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Abstract

Recent speed-ups for training large-scale
models like those found in statistical NLP
exploit distributed computing (either on
multicore or “cloud” architectures) and
rapidly converging online learning algo-
rithms. Here we aim to combine the two.
We focus on distributed, “mini-batch”
learners that make frequent updates asyn-
chronously (Nedic et al., 2001; Langford
et al., 2009). We generalize existing asyn-
chronous algorithms and experiment ex-
tensively with structured prediction prob-
lems from NLP, including discriminative,
unsupervised, and non-convex learning
scenarios. Our results show asynchronous
learning can provide substantial speed-
ups compared to distributed and single-
processor mini-batch algorithms with no
signs of error arising from the approximate
nature of the technique.

1 Introduction

Modern statistical NLP models are notoriously
expensive to train, requiring the use of general-
purpose or specialized numerical optimization al-
gorithms (e.g., gradient and coordinate ascent al-
gorithms and variations on them like L-BFGS and
EM) that iterate over training data many times.
Two developments have led to major improve-
ments in training time for NLP models:

• online learning algorithms (LeCun et al., 1998;
Crammer and Singer, 2003; Liang and Klein,
2009), which update the parameters of a model
more frequently, processing only one or a small
number of training examples, called a “mini-
batch,” between updates; and

• distributed computing, which divides training
data among multiple CPUs for faster processing
between updates (e.g., Clark and Curran, 2004).

Online algorithms offer fast convergence rates
and scalability to large datasets, but distributed
computing is a more natural fit for algorithms that
require a lot of computation—e.g., processing a
large batch of training examples—to be done be-
tween updates. Typically, distributed online learn-
ing has been done in a synchronous setting, mean-
ing that a mini-batch of data is divided among
multiple CPUs, and the model is updated when
they have all completed processing (Finkel et al.,
2008). Each mini-batch is processed only after the
previous one has completed.

Synchronous frameworks are appealing in that
they simulate the same algorithms that work on
a single processor, but they have the drawback
that the benefits of parallelism are only obtainable
within one mini-batch iteration. Moreover, empir-
ical evaluations suggest that online methods only
converge faster than batch algorithms when using
very small mini-batches (Liang and Klein, 2009).
In this case, synchronous parallelization will not
offer much benefit.

In this paper, we focus our attention on asyn-
chronous algorithms that generalize those pre-
sented by Nedic et al. (2001) and Langford et al.
(2009). In these algorithms, multiple mini-batches
are processed simultaneously, each using poten-
tially different and typically stale parameters. The
key advantage of an asynchronous framework is
that it allows processors to remain in near-constant
use, preventing them from wasting cycles wait-
ing for other processors to complete their por-
tion of the current mini-batch. In this way, asyn-
chronous algorithms allow more frequent parame-
ter updates, which speeds convergence.

Our contributions are as follows:

• We describe a framework for distributed asyn-
chronous optimization (§5) similar to those de-
scribed by Nedic et al. (2001) and Langford et
al. (2009), but permitting mini-batch learning.
The prior work contains convergence results for
asynchronous online stochastic gradient descent
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for convex functions (discussed in brief in §5.2).

• We report experiments on three structured NLP
tasks, including one problem that matches
the conditions for convergence (named entity
recognition; NER) and two that depart from the-
oretical foundations, namely the use of asyn-
chronous stepwise EM (Sato and Ishii, 2000;
Cappé and Moulines, 2009; Liang and Klein,
2009) for both convex and non-convex opti-
mization.

• We directly compare asynchronous algorithms
with multiprocessor synchronous mini-batch al-
gorithms (e.g., Finkel et al., 2008) and tradi-
tional batch algorithms.

• We experiment with adding artificial delays to
simulate the effects of network or hardware traf-
fic that could cause updates to be made with ex-
tremely stale parameters.

• Our experimental settings include both indi-
vidual 4-processor machines as well as large
clusters of commodity machines implementing
the MapReduce programming model (Dean and
Ghemawat, 2004). We also explore effects of
mini-batch size.

Our main conclusion is that, when small mini-
batches work well, asynchronous algorithms of-
fer substantial speed-ups without introducing er-
ror. When large mini-batches work best, asyn-
chronous learning does not hurt.

