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Abstract

Both entity and relation extraction can

benefit from being performed jointly, al-

lowing each task to correct the errors of

the other. We present a new method for

joint entity and relation extraction using

a graph we call a “card-pyramid.” This

graph compactly encodes all possible en-

tities and relations in a sentence, reducing

the task of their joint extraction to jointly

labeling its nodes. We give an efficient la-

beling algorithm that is analogous to pars-

ing using dynamic programming. Exper-

imental results show improved results for

our joint extraction method compared to a

pipelined approach.

1 Introduction

Information extraction (IE) is the task of extract-

ing structured information from text. The two

most common sub-tasks of IE are extracting enti-

ties (like Person, Location and Organization) and

extracting relations between them (like Work For

which relates a Person and an Organization, Org-

Based In which relates an Organization and a Lo-

cation etc.). Figure 1 shows a sample sentence an-

notated with entities and relations. The applica-

tion domain and requirements of the downstream

tasks usually dictate the type of entities and rela-

tions that an IE system needs to extract.

Most work in IE has concentrated on entity ex-

traction alone (Tjong Kim Sang, 2002; Sang and

Meulder, 2003) or on relation extraction assum-

ing entities are either given or previously extracted

(Bunescu et al., 2005; Zhang et al., 2006; Giuliano

et al., 2007; Qian et al., 2008). However, these

tasks are very closely inter-related. While iden-

tifying correct entities is essential for identifying

relations between them, identifying correct rela-

tions can in turn improve identification of entities.

For example, if the relation Work For is identified

with high confidence by a relation extractor, then

it can enforce identifying its arguments as Person

and Organization, about which the entity extractor

might not have been confident.

A brute force algorithm for finding the most

probable joint extraction will soon become in-

tractable as the number of entities in a sentence

grows. If there are n entities in a sentence, then

there are O(n2) possible relations between them

and if each relation can take l labels then there are

O(ln
2

) total possibilities, which is intractable even

for small l and n. Hence, an efficient inference

mechanism is needed for joint entity and relation

extraction.

The only work we are aware of for jointly ex-

tracting entities and relations is by Roth & Yih

(2004; 2007). Their method first identifies the pos-

sible entities and relations in a sentence using sep-

arate classifiers which are applied independently

and then computes a most probable consistent

global set of entities and relations using linear pro-

gramming. In this paper, we present a different ap-

proach to joint extraction using a “card-pyramid”

graph. The labeled nodes in this graph compactly

encode the possible entities and relations in a sen-

tence. The task of joint extraction then reduces

to finding the most probable joint assignment to

the nodes in the card-pyramid. We give an ef-

ficient dynamic-programming algorithm for this

task which resembles CYK parsing for context-

free grammars (Jurafsky and Martin, 2008). The

algorithm does a beam search and gives an approx-

imate solution for a finite beam size. A natural

advantage of this approach is that extraction from

a part of the sentence is influenced by extraction

from its subparts and vice-versa, thus leading to a

joint extraction. During extraction from a part of

the sentence it also allows use of features based on

the extraction from its sub-parts, thus leading to a

more integrated extraction. We use Roth & Yih’s
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John lives in Los Angeles , California and works there for an American company called ABC Inc .
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Figure 1: A sentence shown with entities and relations.

Figure 2: A pyramid built out of playing-cards.

(2004; 2007) dataset in our experiments and show

that card-pyramid parsing improves accuracy over

both their approach and a pipelined extractor.

2 Card-Pyramid Parsing for Joint

Extraction

In this section, we first introduce the card-pyramid

structure and describe how it represents entities

and their relations in a sentence. We then describe

an efficient algorithm for doing joint extraction us-

ing this structure.

