breaks are required for training. We assembled a 
corpus of 361,802 probable sentences. This cor-
pus includes purchased, publicly available, and 
web-crawled content. In total it contains 911,075 
spaces, a figure which includes one inter-
sentence space per sentence, generated as de-
scribed below. 

3.4 Out-of-context Sentences 

For SB training, paragraphs are first tokenized 
into words as described in Section 2.2. This 
process does not introduce new spaces between 
tokens; only original spaces in the text are classi-
fied as sb/nsb and used for the context features 
described below. To keep this distinction clear, 
token boundaries are indicated by a slash rather 
than space in the examples shown in this paper. 

For 91% of our training sentences, the para-
graphs from which they originate are inaccessi-
ble. In feature extraction for each of these sen-
tences, we wrap the sentence’s head around to its 
tail to obtain its sb context. In other words, for a 
sentence of tokens t0-tn-1, the context of sb (the 
last space) is given by 

{ w=tn-2, x=tn-1, y=t0, z=t1 }. 

     This process was illustrated in Figure 8. Al-
though not an ideal substitute for sentences in 
context, this ensures that we extract at least one 
sb context per sentence. The number of nsb con-
texts extracted per sentence is equal to the num-
ber of interior space tokens in the original sen-
tence. Sentence wrapping is not needed when 
training with sentence-delimited paragraph 
sources. Contexts sb and nsb are extracted from 
the token stream of the entire paragraph and 
wrapping is used only to generate one additional 
sb for the entire paragraph. 

12



3.5 Sentence Breaker Evaluation 
Although evaluation against a single-domain 
corpus does not measure important design re-
quirements of our system, namely resilience to 
broad-domain input texts, we evaluated against 
the ORCHID corpus (Charoenporn et al. 1997) 
for the purpose of comparison with the existing 
literature. Following the methodology of the stu-
dies cited below, we use 10-fold ×10% averaged 
testing against the ORCHID corpus. 

Our results are consistent with recent work us-
ing the Winnow algorithm, which itself com-
pares favorably with the probabilistic POS tri-
gram approach. Both of these studies use evalua-
tion metrics, attributed to Black and Taylor 
(1997), which aim to more usefully measure sen-
tence-breaker utility. Accordingly, the following 
definitions are used in Table 2: space-correct =  (#correct sb+#correct nsb)total # of space tokens  

false break= #sb false positivestotal # of space tokens 

     It was generally possible to reconstruct preci-
sion and recall figures from these published re-
sults1 and we present a comprehensive table of 
results. Reconstructed values are marked with a 
dagger and the optimal result in each category is 
marked in boldface. 
 Mittrapiyanuruk

et al. 
Charoenpornsawat 

et al. 
Our result

method POS 
Trigram Winnow MaxEnt 

#sb in reference 10528 1086† 2133 

#space tokens 33141 3801 7227 

nsb-precision 90.27† 91.48† 93.18 

nsb-recall 87.18† 97.56† 94.41 

sb-precision 74.35† 92.69† 86.21 

sb-recall 79.82 77.27 83.50 

“space-correct” 85.26 89.13 91.19 

“false-break” 8.75 1.74 3.94 

Table 2. Evaluation of Thai Sentence Breakers against 
ORCHID 

Finally, we would be remiss in not acknowl-
edging the general hazard of assigning sentence 
breaks in a language such as Thai, where source 

                                                 
1 Full results for Charoenpornsawat et al. are reconstructed based 
on remarks in their text, including that “the ratio of the number of 
[nsb to sb] is about 5:2.” 

text authors may intentionally include or omit 
spaces in order to create syntactic or semantic 
ambiguity. We defer to Mittrapiyanuruk and 
Sornlertlamvanich (2000) and Aroonmanakun 
(2007) for informed commentary on this topic. 

4 SMT System and Integration 

The primary application for which we developed 
the Thai sentence breaker described in this work 
is the Microsoft® BING™ general-domain ma-
chine translation service. In this section, we pro-
vide a brief overview of this large-scale SMT 
system, focusing on Thai-specific integration 
issues. 

4.1 Overview 

Like many multilingual SMT systems, our sys-
tem is based on hybrid generative/discriminative 
models. Given a sequence of foreign words, f, its 
best translation is the sequence of target words, 
e, that maximizes  𝒆∗ = argmax𝒆 𝑝(𝒆|𝒇) =  argmax𝒆 𝑝(𝒇|𝒆)𝑝(𝒆) = argmaxe  { log 𝑝(𝒇|𝒆) + log 𝑝(𝒆)} 

where the translation model 𝑝(𝒇|𝒆) is computed 
on dozens to hundreds of features. The target 
language model (LM), 𝑝(𝒆), is represented by a 
smoothed n-grams (Chen 1996) and sometimes 
more than one LM is adopted in practice. To 
achieve the best performance, the log likelihoods 
evaluated by these features/models are linearly 
combined. After 𝑝(𝒇|𝒆) and 𝑝(𝒆) are trained, the 
combination weights 𝜆௜  are tuned on a held-out 
dataset to optimize an objective function, which 
we set to be the BLEU score (Papineni et al. 
2002): {𝜆௜∗} = max{ఒ௜}  BLEU({𝑒∗}, {𝑟}) 𝒆∗ =  argmaxe  {෍ 𝜆௜log௜  𝑝௜(𝒇|𝒆) + ෍ 𝜆௝log୨ 𝑝௝(𝒆)} 

where {r} is the set of gold translations for the 
given input source sentences. To learn 𝜆௜ we use 
the algorithm described by Och (2003), where 
the decoder output at any point is approximated 
using n-best lists, allowing an optimal line 
search to be employed. 

4.2 Phrasal and Treelet Translation 

Since we have a high-quality real-time rule-
based English parser available, we base our Eng-

13



lish-to-Thai translation (ENG-THA) on the 
“treelet” concept suggested in Menezes and 
Quirk (2008). This approach parses the source 
language into a dependency tree which includes 
part-of-speech labels.  
   Lacking a Thai parser, we use a purely statis-
tical phrasal translator after Pharaoh (Koehn 
2004) for THA-ENG translation, where we 
adopt the name and date translation described in 
Sections 2.3 and 2.4.  
     We also experimented with phrasal ENG-
THA translation. Though we actually achieved a 
slightly better BLEU score than treelet for this 
translation direction, qualitative human evalua-
tion by native speaker informants was mixed. 
We adopted the treelet ENG-THA in the final 
system, for its better re-spacing (Section 2.5). 

4.3 Training, Development and Test Data 

Naturally, our system relies on parallel text cor-
pora to learn the mapping between two languag-
es. The parallel corpus contains sentence pairs, 
corresponding to translations of each other. For 
Thai, quality corpora are generally not available 
in sufficient quality for training a general-
domain SMT system. For the ENG-THA pair, 
we resort to Internet crawls as a source of text. 
We first identify paired documents, break each 
document into sentences, and align sentences in 
one document against those in its parallel docu-
ment. Bad alignments are discarded. Only sen-
tence pairs with high alignment confidence are 
kept in our parallel corpus. Our sentence align-
ment algorithm is based on Moore (2002). 

For our ENG-THA translation system, we as-
sembled three resources: a parallel training cor-
pus, a development bitext (also called the lamb-
da set) for training the feature combination 
weights {𝜆௜}, and a test corpus for BLEU and 
human evaluation. Both the lambda and the test 
sets have single reference translations per sen-
tence. 

Data Set #Sentences 

(ENG||THA) training 725K 
(ENG,THA) lambda 2K 
(ENG,THA) test 5K 
THA LM text 10.3M 
ENG LM text 45.6M 

Table 3. Corpus size of parallel and monolingual data 

 

Although it is well known that language trans-
lation pairs are not symmetric, we use these 
same resources to build our THA-ENG transla-
tion system due to the lack of additional corpora.  

Our parallel MT corpus consists of approx-
imately 725,000 English-Thai sentence pairs 
from various sources. Additionally we have 9.6 
million Thai sentences, which are used to train a 
Thai 4-gram LM for ENG-THA translation, to-
gether with the Thai sentences in the parallel 
corpus. Trigrams and 4-grams that occur only 
once are pruned, and n-gram backoff weights are 
re-normalized after pruning, with the surviving 
KN smoothed probabilities intact (Kneser and 
Ney 1995). Similarly, a 4-gram ENG LM is 
trained for THA-ENG translation, on a total of 
45.6M English sentences. 

For both the lambda and test sets, THA LM 
incurs higher out-of-vocabulary (OOV) rates 
(1.6%) than ENG LM (0.7%), due to its smaller 
training set and thus smaller lexicon. Both trans-
lation directions define the maximum 
phrase/treelet length to be 4 and the maximum 
re-ordering jump to be 4 as well. 

4.4 BLEU Scores 

To evaluate our end-to-end performance, we 
compute case insensitive 4-gram BLEU scores. 
Translation outputs are WB first according to the 
Thai/English tokenizer, before BLEU scores are 
computed. The BLEU scores on the test sets are 
shown in Table 4. We are not aware of any pre-
viously published BLEU results for either direc-
tion of this language pair. 

  BLEU 
THA-ENG 0.233 
ENG-THA 0.194 

Table 4. Four-gram case-insensitive BLEU scores. 

Figures 10 and 11 illustrate sample outputs for 
the each translation direction, with reference 
translations. 

INPUT: ในประเทศไทยมกีลว้ยไมป้ระมาณ ๑๗๕ ชนดิ ถา้
สญูพันธุไ์ปจากประเทศไทย ก็หมายถงึสญูพันธุไ์ปจากโลก
OUTPUT: In Thailand a Orchid approximately 175 type if 
extinct from Thailand. It means extinct from the world. 
REF: In Thailand, there are about 175 species of Orchid. If 
they disappear from Thailand, they will be gone from the 
world. 

Figure 10.  THA-ENG Sample Translation Output 
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INPUT: In our nation the problems and barriers we face are 
just problems and barriers of law not selection or develop-
ment. 
OUTPUT: ในประเทศชาตขิองเรา ปัญหาและอปุสรรคทีเ่รา
เผชญิอยูเ่พยีงปัญหาและอปุสรรคของกฎหมายไมเ่ลอืกหรอื
พัฒนา 
REF: ในประเทศของเราปัญหาและอปุสรรค ก็เป็นปัญหา
อปุสรรคทางดา้นกฎหมาย แตไ่มเ่ป็นปัญหาอปุสรรคในการ
คดัเลอืกและพัฒนาพันธุ ์

Figure 11. ENG-THA Sample Translation Output 

Although the translation quality is far from being 
perfect, SMT is making good process on build-
ing useful applications. 

5 Conclusion and Future Work 

Our maximum entropy model for Thai sentence-
breaking achieves results which are consistent 
with contemporary work in this task, allowing us 
to overcome this obstacle to Thai SMT integra-
tion. This general approach can be applied to 
other South-East Asian languages in which space 
does not deterministically delimit sentence 
boundaries. 

In Arabic writing, commas are often used to 
separate sentences until the end of a paragraph 
when a period is finally used. In this case, the 
comma character is similar to the space token in 
Thai where its usage is ambiguous. We can use 
the same approach (perhaps with different lin-
guistic features) to identify which commas are 
sentence-breaking and which are not. 

Our overall system incorporates a range of in-
dependent solutions to problems in Thai text 
processing, including character sequence norma-
lization, tokenization, name and date identifica-
tion, sentence-breaking, and Thai text re-
spacing. We successfully integrated each solu-
tion into an existing large-scale SMT frame-
work, obtaining sufficient quality to release the 
Thai-English language pair in a high-volume, 
general-domain, free public online service. 

There remains much room for improvement. 
We need to find or create true Thai-English di-
rectional corpora to train the lambdas and to test 
our models. The size of our parallel corpus for 
Thai should increase by at least an order of mag-
nitude, without loss of bitext quality. With a 
larger corpus, we can consider longer phrase 
length, higher-order n-grams, and longer re-
ordering distance. 
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Abstract 

This paper reports about the develop-

ment of clause identification and classi-

fication techniques for Bengali language. 

A syntactic rule based model has been 

used to identify the clause boundary. For 

clause type identification a Conditional 

random Field (CRF) based statistical 

model has been used. The clause identi-

fication system and clause classification 

system demonstrated 73% and 78% pre-

cision values respectively.  

1 Introduction 

The clause identification is one of the shallow 

semantic parsing tasks, which is important in 

various NLP applications such as Machine 

Translation, parallel corpora alignment, Informa-

tion Extraction and speech applications. Gram-

matically a clause is a group of words having a 

subject and a predicate of its own, but forming 

part of a sentence. Clause boundary identifica-

tion of natural language sentences poses consi-

derable difficulties due to the ambiguous nature 

of natural languages. Clause classification is a 

convoluted task as natural language is generally 

syntactically rich in formation of sentences or 

clauses. 

By the classical theory of Panini (Paul and 

Staal, 1969) a clause is the surface level basic 

syntactic element which holds the basic depen-

dent semantics (i.e. lexical semantic have no 

dependency) to represent the overall meaning of 

any sentence. This syntactic to semantic deriva-

tion proceeds through two intermediate stages: 

the level of karaka relations, which are compa-

rable to the thematic role types and the level of 

inflectional or derivational morphosyntax. 

Fillmore’s Case Grammar (Fillmore et. al, 

2003), and much subsequent work, revived the 

Panini’s proposals in a modern setting. A main 

objective of Case Grammar was to identify syn-

tactic positions of semantic arguments that may 

have different realizations in syntax.  

In the year of 1996 Bharati et al. (1996) de-

fines the idea of Chunk or local word group for 

Indian languages. After the successful imple-

mentation of Shakti
1
 , the first publicly available 

English-Hindi machine translation system the 

idea of chunk became the most acceptable syn-

tactic/semantic representation format for Indian 

languages, known as Shakti Standard Format 

(SSF).   

In 2009 Bali et al. (2009) redefines the idea of 

chunk and establishes that the idea of chunking 

varies with prosodic structure of a language. 

Boundary of chunk level is very ambiguous it-

self and can differ by writer or speaker accord-

ing to their thrust on semantic. 

Therefore it is evident that automatic clause 

identification for Indian languages needs more 

research efforts. In the present task, clause 

boundary identification is attempted using the 

classical theory of Panini and the Case Grammar 

approach of Fillmore on the shallow parsed out-

put in SSF structure. It may be worth mentioning 

that several basic linguistic tools in Indian lan-

guages such as part of speech tagger, chunker, 

and shallow parser follow SSF
2
  as a standard.  

Previous research on clause identification was 

done mostly on the English language (Sang and 

Dejean, 2001). There have been limited efforts 

on clause identification for Indian languages. 

One such effort is proposed in Ram and Devi, 

                                                 
1
 http://shakti.iiit.ac.in/ 

2
 http://ltrc.iiit.ac.in/MachineTrans/research/tb/shakti-

analy-ssf.pdf 
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(2008) with statistical method. The idea of ge-

nerative grammar based on rule-based descrip-

tions of syntactic structures introduced by 

Chomsky (Chomsky, 1956) points out that every 

language has its own peculiarities that cannot be 

described by standard grammar. Therefore a new 

concept of generative grammar has been pro-

posed by Chomsky. Generative grammar can be 

identified by statistical methods. In the present 

task, conditional random field (CRF)
3

 -based 

machine learning method has been used in 

clause type classification. According to the best 

of our knowledge this is the first effort to identi-

fy and classify clauses in Bengali. 

The present system is divided into two parts. 

First, the clause identification task aims to iden-

tify the start and the end boundaries of the claus-

es in a sentence. Second, Clause classification 

system identifies the clause types. 