2 Optimization Setting

We consider the problem of optimizing a function
f : Rd → R with respect to its argument, denoted
θ = 〈θ1, θ2, . . . , θd〉. We assume that f is a sum
of n convex functions (hence f is also convex):1

f(θ) =
∑n

i=1 fi(θ) (1)

We initially focus our attention on functions that
can be optimized using gradient or subgradient
methods. Log-likelihood for a probabilistic model
with fully observed training data (e.g., conditional
random fields; Lafferty et al., 2001) is one exam-
ple that frequently arises in NLP, where the fi(θ)
each correspond to an individual training exam-
ple and the θ are log-linear feature weights. An-
other example is large-margin learning for struc-
tured prediction (Taskar et al., 2005; Tsochan-

1We use “convex” to mean convex-up when minimizing
and convex-down, or concave, when maximizing.

taridis et al., 2005), which can be solved by sub-
gradient methods (Ratliff et al., 2006).

For concreteness, we discuss the architecture
in terms of gradient-based optimization, using the
following gradient descent update rule (for mini-
mization problems):2

θ(t+1) ← θ(t) − η(t)g(θ(t)) (2)

where θ(t) is the parameter vector on the tth iter-
ation, η(t) is the step size on the tth iteration, and
g : Rd → Rd is the vector function of first deriva-
tives of f with respect to θ:

g(θ) =
〈

∂f
∂θ1

(θ), ∂f
∂θ2

(θ), . . . , ∂f
∂θd

(θ)
〉

(3)

We are interested in optimizing such functions
using distributed computing, by which we mean to
include any system containing multiple processors
that can communicate in order to perform a single
task. The set of processors can range from two
cores on a single machine to a MapReduce cluster
of thousands of machines.

Note our assumption that the computation re-
quired to optimize f with respect to θ is, essen-
tially, the gradient vector g(θ(t)), which serves
as the descent direction. The key to distribut-
ing this computation is the fact that g(θ(t)) =∑n

i=1 gi(θ
(t)), where gi(θ) denotes the gradient

of fi(θ) with respect to θ. We now discuss several
ways to go about distributing such a problem, cul-
minating in the asynchronous mini-batch setting.

3 Distributed Batch Optimization

Given p processors plus a master processor, the
most straightforward way to optimize f is to par-
tition the fi so that for each i ∈ {1, 2, . . . , n},
gi is computed on exactly one “slave” processor.
Let Ij denote the subset of examples assigned to
the jth slave processor (

⋃p
j=1 Ij = {1, . . . , n}

and j 6= j′ ⇒ Ij ∩ Ij′ = ∅). Processor j re-
ceives the examples in Ij along with the neces-
sary portions of θ(t) for calculating gIj

(θ(t)) =∑
i∈Ij

gi(θ
(t)). The result of this calculation is

returned to the master processor, which calculates
g(θ(t)) =

∑
j gIj

(θ(t)) and executes Eq. 2 (or
something more sophisticated that uses the same
information) to obtain a new parameter vector.

It is natural to divide the data so that each pro-
cessor is assigned approximately n/p of the train-
ing examples. Because of variance in the expense

2We use the term “gradient” for simplicity, but subgradi-
ents are sufficient throughout.
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of calculating the different gi, and because of un-
predictable variation among different processors’
speed (e.g., variation among nodes in a cluster,
or in demands made by other users), there can be
variation in the observed runtime of different pro-
cessors on their respective subsamples. Each it-
eration of calculating g will take as long as the
longest-running among the processors, whatever
the cause of that processor’s slowness. In comput-
ing environments where the load on processors is
beyond the control of the NLP researcher, this can
be a major bottleneck.

Nonetheless, this simple approach is widely
used in practice; approaches in which the gradient
computation is distributed via MapReduce have
recently been described in machine learning and
NLP (Chu et al., 2006; Dyer et al., 2008; Wolfe et
al., 2008). Mann et al. (2009) compare this frame-
work to one in which each processor maintains a
separate parameter vector which is updated inde-
pendently of the others. At the end of learning, the
parameter vectors are averaged or a vote is taken
during prediction. A similar parameter-averaging
approach was taken by Chiang et al. (2008) when
parallelizing MIRA (Crammer et al., 2006). In
this paper, we restrict our attention to distributed
frameworks which maintain and update a single
copy of the parameters θ. The use of multiple
parameter vectors is essentially orthogonal to the
framework we discuss here and we leave the inte-
gration of the two ideas for future exploration.