2.1 Card-Pyramid Structure

We define a binary directed graph we call a card-

pyramid because it looks like a pyramid built out

of playing-cards as shown in Figure 2. A card-

pyramid is a “tree-like” graph with one root, in-

ternal nodes, and leaves, such that if there are

n leaves, then there are exactly n levels with a

decreasing number of nodes from bottom to top,

leaves are at the lowest level (0) and the root is

at the highest level (n − 1) (see Figure 3 for an

example). In addition, every non-leaf node at po-

Live_In

Live_In NR OrgBased_In

NR OrgBased_In

Work_For

Location Location Other Organization

Located_In NRNRLevel 1

Level 2

Level 3

Level 4

Person

0

2

10

0 1

0 1 3

(0−0) (3−4) (6−6) (12−12) (15−16)

0 1 2 3 4

2

Level 0

Figure 3: The card-pyramid for the sentence shown in Fig-

ure 1. Levels are shown by the horizontal lines under which

the positions of its nodes are indicated.

sition i in level l is the parent of exactly two nodes

at positions i and i + 1 at level l − 1. Note that

a card-pyramid is not a tree because many of its

nodes have two parents. A useful property of a

card-pyramid is that a non-leaf node at position i

in level l is always the lowest common ancestor of

the leaves at positions i and l + i.

We now describe how entities and relations in a

sentence are easily represented in a card-pyramid.

We assume that in addition to the given entity

types, there is an extra type, Other, indicating that

the entity is of none of the given types. Similarly,

there is an extra relation type, NR, indicating that

its two entity arguments are not related.

Figure 3 shows the card-pyramid corresponding

to the annotated sentence shown in figure 1. To ob-

tain it, first, all entities present in the sentence are

made leaves of the card-pyramid in the same order

as they appear in the sentence. The label of a leaf

is the type of the corresponding entity. The leaf

also stores the range of the indices of its entity’s

words in the sentence. Note that although there is

no overlap between entities in the given example

(nor in the dataset we used for our experiments),
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overlapping entities do not pose a problem. Over-

lapping entities can still be ordered and supplied as

the leaves of the card-pyramid. Next, the relation

between every two entities (leaves) is encoded as

the label of their lowest common ancestor. If two

entities are not related, then the label of their low-

est common ancestor is NR. This way, every non-

leaf node relates exactly two entities: the left-most

and right-most leaves beneath it.

2.2 Card-Pyramid Parsing

The task of jointly extracting entities and rela-

tions from a sentence reduces to jointly label-

ing the nodes of a card-pyramid which has all

the candidate entities (i.e. entity boundaries) of

the sentence as its leaves. We call this process

card-pyramid parsing. We assume that all candi-

date entities are given up-front. If needed, candi-

date entities can be either obtained automatically

(Punyakanok and Roth, 2001) or generated using

a simple heuristic, like including all noun-phrase

chunks as candidate entities. Or, in the worst case,

each substring of words in the sentence can be

given as a candidate entity. Liberally including

candidate entities is possible since they can sim-

ply be given the label Other if they are none of the

given types.

In this section we describe our card-pyramid

parsing algorithm whose pseudo-code is shown

in Figure 4. While the process is analogous to

context-free grammar (CFG) parsing, particularly

CYK bottom-up parsing, there are several major

differences. Firstly, in card-pyramid parsing the

structure is already known and the only task is

labeling the nodes, whereas in CFG parsing the

structure is not known in advance. This fact sim-

plifies some aspects of card-pyramid parsing. Sec-

ondly, in CFG parsing the subtrees under a node

do not overlap which simplifies parsing. How-

ever, in card-pyramid parsing there is significant

overlap between the two sub-card-pyramids under

a given node and this overlap needs to be consis-

tently labeled. This could have potentially com-

plicated parsing, but there turns out to be a simple

constant-time method for checking consistency of

the overlap. Thirdly, while CFG parsing parses the

words in a sentence, here we are parsing candi-

date entities. Finally, as described below, in card-

pyramid parsing, a production at a non-leaf node

relates the left-most and right-most leaves beneath

it, while in CFG parsing a production at a non-leaf

node relates its immediate children which could be

other non-leaf nodes.