Analysis of corpus and standard grammar of 

Bengali revealed that clause boundary identifica-

tion depends mostly on syntactic dependency. 

For this reason, the present clause boundary 

identification system is rule based in nature. 

Classification of clause is a semantic task and 

depends on semantic properties of Bengali lan-

guage. Hence we follow the theory of 

Chomsky’s generative grammar to disambiguate 

among possible clause types. The present classi-

fication system of clause is a statistics-based 

approach. A conditional random field (CRF) 

based machine learning method has been used in 

the clause classification task. The output of the 

rule based identification system is forwarded to 

the machine learning model as input. 

The rest of the paper is organized as follows. 

In section 2 we elaborate the rule based clause 

boundary identification. The next section 3 de-

scribes the implementation detail with all identi-

fied features for the clause classification prob-

lem. Result section 4 reports about the accuracy 

of the hybrid system. In error analysis section 

we reported the limitations of the present sys-

tem. The conclusion is drawn in section 5 along 

with the future task direction. 

2 Resource Acquisition 

Bengali belongs to Indo-Aryan language family. 

A characteristic of Bengali is that it is under-

                                                 
3
 http://crf.sourceforge.net/ 

resourced. Language research for Bengali got 

attention recently. Resources like annotated cor-

pus and linguistics tools for Bengali are very 

rarely available in the public domain. 

2.1 Corpus 

We used the NLP TOOLS CONTEST: ICON 

2009
4
 dependency relation marked training data-

set of 980 sentences for training of the present 

system. The data has been further annotated at 

the clause level. According to the standard 

grammar there are two basic clause types such as 

Principal clause and Subordinate clause. Subor-

dinate clauses have three variations as Noun 

clause, Adjective clause and Adverbial clause. 

The tagset defined for the present task consists 

of four tags as Principal clause (PC), Noun 

clause (NC), Adjective clause (AC) and Adver-

bial clause (RC). The annotation tool used for 

the present task is Sanchay
5
. The detailed statis-

tics of the corpus are reported in Table 1. 

 

 Train Dev Test 

No of Sentences 980 150 100 

Table 1: Statistics of Bengali Corpus 

2.1.1 Annotation Agreement 

Two annotators (Mr. X and Mr. Y) participated 

in the present task. Annotators were asked to 

identify the clause boundaries as well as the type 

of the identified clause. The agreement of anno-

tations among two annotators has been eva-

luated. The agreements of tag values at clause 

boundary level and clause type levels are listed 

in Table 2. 

 

 Boundary Type 

Percentage 76.54% 89.65% 

Table 2: Agreement of annotators at clause 

boundary and type level 

It is observed from the Table 2 that clause 

boundary identification task has lower agree-

ment value. A further analysis reveals that there 

are almost 9% of cases where clause boundary 

has nested syntactic structure. These types of 

clause boundaries are difficult to identify. One 

of such cases is Inquisitive semantic (Groenen-

dijk, 2009) cases, ambiguous for human annota-

                                                 
4
 http://ltrc.iiit.ac.in/nlptools2009/ 

5
 http://ltrc.iiit.ac.in/nlpai_contest07/Sanchay/ 
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tors too. It is better to illustrate with some spe-

cific example. 
If John goes to the party, 

will Mary go as well? 

In an inquisitive semantics for a language of 

propositional logic the interpretation of disjunc-

tion is the source of inquisitiveness. Indicative 

conditionals and conditional questions are 

treated both syntactically and semantically. The 

semantics comes with a new logical-

pragmatically notion that judges and compares 

the compliance of responses to an initiative in 

inquisitive dialogue (Groenendijk, 2009). Hence 

it is evident that these types of special cases 

need special research attention. 

2.2 Shallow Parser 

Shallow parser
6
 for Indian languages, developed 

under a Government of India funded consortium 

project named Indian Language to Indian Lan-

guage Machine Translation System (IL-ILMT), 

are now publicly available. It is a well developed 

linguistic tool and produce good credible analy-

sis. For the present task the linguistic analysis is 

done by the tool and it gives output as pruned 

morphological analysis at each word level, part 

of speech at each word level, chunk boundary 

with type-casted chunk label, vibhakti computa-

tion and chunk head identification. 

2.3 Dependency parser 

A dependency parser for Bengali has been used 

as described in Ghosh et al. (2009). The depen-

dency parser follows the tagset
7
 identified for 

Indian languages as a part of NLP TOOLS 

CONTEST 2009 as a part of ICON 2009. 

3 Rule-based Clause Boundary Identi-

fication 

Analysis of a Bengali corpus and standard 

grammar reveals that clause boundaries are di-

rectly related to syntactic relations at sentence 

level. The present system first identifies the 

number of verbs present in a sentence and sub-

sequently finds out dependant chunks to each 

verb. The set of identified chunks that have rela-

tion with a particular verb is considered as a 

clause. But some clauses have nested syntactic 

                                                 
6
 http://ltrc.iiit.ac.in/analyzer/bengali/ 

7
 http://ltrc.iiit.ac.in/nlptools2009/CR/intro-husain.pdf 

formation, known as inquisitive semantic. These 

clauses are difficult to identify by using only 

syntactic relations. The present system has limi-

tations on those inquisitive types of clauses. 

Bengali is a verb final language. Most of the 

Bengali sentences follow a Subject-Object-Verb 

(SOV) pattern. In Bengali, subject can be miss-

ing in a clause formation. Missing subjects and 

missing keywords lead to ambiguities in clause 

boundary identification. In sentences which do 

not follow the SOV pattern, chunks that appear 

after the finite verb are not considered with that 

clause. For example:  

 
wAra AyZawana o parimANa 

xeKe buJawe asubiXA hayZa ei  

paWa hAwi geCe. 

 

After seeing the size and 

effect, it is hard to under-

stand that an elephant went 

through this way. 

 

In the above example, there is hardly any clue 

to find beginning of subordinate clause. To solve 

this type of problem, capturing only the tree 

structure of a particular sentence has been 

treated as the key factor to the goal of disambig-

uation. One way to capture the regularity of 

chunks over different sentences is to learn a ge-

nerative grammar that explains the structure of 

the chunks one finds. These types of language 

properties make the clause identification prob-

lem difficult.  

3.1 Karaka relation 

Dependency parsing generates the inter chunk 

relation and generates the tree structure. The de-

pendency parser as described in Section 2.3 used 

as a supportive tool for the present problem.   

In the output of the dependency parsing sys-

tems, most of the chunks have a dependency 

relation with the verb chunk. These relations are 

called as karaka relation. Using dependency re-

lations, the chunks having dependency relation 

i.e. karaka relation with same verb chunk are 

grouped. The set of chunks are the members of a 

clause. Using this technique, identification of 

chunk members of a certain clause becomes in-

dependent of SOV patterns of sentences. An ex-

ample is shown in Figure 1. 
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Figure 1: Karaka Relations 

3.2 Compound verbs  

In Bengali language a noun chunk with an infi-

nite verb chunk or a finite verb chunk can form a 

compound verb. An example is shown in Figure 

2. 

 
Figure 2: Compound Verb 

In the above example, the noun chunk and the 

VGF chunk form a compound verb. These two 

consecutive noun and verb chunks appearing in 

a sentence are merged to form a compound verb. 

These chunks are connected with a part-of rela-

tion in Dependency Parsing. The set of related 

chunks with these noun and verb chunks are 

merged.  

3.3 Shasthi Relation (r6) 

In dependency parsing the genitive relation are 

marked with shasthi (r6) relation. The chunk 

with shasthi (r6) (see the tagset of NLP Tool 

Contest: ICON 2009) relation always has a rela-

tion with the succeeding chunk. An example is 

shown in Figure 3. 

In the example as mentioned in Figure 3, the 

word “wadera”(their) has a genitive relation 

with the word in the next chunk “manera”(of 

mind). These chunks are placed in a set. It forms 

a set of two chunks members. The system gene-

rates two different types of set. In one forms a 

set of members having relation with verb 

chunks. Another set contains two noun chunks 

with genitive relation. Now the sets containing 

only noun chunks with genitive relation does not 

form a clause. Those sets are merged with the set 

containing verb chunk and having dependency 

relation with the noun chunks. An example is 

shown in Figure 3. 

 
Figure 3: Shasthi Relation 

 

Consider ω is set of all sets containing two 

chunk members connected with genitive marker. 

Consider β is a set of all sets consisting of re-

lated chunks with a verb chunk. λ is a element of 

ω. α is a element of β. Now, If a set λ which can 

have common chunks from a α set then λ set is 

associated with the proper α set. So, λ ∩ α ≠ 

Null then α = α ∪ λ. If a set λ which can have 

common chunks from two α sets which leads to 

ambiguity of associability of the λ set with the 

proper α set. If λ ∩ α = verb chunk, then λ set 

will be associated with α set containing the verb 

chunk. From the related set of chunk of verb 

chunks, system has identified the clauses in the 

sentence. Afterwards, the clauses are marked 

with the B-I-E (Beginning-Intermediate-End) 

notation.  

4 Case Grammar-Identification of Ka-

raka relations 

The classical Sanskrit grammar Astadhyayi
8
  

(‘Eight Books’), written by the Indian gramma-

                                                 
8
 

http://en.wikipedia.org/wiki/P%C4%81%E1%B9%87

ini 
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rian Panini sometime during 600 or 300 B.C. 

(Robins, 1979), includes a sophisticated theory 

of thematic structure that remains influential till 

today. Panini’s Sanskrit grammar is a system of 

rules for converting semantic representations of 

sentences into phonetic representations (Ki-

parsky, 1969). This derivation proceeds through 

two intermediate stages: the level of karaka rela-

tions, which are comparable to the thematic role 

types described above; and the level of morpho-

syntax. 

Fillmore’s Case Grammar (Fillmore, 1968), 

and much subsequent work, revived the Panini’s 

proposals in a modern setting. A main objective 

of Case Grammar was to identify semantic ar-

gument positions that may have different realiza-

tions in syntax. Fillmore hypothesized ‘a set of 

universal, presumably innate, concepts which 

identify certain types of judgments human be-

ings are capable of making about the events that 

are going on around them’. He posited the fol-

lowing preliminary list of cases, noting however 

that ‘additional cases will surely be needed’.  

• Agent: The typically animate perceived 

instigator of the action. 

• Instrument: Inanimate force or object 

causally involved in the action or state. 

• Dative: The animate being affected by 

the state or action. 

• Factitive: The object or being resulting 

from the action or state. 

• Locative: The location or time-spatial 

orientation of the state or action. 

• Objective: The semantically most neu-

tral case, the concept should be limited to 

things which are affected by the action or 

state. 

The SSF specification handles this syntactic 

dependency by a coarse-grain tagset of Nomini-

tive, Accusative, Genitive and Locative case 

markers. Bengali shallow parser identifies the 

chunk heads as part of the chunk level analysis. 

Dependency parsing followed by a rule based 

module has been developed to analyze the inter-

chunk relationships depending upon each verb 

present in a sentence. Described theoretical as-

pect can well define the problem definition of 

clause boundary identification but during prac-

tical implementation of the solution we found 

some difficulties. Bengali has explicit case 

markers and thus long distant chunk relations are 

possible as valid grammatical formation. As an 

example: 
bAjAre yAoyZAra samayZa xeKA 

kare gela rAma. 

 

bAjAre yAoyZAra samayZa rAma 

xeKA kare gela. 

 

rAma bAjAre yAoyZAra samayZa 

xeKA kare gela. 

 

Rama came to meet when he 

was going to market. 

 

In the above example rAma could be placed 

anywhere and still all the three syntactic forma-

tion are correct. For these feature of Bengali 

many dependency relation could be missed out 

located at far distance from the verb chunk in a 

sentence. Searching for uncountable numbers of 

chunks have dependency relation with a particu-

lar verb may have good idea theoretically but we 

prefer a checklist strategy to resolve the problem 

in practice. At this level we decided to check all 

semantic probable constituents by the definition 

of universal, presumably innate, concepts list. 

We found this is a nice fall back strategy to iden-

tify the clause boundary. Separately rules are 

written as described below. 

4.1 Agent 

Bengali is a verb final language. Most of the 

Bengali sentences follow a Subject-Object-Verb 

(SOV) pattern. In Bengali, subject can be miss-

ing in a clause formation. Missing subjects and 

missing keywords lead to ambiguities in clause 

boundary identification. 

 

������ �� �	��। 
Close the door. 

 

In the previous case system marks 

“������/door” as an “Agent” whereas the 

“Agent” is “you” (2
nd

 person singular number), 

silent here.  

We developed rules using case marker, Gend-

er-Number-Person (GNP), morphological fea-

ture and modality features to disambiguate these 
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types of phenomena. These rules help to stop 

false hits by identifying no 2
nd

 person phrase 

was there in the example type sentences and em-

power to identify proper phrases by locating 

proper verb modality matching with the right 

chunk.  

4.2 Instrument 

Instrument identification is ambiguous for the 

same type of case marker (nominative) taken by 

agent and instrument. There is no ani-

mate/inanimate information is available at syn-

tactic level. 


��	�� ��
�
� ��� �������। 
The music of Shyam’s messme-

rized me. 

����� ����। 
The umbrella of Sumi. 

 

Bengali sentences follow a Subject-Object-

Verb (SOV) pattern. Positional information is 

helpful to disambiguate between agent and in-

strument roles. 

4.3 Dative 

G
en

er
a

l 

Bengali English Gloss 

����/�	��/���/���
�... 

Morn-

ing/evening/night/da

wn… 

_��� 

���/���/�����/

�����/��	��... 

O 

clock/time/hour/min

ute/second… 

�������/������/�
�����... 

Mon-

day/Tuesday/Sunday

… 

��
��/�� /... Bengali months… 

�������!/�"#���! January/February… 

���/���/���... Day/month/year… 

���/$�/%�... Long 

time/moment… 

R
el

a
ti

v
e 

&	'/%	�... Before/After… 

���	�/�%�	�... Upcoming/ 

Special 

Cases 
(ঠ	�/

*��	�..

. 

When rise/When 

stop… 

Table 3: Categories of Time Expressions 

 

Time expression identification has a different 

aspect in NLP applications. People generally 

studied time expression to track event or any 

other kind of IR task. Time expressions could be 

categorized in two types as General and Rela-

tive.  

In order to apply rule-based process we de-

veloped a manually augmented list with pre de-

fined categories as described in Table 3. Still 

there are many difficulties to identify special 

cases of relative time expressions. As an exam-

ple: 

+�
� (ঠ	� &��� �,�� -	��। 
When moon rise we will start 

our journey. 

In the previous example the relative time ex-

pression is “(ঠ	�/when rise” is tagged as infinite 

verb (for Bengali tag level is VGNF). Statistics 

reveals that these special types of cases approx-

imately are only 1.8-2% in overall corpus. 

These types of special cases are not handled 

by the present system. 

4.4 Factitive 

The particular role assignment is the most chal-

lenging task as it separately known as argument 

identification. To resolve this problem we need a 

relatively large corpus to learn fruitful feature 

similarities among argument structures. 

A manually generated list of causative post-

positional words and pair wise conjuncts as re-

ported in Table 4 has been prepared to identify 

argument phrases in sentences. 