4 Distributed Synchronous Mini-Batch
Optimization

Distributed computing can speed up batch algo-
rithms, but we would like to transfer the well-
known speed-ups offered by online and mini-batch
algorithms to the distributed setting as well. The
simplest way to implement mini-batch stochastic
gradient descent (SGD) in a distributed computing
environment is to divide each mini-batch (rather
than the entire batch) among the processors that
are available and to update the parameters once the
gradient from the mini-batch has been computed.
Finkel et al. (2008) used this approach to speed
up training of a log-linear model for parsing. The
interaction between the master processor and the
distributed computing environment is nearly iden-
tical to the distributed batch optimization scenario.
Where M (t) is the set of indices in the mini-batch

processed on iteration t, the update is:

θ(t+1) ← θ(t) − η(t) ∑
i∈M(t) gi(θ

(t)) (4)

The distributed synchronous framework can
provide speed-ups over a single-processor imple-
mentation of SGD, but inevitably some processors
will end up waiting for others to finish processing.
This is the same bottleneck faced by the batch ver-
sion in §3. While the time for each mini-batch is
shorter than the time for a full batch, mini-batch
algorithms make far more updates and some pro-
cessor cycles will be wasted in computing each
one. Also, more mini-batches imply that more
time will be lost due to per-mini-batch overhead
(e.g., waiting for synchronization locks in shared-
memory systems, or sending data and θ to the pro-
cessors in systems without shared memory).

5 Distributed Asynchronous Mini-Batch
Optimization

An asynchronous framework may use multiple
processors more efficiently and minimize idle time
(Nedic et al., 2001; Langford et al., 2009). In this
setting, the master sends θ and a mini-batch Mk to
each slave k. Once slave k finishes processing its
mini-batch and returns gMk

(θ), the master imme-
diately updates θ and sends a new mini-batch and
the new θ to the now-available slave k. As a result,
slaves stay occupied and never need to wait on oth-
ers to finish. However, nearly all gradient com-
ponents are computed using slightly stale parame-
ters that do not take into account the most recent
updates. Nedic et al. (2001) proved that conver-
gence is still guaranteed under certain conditions,
and Langford et al. (2009) obtained convergence
rate results. We describe these results in more de-
tail in §5.2.

The update takes the following form:

θ(t+1) ← θ(t) − η(t) ∑
i∈M(τ(t)) gi(θ

(τ(t))) (5)

where τ(t) ≤ t is the start time of the mini-batch
used for the tth update. Since we started pro-
cessing the mini-batch at time τ(t) (using param-
eters θ(τ(t))), we denote the mini-batch M (τ(t)). If
τ(t) = t, then Eq. 5 is identical to Eq. 4. That is,
t− τ(t) captures the “staleness” of the parameters
used to compute the gradient for the tth update.

Asynchronous frameworks do introduce error
into the training procedure, but it is frequently
the case in NLP problems that only a small frac-
tion of parameters is needed for each mini-batch
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Input: number of examples n, mini-batch size m,
random seed r

θ` ← θ;
seedRandomNumberGenerator (r);
while converged (θ) = false do

g ← 0;
for j ← 1 to m do

k ∼ Uniform({1, . . . , n});
g ← g + gk(θ`);

end
acquireLock (θ);
θ ← updateParams (θ, g);
θ` ← θ;
releaseLock (θ);

end
Algorithm 1: Procedure followed by each thread for multi-
core asynchronous mini-batch optimization. θ is the single
copy of the parameters shared by all threads. The conver-
gence criterion is left unspecified here.

of training examples. For example, for simple
word alignment models like IBM Model 1 (Brown
et al., 1993), only parameters corresponding to
words appearing in the particular subsample of
sentence pairs are needed. The error introduced
when making asynchronous updates should intu-
itively be less severe in these cases, where dif-
ferent mini-batches use small and mostly non-
overlapping subsets of θ.

