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Abstract

Probabilistic phrase-based synchronous
grammars are now considered promis-
ing devices for statistical machine transla-
tion because they can express reordering
phenomena between pairs of languages.
Learning these hierarchical, probabilistic
devices from parallel corpora constitutes a
major challenge, because of multiple la-
tent model variables as well as the risk
of data overfitting. This paper presents
an effective method for learning a family
of particular interest to MT, binary Syn-
chronous Context-Free Grammars with in-
verted/monotone orientation (a.k.a. Bi-
nary ITG). A second contribution con-
cerns devising a lexicalized phrase re-
ordering mechanism that has complimen-
tary strengths to Chiang’s model. The
latter conditions reordering decisions on
the surrounding lexical context of phrases,
whereas our mechanism works with the
lexical content of phrase pairs (akin to
standard phrase-based systems). Surpris-
ingly, our experiments on French-English
data show that our learning method ap-
plied to far simpler models exhibits per-
formance indistinguishable from the Hiero
system.

1 Introduction

A fundamental problem in phrase-based machine
translation concerns the learning of a probabilistic
synchronous context-free grammar (SCFG) over
phrase pairs from an input parallel corpus. Chi-
ang’s Hiero system (Chiang, 2007) exemplifies
the gains to be had by combining phrase-based
translation (Och and Ney, 2004) with the hierar-
chical reordering capabilities of SCFGs, particu-
larly originating from Binary Inversion Transduc-

tion Grammars (BITG) (Wu, 1997). Yet, exist-
ing empirical work is largely based on successful
heuristic techniques, and the learning of Hiero-like
BITG/SCFG remains an unsolved problem,

The difficulty of this problem stems from the
need for simultaneously learning of two kinds of
preferences (see Fig.1) (1) lexical translation prob-
abilities (P (〈e, f〉 | X)) of source (f ) and target
(e) phrase pairs, and (2) phrase reordering prefer-
ences of a target string relative to a source string,
expressed in synchronous productions probabil-
ities (for monotone or switching productions).
Theoretically speaking, both kinds of preferences
may involve latent structure relative to the paral-
lel corpus. The mapping between source-target
sentence pairs can be expressed in terms of la-
tent phrase segmentations and latent word/phrase-
alignments, and the hierarchical phrase reorder-
ing can be expressed in terms of latent binary
synchronous hierarchical structures (cf. Fig. 1).
But each of these three kinds of latent structures
may be made explicit using external resources:
word-alignment could be considered solved us-
ing Giza++ (Och and Ney, 2003)), phrase pairs
can be obtained from these word-alignments (Och
and Ney, 2004), and the hierarchical synchronous
structure can be grown over source/target linguis-
tic syntactic trees output by an existing parser.

The Joint Phrase Translation Model (Marcu and
Wong, 2002) constitutes a specific case, albeit
without the hierarchical, synchronous reordering

Start S → X 1 / X 1 (1)

Monotone X → X 1 X 2 /X 1 X 2 (2)

Switching X → X 1 X 2 /X 2 X 1 (3)

Emission X → e / f (4)

Figure 1: A phrase-pair SCFG (BITG)
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component. Other existing work, e.g. (Chiang,
2007), assumes the word-alignments are given in
the parallel corpus, but the problem of learning
phrase translation probabilities is usually avoided
by using surface counts of phrase pairs (Koehn et
al., 2003). The problem of learning the hierar-
chical, synchronous grammar reordering rules is
oftentimes addressed as a learning problem in its
own right assuming all the rest is given (Blunsom
et al., 2008b).

A small number of efforts has been dedicated
to the simultaneous learning of the probabilities
of phrase translation pairs as well as hierarchi-
cal reordering, e.g., (DeNero et al., 2008; Zhang
et al., 2008; Blunsom et al., 2009). Of these,
some concentrate on evaluating word-alignment,
directly such as (Zhang et al., 2008) or indirectly
by evaluating a heuristically trained hierarchical
translation system from sampled phrasal align-
ments (Blunsom et al., 2009). However, very
few evaluate on actual translation performance of
induced synchronous grammars (DeNero et al.,
2008). In the majority of cases, the Hiero system,
which constitutes the yardstick by which hierar-
chical systems are measured, remains superior in
translation performance, see e.g. (DeNero et al.,
2008).