 

General 

Bengali English Gloss 

���/���	�/�-�� ... Hence/Reason/

Reason 

Relative 
য��_�	� If_else 

য��,_���, If_else 

Table 4: Categories of Causative Expressions 

4.5 Locative 

Rules have been written using a manually edited 

list as described in Table 5. Morphological loca-

tive case marker feature have been successfully 

used in identification of locative marker. There 

is an ambiguity among Agent, Dative and Loca-

tive case marker as they orthographically gene-

rates same type of surface form (using common 
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suffixes as: �◌, �◌� etc). There is less differences 

we noticed among their syntactic dependency 

structure throughout the corpus. Positional in-

formation helps in many cases to disambiguate 

these cases. 

��	
 ��� ��0 ����। 
There is unemployment in 

country side. 

A different type of problem we found where 

verb plays locative role. As an example: 

���	� �য��	� ��� �	� ����	�। 
Where people works there. 

Here “�য��	� ��� �	�/Where people works” 

should be identified as locative marker. But this 

is a verb chunk and leads difficulty. Corpus sta-

tistics reveals that this type of syntactic forma-

tion is approximately 0.8-1.0% only and not 

been handled by the present system. 

 

Gen-

eral 

Bengali English Gloss 

��	ঠ/��	�/��1�� Morn-

ing/evening/night

/dawn… 

Rela-

tive 

&	'/%	�... Before/After… 

���	�/�%�	�... Front/Behind 

Table 5: Categories of Locative Expressions 

4.6 Objective 

The concept of objectivity is limited to things or 

human which are affected by the action or state. 

Statistical parser is a best way out for the present 

problem. The karma karaka (k2) identified by 

the dependency parser is simply the objective 

constituent of any clause. 

5 Identification the Type of Clauses  

After marking of the clause boundaries, clause 

types are identified. According to the clause 

structure and functions in a sentence, clauses are 

classified in to four types as principal clause, 

noun clause, adverbial clause and adjective 

clause. To identify the clause types, a CRF based 

statistical approach has been adopted.  

5.1 Generative Grammar 

In theoretical linguistics, generative grammar 

refers to a particular approach to the study of 

syntax. A generative grammar of a language at-

tempts to give a set of rules that will correctly 

predict which combinations of words will form 

grammatical sentences. Chomsky has argued 

that many of the properties of a generative 

grammar arise from an "innate" universal gram-

mar. Proponents of generative grammar have 

argued that most grammar is not the result of 

communicative function and is not simply 

learned from the environment. Strongly moti-

vated by Chomsky’s generative grammar we 

adopt the CRF based machine learning to learn 

the properties of a language and apply the know-

ledge to typecast clause classification as well.  

5.2 Conditional Random Fields (CRF)  

CRFs are undirected graphical models which 

define a conditional distribution over a label se-

quence given an observation sequence. CRF 

usually trained based on input features. Maxi-

mum likelihood is being calculated on chosen 

features for training.  

5.2.1 Features  

The vitality of using any machine learning ap-

proach is in identification of proper feature set. 

Conditional Random Field (CRF) works on a 

conditional distribution over a label sequence 

given an observation sequence. Hence CRF used 

here to statistically capture the prosodic structure 

of the language. The features experimentally 

found useful are chosen as listed below.  

5.2.2 Chunk Label 

An n-gram chunk label window has been fixed 

to capture internal arrangement of any particular 

clause type.  

5.2.3 Chunk Heads 

Chunk head pattern is the vital clue to identify 

the any clause pattern.  

5.2.4 Word 

In the clause type identification task words play 

a crucial part as word carries the information of 

the clause type.  

  From the input file in the SSF format, all the 

morphological information like root word, chunk 

heads are retrieved. The clause type identifica-

tion depends on the morphological information 

along with the position in the sentences and also 

the surrounding chunk labels. Therefore the CRF 

based statistical tool calculates the probability of 
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the morphological information along with the 

dependency relations of the previous three and 

next three chunks. For the present task a quad-

gram technique is used as most of the sentences 

have around 10 chunks.  

The input file in the SSF format includes 

Chunk labels and word. The clause information 

in the input files are in B-I-E format so that the 

begin (B) / inside (I) / end (E) information for a 

clause are associated as a feature. The chunk 

heads, words are identified from the training file 

and noted as an input feature in the CRF based 

system. Each sentence is represented as a feature 

vector for the CRF machine learning task. The 

input features associated with each word in the 

training set are the word, clause boundary tags, 

chunk tag and clause type tags.  

6 Error Analysis  

During the development stage of the system we 

had studied the various clause boundary labeling 

errors committed by the system.  In the above 

examples, the system faces ambiguity to derive 

the rules for the identification of the clause 

members when a noun chunk acts as a noun 

modifier of a clause.  In complex sentences, the 

verb chunk of the subordinate clause may have 

noun modifier relation with the principal clause. 

As System forms the groups the chunks with 

dependency relation, system merges the subor-

dinate clause with principal clause. An example 

is shown in Figure 4. 
 

 
Figure 4: Shasthi Relation 

 

7 Experimental results   

System Precision Recall 

Boundary  73.12% 75.34% 

Classification  78.07% 78.92% 

Table 6: Performance of present System 

 

The accuracy of the rule-based clause boundary 

identification system is 73.12% and 78.07% is 

the accuracy clause type classification system as 

reported in Table 6. 

8 Conclusion 

This paper reports about our works on clause 

identification and classification in Bengali lan-

guage. We have used the rule based system to 

identify clause boundary and a statistical CRF 

based model is used to decide the type of a 

clause.  

In future we would like to study different se-

mantic relations which can regulate clause type 

and boundary.  
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Abstract 

A morphological analyzer forms the 

foundation for many NLP applications of 

Indian Languages. In this paper, we pro-
pose and evaluate the morphological 

analyzer for Marathi, an inflectional lan-

guage. The morphological analyzer ex-
ploits the efficiency and flexibility of-

fered by finite state machines in model-

ing the morphotactics while using the 

well devised system of paradigms to 
handle the stem alternations intelligently 

by exploiting the regularity in inflection-

al forms. We plug the morphological 
analyzer with statistical pos tagger and 

chunker to see its impact on their per-

formance so as to confirm its usability as 
a foundation for NLP applications. 

1 Motivation and Problem Definition 

A highly inflectional language has the capability 

of generating hundreds of words from a single 
root. Hence, morphological analysis is vital for 

high level applications to understand various 

words in the language. Morphological analyzer 

forms the foundation for applications like infor-
mation retrieval, POS tagging, chunking and 

ultimately the machine translation. Morphologi-

cal analyzers for various languages have been 
studied and developed for years. But, this re-

search is dominated by the morphological ana-

lyzers for agglutinative languages or for the lan-
guages like English that show low degree of in-

flection. Though agglutinative languages show 

high morpheme per word ratio and have com-

plex morphotactic structures, the absence of fu-

sion at morpheme boundaries makes the task of 
segmentation fluent once the model for imple-

mentation of morphotactics is ready. On this 

background, a morphological analyzer for highly 

inflectional language like Marathi which has the 
tendency to overlay the morphemes in a way that 

aggravates the task of segmentation presents an 

interesting case study. 
Eryiğit and Adalı (2004) propose a suf-

fix stripping approach for Turkish. The rule 

based and agglutinative nature of Turkish allows 
the language to be modeled using FSMs and 

does not need a lexicon. The morphological ana-

lyzer does not face the problem of the changes 

taking place at morpheme boundaries which is 
not the case with inflectional languages. Hence, 

although apprehensible this model is not suffi-

cient for handling the morphology of Marathi. 
Many morphological analyzers have 

been developed using the two-level morphologi-

cal model (Koskenniemi, 1983) for 

morphological analysis. (Oflazer, 1993; Kim et 
al., 1994) have been developed using PC-

Kimmo (Antworth, 1991), a morphological 

parser based on the two-level model. Concep-
tually, the model segments the word in its con-

stituent parts, and accounts for phonological and 

orthographical changes within a word. While, 
the model proves to be very useful for develop-

ing the morphological analyzers for agglutina-

tive languages or the languages with very less 

degree of inflection, it fails to explicitly capture 
the regularities within and between paradigms 

present in the inflectional languages. Marathi 

has a well defined paradigm-based system of 
inflection. Hence, we decided to develop our 

own model which works on the similar lines of 

PC-Kimmo (Antworth, 1991) but exploits the 
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usefulness of paradigm-based inflectional sys-

tem. 
Bharati et al. (2004) propose a paradigm 

based algorithm for morphological analysis of 

Hindi, an inflecting language. In Hindi, the in-

flected forms of roots do not allow further at-
tachment of any other suffixes. In contrast, in 

Marathi once the root is transformed into its in-

flected form it is followed by suffixes to show 
its agreement with the other words in the sen-

tence. Some postpositions derive new words 

which themselves may undergo inflection and 
allow attachment of other suffixes. This makes 

the simple paradigm-based model proposed in 

this work unfit for Marathi morphological analy-

sis. 
Dixit et al. (2006) developed a morphological 

analyzer with a purpose of using it for spell 

checking. Though their analyzer successfully 
analyzes the words with a single suffix, its scope 

is restricted to the handling of only first level 

suffixes. 

1.1 Our Approach 

In this paper, we present the morphological 
analyzer for Marathi which is official language 

of the state of Maharashtra (India). With 90 

million fluent speakers worldwide, Marathi 
ranks as the 4

th
 most spoken language in India 

and the 15
th
 most in the world. The methodology 

is based on the use of paradigm-based 
inflectional system combined with finite state 

machines (FSMs) for modeling the 

morphotactics. To the best of our knowledge, 

such an approach has never been tried out for 
Marathi. The crux of the system lies in the 

detailed study of morphosyntactic phenomena, 

the morphotactic structure of the language and 
the use of paradigm-based inflectional system. 

The approach can be used for other inflection-

al languages by developing the resources like 
language specific inflection rules and the FSM 

that models the morphotactics for the language. 

1.2 Marathi Morphology 

Marathi is a morphologically rich language. It is 

highly inflectional and also shows derivation to 
a high degree. Like other synthetic languages, 

Marathi morphological analysis faces some 

well-known challenges. Words contain multiple 
morphemes fused together in such a way that, it 

becomes difficult to segment them. A single 

morpheme contains a bunch of grammatical 
attributes associated with it which creates a chal-

lenge for morphological parsing. A single root is 

capable of generating hundreds of words by 

combining with the other morphemes. 
The complexity involved in the formation of a 

polymorphemic word can be better illustrated 

using an example. Consider the word 

 {devaasaarakhyaalaa} (to the one 

like the god). The nominal root ‘ ’ {deva} 

(god) gets inflected to the oblique case, singular 

form ‘ ’ {devaa} which is then followed by 

the adjectival suffix ‘ ’ {saarakhaa} (alike). 

This derives the adjective ‘ ’ {devaa-

saarakhaa} (the one like the god) which then 

starts behaving like a noun. This noun on getting 
inflected to the oblique case, singular form 

 {devasaarakhyaa} is followed by the 

case marker  {laa} (to). This gives the word 

 {devaasaarakhyaalaa} (to the one 

like the god). Equation 1 illustrates this process. 

 

 

 

Equation 1. Formation of  {de-

vaasaarakhyaalaa} (to the one like the god) 

 

This suggests that the process of formation of 
polymorphemic words is recursive in nature with 

inflection taking place at every level of recur-

sion. 
Section 2 discusses the design of the morpho-

logical analyzer which tries to overcome the 

problems discussed above with respect to Mara-
thi language. Sections 3 and 4 discuss the lin-

guistic resources and the processing of words 

belonging to various categories respectively. 

Sections 5 and discuss the classification of suf-
fixes and development of automata based on this 

classification respectively. Section 7 briefs on 

the experimental setup and the results. 

27



2 Morphological Analyzer for Marathi 

The formation of polymorphemic words leads to 

complexities which need to be handled during 

the analysis process. FSMs prove to be elegant 

and computationally efficient tools for modeling 
the suffix ordering in such words. However, the 

recursive process of word formation in Marathi 

involves inflection at the time of attachment of 
every new suffix. The FSMs need to be capable 

of handling them. Koskenniemi (1983) suggests 

the use of separate FSMs to model the ortho-

graphic changes. But, Marathi has a well devised 
system of paradigms to handle them. One of our 

observations led us to a solution that combines 

paradigm-based inflectional system with FSM 
for modeling. The observation was that, during 

the i
th

 recursion only (i-1)
th
 morpheme changes 

its form which can be handled by suitably mod-
ifying the FSM. The formation of the same word 

devaasaarakhyaalaa described above can be 

viewed as illustrated in Equation 2. 

 

 
Equation 2. Simulating the formation of 

 {devaasaarakhyaalaa} (to the 

one like the god) 

Generalizing the word formation process we ar-
rived at the formulation specified by Equation 3.  

 
Equation 3. Formulation of Polymorphemic 

Word Formation 

This requires a morphotactic FSM which is 

aware of the inflected forms of morphemes in 
addition to the actual morphemes to handle the 

above recursive process of word formation. We 

use the paradigm-based system to generate the 

inflected form of the morphemes and feed them 
to the FSM. Figure 1 shows the architecture of 

the morphological analyzer based on this philos-

ophy. 
Inflector inflects all morphemes in the lex-

icon using the inflection rules associated with 

the paradigms to which they belong.  
Given a word, Morphological Recognizer 

recognizes the constituent morphemes in their 

inflected forms using finite state machine that 

models the morphotactics. For example, the out-
put of the Morphological Recognizer for the 

word devaasaarakhyaalaa is devaa + saarakhyaa 

+ laa. Morphological Parser outputs per mor-
pheme analysis of the word using the mor-

phemes recognized by the Morphological Re-

cognizer. 

3 Linguistic Resources 

The linguistic resources required by the morpho-

logical analyzer include a lexicon and inflection 
rules for all paradigms. 

3.1 Lexicon 

An entry in lexicon consists of a tuple <root, 

paradigm, category>. The category specifies the 

grammatical category of the root and the para-
digm helps in retrieving the inflection rules as-

sociated with it. Our lexicon contains in all 

24035 roots belonging to different categories. 
 

Figure 1. Architecture of Marathi Morphological Analyzer 
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3.2 Inflection Rules 

Inflection rules specify the inflectional suffixes 
to be inserted (or deleted) to (or from) different 

positions in the root to get its inflected form. An 

inflectional rule has the format: <inflectional 

suffixes, morphosyntactic features, label>. The 
element morphosyntactic features specifies the 
set of morphosyntactic features associated with 
the inflectional form obtained by applying the 
given inflection rule. Following is the exhaustive 
list of morphosyntactic features to which differ-
ent morphemes get inflected: 

1) Case: Direct, Oblique 

2) Gender: Masculine, Feminine, Neuter, 

Non-specific 
3) Number: Singular, Plural, Non-specific 

4) Person: 1st, 2nd, 3rd
 

5) Tense: Past, Present, Future 

6) Aspect: Perfective, Completive, Fre-
quentative, Habitual, Durative, Incep-

tive, Stative 

7) Mood: Imperative, Probabilitive, Sub-

junctive, Conditional, Deontic, Abiltive, 

Permissive 

The label specifies the morphotactic class to 
which the inflected form (generated by applying 

the inflection rule) belongs. It is used by the 

Morphological Recognizer. 

4 Category Wise Morphological For-

mulation 

The grammatical categories observed in Marathi 
include nouns, pronouns, verbs, adjectives, ad-

verbs, conjunctions, interjections and postposi-

tions. The morphemes belonging to different 
categories undergo different treatment. 

4.1 Noun Morphology 

Marathi nouns inflect for number and case. 