5.1 Implementation
The algorithm sketched above is general enough
to be suitable for any distributed system, but when
using a system with shared memory (e.g., a single
multiprocessor machine) a more efficient imple-
mentation is possible. In particular, we can avoid
the master/slave architecture and simply start p
threads that each compute and execute updates in-
dependently, with a synchronization lock on θ. In
our single-machine experiments below, we use Al-
gorithm 1 for each thread. A different random seed
(r) is passed to each thread so that they do not all
process the same sequence of examples. At com-
pletion, the result is contained in θ.

5.2 Convergence Results
We now briefly summarize convergence results
from Nedic et al. (2001) and Langford et al.
(2009), which rely on the following assumptions:
(i) The function f is convex. (ii) The gradients
gi are bounded, i.e., there exists C > 0 such that
‖gi(θ

(t))‖ ≤ C. (iii) ∃ (unknown) D > 0 such
that t − τ(t) < D. (iv) The stepsizes η(t) satisfy
certain standard conditions.

In addition, Nedic et al. require that all func-
tion components are used with the same asymp-

totic frequency (as t → ∞). Their results are
strongest when choosing function components in
each mini-batch using a “cyclic” rule: select func-
tion fi for the kth time only after all functions have
been selected k − 1 times. For a fixed step size
η, the sequence of function values f(θ(t)) con-
verges to a region of the optimum that depends
on η, the maximum norm of any gradient vector,
and the maximum delay for any mini-batch. For
a decreasing step size, convergence is guaranteed
to the optimum. When choosing components uni-
formly at random, convergence to the optimum is
again guaranteed using a decreasing step size for-
mula, but with slightly more stringent conditions
on the step size.

Langford et al. (2009) present convergence rates
via regret bounds, which are linear in D. The con-
vergence rate of asynchronous stochastic gradient
descent is O(

√
TD), where T is the total number

of updates made. In addition to the situation in
which function components are chosen uniformly
at random, Langford et al. provide results for sev-
eral other scenarios, including the case in which an
adversary supplies the training examples in what-
ever ordering he chooses.

Below we experiment with optimization of both
convex and non-convex functions, using fixed step
sizes and decreasing step size formulas, and con-
sider several values of D. Even when exploring
regions of the experimental space that are not yet
supported by theoretical results, asynchronous al-
gorithms perform well empirically in all settings.

5.3 Gradients and Expectation-Maximization

The theory applies when using first-order methods
to optimize convex functions. Though the function
it is optimizing is not usually convex, the EM algo-
rithm can be understood as a hillclimber that trans-
forms the gradient to keep θ feasible; it can also
be understood as a coordinate ascent algorithm.
Either way, the calculations during the E-step re-
semble g(θ). Several online or mini-batch vari-
ants of the EM algorithm have been proposed, for
example incremental EM (Neal and Hinton, 1998)
and online EM (Sato and Ishii, 2000; Cappé and
Moulines, 2009), and we follow Liang and Klein
(2009) in referring to this latter algorithm as step-
wise EM. Our experiments with asynchronous
minibatch updates include a case where the log-
likelihood f is convex and one where it is not.
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task data n # params. eval. method convex?
§6.1 named entity

recognition (CRF;
Lafferty et al., 2001)

CoNLL 2003 English
(Tjong Kim Sang and De
Meulder, 2003)

14,987
sents.

1.3M F1 SGD yes

§6.2 word alignment (Model
1, both directions;
Brown et al., 1993)

NAACL 2003 parallel text
workshop (Mihalcea and
Pedersen, 2003)

300K
pairs

14.2M ×2
(E→F +
F→E)

AER EM yes

S6.3 unsupervised POS
(bigram HMM)

Penn Treebank §1–21
(Marcus et al., 1993)

41,825
sents.

2,043,226 (Johnson,
2007)

EM no

Table 1: Our experiments consider three tasks.
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Figure 1: NER: Synchronous
mini-batch SGD converges faster
in F1 than the single-processor
version, and the asynchronous
version converges faster still. All
curves use a mini-batch size of 4.

6 Experiments

We performed experiments to measure speed-ups
obtainable through distributed online optimiza-
tion. Since we will be considering different opti-
mization algorithms and computing environments,
we will primarily be interested in the wall-clock
time required to obtain particular levels of perfor-
mance on metrics appropriate to each task. We
consider three tasks, detailed in Table 1.