This paper tackles the problem of learning gen-
erative BITG models as translation models assum-
ing latent segmentation and latent reordering: this
is the most similar setting to the training of Hiero.
Unlike all other work that heuristically selects a
subset of phrase pairs, we start out from an SCFG
that works with all phrase pairs in the training set
and concentrate on the aspects of learning. This
learning problem is fraught with the risks of over-
fitting and can easily result in inadequate reorder-
ing preferences (see e.g. (DeNero et al., 2006)).

Almost instantly, we find that the translation
performance of all-phrase probabilistic SCFGs
learned in this setting crucially depends on the in-
terplay between two aspects of learning:

• Defining a more constrained parameter
space, where the reordering productions
are phrase-lexicalised and made sensitive to
neighbouring reorderings, and

• Defining an objective function that effec-
tively smoothes the maximum-likelihood cri-
terion.

One contribution of this paper is in devis-

ing an effective, data-driven smoothed Maximum-
Likelihood that can cope with a model working
with all phrase pair SCFGs. This builds upon
our previous work on estimating parameters of a
”bag-of-phrases” model for Machine Translation
(Mylonakis and Sima’an, 2008). However, learn-
ing SCFGs poses significant novel challenges, the
core of which lies on the hierarchical nature of a
stochastic SCFG translation model and the rele-
vant additional layer of latent structure. We ad-
dress these issues in this work. Another important
contribution is in defining a lexicalised reorder-
ing component within BITG that captures order
divergences orthogonal to Chiang’s model (Chi-
ang, 2007) but somewhat akin to Phrase-Based
Statistical Machine Translation reordering models
(Koehn et al., 2003).

Our analysis shows that the learning difficul-
ties can be attributed to a rather weak generative
model. Yet, our best system exhibits Hiero-level
performance on French-English Europarl data us-
ing an SCFG-based decoder (Li et al., 2009). Our
findings should be insightful for others attempting
to make the leap from shallow phrase-based sys-
tems to hierarchical SCFG-based translation mod-
els using learning methods, as opposed to heuris-
tics.

The rest of the paper is structured as follows.
Section 2 briefly introduces the SCFG formalism
and discusses its adoption in the context of Statis-
tical Machine Translation (SMT). In section 3, we
consider some of the pitfalls of stochastic SCFG
grammar learning and address them by introduc-
ing a novel learning objective and algorithm. In
the section that follows we browse through latent
translation structure choices, while in section 5 we
present our empirical experiments on evaluating
the induced stochastic SCFGs on a translation task
and compare their performance with a hierarchical
translation baseline. We close with a comparison
of related work and a final discussion including fu-
ture research directions.

2 Synchronous Grammars for Machine
Translation

Synchronous Context Free Grammars (SCFGs)
provide an appealing formalism to describe the
translation process, which explains the generation
of parallel strings recursively and allows capturing
long-range reordering phenomena. Formally, an
SCFG G is defined as the tuple (N,E, F, R, S),
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where N is the finite set of non-terminals with
S ∈ N the start symbol, F and E are finite sets
of words for the source and target language and R
is a finite set of rewrite rules. Every rule expands
a left-hand side non-terminal to a right-hand side
pair of strings, a source language string over the
vocabulary F∪N and a target language string over
E ∪ N . The number of non-terminals in the two
strings is equal and the rule is complemented with
a mapping between them.

String pairs in the language of the SCFG are
those with a valid derivation, consisting of a se-
quence of rule applications, starting from S and
recursively expanding the linked non-terminals at
the right-hand side of rules. Stochastic SCFGs
augment every rule in R with a probability, under
the constraint that probabilities of rules with the
same left-hand side sum up to one. The probabil-
ity of each derived string pair is then the product
of the probabilities of rules used in the derivation.
Unless otherwise stated, for the rest of the paper
when we refer to SCFGs we will be pointing to
their stochastic extension.