Postpositions get attached to the oblique forms 
of the nouns (known as stems) to show their re-

lationship with other words in the sentence. A 

single stem is used for the attachment of all 

postpositions which makes nominal morphology 
absolute economic in nature. For example vari-

ous forms of the word  {daara} (door) are 

 {daaraasa} (to the door),  {daa-

raane} (by the door),  {daaraashejarii} 

(besides the door). Please note that the same 

stem  {daaraa} is used for the attachment of 

various postpositions. 
Depending upon their ending, gender 

and the inflectional patterns, the nouns in Mara-

thi can be classified into various paradigms. A 

paradigm is a complete set of related inflectional 
forms associated with a given root. All words 

that share the similar inflectional forms fall in 

the same paradigm. Table 1 presents the para-

digm  {daara} (door). 

 Case 

 Direct  Oblique 

Number Singular  {daa-

ra} 

 {daaraa} 

Plural  

{daare} 

 {daa-

raaN} 

Table 1. Paradigm Table for  {daara} 

(door) 

 {kaapaDa} (cloth),  {paana} (leaf), 

 {pustaka} (book),  {kapaaTa} (cup-

board) are the few nouns that fall into this para-

digm. 

Every paradigm has a set of inflection rules 
associated with it one corresponding to every 

inflectional form of the word. A noun has four 

inflectional forms each one corresponding to a 
case-number pair. Hence, every paradigm has 

four inflectional rules associated with it. 

An inflectional rule for Marathi consists of a 

tuple specifying the inflectional suffixes that 
should be inserted and deleted from ultimate and 

penultimate position of the root. Table 2 lists the 

inflectional suffixes that collectively form an 
inflectional rule. 

The procedure to obtain the inflected form 

of the given root R belonging to paradigm P by 
applying the inflectional rule I <UD, UI, PUD, 

PUI> is as follows: 

i. R =R - PUD 

ii. R = R + PUI 

iii. R = R – UD 

iv. R = R + UI 

Suffix Description 

Ultimate 

Deletion 

Suffix to be deleted from the ul-

timate position of the root 
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(UD) 

Ultimate 

Insertion 
(UI) 

Suffix  to be inserted at the ulti-

mate position of the root 

Penultimate 

Deletion 
(PUD) 

Suffix  to be deleted from the pe-

nultimate position of the root 

Penultimate 

Insertion 

(PUI) 

Suffix  to be inserted at the ulti-

mate position of the root 

Table 2. Suffixes in an Inflectional Rule 

For a given word, even if a single rule out of the 

four is different from the set of available para-

digms, a new paradigm needs to be created. Ta-

ble 3 shows the paradigm  {bhakta} (devo-

tee). Note that, the only difference between the 

two paradigm tables is in the direct case plural 

form. 
 

 Case 

 Direct  Oblique 

Number Singular  

{bhakta} 

   {bhak-

taa} 

Plural 

{bhakta} 

 {bhak-

taaN} 

Table 3. Paradigm Table for  {bhakta} 

(devotee) 

In this way, our lexicon contains 16448 nouns 

categorized into 76 paradigms. Out of the 76 
paradigms, 30 correspond to feminine gender, 29 

to masculine and 17 to neuter gender. This set of 

paradigms includes three null paradigms, one 
corresponding to each gender. In modern Mara-

thi, the stem of the proper nouns or foreign 

words transliterated in Marathi is same as the 

root. In short, postpositions can be directly at-
tached to these roots without any modification. 

Such nouns belong to the null paradigm. 

4.2 Postposition Morphology 

Postpositions follow the stems of nouns and 
pronouns. Postpositions in Marathi can be 

broadly classified into case markers and shab-

dayogi avyayas. Shabdayogi avyayas show the 

relationship of nouns and pronouns with the oth-
er words in the sentence while deriving the ad-

jectives or adverbs in most of the cases. Depend-

ing upon the category of the word derived by 
them they are classified as adjectival and adver-

bial suffixes respectively. We have 142 postpo-

sitions listed in our lexicon.  

4.3 Classification of Postpositions 

The first step towards defining the morphotactics 

of a language is the classification of various suf-

fixes into classes depending upon the mor-

phemes they can follow and the morphemes that 
can follow them. Given the list of 142 postposi-

tions, we carefully examined each one to under-

stand its morphotactic behavior and came up 
with the classification of Marathi postpositions 

as presented in the Table 4. 

 

Class Ordering Rules Ex-

ample 

Case 

markers 

They can follow any ob-

lique form. No other suf-
fixes can follow them. 

 

{ne} 

(by) 

Adjectival 
Suffixes 

They can follow an obli-
que form of a root. Since 

they derive an adjective, 

they can be followed by 
any other suffixes. 

 

{saa-

rak-

haa} 

(alike 

Possessive 

case 

marker 

It can follow any oblique 

form. It can be followed 

by any other suffixes. 

 

{chaa} 

(the 

one 

belong

ing to 

some-

thing) 

Closing 

suffixes 

They can follow any ob-

lique form. No other suf-

fixes can follow them. 

 

{pek-

shaa} 

(in-

stead 
of) 

 {chaa} 

adjectival 

suffix 

It can follow Peculiar 

NSTs and Nearly closing 
postpositions. It can be 

followed by case mark-

ers. 

 

{chaa} 

(the 
one) 

Peculiar They can follow any ob-  
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NSTs lique form. They can be 

followed only by Exclu-

sive postpositions and  

{chaa} adjectival suffix. 

{ja-

waLa} 
(near) 

Exclusive 

postposi-

tions 

They can follow peculiar 

NSTs. They close the 

word. 

 {ii} 

(in-

side) 

Nearly 
closing 

postposi-

tions 

They can follow oblique 
forms of nouns and pro-

nouns. They can be fol-

lowed by  {chaa} ad-

jectival suffix. 

 

{pa-
ryan-

ta} 

(uptil) 

Shuddha-
shabdayo-

gi avyayas 

They can follow almost 
any morpheme except 

oblique forms of nouns. 

They can be followed by 
some postpositions. But, 

this behavior is quite ir-

regular and needs more 

investigation. In most of 
the cases, these suffixes 

close the word. Hence, 

we consider them to be 
occurring only at the end 

of the word. 

 

{cha} 
(only) 

Table 4. Classification of Postpositions 

4.4 Verbs 

The verbs inflect for gender, number and person 
of the subject and the direct object in a sentence. 

They also inflect for tense and aspect of the ac-

tion as well as mood of the speaker in an illocu-
tionary act. They may even undergo derivation. 

Further discussion on verbal morphology will be 

based on Aakhyaata theory (inflection) and Kru-

danta theory (derivation) (Damale, 1970). Our 
lexicon contains 1160 verb roots classified into 

22 paradigms. 

Aakhyaata Theory forms the basis of 

verbal inflection in Marathi. Aakhyaata  

refers to tense, aspect, and mood. Aakhyaata is 

realized through an aakhyaata suffix which is a 

closing suffix, attached to the verb root. There 
are 8 types of aakhyaatas named after the pho-

nemic shape of the aakhyaata suffix. Associated 

with every aakhyaata are various aakhyaata-

arthas which indicate the features: tense, aspect 
and mood. An aakhyaata may or may not agree 

with gender. There are around 80 Aakhyaata 

suffixes in Marathi. 
Krudanta Theory forms the basis of 

verbal derivation in Marathi. Krudanta refers to 

the word ending in a krut-pratyaya (a suffix 

which refers to an action). Krut-pratyayas are 
attached at the end of verbs to form non-

infinitive verb forms. These forms usually be-

long to one of the categories: noun, adverb or 
adjective. They contribute to the aspect of the 

verb from which they are derived. We cover on-

ly the krudanta forms which are regular in beha-
vior. 

Irregular Verbs: Some verbs in Marathi have 

different behavior as compared to the other 

verbs (regular verbs). These verbs are present in 
some inflected forms for which no definite stem 

exists.  

4.5 Adjectives 

Marathi adjectives can be classified into two 
categories: ones that do not inflect and others 

that inflect for gender, number and case where 

such an inflection agrees with the gender and 

number of the noun modified by them. The in-
flectional forms of the adjectives are generated 

using similar procedure as that of nouns.  

4.6 Pronouns 

There are nine types of pronouns in Marathi. 
Pronouns possess very irregular behavior result-

ing into a large number of suppletive forms. In 

addition to these forms every pronoun has a spe-
cific oblique form (one each for singular and 

plural) to which shabdayogi avyayas can be at-

tached. 

4.7 Indeclinable Words 

Adverbs, conjunctions and interjections are the 
indeclinable words. Some adverbs can be fol-

lowed by a subset of postpositions. 

5 Morphotactics and Automata 

Along with the postpositions mentioned in the 

Table 4 the complete set of morphemes in Mara-

thi includes the roots and their inflectional 
forms. Every morpheme is labeled according to 

the class it belongs to. These labels are used to 

define the ‘Morphotactic FSM’ that models Ma-
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rathi language. Table 5 enlists various labels 

used in the Morphotactic FSM. 
 

Type of Suffix Label 

Nouns, pronouns, nominal or 

adjectival krudantas 

DF 1 

OF 2 

Case markers 3 

Adjectival postpositions DF 4 

OF 5 

Possessive case marker DF 6 

OF 7 

Closing postpositions 8 

Peculiar NSTs 9 

Exclusive postpositions 10 

Nearly closing postpositions 11 

 {chaa} adjectival suffix 12 

Adjective 1 

Aakhyaatas 1 

Adverbial krudantas 1 

Adverbs-1  1 

Adverbs-2 13 

Shuddhashabdayogi avyayas 14 

Table 5. Morphotactic Labels of Morphemes 

DF: Direct form of a root or a suffix 

OF: Oblique form of a root or a suffix 
Adverb-1: The adverbs those cannot be followed 

by any postpositions 

Adverb-2: The adverbs those can be followed by 
some postpositions 

Note that, the label field mentioned in the inflec-

tion rules refers to the corresponding labels of 
the morphemes mentioned in Table 5. 

Figure 2 shows the FSM for morphological 

recognition of Marathi. The input symbols are 
the labels of the morphemes as mentioned in the 

Table 5. The classification of the suffixes as 

specified in Table 5 explains the construction of 
FSM. We use SFST

1
 (Stuttgart Finite State 

Transducer) for implementing the FSM. 

6 Experiments 

Morphological analysis caters to the needs of 

variety of application like machine translation, 

information retrieval, spell-checking. Different 
applications are interested in different bit of in-

formation provided by the analyzer like the 

stem, the root, the suffixes or the morphosyntac-

tic features. Hence, the performance evaluation 
of a morphological analyzer has to be observed 

in terms of its impact on the performance of the 

applications that use it. Hence, we carry out the 
evaluation in two parts: In direct evaluation we 

directly measure the accuracy of morphological 

analyzer on the given data. In indirect evalua-

tion, we observe the improvement in the per-
formances of statistical pos tagger and chunker 

                                                
1
 http://www.ims.uni-

stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html 

Figure 2. Morphotactic FSM 
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by using the morphological analyzer to generate 

the morphological features that help in boosting 
their accuracies. We used the corpora in TOUR-

ISM and NEWS domain for all our experiments.  

6.1 Direct Evaluation 

We used Marathi Morphological Analyzer for 

the analysis of 21096 unique words. We manual-
ly measured the accuracy of the morphological 

analyzer by counting the number of correctly 

analyzed words out of the total number of 
words. In the cases where a word has multiple 

analyses, the word was counted as correctly ana-

lyzed only when all of the correct analyses are 
present. Note that, in order to emphasize more 

on the usefulness of our approach towards mor-

phological analysis of Marathi, we added most 

of the roots used in the corpus to the lexicon be-
fore starting the experiments. For a language like 

Marathi, it is required to build a very rich lex-

icon which can be done over a larger period of 
time. 

 Out of the 21096 unique words, 20503 

(97.18%) were found to be correctly analyzed. 

Of the remaining 593 words, 394 words could 
not be recognized by Morphological Recognizer 

and 199 words were assigned the incorrect or 

insufficient analyses. 
By taking a closer look at the 394 words 

which were not recognized (segmented) we 

could come up with the causes of recognition 
failure as listed in Table 6.  

 

Cause Number of 

Words 

Lexicon Coverage 82    (20.81%) 

Absence of Rules 69    (17.51%) 

Acronyms 66    (16.75%) 

Compound words  55    (13.96%) 

Irregular forms needing 
further investigation 

47    (11.92%) 

Transliterated words which 

are uncommon 

25    (6.34%) 

Unidentified words 20    (5.08%) 

Dialect words/ words used 

in spoken language 

20    (5.08%) 

Use of common nouns as 

proper nouns  

5     (1.27%) 

Missing Paradigm 3     (0.76%) 

Fusion (Sandhii) 2     (0.51%) 

Table 6. Causes of Recognition Failure 

6.2 Indirect Evaluation 

CRF based sequence labelers (pos tagger 

and chunker) were trained using morpholog-

ical features and the other elementary features 

like (contextual words and bigram tags). The 

morphological features include ambiguity 

scheme (set of all possible categories of a word) 
and the suffixes for the pos tagger whereas just 

the suffixes in case of chunker.  

    To throw the light of role played by morpho-
logical analyzer in improving the accuracies of 

the sequence labelers, we performed the experi-

ments using two sets of features: The Learning 

Based (LB) labeler was trained using only ele-
mentary features whereas Morphologically Dri-

ven Learning Based (MDLB) labeler used the 

morphological features along with the elementa-
ry features. The results were obtained by per-

forming 4-fold cross validation over the corpora. 

The average accuracy of MDLB Pos tagger 
turned out to be 95.03 as compared to 85% of 

LB. The average accuracy of MDLB chunker 

was found to be 97.87% whereas that of LB was 

found to be 96.91%. . 

7 Conclusion and Future Work 

We presented a high accuracy morphological 
analyzer for Marathi that exploits the regularity 

in the inflectional paradigms while employing 

the Finite State Systems for modeling the lan-

guage in an elegant way. The accuracy figures as 
high as 97.18% in direct evaluation and the per-

formance improvement in shallow parsing speak 

about the performance of the morphological ana-
lyzer. We gave detailed description of the mor-

phological phenomena present in Marathi. The 

classification of postpositions and the develop-

ment of morphotactic FSA is one of the impor-
tant contributions since Marathi has complex 

morphotactics. As a next step the morphological 

analyzer can be further extended to handle the 
derivation morphology and compound words.  
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Abstract 

A web based Manipuri corpus is devel-
oped for identification of reduplicated 
multiword expression (MWE) and mul-
tiword named entity recognition (NER). 
Manipuri is one of the rarely investi-
gated language and its resources for 
natural language processing are not 
available in the required measure. The 
web content of Manipuri is also very 
poor. News corpus from a popular Ma-
nipuri news website is collected. Ap-
proximately four and a half million Ma-
nipuri wordforms have been collected 
from the web. The mode of corpus col-
lection and the identification of redupli-
cated MWEs and multiword NE based 
on support vector machine (SVM) 
learning technique are reported. The 
SVM based reduplicated MWE system 
is evaluated with recall, precision and F-
Score values of 94.62%, 93.53% and 
94.07% respectively outperforming the 
rule based approach. The recall, preci-
sion and F-Score for multiword NE are 
evaluated as 94.82%, 93.12% and 
93.96% respectively. 