For experiments on a single node, we used a
64-bit machine with two 2.6GHz dual-core CPUs
(i.e., 4 processors in all) with a total of 8GB of
RAM. This was a dedicated machine that was not
available for any other jobs. We also conducted
experiments using a cluster architecture running
Hadoop 0.20 (an implementation of MapReduce),
consisting of 400 machines, each having 2 quad-
core 1.86GHz CPUs with a total of 6GB of RAM.

6.1 Named Entity Recognition
Our NER CRF used a standard set of features, fol-
lowing Kazama and Torisawa (2007), along with
token shape features like those in Collins (2002)
and simple gazetteer features; a feature was in-
cluded if and only it occurred at least once in train-
ing data (total 1.3M). We used a diagonal Gaussian
prior with a variance of 1.0 for each weight.

We compared SGD on a single processor to dis-
tributed synchronous SGD and distributed asyn-
chronous SGD. For all experiments, we used a
fixed step size of 0.01 and chose each training ex-
ample for each mini-batch uniformly at random
from the full data set.3 We report performance by

3In preliminary experiments, we experimented with vari-
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Figure 2: NER: (Top) Synchronous optimization improves
very little when moving from 2 to 4 processors due to the
need for load-balancing, leaving some processors idle for
stretches of time. (Bottom) Asynchronous optimization does
not require load balancing and therefore improves when mov-
ing from 2 to 4 processors because each processor is in near-
constant use. All curves use a mini-batch size of 4 and the
“Single-processor” curve is identical in the two plots.

plotting test-set accuracy against wall-time over
12 hours.4

Comparing Synchronous and Asynchronous
Algorithms Figure 1 shows our primary result
for the NER experiments. When using all four
available processors, the asynchronous algorithm
converges faster than the other two algorithms. Er-
ror due to stale parameters during gradient com-
putation does not appear to cause any more varia-

ous fixed step sizes and decreasing step size schedules, and
found a fixed step size to work best for all settings.

4Decoding was performed offline (so as not to affect mea-
surments) with models sampled every ten minutes.
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tion in performance than experienced by the syn-
chronous mini-batch algorithm. Note that the dis-
tributed synchronous algorithm and the single-
processor algorithm make identical sequences of
parameter updates; the only difference is the
amount of time between each update. Since we
save models every ten minutes and not every ith
update, the curves have different shapes. The se-
quence of updates for the asynchronous algorithm,
on the other hand, actually depends on the vagaries
of the computational environment. Nonetheless,
the asynchronous algorithm using 4 processors has
nearly converged after only 2 hours, while the
single-processor algorithm requires 10–12 hours
to reach the same F1.

Varying the Number of Processors Figure 2
shows the improvement in convergence time by
using 4 vs. 2 processors for the synchronous (top)
and asynchronous (bottom) algorithms. The ad-
ditional two processors help the asynchronous al-
gorithm more than the synchronous one. This
highlights the key advantage of asynchronous al-
gorithms: it is easier to keep all processors in
constant use. Synchronous algorithms might be
improved through load-balancing; in our experi-
ments here, we simply assigned m/p examples to
each processor, where m is the mini-batch size and
p is the number of processors. When m = p, as in
the 4-processor curve in the upper plot of Figure 2,
we assign a single example to each processor; this
is optimal in the sense that no other scheduling
strategy will process the mini-batch faster. There-
fore, the fact that the 2-processor and 4-processor
curves are so close suggests that the extra two pro-
cessors are not being fully exploited, indicating
that the optimal load balancing strategy for a small
mini-batch still leaves processors under-used due
to the synchronous nature of the updates.

The only bottleneck in the asynchronous algo-
rithm is the synchronization lock during updating,
required since there is only one copy of θ. For
CRFs with a few million weights, the update is
typically much faster than processing a mini-batch
of examples; furthermore, when using small mini-
batches, the update vector is typically sparse.5 For
all experimental results presented thus far, we used
a mini-batch size of 4. We experimented with ad-

5In a standard implementation, the sparsity of the update
will be nullified by regularization, but to improve efficiency
in practice the regularization penalty can be accumulated and
applied less frequently than every update.
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Figure 3: NER: Convergence curves when a delay is incurred
with probability 0.25 after each mini-batch is processed. The
delay durations (in seconds) are sampled from N(µ, (µ/5)2),
for several means µ. Each mini-batch (size = 4) takes less
than a second to process, so if the delay is substantially longer
than the time required to process a mini-batch, the single-
node version converges faster. While curves with µ = 10 and
20 appear less smooth than the others, they are still heading
steadily toward convergence.

ditional mini-batch sizes of 1 and 8, but there was
very little difference in the resulting curves.