Parsing requires specifying a grammar for the

card-pyramid. The productions in this grammar

are of two types. For leaf nodes, the produc-

tions are of the form entityLabel → ce where ce,

which stands for candidate entity, is the only ter-

minal symbol in the grammar. We call these pro-

ductions entity productions. For non-leaf nodes,

the productions are of the form relationLabel →
entityLabel1 entityLabel2. We call these produc-

tions relation productions. Note that their right-

hand-side (RHS) non-terminals are entity labels

and not other relation labels. From a training

set of labeled sentences, the corresponding card-

pyramids can be constructed using the procedure

described in the previous section. From these

card-pyramids, the entity productions are obtained

by simply reading off the labels of the leaves. A

relation productions is obtained from each non-

leaf node by making the node’s label the produc-

tion’s left-hand-side (LHS) non-terminal and mak-

ing the labels of its left-most and right-most leaves

the production’s RHS non-terminals. For the ex-

ample shown in Figure 3, some of the productions

are Work For→ Person Organization, NR→ Per-

son Other, OrgBased In→ Loc Org, Person→ ce,

Location → ce etc. Note that there could be two

separate productions like Work For → Person Or-

ganization and Work For → Organization Person

based on the order in which the entities are found

in a sentence. For the relations which take argu-

ments of the same type, like Kill(Person,Person),

two productions are used with different LHS non-

terminals (Kill and Kill reverse) to distinguish be-

tween the argument order of the entities.

The parsing algorithm needs a classifier for ev-

ery entity production which gives the probabil-

ity of a candidate entity being of the type given

in the production’s LHS. In the pseudo-code,

this classifier is given by the function: entity-

classifier(production, sentence, range). The func-

tion range(r) represents the boundaries or the

range of the word indices for the rth candidate

entity. Similarly, we assume that a classifier is

given for every relation production which gives

the probability that its two RHS entities are re-

lated by its LHS relation. In the pseudo-code it is

the function: relation-classifier(production, sen-

tence, range1, range2, sub-card-pyramid1, sub-

card-pyramid2), where range1 and range2 are the
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ranges of the word indices of the two entities

and sub-card-pyramid1 and sub-card-pyramid2

are the sub-card-pyramids rooted at its two chil-

dren. Thus, along with the two entities and the

words in the sentence, information from these sub-

card-pyramids is also used in deciding the relation

at a node. In the next section, we further spec-

ify these entity and relation classifiers and explain

how they are trained. We note that this use of

multiple classifiers to determine the most probable

parse is similar to the method used in the KRISP

semantic parser (Kate and Mooney, 2006).

Given the candidate entities in a sentence, the

grammar, and the entity and relation classifiers,

the card-pyramid parsing algorithm tries to find

the most probable joint-labeling of all of its nodes,

and thus jointly extracts entities and their rela-

tions. The parsing algorithm does a beam search

and maintains a beam at each node of the card-

pyramid. A node is represented by l[i][j] in the

pseudo-code which stands for the node in the jth

position in the ith level. Note that at level i, the

nodes range from l[i][0] to l[i][n− i− 1], where n

is the number of leaves. The beam at each node is

a queue of items we call beam elements. At leaf

nodes, a beam element simply stores a possible

entity label with its corresponding probability. At

non-leaf nodes, a beam element contains a possi-

ble joint assignment of labels to all the nodes in

the sub-card-pyramid rooted at that node with its

probability. This is efficiently maintained through

indices to the beam elements of its children nodes.