The rank of an SCFG is defined as the maxi-
mum number of non-terminals in a grammar’s rule
right-hand side. Contrary to monolingual Context
Free Grammars, there does not always exist a con-
version of an SCFG of a higher rank to one of a
lower rank with the same language of string pairs.
For this, most machine translation applications fo-
cus on SCFGs of rank two (binary SCFGs), or
binarisable ones witch can be converted to a bi-
nary SCFG, given that these seem to cover most
of the translation phenomena encountered in lan-
guage pairs (Wu, 1997) and the related processing
algorithms are less demanding computationally.

Although SCFGS were initially introduced for
machine translation as a stochastic word-based
translation process in the form of the Inversion-
Transduction Grammar (Wu, 1997), they were ac-
tually able to offer state-of-the-art performance in
their latter phrase-based implementation by Chi-
ang (Chiang, 2005). Chiang’s Hiero hierarchi-
cal translation system is based on a synchronous
grammar with a single non-terminal X covering
all learned phrase-pairs. Beginning from the start
symbol S, an initial phrase-span structure is con-
structed monotonically using a simple ‘glue gram-

mar’:

S →S 1 X 2 / S 1 X 2

S →X 1 / X 1

The true power of the system lies in expanding
these initial phrase-spans with a set of hierarchi-
cal translation rules, which allow conditioning re-
ordering decisions based on lexical context. For
the French to English language pair, some exam-
ples would be:

S → X 1 économiques / financial X 1

S → cette X 1 de X 2 / this X 1 X 2

S → politique X 1 commune de X 2 /

X 2
′ s common X 1 policy

Further work builds on the Hiero grammar to ex-
pand it with constituency syntax motivated non-
terminals (Zollmann and Venugopal, 2006).

3 Synchronous Grammar Learning

The learning of phrase-based stochastic SCFGs
with a Maximum Likelihood objective is exposed
to overfitting as other all-fragment models such as
Phrase-Based SMT (PBSMT) (Marcu and Wong,
2002; DeNero et al., 2006) and Data-Oriented
Parsing (DOP) (Bod et al., 2003; Zollmann and
Sima’an, 2006). Maximum Likelihood Estima-
tion (MLE) returns degenerate grammar estimates
that memorise well the parallel training corpus but
generalise poorly to unseen data.

The bias-variance decomposition of the gener-
alisation error Err sheds light on this learning
problem. For an estimator p̂ with training data D,
Err can be expressed as the expected Kullback-
Leibler (KL) divergence between the target distri-
bution q and that the estimate p̂. This error decom-
poses into bias and variance terms (Heskes, 1998):

Err =

bias︷ ︸︸ ︷
KL(q, p̄) +

variance︷ ︸︸ ︷
EDKL(p̄, p̂) (5)

Bias is the KL-divergence between q and the mean
estimate over all training data p̄ = EDp̂(D). Vari-
ance is the expected divergence between the av-
erage estimate and the estimator’s actual choice.
MLE estimators for all-fragment models are zero-
biased with zero divergence between the average
estimate and the true data distribution. In contrast,
their variance is unboundedly large, leading to un-
bounded generalisation error on unseen cases.
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3.1 Cross Validated MLE

A well-known method for estimating generalisa-
tion error is k-fold Cross-Validation (CV) (Hastie
et al., 2001). By partitioning the training data D
into k parts Hk

1 , we estimate Err as the expected
error over all 1 ≤ i ≤ k, when testing on Hi with
a model trained by MLE on the rest of the data
D−i = ∪j 6=iHj .

Here we use CV to leverage the bias-variance
trade-off for learning stochastic all-phrase SCFGs.
Given an input all-phrase SCFG grammar with
phrase-pairs extracted from the training data, we
maximise training data likelihood (MLE) subject
to CV smoothing: for each data part Hi (1 ≤ i ≤
k), we consider only derivations which employ
grammar rules extracted from the rest of the data
D−i. Other work (Mylonakis and Sima’an, 2008)
has also explored MLE under CV for a “bag-of-
phrases model” that does not deal with reordering
preferences, does not employ latent hierarchical
structure and works with a non-hierarchical de-
coder, and partially considers the sparsity issues
that arise within CV training. The present paper
deals with these issues.