1 Introduction  

The NER and MWE identification are important 
tasks for natural language applications that in-
clude machine translation and information re-
trieval. The present work reports the NER and 
reduplicated MWE identification of Manipuri 
on web based news corpus. The use of web as a 
corpus for teaching and research on languages 

has been proposed several times (Rundell, 2000; 
Fletcher, 2001; Robb, 2003; Fletcher 2004). A 
special issue of the Computational Linguistics 
journal on web as corpus (Kilgarriff and Gre-
fenstette, 2003) was published. Several studies 
have used different methods to mine web data. 
The web walked into the ACL meetings starting 
in 1999. The special interest group of ACL on 
web as corpus is promoting interest in the use of 
the web as a source of linguistic data, and as an 
object of study in its own right. India is a multi-
lingual country with a lot of cultural diversity. 
Bharati et al. (2001) reports an effort to create 
lexical resources such as transfer lexicon and 
grammar from English to several Indian lan-
guages and dependency Treebank of annotated 
corpora for several Indian languages. In Indian 
context, a web based Bengali corpus develop-
ment work from web is reported in Ekbal and 
Bandyopadhyay (2008) and Manipuri-English 
semi automatic parallel corpora extraction by 
Singh et. al., (2010). Newspaper is a huge 
source of readily available documents. In the 
present work, the Manipuri monolingual corpus 
has been developed from web for NLP and re-
lated tasks. 

Manipuri is a scheduled Indian language 
spoken approximately by three million people 
mainly in the state of Manipur in India and in 
the neighboring countries namely Bangladesh 
and Myanmar. It is a Tibeto-Burman language 
and highly agglutinative in nature, influenced 
and enriched by the Indo-Aryan languages of 
Sanskrit origin and English. The affixes play the 
most important role in the structure of the lan-
guage. In Manipuri, words are formed in three 
processes called affixation, derivation and com-
pounding. The majority of the roots found in the 
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language are bound and the affixes are the de-
termining factor of the class of the words in the 
language. Annotated corpus, bilingual dictiona-
ries, name dictionaries, WordNet, morphologi-
cal analyzers etc. are not yet available in Mani-
puri in the required measure. 

In the present work, the tasks of identifica-
tion of Manipuri multiword named entity (MNE) 
and reduplicated multiword expression (RMWE) 
identification using support vector machine 
(SVM) learning technique on the corpus col-
lected from web is reported. 

Works on multiword expressions (MWEs) 
have started with a momentum in different lan-
guages. In the Indian context, some of the 
works can be seen in (Dandapat et. al., 2006; 
Kunchukuttan and Damani, 2008; Kishorjit et. 
al., 2010). The identification of MWEs in sev-
eral languages concentrate on compound nouns, 
noun-verb combination, some on idioms and 
phrases and so on but not much on RMWEs. 
The reason may be that the reduplicated words 
are either rare or easy to identify for these lan-
guages since only complete duplication and 
some amount of partial reduplication may be 
present in these languages. On the other hand, 
reduplicated MWEs are quite large in number in 
Manipuri and there are wide varieties of redup-
licated MWEs in Manipuri. 

2 Manipuri News Corpus and Statis-

tics 

The content of Manipuri language on the web is 
very poor. One of the sources is the daily news 
publications. Again, there is no repository. Thus, 
the possibility of deploying web crawler and 
mining the web corpus is not possible. The Ma-
nipuri news corpus is collected from 
http://www.thesangaiexpress.com/ covering the 
period from May 2008 to May 2010 on daily 
basis. The Manipuri news is available in PDF 
format. A tool has been developed to convert 
contents from PDF documents to Unicode for-
mat. There are 15-20 articles in each day. Con-
sidering the Manipuri corpus covering the pe-
riod from May 2008 to May 2010, there are 
4649016 wordforms collected

1
. 

                                                 
1
There are no publications on some occasions. 

2.1 Conversion from PDF to UTF-8  

The general Manipuri news collected is in PDF 
format. A tool has been developed to convert 
Manipuri news PDF articles to Bengali Unicode. 
The Bengali Unicode characters are used to 
represent Manipuri as well. The conversion of 
PDF format into Unicode involves the conver-
sion to ASCII and then into Unicode using 
mapping tables between the ASCII characters 
and corresponding Bengali Unicode. The map-
ping tables have been prepared at different le-
vels with separate tables for single characters 
and conjuncts with two or more than two cha-
racters. The single character mapping table con-
tains 72 entries and the conjunct characters 
mapping table consists of 738 entries. There are 
conjuncts of 2, 3 and 4 characters. Sub-tables 
for each of the conjuncts are prepared. English 
words are present on the Manipuri side of the 
news and they are filtered to avoid unknown 
character features. 

2.2 Use of language resources 

The Manipuri web corpus collected from the 
web is cleaned by removing the unknown cha-
racters. After the cleaning process, the running 
texts are picked up followed by spelling correc-
tion. The web based news corpus is POS tagged 
using the 26 tagset

2
 defined for the Indian lan-

guages based on the work of (Singh et. al. , 
2008). The Manipuri news corpus developed in 
this work has been used to identify MNE and 
RMWEs identification. 

3 Support Vector Machine 

The SVM (Vapnik, 1995) is based on discr i-
minative approach and makes use of both pos i-
tive and negative examples to learn the distinc-
tion between the two classes. The SVMs are 
known to robustly handle large feature sets and 
to develop models that maximize their generali-
zability.   Suppose we have a set of training data 

for a two-class problem: 1 1{( , ),.....( , )}N Nx y x y , 

where xi  RD is a feature vector of the i
th

 sam-

ple in the training data and yi  {+1, -1} is the 
class to which xi belongs. The goal is to find a 
decision function that accurately predicts class y 

                                                 
2
http://shiva.iiit.ac.in/SPSAL2007/iiit_tagset_guidelines.p

df 
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for an input vector x. A non-linear SVM clas-
sifier gives a decision function f (x)= sign (g (x)) 
for an input vector where,  

1

( ) ( , )i

m

i

i

g x wK x z b


 
 Here, f(x)=+1 means 

x is a member of a certain class and f(x)=-1 
means x is not a member. The support vector is 
represented by zi and stands for the training ex-
amples; m is the number of support vectors 
Therefore, the computational complexity of g(x) 
is proportional to m. Support vectors and other 
constants are determined by solving a certain 

quadratic programming problem. ( , )iK x z is a 
kernel that implicitly maps vectors into a higher 
dimensional space. Typical kernels use dot 

products: ( , ) ( . )iK x z k x z .A polynomial ker-

nel of degree d is given by ( , )iK x z = (1+x)d. 
We can use various kernels, and the design of 
an appropriate kernel for a particular application 
is an important research issue. 

The MNE/RMWE tagging system includes 
two main phases: training and classification. 
The training process has been carried out by 
YamCha

3
 toolkit, an SVM based tool for detect-

ing classes in documents and formulating the 
MNE/RMWE tagging task as a sequence labe-
ling problem. Here, both one vs rest and pair-
wise multi-class decision methods have been 
used. Different experiments with the various 
degrees of the polynomial kernel function have 
been carried out. In one vs rest strategy, K bi-
nary SVM classifiers may be created where 
each classifier is trained to distinguish one class 
from the remaining K-1 classes. In pairwise 
classification, we constructed K (K-1)/2 clas-
sifiers considering all pairs of classes, and the 
final decision is given by their weighted voting. 
For classification, the TinySVM-0.07

4
 classifier 

has been used that seems to be the best opti-
mized among publicly available SVM toolkits.  

4 Multiword Named Entity Recogni-

tion  

Named Entity Recognition for Manipuri is re-
ported in (Singh et. al., 2009). The present work 
focuses and reports on the recognition of mul-
tiword NEs. In order to identify the MNEs,  

                                                 
3http://chasen-org/~taku/software/yamcha/  
4http://cl.aist-nara.ac.jp/~taku-ku/software/TinySVM  

28,629 wordforms from Manipuri news corpus 
has been manually annotated and used as train-
ing data with the major named entity (NE) tags, 
namely person name, location name, organiza-
tion name and miscellaneous name to apply 
Support Vector Machine (SVM) based machine 
learning technique. Miscellaneous name in-
cludes the festival name, name of objects, name 
of building, date, time, measurement expression 
and percentage expression etc. The SVM based 
system makes use of the different contextual 
information of the words along with the variety 
of word-level orthographic features that are 
helpful in predicting the MNE classes. 

MNE identification in Indian languages as 
well as in Manipuri is difficult and challenging 
as: 
 Unlike English and most of the European lan-

guages, Manipuri lacks capitalization infor-
mation, which plays a very important role in 
identifying MNEs. 
 A lot of MNEs in Manipuri can appear in the 

dictionary with some other specific meanings. 
 Manipuri is a highly inflectional language 

providing one of the richest and most chal-
lenging sets of linguistic and statistical fea-
tures resulting in long and complex word-
forms. 
 Manipuri is a relatively free word order lan-

guage. Thus MNEs can appear in subject and 
object positions making the NER task more 
difficult compared to others. 
 Manipuri is a resource-constrained language. 

Annotated corpus, name dictionaries, sophis-
ticated morphological analyzers, POS taggers 
etc. are not yet available.  
 

MNE 

Tag 

Meaning MNE Exam-

ples 

B-LOC 
 
 
 

Beginning, 
Internal or the 
End of 
a multiword 
location name 

থাঙ্গা (Thanga) 
I-LOC মমাইরাংথথম (Moi-

rangthem) 
E-LOC লৈকায় (Leikai) 

B-PER 
 

Beginning, 
Internal or the 
End of a mul-
tiword person 
name 

ওইনাম (Oinam) 

I-PER 
 

ইথিাবি (Ibobi) 

E-PER মীতৈ (Meetei) 

 Table 1. Named entity examples 
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In the present work, the NE tagset used 
have been further subdivided into the detailed 
categories in order to denote the boundaries of 
MNEs properly.  Table 1 shows examples. 

5 Reduplicated MWEs Identification 

Manipuri is very rich in RMWEs like other Ti-
beto-Burman languages. The work of (Singh, 
2000) describes the linguistic rules for identify-
ing reduplicated words. A rule based Manipuri 
RMWE identification is reported in (Kishorjit 
and Bandyopadhyay, 2010). The process of re-
duplication (Singh, 2000) is defined as: ‘redup-
lication is that repetition, the result of which 
constitutes a unit word’.  These single unit 
words are the MWEs. The RMWEs in Manipuri 
are classified as: 1) Complete RMWEs, 2) Par-
tial RMWEs, 3) Echo RMWEs and 4) Mimic 
RMWEs. Apart from these four types of 
RMWEs, there are also cases of a) Double 
RMWEs and b) Semantic RMWEs. 

Complete RMWEs: In the complete 
RMWEs the single word or clause is repeated 
once forming a single unit regardless of phono-
logical or morphological variations. 

মরিক মরিক (‘marik marik’) which means 

‘drop by drop’. 
 অটেক অটেকপা (‘atek atek-pa’ ) which 

means ‘fresh’ 
করি করি (‘kari kari’) means ‘what/which’.  
Partial RMWEs: In case of partial 

reduplication the second word carries some part 
of the first word as an affix to the second word, 
either as a suffix or a prefix. 

For example, চটথাক চরসিন (‘chat-thok chat-

sin’) means ‘to go to and fro’; শামী লানমী (‘saa-mi 

laan-mi’) means ‘army’. 
Mimic RMWEs: In the mimic  

reduplication the words are complete 
reduplication but the morphemes are 
onomatopoetic, usually emotional or natural 
sounds. For example, কিক কিক  (‘krak krak’ ) 

means ‘cracking sound of earth in drought’. 
Echo RMWEs: The second word does not 

have a dictionary meaning and is basically an 
echo word of the first word. For example, থকরি 
খারি (‘thak-si kha-si‘) means ‘good manner’. 

Double RMWEs: Such type of reduplica-
tion generally consists of three words where the 
prefix or suffix of the first two words is redupli-

cated but in the third word the prefix or suffix is 
absent. An example of double prefix reduplica-
tion is ইমনু ইমনু মনুবা (‘i-mun i-mun mun-ba’) 

which means, ‘completely ripe’. 
Semantic RMWEs: Both the reduplication 

words have the same meaning and so also is the 
MWE. Such types of MWEs are very special to 
the Manipuri language. For example,  পামবা কক 

(‘paamba kei’) means ‘tiger’ and each of the 
component words means ‘tiger’. 

5.1 Role of suffix and prefix 

Apart from the above cases meaningful prefixes 
or suffixes are used with RMWEs otherwise 
they are ungrammatical. 

Suffixes/ wh- duplicating 

words 

Part of 

Speech 
দা (–da),  রগ (–gi) and  রক (–ki) 

 
Beginning, Internal or the End 
of 
a multiword location name 

Noun 
বা (–ba) and পা (–pa) Adjective 

না (–na) Adverb 

করি করি (‘kari kari’), কনা কনা 
(‘kanaa kanaa’), কদায় কদায় 
(‘kadaay kadaay’) and কিম 
কিম (‘karam karam’) 

Wh- ques-
tion type 

Table 2. Suffixes/wh- duplicating words list 
used in Complete Reduplication and  POS 
tagging 
 

Prefix: With such prefixes the semantic 
shapes are different and sometimes even the 
same prefix carries a different meaning. By 
these prefixation, the root is reduplicated as 
given below: 

 
{[ই(i)-/পঙ(pang)-/খঙ(khang)-/ৈ(ta)-/পুম(pum)-/ 
শকু(suk)] + Root }  

  
{[ই(i)-/পঙ(pang)-/খঙ(khang)-/ৈ(ta)-/পুম(pum)-/ 
শকু(suk)] + Root  + Root} 

 
মহাক্না   ইৱাঙ  ৱাঙই 

 mahaak-na       i-waang    waang-ngi 
 he/she-nom    –tall          tall-asp 
 He/She is the tallest 

 

Suffix: There are some suffixes that carry 
certain meaning when used with RMWEs. 
Commonly used suffixes are, রিক (-trik) / রিক (-

drik), থ্রাক (-throk), থ্িাং (-drong), শকু (-suk), শঙ (-

sang), রিং (-dring), রশত্ (-sit), রশন (-sin), থ্িং (-
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dreng), থ্রাক (-sroke) etc. Generally these suffix-

es indicate a superlative degree or emphatic 
meaning. 

Some examples are as follows, 
মনুরিক       মনুবা 

mun-trik   mun-ba 
ripe         ripe 

‘very ripe’ 
 

Role of affix in Partial Reduplication: 
Character-wise comparisons are done with not 
less than two characters either from front or rear 
for both the words since the second word is not 
a complete repetition.  

Also the last few characters of the first 
word and the same number of first characters of 
the second word are compared to check the par-
tial reduplication. The prefixes or suffixes are 
verified with a list of accepted suffixes and pre-
fixes (see table 2) to validated the reduplication.  

Role of affix in Echo Reduplication: 
Identification of echo reduplication is done by 
comparing the equality of suffixes of   consecu-
tive two words w1 and w2. 

6 Best Feature Selection for SVM 

The use of prefix/suffix information works well 

for the highly inflected languages like the In-

dian languages. Different combinations from 

the following set for identifying  the best feature 

set for MNE/RMWE are experimented: 

F={ , .., 1, , 1, ....,i m i i i i nw w w w w    , |prefix|<=n, 

|suffix|<=n, MNE/RMWE tag(s) of previous 

word(s), POS tag(s) of the current and/or the 

surrounding word(s), First word, Length of the 

word, Digit information, Infrequent word}, 

where iw  is the current word; i mw   is the 

previous m
th

 word and i nw   is the next n
th
 

word. Following are the details of the features: 

1 Context word feature: Preceding and fol-

lowing words of a particular word since 

the surrounding words carry effective in-

formation for the identification of 

MNE/RMWEs. 