Artificial Delays We experimented with adding
artificial delays to the algorithm to explore how
much overhead would be tolerable before paral-
lelized computation becomes irrelevant. Figure 3
shows results when each processor sleeps with
0.25 probability for a duration of time between
computing the gradient on its mini-batch of data
and updating the parameters. The delay length is
chosen from a normal distribution with the means
(in seconds) shown and σ = µ/5 (truncated at
zero). Since only one quarter of the mini-batches
have an artificial delay, increasing µ increases the
average parameter “staleness”, letting us see how
the asynchronous algorithm fares with extremely
stale parameters.

The average time required to compute the gradi-
ent for a mini-batch of 4 is 0.62 seconds. When the
average delay is 1.25 seconds (µ = 5), twice the
average time for a mini-batch, the asynchronous
algorithm still converges faster than the single-
node algorithm. In addition, even with substan-
tial delays of 5–10 times the processing time for a
mini-batch, the asynchronous algorithm does not
fail but proceeds steadily toward convergence.

The practicality of using the asynchronous algo-
rithm depends on the average duration for a mini-
batch and the amount of expected additional over-
head. We attempted to run these experiments on

218



AER Time (h:m)
Single machine:
Asynch. stepwise EM 0.274 1:58
Synch. stepwise EM (4 proc.) 0.274 2:08
Synch. stepwise EM (1 proc.) 0.272 6:57
Batch EM 0.276 2:15
MapReduce:
Asynch. stepwise EM 0.281 5:41
Synch. stepwise EM 0.273 27:03
Batch EM 0.276 8:35

Table 2: Alignment error rates and wall time after 20 itera-
tions of EM for various settings. See text for details.

a large MapReduce cluster, but the overhead re-
quired for each MapReduce job was too large to
make this viable (30–60 seconds).

6.2 Word Alignment
We trained IBM Model 1 in both directions. To
align test data, we symmetrized both directional
Viterbi alignments using the “grow-diag-final”
heuristic (Koehn et al., 2003). We evaluated our
models using alignment error rate (AER).

Experiments on a Single Machine We fol-
lowed Liang and Klein (2009) in using syn-
chronous (mini-batch) stepwise EM on a single
processor for this task. We used the same learning
rate formula (η(t) = (t+2)−q, with 0.5 < q ≤ 1).
We also used asynchronous stepwise EM by using
the same update rule, but gathered sufficient statis-
tics on 4 processors of a single machine in paral-
lel, analogous to our asynchronous method from
§5. Whenever a processor was done gathering the
expected counts for its mini-batch, it updated the
sufficient statistics vector and began work on the
next mini-batch.

We used the sparse update described by Liang
and Klein, which allows each thread to make
additive updates to the parameter vector and
to separately-maintained normalization constants
without needing to renormalize after each update.
When probabilities are needed during inference,
normalizers are divided out on-the-fly as needed.

We made 10 passes of asynchronous stepwise
EM to measure its sensitivity to q and the mini-
batch size m, using different values of these
hyperparameters (q ∈ {0.5, 0.7, 1.0}; m ∈
{5000, 10000, 50000}), and selected values that
maximized log-likelihood (q = 0.7, m = 10000).

Experiments on MapReduce We implemented
the three techniques in a MapReduce framework.
We implemented batch EM on MapReduce by

converting each EM iteration into two MapRe-
duce jobs: one for the E-step and one for the M-
step.6 For the E-step, we divided our data into
24 map tasks, and computed expected counts for
the source-target parameters at each mapper. Next,
we summed up the expected counts in one reduce
task. For the M-step, we took the output from
the E-step, and in one reduce task, normalized
each source-target parameter by the total count for
the source word.7 To gather sufficient statistics
for synchronous stepwise EM, we used 6 mappers
and one reducer for a mini-batch of size 10000.
For the asynchronous version, we ran four parallel
asynchronous mini-batches, the sufficient statis-
tics being gathered using MapReduce again for
each mini-batch with 6 map tasks and one reducer.