The parsing proceeds as follows. First, the en-

tity classifiers are used to fill the beams at the leaf

nodes. The add(beam, beam-element) function

adds the beam element to the beam while main-

taining its maximum beam-width size and sorted

order based on the probabilities. Next, the beams

of the non-leaf nodes are filled in a bottom-up

manner. At any node, the beams of its children

nodes are considered and every combination of

their beam elements are tried. To be considered

further, the two possible sub-card-pyramids en-

coded by the two beam elements must have a con-

sistent overlap. This is easily enforced by check-

ing that its left child’s right child’s beam element

is same as its right child’s left child’s beam ele-

ment. If this condition is satisfied, then those re-

lation productions are considered which have the

left-most leaf of the left child and right-most leaf

of the right child as its RHS non-terminals.1 For

every such production in the grammar, 2 the prob-

ability of the relation is determined using the re-

lation classifier. This probability is then multi-

plied by the probabilities of the children sub-card-

pyramids. But, because of the overlap between the

two children, a probability mass gets multiplied

twice. Hence the probability of the overlap sub-

card-pyramid is then suitably divided. Finally, the

estimated most-probable labeling is obtained from

the top beam element of the root node.

We note that this algorithm may not find the

optimal solution but only an approximate solu-

tion owing to a limited beam size, this is unlike

probabilistic CFG parsing algorithms in which the

optimal solution is found. A limitless beam size

will find the optimal solution but will reduce the

algorithm to a computationally intractable brute

force search. The parsing algorithm with a fi-

nite beam size keeps the search computationally

tractable while allowing a joint labelling.

3 Classifiers for Entity and Relation

Extraction

The card-pyramid parsing described in the previ-

ous section requires classifiers for each of the en-

tity and relation productions. In this section, we

describe the classifiers we used in our experiments

and how they were trained.

We use a support vector machine (SVM) (Cris-

tianini and Shawe-Taylor, 2000) classifier for each

of the entity productions in the grammar. An entity

classifier gets as input a sentence and a candidate

entity indicated by the range of the indices of its

words. It outputs the probability that the candi-

date entity is of the respective entity type. Prob-

abilities for the SVM outputs are computed using

the method by Platt (1999). We use all possible

word subsequences of the candidate entity words

as implicit features using a word-subsequence ker-

nel (Lodhi et al., 2002). In addition, we use

the following standard entity extraction features:

the part-of-speech (POS) tag sequence of the can-

didate entity words, two words before and after

the candidate entity and their POS tags, whether

any or all candidate entity words are capitalized,

1These are stored in the beam elements.
2Note that this step enforces the consistency constraint of

Roth and Yih (Roth and Yih, 2004; Roth and Yih, 2007) that
a relation can only be between the entities of specific types.
The grammar in our approach inherently enforces this con-
straint.
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function Card-Pyramid-Parsing(Sentence,Grammar,entity-classifiers,relation-classifiers)

n = number of candidate entities in S

// Let range(r) represent the range of the indices of the words for the rth candidate entity.

// Let l[i][j] represent the jth node at ith level in the card-pyramid.

// For leaves

// A beam element at a leaf node is (label,probability).

for j = 0 to n // for every leaf

for each entityLabel → candidate entity ∈ Grammar

prob = entity-classifier(entityLabel → candidate entity, S, range(j))

add(l[0][j].beam, (entityLabel,prob))

// For non-leaf nodes

// A beam element at a non-leaf node is (label,probability,leftIndex,rightIndex,leftMostLeaf,rightMostLeaf)

// where leftIndex and rightIndex are the indices in the beams of the left and right children respectively.

for i = 1 to n // for every level above the leaves

for j = 0 to n− i− 1 // for every position at a level

// for each combination of beam elements of the two children

for each f ∈ l[i− 1][j].beam and g ∈ l[i− 1][j + 1].beam

// the overlapped part must be same (overlap happens for i > 1)

if (i == 1||f.rightIndex == g.leftIndex)
for each relationLabel → f.leftMostLeaf g.rightMostLeaf ∈ Grammar

// probability of that relation between the left-most and right-most leaf under the node

prob = relation-classifier(relationLabel → f.leftMostLeaf g.rightMostLeaf , S, range(i), range(i + j), f , g);

prob *= f.probability ∗ g.probability // multiply probabilities of the children sub-card-pyramids