2 Word suffix: Word suffix information is 

helpful to identify MNE/RMWEs. This is 

based on the observation that the 

MNE/RMWEs share some common suf-

fixes. The fixed length (say, n) word suf-

fix of the current and/or the surrounding 

word(s) can be treated as the feature. If 

the length of the corresponding word is 

less than or equal to n − 1 then the feature 

values are not defined and are denoted by 

‘ND’. The feature value is also not de-

fined (ND) if the token itself is a punctua-

tion symbol or contains any special sym-

bol or digit. Word suffixes are the effec-

tive features and work well for the highly 

inflective Indian languages like Manipuri.  

3 Word prefix: Word prefixes are also help-

ful to identify MNE/RMWEs. It is based 

on the observation that MNE/RMWEs 

share some common prefix strings. This 

feature has been defined in a similar way 

as that of the fixed length suffixes.  

4 MNE and RMWE Information: The 

MNE/RMWE tag(s) of the previous 

word(s) have been used as the only dy-

namic feature in the experiment. The out-

put tag of the previous word is very in-

formative in deciding the MNE/RMWE 

tag of the current word. 

5 Digit features: Several binary valued digit 

features have been defined depending 

upon the  

(i). Presence and/or the exact number 

of digits in a token. 

(a). CntDgtCma: Token consists of 

digits and comma 

 (b). CntDgtPrd: Token consists of 

digits and periods 

(ii). Combination of digits and sym-

bols. For example, 

(a). CntDgtSlsh: Token consists of 

digit and slash 

(b). CntDgtHph: Token consists of 

digits and hyphen 

(c). CntDgtPrctg: Token consists of 

digits and percentages 

(iii). Combination of digit and special 

symbols. For example, 

(a). CntDgtSpl: Token consists of 

digit and special symbol such as $, 

# etc. 
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These binary valued digit features are 
helpful in recognizing miscellaneous 

NEs such as measurement expression 

and percentage expression. 
6 Infrequent word: The frequencies of the 

words in the training corpus have been 

calculated. A cut off frequency has been 

chosen in order to consider the words that 

occur with less than the cut off frequency 

in the training corpus. A binary valued 

feature ‘Infrequent’ is defined to check 

whether the current word appears in this 

infrequent word list or not. This is based 

on the observation that the infrequent 

words are most probably MNE/RMWEs. 

7 Length of a word: This binary valued fea-

ture is used to check whether the length 

of the current word is less than three or 

not. We have observed that very short 

words are most probably not the 

MNE/RMWEs. 

8 Part of Speech (POS) information: 
We have used an SVM-based POS 

tagger (Singh et. al., 2008) that was 

originally developed with 26 POS 
tags, defined for the Indian languages. 

The POS information of the current 

and/or the surrounding words can be 
effective for MNE/RMWE identifica-

tion. 

 
The Table 3 gives the statistics of training, 

development and test sets. The various nota-
tions used in the experiments are presented in 
Table 4. The Table 5 shows the recall (R), pre-
cision (P) and F-Score (FS) in percentage in the 
development set.  

 

Table 3. Statistics of the training, development 

and test sets 

 

Notation Meaning 

W[-i,+j]  Words spanning from the i
th

 left 

position to the j
th

 right position  

POS[-i, +j] POS tags of the words spanning 

from the i
th

 left to the j
th

 right 

positions 

Pre Prefix of the word 

Suf Suffix of the word 

NE [-i, -j] NE tags of the words spanning 

from the i
th

 left to the j
th

 left 

positions 

Table 4. Meaning of the notations 

 

Feature  R 

% 

P 

% 

FS 

% 

Static: W[-2,+2], POS[-

2,+2], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, 

FirstWord, Digit  

Dynamic: 

MNE/RMWE[-2,-1]  

94.

26 

96.

72 

95.

47 

Static: W[-3,+3], POS[-

3,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-3,-1] 

88.

23 

94.

82 

91.

40 

Static: W[-3,+2], POS[-

3,+2], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-3,-1] 

90.

32 

93.

18 

91.

72 

Static: W[-4,+3], POS[-

4,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-2,-1] 

88.

15 

92.

62 

90.

32 

Static: W[-4,+3], POS[-

4,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-3,-1] 

86.

24 

92.

31 

89.

17 

Static: W[-2,+2], POS[- 88. 91. 90.

 Training Devel-

opment 

Test 

# of sentences 1235 732 189 

#of wordforms 28,629 15,000 4,763 

# of distinct 

wordforms 

8671 4,212 2,207 
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2,+2], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-2,-1] 

70 49 07 

Static: W[-3,+3], POS[-

3,+3], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-3,-1] 

85.

05 

90.

09 

87.

49 

Static: W[-4,+3], POS[-

4,+2], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-2,-1] 

78.

55 

89.

54 

83.

68 

Static: W[-4,+4], POS[-

4,+4], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, 

FirstWord, Digit 

Dynamic: 

MNE/RMWE[-3,-1] 

73.

71 

89.

44 

80.

81 

Table 5. Results on the development set 

7 Results on the Test Set 

The best feature set (F) of Manipuri MNER and 
RMWE is identified as F=[prefixes and suffixes 
of length upto three characters of the current 
word, dynamic NE tags of the previous two 
words, POS tags of the previous two and next 
two words, digit information, length of the 
word]. After the selection of the best feature set, 
the SVM based system for MNE and RMWEs 
is tested on the test set of 4,763 wordforms. 

 

Reduplicated 

MWE type  

Recall 

% 

Precision 

% 

F-

Score 

% 

Complete and 

mimic 

96.21 95.12 95.66 

Partial 88.32 85.03 86.64 

Echo 97.76 96.45 97.10 

Double 93.23 94.23 93.72 

Semantic 74.45 81.56 77.84 

Table 6. Result on RMWE test set 

 

In this work, SVM that parses from left to 
right is considered. The break-up of the 
RMWEs and the scores are given in Table 6. 
The handling of semantic RMWEs requires fur-
ther investigation to improve the performance. 
The rule based RMWE identification (Kishorjit 
and Bandyopadhyay, 2010) shows a recall, pre-
cision and F-Score of 94.24%, 82.27% and 
87.68% respectively. 
 

Multiword 

NE  

Recall 

% 

Precision 

% 

F-

Score% 

Person 94.21 95.12 94.66 

Location 94.32 95.03 94.67 

Organization 95.76 93.45 94.59 

Miscellaneous 92.23 91.23 91.72 

Table 7. Result on MNE test set 

 
It is observed that the SVM based system 

outperforms the rule based system. Table 7 
shows the break-up scores of different types of 
MNEs and Table 8 shows the overall scores of 
MNE and RMWE. 

 

 Recall 

% 

Precision 

% 

F-Score 

% 

MNE 94.82 93.12 93.96 

RMWE 94.62 93.53 94.07 

Table 8. Overall recall, precision and F-Scores 

on test set 

8 Conclusion 

In this paper, the development of RMWEs iden-
tification and recognition of MNE for a re-
source-constrained language using web based 
corpus of Manipuri is reported. This training 
data of 28,629 is then manually annotated with 
a coarse-grained tagset of four NE tags and six 
RMWEs in order to apply SVM and tested with 
4,763 wordforms. The SVM classifier makes 
use of the different contextual information of 
the words along with the various orthographic 
word-level features. A number of experiments 
have been carried out to find out the best set of 
features for MWE in Manipuri. The SVM based 
RMWE system outperforms the rule based ap-
proach. The SVM based RMWE shows recall, 
precision and F-Score of 94.62%, 93.53% and 
94.07% respectively. The rule based RMWE 
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identification shows a recall, precision and F-
Score of 94.24%, 82.27% and 87.68% respec-
tively. The overall performance of the system 
shows reasonable output for both MNE and 
RMWE. 
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Abstract 

Word Segmentation is the foremost 
obligatory task in almost all the NLP 
applications, where the initial phase requires 
tokenization of input into words. Like other 
Asian languages such as Chinese, Thai and 
Myanmar, Urdu also faces word 
segmentation challenges. Though the Urdu 
word segmentation problem is not as severe 
as the other Asian language, since space is 
used for word delimitation, but the space is 
not consistently used, which gives rise to 
both space omission and space insertion 
errors in Urdu. In this paper we present a 
word segmentation system for handling 
space omission problem in Urdu script with 
application to Urdu-Devnagri Transliteration 
system. Instead of using manually 
segmented monolingual corpora to train 
segmenters, we make use of bilingual 
corpora and statistical word disambiguation  
techniques. Though our approach is adapted 
for the specific transliteration task at hand by 
taking the corresponding target (Hindi) 
language into account, the techniques 
suggested can  be adapted to  independently 
solve the space omission Urdu word 
segmentation problems. The two major 
components of our system are : 
identification of merged words for 
segmentation and proper segmentation of the 
merged words. The system was tested on 
1.61 million word Urdu test data. The recall 
and precision for the merged word 
recognition component were found to be  
99.29% and 99.38% respectively. The 
words are correctly segmented with 99.15% 
accuracy. 

1 Introduction 

Word segmentation is the foremost obligatory 
task in all NLP application, where the initial 
phase requires tokenization of input into words.  
For languages like English, French and Spanish 
etc. tokenization is considered trivial because the 
white space or punctuation marks between 
words is a good approximation of where a word 
boundary is. Whilst in various Asian languages 
such as Chinese, Thai and Myanmar, white 
spaces is rarely or never used to determine the 
word boundaries, so one must resort to higher 
levels of information such as: information of 
morphology, syntax and statistical analysis to 
reconstruct the word boundary information 
(Papageorgiou, 1994; Nie et al,  1995;  Wang et 
al,  2000;  Xu et al, 2005). 
 Though the Urdu word segmentation problem is 
not as severe as some of the  other Asian 
language, since space is used for word 
delimitation, but the space is not consistently 
used, which gives rise to both space omission 
and space insertion errors in Urdu. 
Durrani(2007) and Durrani and Hussain(2010) 
have discussed in detail the various Urdu word 
segmentation issues while Jawaid and 
Ahmed(2009) and Abbas et al(2009) have 
discussed the Hindi-Urdu transliteration issues. 
A word segmentation system for handling space 
insertion problem in Urdu script has been 
presented by Lehal(2009).  

Hindi and Urdu are variants of the same 
language characterized by extreme digraphia: 
Hindi is written in the Devanagari script from 
left to right, Urdu in a script derived from a 
Persian modification of Arabic script written 
from right to left. Hindi and Urdu share 
grammar, morphology, vocabulary, history, 
classical literature etc. Because of their identical 
grammar and nearly identical core vocabularies, 
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most linguists do not distinguish between Urdu 
and Hindi as separate languages. The difference 
in the two scripts has created a script wedge as 
majority of Urdu speaking people in Pakistan 
cannot read Devnagri, and similarly the majority 
of Hindi speaking people in India cannot 
comprehend Urdu script. To break this script 
barrier an Urdu-Devnagri transliteration system 
has been developed. The transliteration system 
faced many problems related to word 
segmentation of Urdu script as discussed above.  

In this paper we present a word segmentation 
system for handling space omission problem in 
Urdu script with application to Urdu-Devnagri 
Transliteration system. Instead of using 
manually segmented monolingual corpora to 
train segmenters, we make use of bilingual 
corpora and statistical word disambiguation  
techniques. Though our approach is adapted for 
the specific transliteration task at hand by taking 
the corresponding target (Hindi) language into 
account, the techniques suggested can be 
adapted to independently solve the space 
omission Urdu word segmentation problems. 
 

2 Urdu script: a brief overview 

Urdu is a Central Indo-Aryan language of the 
Indo-Iranian branch, belonging to the Indo-
European family of languages. It is the national 
language of Pakistan. It is also one of the 22 
scheduled languages of India and is an official 
language of five Indian states.  

Urdu script has 35 simple consonants, 15 
aspirated consonants, one character for nasal 
sound and 15 diacritical marks. Urdu characters 
change their shapes depending upon neighboring 
context. But generally they acquire one of these 
four shapes, namely isolated, initial, medial and 
final. Urdu characters can be divided into two 
groups, non-joiners and joiners. The non-joiners 
can acquire only isolated and final shape and do 
not join with the next character. On contrary 
joiners can acquire all the four shapes and get 
merged with the following character. A group of 
joiners and/or non-joiner joined  together form a 
ligature. A word in Urdu is a collection of one or 
more ligatures.  The isolated form of joiners and 
non-joiners is shown in figures 1-2. 

 

  ے و ژ ز ڑ ر ذ ڈ د آا 
Figure 1.  Non-Joiners in Urdu 

 ک ق ف غ ع ظ ط ض ص ش س خ ح چ ج ث ٹ ت پ ب
 ه ی ه ن م ل گ

Figure 2.  Joiners in Urdu 

The space character is used in Urdu both to 
generate correct shaping and also to separate 
words. Though for words ending with non-
joiners correct shaping is generated even when 
space is not typed and thus, many times a user 
omits the space. The sequence of Urdu words 
written together without space is still readable 
because of the character joining property in 
Urdu. As for example, consider the word cluster 
 which is composed of four words , انکارکردياہے
 The Urdu readers can very .ہے and  ديا , کر ,انکار
easily segment and read the four words 
separately, but the computer will read them as a 
single word since there is no space in between. 
Similarly, the word cluster پرزوردياگياہے is 
composed of five words(گيا ,ديا ,زور ,پر and ہے ), 
which can be easily read as five separate words 
by Urdu readers but will be considered as a 
single word by the computer.  

Another unique feature of Urdu is that the 
Urdu words are usually written without short 
vowels or diacritic symbols. Any machine 
transliteration or text to speech synthesis system 
has to automatically guess and insert these 
missing symbols. This is a non-trivial problem 
and requires an in-depth statistical analysis.  

An Urdu word is a combination of ligatures 
(characters which join together) and isolated 
characters. For example انکار  is composed of 
isolated characters ا and ر and ligature  نکا . A 
ligature or isolated character will be called as 
Urdu character cluster (UCC) in this paper. A 
Urdu word is thus a combination of UCCs . As 
for example, the word انکار  is composed of three 
UCCs نکا , ا and ر . We borrow the term, 
Orthographic Word used by Durrani and 
Hussain(2010) to define our segmentation 
process. An Orthographic Word (OW) is a 
combination of  UCCs separated by spaces or 
punctuation marks. An OW may contain single 
or multiple Urdu words. Our task is to identify if 
an OW contains multiple words and in that case 
properly segment the words. 

As for example, consider the sentence: 
 ميزبان ٹيم کی جانب سے رام نريش نے ہيروکاکرداراداکيا

44



It contains nine OWs 
 ميزبان .1
 ٹيم .2
 کی .3
 جانب .4
ےس .5  
 رام .6
 نريش .7
 نے .8
 ہيروکاکرداراداکيا .9
The first eight OWs contain single Urdu 

words, while the last OW contains 5 Urdu 
words(ادا ,کردار ,کا ,ہيرو and کيا)  

3 Segmentation Model for Urdu 

There are three major issues in the automatic 
Urdu word segmentation. The first problem is to 
decide if the orthographic word represents a 
single word or a multiple word cluster. The 
second is the ambiguity issue. Since a word 
cluster can be segmented into words in multiple 
ways, the correct word boundary detection 
becomes a challenge. As for example the OW  
 نا + گيا or اسے + گيان can be segmented as  گياناسے
 The third problem is the segmentation of .سے +
unknown word. Unknown word refers to word 
that does not exist in the dictionary or corpus. 
Unknown words can be categorized into the 
different types such as error words, abbreviation, 
proper names, derived words, foreign words, 
compounds etc. The unknown word causes 
segmentation error since the word does not exist 
in the dictionary, it could be incorrectly 
segmented into shorter words. For example, the 
word, رميٹالوجیڈ   , which is a foreign word, gets 
segmented into four words (لو , ميٹا , ڈر and جی ) 
after dictionary look-up as the word ڈرميٹالوجی is 
not present in the corpus.  