Results Figure 4 shows log-likelihood for the
English→French direction during the first 80 min-
utes of optimization. Similar trends were observed
for the French→English direction as well as for
convergence in AER. Table 2 shows the AER at
the end of 20 iterations of EM for the same set-
tings.8 It takes around two hours to finish 20 iter-
ations of batch EM on a single machine, while it
takes more than 8 hours to do so on MapReduce.
This is because of the extra overhead of transfer-
ring θ from a master gateway machine to mappers,
from mappers to reducers, and from reducers back
to the master. Synchronous and asynchronous EM
suffer as well.

From Figure 4, we see that synchronous and
asynchronous stepwise EM converge at the same
rate when each is given 4 processors. The main
difference between this task and NER is the size
of the mini-batch used, so we experimented with
several values for the mini-batch size m. Fig-
ure 5 shows the results. As m decreases, a larger
fraction of time is spent updating parameters; this
slows observed convergence time even when us-
ing the sparse update rule. It can be seen that,
though synchronous and asynchronous stepwise
EM converge at the same rate with a large mini-
batch size (m = 10000), asynchronous stepwise

6The M-step could have been performed without MapRe-
duce by storing all the parameters in memory, but memory
restrictions on the gateway node of our cluster prevented this.

7For the reducer in the M-step, the source served as the
key, and the target appended by the parameter’s expected
count served as the value.

8Note that for wall time comparison, we sample models
every five minutes. The time taken to write these models
ranges from 30 seconds to a minute, thus artificially elon-
gating the total time for all iterations.

219



10 20 30 40 50 60 70 80

−40

−35

−30

−25

−20
Lo

g−
Li

ke
lih

oo
d

 

 

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)

10 20 30 40 50 60 70 80

−40

−35

−30

−25

−20

Wall clock time (minutes)

Lo
g−

Li
ke

lih
oo

d

 

 

Asynch. Stepwise EM (MapReduce)
Synch. Stepwise EM (MapReduce)
Batch EM (MapReduce)

Figure 4: English→French log-likelihood vs. wall clock time
in minutes on both a single machine (top) and on a large
MapReduce cluster (bottom), shown on separate plots for
clarity, though axis scales are identical. We show runs of
each setting for the first 80 minutes, although EM was run
for 20 passes through the data in all cases (Table 2). Fastest
convergence is obtained by synchronous and asynchronous
stepwise EM using 4 processors on a single node. While the
algorithms converge more slowly on MapReduce due to over-
head, the asynchronous algorithm converges the fastest. We
observed similar trends for the French→English direction.

EM converges faster as m decreases. With large
mini-batches, load-balancing becomes less impor-
tant as there will be less variation in per-mini-
batch observed runtime. These results suggest that
asynchronous mini-batch algorithms will be most
useful for learning problems in which small mini-
batches work best. Fortunately, however, we do
not see any problems stemming from approxima-
tion errors due to the use of asynchronous updates.

6.3 Unsupervised POS Tagging
Our unsupervised POS experiments use the same
task and approach of Liang and Klein (2009) and
so we fix hyperparameters for stepwise EM based
on their findings (learning rate η(t) = (t+2)−0.7).
The asynchronous algorithm uses the same learn-
ing rate formula as the single-processor algorithm.
There is only a single t that is maintained and gets
incremented whenever any thread updates the pa-
rameters. Liang and Klein used a mini-batch size
of 3, but we instead use a mini-batch size of 4 to
better suit our 4-processor synchronous and asyn-
chronous architectures.

Like NER, we present results for unsupervised
tagging experiments on a single machine only, i.e.,
not using a MapReduce cluster. For tasks like POS
tagging that have been shown to work best with
small mini-batches (Liang and Klein, 2009), we
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Figure 5: English→French log-likelihood vs. wall clock time
in minutes for stepwise EM with 4 processors for various
mini-batch sizes (m). The benefits of asynchronous updat-
ing increase as m decreases.

did not conduct experiments with MapReduce due
to high overhead per mini-batch.