// divide by the common probability that got multiplied twice

if (i > 1) prob /= l[i− 2][j + 1].beam[f.rightIndex].probability

add(l[i][j].beam, (relationLabel, prob, index of f , index of g, f.leftMostLeaf , g.rightMostLeaf )

return the labels starting from the first beam element of the root i.e. l[n][0].beam[0]

Figure 4: Card-Pyramid Parsing Algorithm.

whether any or all words are found in a list of en-

tity names, whether any word has sufffix “ment”

or “ing”, and finally the alphanumeric pattern of

characters (Collins, 2002) of the last candidate

entity word obtained by replacing each charac-

ter by its character type (lowercase, uppercase or

numeric) and collapsing any consecutive repeti-

tion (for example, the alphanumeric pattern for

CoNLL2010 will be AaA0). The full kernel is

computed by adding the word-subsequence kernel

and the dot-product of all these features, exploit-

ing the convolution property of kernels.

We also use an SVM classifier for each of the

relation productions in the grammar which out-

puts the probability that the relation holds between

the two entities. A relation classifier is applied

at an internal node of a card-pyramid. It takes

the input in two parts. The first part is the sen-

tence and the range of the word indices of its two

entities l and r which are the left-most and the

right-most leaves under it respectively. The sec-

ond part consists of the sub-card-pyramids rooted

at the node’s two children which represent a pos-

sible entity and relation labeling for all the nodes

underneath. In general, any information from the

sub-card-pyramids could be used in the classifier.

We use the following information: pairs of rela-

tions that exist between l and b and between b and

r for every entity (leaf) b that exists between the

two entities l and r. For example, in figure 3,

the relation classifier at the root node which re-

lates Person(0-0) and Organization (15-16) will

take three pairs of relations as the information

from the two sub-card-pyramids of its children:

“Live In—OrgBased In” (with Location(3-4) as

the in-between entity), “Live In—OrgBased In”

(with Location(6-6) as the in-between entity) and

“NR—NR” (with Other(12-12) as the in-between

entity). This information tells how the two enti-

ties are related to the entities present in between

them. This can affect the relation between the two

entities, for example, if the sentence mentions that

a person lives at a location and also mentions that

an organization is based at that location then that

person is likely to work at that organization. Note

that this information can not be incorporated in a

pipelined approach in which each relation is de-

termined independently. It is also not possible to

incorporate this in the linear programming method

presented in (Roth and Yih, 2004; Roth and Yih,

2007) because that method computes the probabil-

ities of all the relations independently before find-

ing the optimal solution through linear program-

ming. It would also not help to add hard con-

straints to their linear program relating the rela-

tions because they need not always hold.

We add the kernels for each part of the input to

compute the final kernel for the SVM classifiers.

The kernel for the second part of the input is com-

puted by simply counting the number of common
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pairs of relations between two examples thus im-

plicitly considering every pair of relation (as de-

scribed in the last paragraph) as a feature. For the

first part of the input, we use word-subsequence

kernels which have shown to be effective for re-

lation extraction (Bunescu and Mooney, 2005b).

We compute the kernel as the sum of the word-

subsequence kernels between: the words between

the two entities (between pattern), k (a parame-

ter) words before the first entity (before pattern),

k words after the second entity (after pattern) and

the words from the beginning of the first entity to

the end of the second entity (between-and-entity

pattern). The before, between and after patterns

have been found useful in previous work (Bunescu

and Mooney, 2005b; Giuliano et al., 2007). Some-

times the words of the entities can indicate the re-

lations they are in, hence we also use the between-

and-entity pattern. When a relation classifier is

used at a node, the labels of the leaves beneath it

are already known, so we replace candidate entity

words that are in the between and between-and-

entity3 patterns by their entity labels. This pro-

vides useful information to the relation classifier

and also makes these patterns less sparse for train-

ing.