Because of the latent segmentation and hi-
erarchical variables, CV-smoothed MLE cannot
be solved analytically and we devise a CV in-
stance of the Expectation-Maximization (EM) al-
gorithm, with an implementation based on a syn-
chronous version of the Inside-Outside algorithm
(see Fig. 2). For each word-aligned sentence pair
in a partition Hi, the set of eligible derivations (de-
noted D−i) are those that can be built using only
phrase-pairs and productions found inD−i. An es-
sential part of the learning process involves defin-
ing the grammar extractor G(D), a function from
data to an all-phrase SCFG. We will discuss vari-
ous extractors in section 4.

Our CV-EM algorithm is an EM instance, guar-
anteeing convergence and a non-decreasing CV-
smoothed data likelihood after each iteration. The
running time remains O(n6), where n is input
length, but by considering only derivation spans
which do not cross word-alignment points, this
runs in reasonable times for relatively large cor-
pora.

3.2 Bayesian Aspects of CV-MLE

Beside being an estimator, the CV-MLE learning
algorithm has the added value of being a grammar
learner focusing on reducing generalisation error,

INPUT: Word-aligned parallel training data D
Grammar extractor G
The number of parts k to partition D

OUTPUT: SCFG G with rule probabilities p̂

Partition training data D into parts H1, . . . ,Hk.
For 1 ≤ i ≤ k do

Extract grammar rules set Gi = G(Hi)
Initialise G = ∪iGi, p̂0 uniform
Let j = 0
Repeat

Let j = j + 1
E-step:

For 1 ≤ i ≤ k do
Calculate expected counts given G, p̂j−1,

for derivations D−i of Hi

using rules from ∪k 6=iG(k)
M-step: set p̂j to ML estimate given

expected counts
Until convergence

Figure 2: The CV Expectation Maximization al-
gorithm

in the sense that probabilities of grammar produc-
tions should reflect the frequency with which these
productions are expected to be used for translating
future data. Additionally, since the CV criterion
prohibits for every data point derivations that use
rules only extracted from the same data part, such
rules are assigned zero probabilities in the final es-
timate and are effectively excluded from the gram-
mar. In this way, the algorithm ‘shapes’ the input
grammar, concentrating probability mass on pro-
ductions that are likely to be used with future data.

One view point of CV-MLE is that each par-
tition D−i and Hi induces a prior probability
Prior(π; D−i) on every parameter assignment π,
obtained from D−i. This prior assigns zero prob-
ability to all π parameter sets with non-zero prob-
abilities for rules not in G(D−i), and uniformly
distributes probability to the rest of the parameter
sets. In light of this, the CV-MLE objective can be
written as follows:

arg max
π

∏
i

Prior(π; D−i)× P (Hi | π) (6)

This data-driven prior aims to directly favour pa-
rameter sets which are expected to better gener-
alise according to the CV criterion, without rely-
ing on arbitrary constraints such as limiting the
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length of phrase pairs in the right-hand side of
grammar rules. Furthermore, other frequently em-
ployed priors such as the Dirichlet distribution and
the Dirichlet Process promote better generalising
rule probability distributions based on externally
set hyperparameter values, whose selection is fre-
quently sensitive in terms of language pairs, or
even the training corpus itself. In contrast, the CV-
MLE prior aims for a data-driven Bayesian model,
focusing on getting information from the data, in-
stead of imposing external human knowledge on
them (see also (Mackay and Petoy, 1995)).

3.3 Smoothing the Model
One remaining wrinkle in the CV-EM scheme is
the treatment of boundary cases. There will often
be sentence-pairs in Hi, that cannot be fully de-
rived by the grammar extracted from the rest of the
data D−i either because of (1) ‘unknown’ words
(i.e. not appearing in other parts of the CV parti-
tion) or (2) complicated combinations of adjacent
word-alignments. We employ external smoothing
of the grammar, prior to learning.