The input is an Urdu Orthographic Word and 
the system first makes the decision if the OW 
contains single or multiple Urdu words. In case 
the OW contains multiple words, the individual 
Urdu words are extracted from the OW. These 
different stages are discussed in detail in 
following sections. As can be seen from the 
figure, at each stage we make use of lexical 
resources both from Urdu and Hindi languages. 
The details of the resources used are in Table 1. 

 

The system architecture is shown in Fig. 3. 

 
Figure 3.  System Architecture 

Table 1. Lexical resources used in system 
Resource Count 

 
Urdu Word Frequency 
List 
 

121,367 words 

Hindi Word Frequency 
List 
 

159,426 words 

Hindi Word Bigram List  2,382,511 
bigrams 
 

  
4 Decision Stage 
 
In the decision stage, the system decides if the 
OW contains single or multiple Urdu words.  It 
could so happen that the OW contains single 
word only and we may break up into smaller 
words. The decision is based on Urdu and Hindi, 
word frequency lists analysis as well as 
Urdu/English/Hindi Morphological rules. To 
decide if the word cluster is containing multiple 
words, we first search for OW in the Urdu word 
list. If it is found then it means that the OW is a 
valid Urdu word and does not need any further 
segmentation and quit over there.  

It could happen that the OW could be an 
inflection, whose root form maybe present in the 
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Urdu word list. Even though the Urdu word list 
contains inflected forms, but for many words all 
the inflections may not be present. This problem 
is more pronounced for English terms, which 
have become part of Urdu language. For such 
words, the inflections could follow both rules of 
English and Urdu. For example plural of 
 could be both universitiyon (university) يونيورسٹی
 .يونيورسٹيز as well as universities  وںیورسѧѧѧٹیونی
The first form follows the Urdu infection rules 
while the second form follows the English 
inflection rules. Similarly we found both the 
Urdu and English inflections for the English 
word secretary in Urdu  text (سيکرٹريوں and 
 Thus if the OW is not found in the . (سيکرٹريز
Urdu word list, we use both Urdu and English 
morphological rules to generate its root form and 
search for the root form in the Urdu word list. If 
the root form is found, we assume the word to be 
a valid Urdu word and quit there.  

It is widely reported in word segmentation 
papers, that the greatest barrier to accurate word 
Segmentation is in recognizing words that are 
not in the lexicon of the segmenter. Thus if a 
word or its root form is not present in the Urdu 
word list it will be wrongly presumed to be a 
multi word cluster. To alleviate this problem, the 
Urdu corpus has been supplemented with Hindi 
corpus, which has helped in increasing the word 
segmentation as well as multi-word recognition 
accuracy. It was found many times that the Urdu 
word may be a proper noun, foreign word or 
some valid out of vocabulary word, which is not 
present in Urdu corpus but present in the Hindi 
word list. Another advantage of checking in the 
Hindi corpus is that many of the Hindi words, 
which are written as single word are usually 
written as two words in Urdu. For example, 
 ايمانداری ,े(खेलत) کھيلتے ,(करेगा) کرےگا

(ईमानदारȣ), چئيرمين (चेयरमैन) etc. These Urdu 
words are many times written as a single word 
and in that case if passed to Hindi word list 
would still report as correct. For checking the 
OW in Hindi word list, we first transliterate it to 
Hindi and then search for it in the Hindi 
wordlist. If the transliterated word is found, then 
the OW is not considered for segmentation. Like 
Urdu, it may also happen that the root word of 
OW may be present in the Hindi word list. So 
like Urdu, we use both Urdu and English 

morphological rules to generate its root form and 
search for the root form in the Hindi word list. If 
the root form is found, we assume the word to be 
a valid Urdu word and quit there. If the OW 
passes all the above stages, then it is considered 
a candidate for segmentation. 
The steps in brief are : 

• Search for OW in Urdu List. If OW is 
present in the list then quit. example : 
 مطابق

• Determine the root form of OW using 
Urdu Morphological rules and search for 
the root form in Urdu List. If found then 
quit. example : سيکرٹريوں 

• Determine the root form of OW using 
English Morphological rules and search 
for the root form in Urdu List. If found 
then quit. example : ٹورنامنٹس 

• Let HW = Transliteration of OW in 
Hindi. Search for HW in the Hindi Word 
List. If HW is present in the list then 
quit. example : ايمانداری 

• Determine the root form of HW using 
Hindi Morphological rules and search 
for the root form in the Hindi List. If 
found then quit.  example : چيئرمينوں 

• Determine the root form of HW using 
English Morphological rules and search 
for the root form in the Hindi List. If 
found then quit. example : ہولڈرز 

• Go to the segmentation stage. example : 
 تھااس

5 Segmenting the Orthographic Word 

The Urdu orthographic word is next broken into 
Urdu Character Combinations (UCC) using 
Urdu orthographic rules. Unlike word 
segmentation that is a difficult task, segmenting 
a text into UCCs is easily achieved by applying 
the set of rules. These adjacent UCCs are then 
combined to form a sequence of Urdu words. 
We need to list all possible segmentations and 
design a strategy to select the most probable 
correct segmentation from them. 

As for example, consider the OW توجواب: It is 
segmented into four UCCs : ا .جو ,تو and ب . The 
adjacent clusters can be combined to form 6 
word segmentations: 

 جواب + تو •
 اب + توجو •
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 ب + توجوا •
 اب + جو + تو •
 ب  + ا +  توجو •
 ب + ا + جو + تو •
 

5.1 Longest Matching  

The method scans an input sentence from left to 
right, and select the longest match with a 
dictionary entry at each point. In case that the 
selected match cannot lead the algorithm to find 
the rest of the words in the sentence, the 
algorithm will backtrack to find the next longest 
one and continue finding the rest and so on. This 
algorithm fails to find the correct segmentation 
in many cases because of its greedy 
characteristic. 

5.2 Maximum Matching  

This method first generates all possible 
segmentations for a sentence and then selects the 
one that contain the fewest words, which can be 
done efficiently by using dynamic programming 
technique. When the alternatives have the same 
number of words, the algorithm cannot 
determine the best candidate and some other 
heuristics have to be applied.  

We tried both longest matching and maximum 
matching and the smallest unit taken for 
combining is UCC. But we found shortcomings 
in both the matchings. For example the OW 
 using ہے+ہا +کرار gets segmented as کرارہاہے
longest matching, while it should be ہے+رہا+کرا . 
Similarly the OW بروزاتوارکودن gets segmented 
as کودن+اتوار+بروز using maximum matching 
while it should be دن+کو+اتوار+بروز.  

Thus we see that both longest string match and 
smallest words fail sometimes. If these 
algorithms are supplemented by statistical 
information such as frequency analysis and n-
grams then these failures can be avoided. So in 
our present work, we apply maximal matching 
algorithm along with these statistics. Initially we 
used unigram frequency of occurrence for 
deciding the best word combination. Each Urdu 
word in the combination is formed by joining 
adjacent UCCs. In each of the combination, we 
first convert each of the Urdu word to Hindi. 
The combination with highest combined product 
of the unigram frequency of occurrences is 

finally selected. Thus in the above example, the 
OW توجواب: will be segmented as جواب + تو, as 
shown in Table 2. 
 
Table 2.  Product of Frequency of Occurrence 
 
Urdu 
Combination

Hindi 
Combination 
(Frequency 
of 
occurrence) 

Frequency 
Product 

  تو
 جواب
 

तो   
(0.005161) 
जवाब   
(0.00026) 

1.34221E-06 
 

  توجو
 اب

तोजो   
(4.16E-07) 
अब   
(0.001623) 

6.75557E-10 
 

  توجوا
 ب

तोजवा   (0) 

ब   (4.48E-
05) 

0 

  تو
  جو
 اب

तो   
(0.005161) 
जो   
(0.002602) 
अब   
(0.001623) 

2.18028E-08 
 

 توجو
  ا
 ب

तोजो   
(4.16E-07) 
अ   (3.6E-05) 

ब   (4.48E-
05) 

6.69866E-16 
 

 تو
  جو
  ا
 ب

तो   
(0.005161) 
जो   
(0.002602) 
अ   (3.6E-05) 

ब   (4.48E-
05) 

2.16191E-14 
 

It is interesting to see that for segmentation of 
Urdu words, we used Hindi language statistical 
analysis instead of Urdu language statistical 
analysis. Since the current system is part of 
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Urdu-Hindi transliteration system, we prefer the 
output to be segmented according to Hindi rules. 
There are many words which are otherwise 
joined in Hindi but written as separate words in 
Urdu. So if we use the Urdu language modeling 
for segmentation, the word gets broken. Some of 
the examples are: 
 is written as combination of two words اغواکار
 in Urdu but its equivalent Hindi word کار +اغوا
अग़वाकार is written as a single word. Similarly, 
in Hindi text the verbs are concatenated with the 
future auxiliaries “gaa”, “gii” and “ge”, while 
they are written separately in Urdu. Thus کرين 
 are written separately, but their equivalent گے+
Hindi form करगेɅ  is written as single word. So 
the advantage of using Hindi training data is that 
the words get segmented according to the 
desired Hindi rules. Another problem with Urdu 
training data was that  the Urdu training itself 
contains merged words. So the words had to be 
manually separated, though fortunately the Urdu 
corpus compiled by CRULP (www.crulp.org) 
has been quite clean, but many words were 
missing particularly English ones. Another 
problem is that the words are broken even in the 
cleaned Urdu corpus. On the other hand when 
we used the Hindi training data for word 
segmentation, the problems of merged or broken 
words in the training text were not encountered. 
Also the Hindi corpus compiled by us had much 
larger vocabulary coverage, while the Urdu 
corpus we used for training purpose had many 
common words such as  گاندھی  , خطرے ,اوباما, 
 etc. missing. Thus the word segmentation جيکسن
algorithm which used the Hindi training set had 
much better segmentation accuracy as compared 
to the Urdu training set. 

We observed that though the above scheme 
worked fine in majority of the cases, but in a few 
cases it failed to segment properly as it did not 
take care of the context or adjacent words. As 
for example consider the OW : مردياعورت. It 
contains six CCs: ر ,عو ,يا ,د ,مر and ت. The word 
combination selected by above methodology is : 

 though the correct , عورت + ديا + مر
combination is عورت + يا + مرد. It was observed 
that as we did not take care about adjacent 
words, thus wrong combination was selected. If 

the bigram information is added, then such 
problems were reduced.  

We thus use both unigram and bigram 
frequency analysis for deciding the best word 
combination. Each Urdu word in the 
combination is formed by joining adjacent 
UCCs. In each of the combination, we first 
convert each of the Urdu word to Hindi. Next we 
find the unigram and bigram frequency of 
occurrence of each Hindi word and Hindi word 
pair in the combination. The bigram frequencies 
are normalized to avoid multiplication by zero. 
The combination with highest combined product 
of the unigram and bigram frequencies of 
occurrences is finally selected.  Using this 
methodology we were able to generate the 
sequence combination is عورت + يا + مرد in 
above example. 

As we are using Hindi training data, it was 
observed that sometimes we had merged words 
which did not had equivalent transliterated 
words in our Hindi frequency list. As example, 
the OW ترازابليس had to be segmented as تراز + 
 but the equivalent transliterated Hindi ,ابليس
terms of تراز and ابليس, were not found in the 
Hindi frequency list. As a result, the OW is not 
segmented. To take care of such situations, if we 
cannot segment using the Hindi frequency list, 
our system then goes for maximal matching 
using the Urdu training data. Thus in above 
example, after search fails in Hindi training set, 
the system searches for the minimum word 
combination and on finding the above two words 
in the Urdu training set segments the OW into 
these words. 

6 Over Segmentation 

For wrongly spelled or OOV (out of vocabulary) 
Urdu words, the system may forcibly break the 
word into smaller words. As for example, our 
system forcibly broke the OW گردوہر into دو + گر 
 ,This problem proved difficult to tackle . ہر+
though we were able to partially solve it. It was 
found that usually the OOV words were broken 
into small unrelated words. So we put the 
condition on the system to accept only those 
word segments which contained at least one 
word of length greater than three or at least one 
bigram pair was present in the Hindi bigram list. 
The presence of at least one bigram pair ensured 
that all the words were not unrelated. Thus in the 
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above example, the OW gets split into three 
words, all of length two. These words when 
transliterated to Hindi get converted to ͬगर + दो 
+ हर. On searching the bigram list, it was found 

that neither of the bigram pair < ͬगर, दो >  and < 
दो , हर > was present and thus this word 
segmentation was rejected. 

7 Experiments 

We tested our system on a test data of 1,613,991 
Urdu words. In the decision stage, it was found 
that 116,078  words, which make  7.19%  of 
original text were not found in the Urdu corpus 
and were considered candidates for 
segmentation. After morphological analysis of 
these words, 2851 Urdu words were found to be 
valid Uru words and were removed from the 
segmentation candidate list. After converting the 
remaining Urdu words to Hindi and checking 
them in Hindi corpus, only 35,226 words were 
left which were not present in Hindi corpus. 
Therefore from original 16,13,991 only 35,226 
(2.19%)  were passed onto segmentation stage 
for checking for merged words. 

In the segmentation stage it was found that out 
of 35,226 words, 24,001 words (68.13%) had 
merged words. The number of merged words 
varied from 2 to 6. Table 3 show the frequency 
of number of merged words found in word 
clusters. As can be seen from the table 96.71% 
of merged word clusters had two merged words.  

Table 3. Frequency of Merged Words 
Number of merged 
words  

Frequency 
Percentage 
 

2 96.71% 
3 2.99% 
4 0.25% 
5 0.037% 
6 0.004% 

  
The recall and precision for the decision 
stage, which decides if the OW needs to be 
segmented, were found to be  99.29% and 
99.38% respectively. 
The word segmentation algorithm was able to 
correctly segment the words with 99.15% 
accuracy. 

8 Conclusions 

In this paper, we have presented a system for 
solving the space omission problem in Urdu text. 
This system is part of the larger system designed 
for transliteration of Urdu text to Hindi. We 
have combined statistical language modeling of 
both Urdu and Hindi languages in development 
of the system. We have presented a new scheme 
of using Hindi for segmenting Urdu text after 
transliteration, because Hindi uses spaces 
consistently versus Urdu which has both space 
omission and insertion problems. This is the first 
time such a segmentation scheme for handling 
Urdu space omission problem has been 
presented. The word segmentation algorithm 
was able to correctly segment the words with 
99.15% accuracy.  

 

Acknowledgements 

The author will like to acknowledge the support 
provided by ISIF grants for carrying out this 
research. 
 

References 
 
Durrani N. 2007. Typology of Word and Automatic 

Word Segmentation in Urdu Text Corpus. National 
University of Computer and Emerging Sciences, 
Lahore, Pakistan. 

 

Durrani N. and Hussain Sarmad. 2010. Urdu Word 
Segmentation.http://www.crulp.org/Publication/pa
pers/2010/Urdu Word Segmentation NAACL.pdf 
(accessed on 5th July 2010). 

Jawaid Bushra and Ahmed Tafseer. 2009.  Hindi to 
Urdu Conversion: Beyond Simple Transliteration. 
Proceedings of the Conference on Language & 
Technology, Lahore,.Pakistan, 24-31. 