Given training data of sentences annotated with

entities and relations, the positive and negative ex-

amples for training the entity and relation clas-

sifiers are collected in the following way. First,

the corresponding card-pyramids are obtained for

each of the training sentences as described in sec-

tion 2.1. For every entity production in a card-

pyramid, a positive example is collected for its

corresponding classifier as the sentence and the

range of the entity’s word indices. Similarly, for

every relation production in a card-pyramid, a pos-

itive example is collected for its corresponding

classifier as the sentence, the ranges of the two

entities’ word indices and the sub-card-pyramids

rooted at its two children. The positive examples

of a production become the negative examples for

all those productions which have the same right-

hand-sides but different left-hand-sides. We found

that for NR productions, training separate classi-

fiers is harmful because it has the unwanted side-

effect of preferring one label assignment of enti-

ties over another due to the fact that these pro-

ductions gave different probabilities for the “not-

related” relation between the entities. To avoid

3Except for the two entities at the ends

this, we found that it suffices if all these classi-

fiers for NR productions always return 0.5 as the

probability. This ensures that a real relation will

be preferred over NR if and only if its probability

is greater than 0.5, otherwise nothing will change.

4 Experiments

We conducted experiments to compare our card-

pyramid parsing approach for joint entity and re-

lation extraction to a pipelined approach.

4.1 Methodology

We used the dataset4 created by Roth & Yih (2004;

2007) that was also used by Giuliano et el. (2007).

The sentences in this data were taken from the

TREC corpus and annotated with entities and re-

lations. As in the previous work with this dataset,

in order to observe the interaction between enti-

ties and relations, our experiments used only the

1437 sentences that include at least one relation.

The boundaries of the entities are already supplied

by this dataset. There are three types of entities:

Person (1685), Location (1968) and Organization

(978), in addition there is a fourth type Other

(705), which indicates that the candidate entity is

none of the three types. There are five types of re-

lations: Located In (406) indicates that one Loca-

tion is located inside another Location, Work For

(394) indicates that a Person works for an Orga-

nization, OrgBased In (451) indicates that an Or-

ganization is based in a Location, Live In (521)

indicates that a Person lives at a Location and Kill

(268) indicates that a Person killed another Per-

son. There are 17007 pairs of entities that are not

related by any of the five relations and hence have

the NR relation between them which thus signifi-

cantly outnumbers other relations.

Our implementation uses the LIBSVM5 soft-

ware for SVM classifiers. We kept the noise

penalty parameter of SVM very high (100) as-

suming there is little noise in our data. For the

word-subsequence kernel, we set 5 as the max-

imum length of a subsequence and 0.25 as the

penalty parameter for subsequence gaps (Lodhi et

al., 2002). We used k = 5 words for before and

after patterns for the relation classifiers. These pa-

rameter values were determined through pilot ex-

periments on a subset of the data. We used a beam

4Available at: http://l2r.cs.uiuc.edu/

˜cogcomp/Data/ER/conll04.corp
5http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/
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Entity Person Location Organization

Approach Rec Pre F Rec Pre F Rec Pre F

Pipeline 93.6 92.0 92.8 94.0 90.3 92.1 87.9 90.6 89.2

Card-pyramid 94.2 92.1 93.2 94.2 90.8 92.4† 88.7 90.5 89.5

RY07 Pipeline 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7
RY07 Joint 89.5 89.1 89.0 88.7 89.7 89.1 72.0 89.5 79.2

Relation Located In Work For OrgBased In Live In Kill

Approach Rec Pre F Rec Pre F Rec Pre F Rec Pre F Rec Pre F

Pipeline 57.0 71.5 62.3 66.0 74.1 69.7 60.2 70.6 64.6 56.6 68.1 61.7 61.2 91.1 73.1

Card-pyramid 56.7 67.5 58.3 68.3 73.5 70.7 64.1 66.2 64.7 60.1 66.4 62.9† 64.1 91.6 75.2

RY07 Pipeline 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3 50.0 58.9 53.5 81.5 73.0 76.5

RY07 Joint 55.7 53.9 51.3 42.3 72.0 53.1 41.6 79.8 54.3 49.0 59.1 53.0 81.5 77.5 79.0†

Table 1: Results of five-fold cross-validation for entity and relation extraction using pipelined and joint extraction. Boldface

indicates statistical significance (p < 0.1 using paired t-test) when compared to the corresponding value in the other row

grouped with it. Symbol † indicates statistical significance with p < 0.05. Only statistical significance for F-measures are

indicated. RY07 stands for the “E ↔ R” model in (Roth and Yih, 2007).

size of 5 in our card-pyramid parsing algorithm at

which the performance plateaus.