For initialization, we followed Liang and Klein
by initializing each parameter as θi ∝ e1+ai ,
ai ∼ Uniform([0, 1]). We generated 5 random
models using this procedure and used each to ini-
tialize each algorithm. We additionally used 2
random seeds for choosing the ordering of exam-
ples,9 resulting in a total of 10 runs for each al-
gorithm. We ran each for six hours, saving mod-
els every five minutes. After training completed,
using each model we decoded the entire training
data using posterior decoding and computed the
log-likelihood. The results for 5 initial models and
two example orderings are shown in Figure 6. We
evaluated tagging performance using many-to-1
accuracy, which is obtained by mapping the HMM
states to gold standard POS tags so as to maximize
accuracy, where multiple states can be mapped to
the same tag. This is the metric used by Liang and
Klein (2009) and Johnson (2007), who report fig-
ures comparable to ours. The asynchronous algo-
rithm converges much faster than the single-node
algorithm, allowing a tagger to be trained from
the Penn Treebank in less than two hours using
a single machine. Furthermore, the 4-processor
synchronous algorithm improves only marginally

9We ensured that the examples processed in the sequence
of mini-batches were identical for the 1-processor and 4-
processor versions of synchronous stepwise EM, but the
asynchronous algorithm requires a different seed for each
processor and, furthermore, the actual order of examples pro-
cessed depends on wall times and cannot be controlled for.
Nonetheless, we paired a distinct set of seeds for the asyn-
chronous algorithm with each of the two seeds used for the
synchronous algorithms.
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Figure 6: POS: Asynchronous stepwise EM converges faster in log-likelihood and accuracy than the synchronous versions.
Curves are shown for each of 5 random initial models. One example ordering random seed is shown on the left, another on the
right. The accuracy curves for batch EM do not appear because the highest accuracy reached is only 40.7% after six hours.

over the 1-processor baseline.
The accuracy of the asynchronous curves of-

ten decreases slightly after peaking. We can sur-
mise from the log-likelihood plot that the drop
in accuracy is not due to the optimization be-
ing led astray, but probably rather due to the
complex relationship between likelihood and task-
specific evaluation metrics in unsupervised learn-
ing (Merialdo, 1994). In fact, when we exam-
ined the results of synchronous stepwise EM be-
tween 6 and 12 hours of execution, we found sim-
ilar drops in accuracy as likelihood continued to
improve. From Figure 6, we conclude that the
asynchronous algorithm has no harmful effect on
learned model’s accuracy beyond the choice to op-
timize log-likelihood.

While there are currently no theoretical conver-
gence results for asynchronous optimization algo-
rithms for non-convex functions, our results are
encouraging for the prospects of establishing con-
vergence results for this setting.

7 Discussion

Our best results were obtained by exploiting mul-
tiple processors on a single machine, while exper-
iments using a MapReduce cluster were plagued
by communication and framework overhead.

Since Moore’s Law predicts a continual in-
crease in the number of cores available on a sin-
gle machine but not necessarily an increase in the
speed of those cores, we believe that algorithms
that can effectively exploit multiple processors on
a single machine will be increasingly useful. Even
today, applications in NLP involving rich-feature
structured prediction, such as parsing and transla-

tion, typically use a large portion of memory for
storing pre-computed data structures, such as lex-
icons, feature name mappings, and feature caches.
Frequently these are large enough to prevent the
multiple cores on a single machine from being
used for multiple experiments, leaving some pro-
cessors unused. However, using multiple threads
in a single program allows these large data struc-
tures to be shared and allows the threads to make
use of the additional processors.

We found the overhead incurred by the MapRe-
duce programming model, as implemented in
Hadoop 0.20, to be substantial. Nonetheless,
we found that asynchronously running multiple
MapReduce calls at the same time, rather than
pooling all processors into a single MapReduce
call, improves observed convergence with negli-
gible effects on performance.

8 Conclusion

We have presented experiments using an asyn-
chronous framework for distributed mini-batch
optimization that show comparable performance
of trained models in significantly less time than
traditional techniques. Such algorithms keep pro-
cessors in constant use and relieve the programmer
from having to implement load-balancing schemes
for each new problem encountered. We expect
asynchronous learning algorithms to be broadly
applicable to training NLP models.
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