Lehal G. S. 2009. A Two Stage Word Segmentation 
System For Handling Space Insertion Problem In 
Urdu Script. Proceedings of World Academy of 
Science, Engineering and Technology, Bangkok, 
Thailand,  60: 321-324.  

Malik Abbas, Besacier Laurent, Boitet Christian and 
Bhattacharyya Pushpak. 2009. A hybrid Model for 
Urdu Hindi Transliteration. Proceedings of the 

49



2009 Named Entities Workshop, ACL-IJCNLP 
2009, Singapore, 177-185. 

Nie, J.Y., Hannan, M.L. & Jin, W. 1995. Combining 
dictionary, rules and statistical information in 
segmentation of Chinese. Computer Processing of 
Chinese and Oriental Languages, 9(2): 125-143. 

Papageorgiou Constantine P. 1994. Japanese word 
segmentation by hidden Markov model. Proc. of 
the HLT Workshop, 283–288. 

Wang Xiaolong, , Fu Guohong, Yeung Danial S., Liu 
James N.K., and Luk Robert. 2000. Models and 
algorithms of Chinese word segmentation. 
Proceedings of the International Conference on 
Artificial Intelligence (IC-AI’2000), Las Vegas, 
Nevada, USA, 1279-1284.  

Xu Jia, Matusov Evgeny, Zens Richard, and Ney. 
2005. Hermann.Integrated Chinese word 
segmentation in statistical machine translation. 
Proceedings of the International Workshop on 
Spoken Language Translation, Pittsburgh, PA, 
141-147. 

50



Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), pages 51–55,
the 23rd International Conference on Computational Linguistics (COLING), Beijing, August 2010

Hybrid Stemmer for Gujarati 

Pratikkumar Patel     Kashyap Popat 
Department of Computer Engineering 

Dharmsinh Desai University 
pratikpat88@gmail.com 
kan.pop@gmail.com 

Pushpak Bhattacharyya 
Department of Computer Science and 

Engineering 
Indian Institute of Technology Bombay 

pb@cse.iitb.ac.in 

 

Abstract 

In this paper we present a lightweight 
stemmer for Gujarati using a hybrid ap-
proach. Instead of using a completely 
unsupervised approach, we have har-
nessed linguistic knowledge in the form 
of a hand-crafted Gujarati suffix list in 
order to improve the quality of the stems 
and suffixes learnt during the training 
phase. We used the EMILLE corpus for 
training and evaluating the stemmer’s 
performance. The use of hand-crafted 
suffixes boosted the accuracy of our 
stemmer by about 17% and helped us 
achieve an accuracy of 67.86 %. 

1 Introduction 

Stemming is the process of conflating related 
words to a common stem by chopping off the 
inflectional and derivational endings. Stemming 
plays an important role in Information Retrieval 
(IR) systems by reducing the index size and in-
creasing the recall by retrieving results contain-
ing any of the various possible forms of a word 
present in the query. This is especially true in 
case of a morphologically rich language like 
Gujarati, where a single word may take many 
forms. The aim is to ensure that related words 
map to common stem, irrespective of whether or 
not the stem is a meaningful word in the voca-
bulary of the language.   

Current state of the art approaches to stem-
ming can be classified into three categories, viz., 
rule based, unsupervised and hybrid. Building a 
rule based stemmer for a morphologically rich 
language is an uphill task considering the dif-
ferent inflectional and morphological variations 
possible. Purely unsupervised approaches on the 

other hand fail to take advantage of some lan-
guage phenomenon which can be easily ex-
pressed by simple rules. We thus follow a hybr-
id approach by enhancing an unsupervised sys-
tem with a list of hand-crafted Gujarati suffixes. 

The remainder of this paper is organized as 
follows. We describe related work in section 2. 
Section 3 explains the morphological structure 
of Gujarati. We describe our approach in section 
4. The experiments and results are described in 
section 5. Section 6 concludes the paper hig-
hlighting the future work. 

2 Background and Related Work 

The earliest English stemmer was developed by 
Julie Beth Lovins in 1968. The Porter stemming 
algorithm (Martin Porter, 1980), which was 
published later, is perhaps the most widely used 
algorithm for English stemming. Both of these 
stemmers are rule based and are best suited for 
less inflectional languages like English. 

A lot of work has been done in the field of 
unsupervised learning of morphology. 
Goldsmith (2001, 2006) proposed an unsuper-
vised algorithm for learning the morphology of 
a language based on the minimum description 
length (MDL) framework which focuses on 
representing the data in as compact manner as 
possible. Creutz (2005, 2007) uses probabilistic 
maximum a posteriori (MAP) formulation for 
unsupervised morpheme segmentation. 

Not much work has been reported for stem-
ming for Indian languages compared to English 
and other European languages. The earliest 
work reported by Ramanathan and Rao (2003) 
used a hand crafted suffix list and performed 
longest match stripping for building a Hindi 
stemmer. Majumder et al. (2007) developed 
YASS: Yet Another Suffix Stripper which uses 
a clustering based approach based on string dis-
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tance measures and requires no linguistic know-
ledge. They concluded that stemming improves 
recall of IR systems for Indian languages like 
Bengali. Dasgupta and Ng (2007) worked on 
unsupervised morphological parsing for Benga-
li. Pandey and Siddiqui (2008) proposed an un-
supervised stemming algorithm for Hindi based 
on Goldsmith's (2001) approach. 

Unlike previous approaches for Indian lan-
guages which are either rule based or complete-
ly unsupervised, we propose a hybrid approach 
which harnesses linguistic knowledge in the 
form of a hand-crafted suffix list. 

3 Gujarati Morphology 

Gujarati has three genders (masculine, neuter 
and feminine), two numbers (singular and plur-
al) and three cases (nominative, obli-
que/vocative and locative) for nouns. The gend-
er of a noun is determined either by its meaning 
or by its termination. The nouns get inflected on 
the basis of the word ending, number and case. 
The Gujarati adjectives are of two types – dec-
linable and indeclinable. The declinable adjec-
tives have the termination -ũ (◌ુ◌ં) in neuter ab-
solute. The masculine absolute of these adjec-
tives ends in -o (◌ો) and the feminine absolute in 
-ī (◌ી). For example, the adjective સાἘં (sārũ - 
good) takes the form સાἘં (sārũ), સારો (sāro) and 
સારી (sārī) when used for a neuter, masculine 
and feminine object respectively. These adjec-
tives agree with the noun they qualify in gender, 
number and case. The adjectives that do not end 
in -ũ in neuter absolute singular are classified as 
indeclinable and remain unaltered when affixed 
to a noun. 

The Gujarati verbs are inflected based upon a 
combination of gender, number, person, aspect, 
tense and mood. 

There are several postpositions in Gujarati 
which get bound to the nouns or verbs which 
they postposition. e.g. -nũ (નંુ : genitive marker), 
-mā̃ (માં : in), -e (◌ે : ergative marker), etc. These 
postpositions get agglutinated to the nouns or 
verbs and not merely follow them. 

We created a list of hand crafted Gujarati suf-
fixes which contains the postpositions and the 
inflectional suffixes for nouns, adjectives and 
verbs for use in our approach. 

4 Our Approach 

Our approach is based on Goldsmith's (2001) 
take-all-splits method. Goldsmith's method was 
purely unsupervised, but we have used a list of 
hand crafted Gujarati suffixes in our approach 
to learn a better set of stems and suffixes during 
the training phase. In our approach, we make 
use of a list of Gujarati words extracted from 
EMILLE corpus for the purpose of learning the 
probable stems and suffixes for Gujarati during 
the training phase. This set of stems and suffix-
es will be used for stemming any word provided 
to the stemmer. We have described the details 
of our approach below. 

4.1 Training Phase 
During the training phase, we try to obtain the 
optimal split position for each word present in 
the Gujarati word list provided for training. We 
obtain the optimal split for any word by taking 
all possible splits of the word (see Figure 1) and 
choosing the split which maximizes the function 
given in Eqn 1 as the optimal split position. The 
suffix corresponding to the optimal split 
position is verified against the list of 59 Gujarati 
suffixes created by us. If it cannot be generated 
by agglutination of the hand crafted suffixes, 
then the length of the word is chosen as the 
optimal split position. i.e. the entire word is 
treated as a stem with no suffix. 

 

 

 
The function used for finding the optimal 

split position reflects the probability of a partic-
ular split since the probability of any split is 
determined by the frequencies of the stem and 
suffix generated by that split. The frequency of 
shorter stems and suffixes is very high when 
compared to the slightly longer ones. Thus the 
multipliers i (length of stemi) and L-i (length of 
suffixi) have been introduced in the function in 
order to compensate for this disparity. 

 

f(i) = i*log(freq(stemi)) + (L-i)*log(freq(suffixi)) 
 

(Eqn 1) 
i: split position (varies from 1 to L) 
L: Length of the word 

Figure 1. All Possible Word Segmentations 

{stem1+suffix1,stem2+suffix2, ... ,stemL+suffixL} 
ઘરના= {ઘ + રના, ઘર + ના, ઘરન + ◌ા,ઘરના + NULL} 
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Once we obtain the optimal split of any word, 
we update the frequencies of the stem and suffix 
generated by that split. We iterate over the word 
list and re-compute the optimal split position 
until the optimal split positions of all the words 
remain unchanged. The training phase was ob-
served to take three iterations typically. 

4.2 Signatures 
After the training phase, we have a list of stems 
and suffixes along with their frequencies. We 
use this list to create signatures. As shown in 
Figure 2, each signature contains a list of stems 
and a list of suffixes appearing with these stems. 

The signatures which contain very few stems 
or very few suffixes may not be useful in stem-
ming of unknown words, thus we eliminate the 
signatures containing at most one stem or at 
most one suffix. The stems and suffixes in the 
remaining signatures will be used to stem new 
words. An overview of the training algorithm is 
shown in Figure 3. 

 

 

4.3 Stemming of any unknown word 
For stemming of any word given to the stemmer, 
we evaluate the function in Eqn 1 for each poss-

ible split using the frequencies of stems and suf-
fixes obtained from the training process. The 
word is stemmed at the position for which the 
value of the function is maximum.  

5 Experiments and Result 

We performed various experiments to evaluate 
the performance of the stemmer using EMILLE 
Corpus for Gujarati. We extracted around ten 
million words from the corpus. These words 
also contained Gujarati transliterations of Eng-
lish words. We tried to filter out these words by 
using a Gujarati to English transliteration engine 
and an English dictionary. We obtained 
8,525,649 words after this filtering process. 

We have used five-fold cross validation for 
evaluating the performance. We divided the ex-
tracted words into five equal parts of which four 
were used for training and one for testing. In 
order to create gold standard data, we extracted 
thousand words from the corpus randomly and 
tagged the ideal stem for these words manually. 

For each of the five test sets, we measured 
the accuracy of stemming the words which are 
present in the test set as well as gold standard 
data. Accuracy is defined as the percentage of 
words stemmed correctly.  

The experiments were aimed at studying the 
impact of (i) using a hand-crafted suffix list, (ii) 
fixing the minimum permissible stem size and 
(iii) provide unequal weightage to the stem and 
suffix for deciding the optimal split position. 
Various results based on these experiments are 
described in the following subsections. 

5.1 Varying Minimum Stem Size 
We varied the minimum stem size from one to 
six and observed its impact on the system per-
formance. We performed the experiment with 
and without using the hand-crafted suffix list. 
The results of this experiment are shown in Ta-
ble 1 and Figure 4. 

The results of this experiment clearly indicate 
that there is a large improvement in the perfor-
mance of the stemmer with the use of hand-
crafted suffixes and the performance degrades if 
we keep a restriction on the minimum stem size. 
For higher values of minimum stem size, all the 
valid stems which are shorter than the minimum 
stem size do not get generated leading to a de-
cline in accuracy. 

Stems Suffixes 

પશ ુ(pashu - animal) ના (nā) 

જંગ (jang - war) નો (no) 

 ને (ne) 

 નંુ (nũ) 

 ની (nī) 
Figure 2. Sample Signature 

 

Step 1: Obtain the optimal split position for  each 
word in the word list provided for training 
using Eqn 1 and the list of hand crafted suf-
fixes 

 
Step 2: Repeat Step 1 until the optimal split  posi-

tions of all the words remain unchanged 
 
Step 3: Generate signatures using the stems  and 

suffixes generated from the training phase 
 
Step 4: Discard the signatures which contain either 

only one stem or only one suffix 

Figure 3. Overview of training algorithm 
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Min Stem 
Size 

Accuracy 

With hand-
crafted suffixes 

Without hand-
crafted suffix-

es 
1 67.86 % 50.04 % 
2 67.70 % 49.80 % 
3 66.43 % 49.60 % 
4 59.46 % 46.35 % 
5 51.65 % 41.22 % 
6 43.81 % 36.89 % 

 

Table 1. Effect of use of hand-crafted suffixes and 
fixing min. stem size on stemmer’s performance 

 

 

 
Figure 4. Variation stemmer’s accuracy with the var-

iation in min. stem size 
 
There are several spurious suffixes which get 

generated during the training phase and degrade 
the performance of the stemmer when we don’t 
use the hand-crafted suffix list. e.g. ‘ક’ is not a 
valid inflectional Gujarati suffix but it does get 
generated if we don’t use the hand-crafted suf-
fix list due to words such as ‘અનેક’ (anek - many) 
and ‘અને’ (ane - and). A simple validation of the 
suffixes generated during training against the 
hand-crafted suffix list leads to learning of bet-
ter suffixes and in turn better stems during the 
training phase thereby improving the system’s 
performance. 

Thus we decided to make use of the hand-
crafted suffix list during training phase and not 
to put any restriction on the minimum stem size. 

5.2 Providing unequal weightage to stem 
and suffix 

We have provided equal weightage to stem and 
suffix in Eqn 1 which is responsible for deter-
mining the optimal split position of any word. 
We obtained Eqn 2 from Eqn 1 by introducing a 

parameter ‘α’ in order to provide unequal 
weightage to the stem and suffix and observe its 
effect on system performance. We used Eqn 2 
instead of Eqn 1 and varied α from 0.1 to 0.9 in 
this experiment. The results of this experiment 
are shown in Table 2. 

 

 
 

α Accuracy 
0.1 53.52 % 
0.2 61.71 % 
0.3 65.43 % 
0.4 67.30 % 
0.5 67.86 % 
0.6 67.48 % 
0.7 67.49 % 
0.8 67.72 % 
0.9 66.45 % 

Table 2. Effect of α on the stemmer’s performance 
 

The accuracy was found to be maximum 
when value of α was fixed to 0.5 i.e. stem and 
suffix were given equal weightage for determin-
ing the optimal split of any word. 

6 Conclusion and Future Work 

We developed a lightweight stemmer for Guja-
rati using a hybrid approach which has an accu-
racy of 67.86 %. We observed that use of a 
hand-crafted Gujarati suffix list boosts the accu-
racy by about 17 %. We also found that fixing 
the minimum stem size and providing unequal 
weightage to stem and suffix degrades the per-
formance of the system. 

Our stemmer is lightweight and removes only 
the inflectional endings as we have developed it 
for use in IR system. The list of hand-crafted 
suffixes can be extended to include derivational 
suffixes for performing full fledged stemming 
which may be required in applications such as 
displaying words in a user interface. 

We have measured the performance of the 
stemmer in terms of accuracy as of now. We 
plan to evaluate the stemmer in terms of the in-
dex compression achieved and the impact on 
precision and recall of Gujarati IR system. 

 

f(i)  =  α * i * log(freq(stemi)) + 
     (1-α) * (L-i) * log(freq(suffixi)) 

(Eqn 2) 
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