We note that by using a beam size of 1 and by

not using the second part of input for relation clas-

sifiers as described in section 3 (i.e. by ignoring

the relations at the lower levels), the card-parsing

algorithm reduces to the traditional pipelined ap-

proach because then only the best entity label for

each candidate entity is considered for relation ex-

traction. Hence, in our experiments we simply use

this setting as our pipelined approach.

We performed a 5-fold cross-validation to com-

pare with the previous work with this dataset by

Roth & Yih (2007), however, our folds are not

same as their folds which were not available. We

also note that our entity and relation classifiers are

different from theirs. They experimented with sev-

eral models to see the effect of joint inference on

them, we compare with the results they obtained

with their most sophisticated model which they

denote by “E ↔ R”. For every entity type and

relation type, we measured Precision (percentage

of output labels correct), Recall (percentage of

gold-standard labels correctly identified) and F-

measure (the harmonic mean of Precision and Re-

call).

4.2 Results and Discussion

Table 1 shows the results of entity and relation ex-

traction. The statistical significance is shown only

for F-measures. We first note that except for the

Kill relation, all the results of our pipelined ap-

proach are far better than the pipelined approach

of (Roth and Yih, 2007), for both entities and rela-

tions. This shows that the entity and relation clas-

sifiers we used are better that the ones they used.

These strong baselines also set a higher ceiling for

our joint extraction method to improve upon.

The entity extraction results show that on all

the entities the card-pyramid parsing approach for

joint extraction obtains a better performance than

the pipelined approach. This shows that entity

extraction benefits when it is jointly done with

relation extraction. Joint extraction using card-

pyramid parsing also gave improvement in perfor-

mance on all the relations except the Located In

relation.6

The results thus show that entity and relation ex-

traction correct some of each other’s errors when

jointly performed. Roth & Yih (2004; 2007) re-

port that 5% to 25% of the relation predictions

of their pipeline models were incoherent, meaning

that the types of the entities related by the relations

are not of the required types. Their joint inference

method corrects these mistakes, hence a part of the

improvement their joint model obtains over their

pipeline model is due to the fact that their pipeline

model can output incoherent relations. Since the

types of the entities a relation’s arguments should

6Through error analysis we found that the drop in the
performance for this relation was mainly because of an un-
usual sentence in the data which had twenty Location entities
in it separated by commas. After incorrectly extracting Lo-
cated In relation between the Location entities at the lower
levels, these erroneous extractions would be taken into ac-
count at higher levels in the card-pyramid, leading to extract-
ing many more incorrect instances of this relation while do-
ing joint extraction. Since this is the only such sentence in the
data, when it is present in the test set during cross-validation,
the joint method never gets a chance to learn not to make
these mistakes. The drop occurs in only that one fold and
hence the overall drop is not found as statistically significant
despite being relatively large.

209



take are known, we believe that filtering out the

incoherent relation predictions of their pipeline

model can improve its precision without hurting

the recall. On the other hand our pipelined ap-

proach never outputs incoherent relations because

the grammar of relation productions enforce that

the relations are always between entities of the re-

quired types. Thus the improvement obtained by

our joint extraction method over our pipelined ap-

proach is always non-trivial.

5 Related Work

To our knowledge, Roth & Yih (2004; 2007) have

done the only other work on joint entity and re-

lation extraction. Their method employs inde-

pendent entity and relation classifiers whose out-

puts are used to compute a most probable consis-

tent global set of entities and relations using lin-

ear programming. One key advantage of our card-

pyramid method over their method is that the clas-

sifiers can take the output of other classifiers under

its node as input features during parsing. This is

not possible in their approach because all classi-

fier outputs are determined before they are passed

to the linear program solver. Thus our approach

is more integrated and allows greater interaction

between dependent extraction decisions.

Miller et al. (2000) adapt a probabilistic

context-free parser for information extraction by

augmenting syntactic labels with entity and rela-

tion labels. They thus do a joint syntactic parsing

and information extraction using a fixed template.

However, as designed, such a CFG approach can-

not handle the cases when an entity is involved

in multiple relations and when the relations criss-

cross each other in the sentence, as in Figure 1.

These cases occur frequently in the dataset we

used in our experiments and many other relation-

extraction tasks.

Giuliano et al. (2007) thoroughly evaluate the

effect of entity extraction on relation extraction us-

ing the dataset used in our experiments. However,

they employ a pipeline architecture and did not in-

vestigate joint relation and entity extraction. Carl-

son et al. (2009) present a method to simultane-

ously do semi-supervised training of entity and re-

lation classifiers. However, their coupling method

is meant to take advantage of the available unsu-

pervised data and does not do joint inference.

Riedel et al. (2009) present an approach for ex-

tracting bio-molecular events and their arguments

using Markov Logic. Such an approach could

also be adapted for jointly extracting entities and

their relations, however, this would restrict entity

and relation extraction to the same machine learn-

ing method that is used with Markov Logic. For

example, one would not be able to use kernel-

based SVM for relation extraction, which has been

very successful at this task, because Markov Logic

does not support kernel-based machine learning.

In contrast, our joint approach is independent of

the individual machine learning methods for en-

tity and relation extraction, and hence allows use

of the best machine learning methods available for

each of them.

6 Future Work

There are several possible directions for extend-

ing the current approach. The card-pyramid struc-

ture could be used to perform other language-

processing tasks jointly with entity and rela-

tion extraction. For example, co-reference res-

olution between two entities within a sentence

can be easily incorporated in card-pyramid pars-

ing by introducing a production like coref →
Person Person, indicating that the two person

entities are the same.

In this work, and in most previous work, re-

lations are always considered between two enti-

ties. However, there could be relations between

more than two entities. In that case, it should

be possible to binarize those relations and then

use card-pyramid parsing. If the relations are be-

tween relations instead of between entities, then

card-pyramid parsing can handle it by considering

the labels of the immediate children as RHS non-

terminals instead of the labels of the left-most and

the right-most leaves beneath it. Thus, it would

be interesting to apply card-pyramid parsing to ex-

tract higher-order relations (such as causal or tem-

poral relations).

Given the regular graph structure of the card-

pyramid, it would be interesting to investigate

whether it can be modeled using a probabilistic

graphical model (Koller and Friedman, 2009). In

that case, instead of using multiple probabilis-

tic classifiers, one could employ a single jointly-

trained probabilistic model, which is theoretically

more appealing and might give better results.

Finally, we note that a better relation classifier

could be used in the current approach which makes

more use of linguistic information. For example,
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by using dependency-based kernels (Bunescu and

Mooney, 2005a; Kate, 2008) or syntactic kernels

(Qian et al., 2008; Moschitti, 2009) or by includ-

ing the word categories and their POS tags in the

subsequences. Also, it will be interesting to see if

a kernel that computes the similarity between sub-

card-pyramids could be developed and used for re-

lation classification.

7 Conclusions

We introduced a card-pyramid graph structure and

presented a new method for jointly extracting enti-

ties and their relations from a sentence using it. A

card-pyramid compactly encodes the entities and

relations in a sentence thus reducing the joint ex-

traction task to jointly labeling its nodes. We pre-

sented an efficient parsing algorithm for jointly

labeling a card-pyramid using dynamic program-

ming and beam search. The experiments demon-

strated the benefit of our joint extraction method

over a pipelined approach.
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