Our solution is to extend the SCFG extracted
fromD−i with new emission productions deriving
the ‘unknown’ phrase-pairs (i.e., found in Hi but
not in D−i). Crucially, the probabilities of these
productions are drawn from a fixed smoothing dis-
tribution, i.e., they remain constant throughout es-
timation. Our smoothing distribution of phrase-
pairs for all pre-terminals considers source-target
phrase lengths drawn from a Poisson distribution
with unit mean, drawing subsequently the words
of each of the phrases uniformly from the vocab-
ulary of each language, similar to (Blunsom et al.,
2009).

psmooth(f/e) =
ppoisson(|f |; 1) ppoisson(|e|; 1)

V
|f |
f V

|e|
e

Since the smoothing distribution puts stronger
preference on shorter phrase-pairs and avoids
competing with the ‘known’ phrase-pairs, it leads
the learner to prefer using as little as possible such
smoothing rules, covering only the phrase-pairs
required to complete full derivations.

4 Parameter Spaces and Grammar
Extractors

A Grammar Extractor (GE) plays a major role in
our probabilistic SCFG learning pipeline. A GE is
a function from a word-aligned parallel corpus to a

probabilistic SCFG model. Together with the con-
straints that render a proper probabilistic SCFG1,
this defines the parameter space.

The extractors used in this paper create SCFGs
productions of two different kinds: (a) hierarchi-
cal synchronous productions that define the space
of possible derivations up to the level of the SCFG
pre-terminals, and (2) the phrase-pair emission
rules that expand the pre-terminals to phrase-pairs
of varying lengths. Given the word-alignments,
the set of phrase-pairs extracted is the set of all
translational equivalents (without length upper-
bound) under the word-alignment as defined in
(Och and Ney, 2004; Koehn et al., 2003).

Below we focus on the two grammar extrac-
tors employed in our experiments. We start out
from the most generic, BITG-like formulation,
and aim at incremental refinement of the hierar-
chical productions in order to capture relevant,
content-based phrase-pair reordering preferences
in the training data.

Single non-terminal SCFG This is a phrase-
based binary SCFG grammar employing a single
non-terminal X covering each extracted phrase-
pair. The other productions consist of monotone
and switching expansions of phrase-pair spans
covered by X . Finally, the whole sentence-pair is
considered to be covered by X . We will call this
‘plain SCFG’ extractor. See Fig. 1.

Lexicalised Reordering SCFG One weakness
of the plain SCFG is that the reordering deci-
sions in the derivations are made without reference
to lexical content of the phrases; this is because
all phrase-pairs are covered by the same non-
terminal. As a refinement, we propose a gram-
mar extractor that aims at modelling the reordering
behaviour of phrase-pairs by taking their content
into account. This time, the X non-terminal is re-
served for phrase-pairs and spans which will take
part in monotonic productions only. Two fresh
non-terminals, XSL and XSR, are used for cov-
ering phrase-pairs that participate in order switch-
ing with other, adjacent phrase-pairs. The non-
terminal XSL covers phrase-pairs which appear
first in the source language order, and the latter
those which follow them. The grammar rules pro-
duced by this GE, dubbed ‘switch grammar’, are
listed in Fig. 3.

1The sum of productions that have the same left-hand la-
bel must be one.
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Start S → X 1 /X 1

Monotone Expansion
X → X 1 X 2 /X 1 X 2
XSL → X 1 X 2 / X 1 X 2
XSR → X 1 X 2 /X 1 X 2

Switching Expansion
X → XSL 1 XSR 2 /XSR 2 XSL 1
XSL → XSL 1 XSR 2 /XSR 2 XSL 1
XSR → XSL 1 XSR 2 /XSR 2 XSL 1

Phrase-Pair Emission
X → e/f
XSL → e / f
XSR → e / f

Figure 3: Lexicalised-Reordering SCFG

The reordering information captured by the
switch grammar is in a sense orthogonal to that
of Hiero-like systems utilising rules such as those
listed in section 2. Hiero rules encode hier-
archical reordering patterns based on surround-
ing context. In contrast, the switch grammar
models the reordering preferences of the phrase-
pairs themselves, similarly to the monotone-swap-
discontinuous reordering models of Phrase-based
SMT models (Koehn et al., 2003). Furthermore, it
strives to match pairs of such preferences, combin-
ing together phrase-pairs with compatible reorder-
ing preferences.

5 Experiments

In this section we proceed to integrate our esti-
mates within an SCFG-based decoder. We subse-
quently evaluate our performance in relation to a
state-of-the-art Hiero baseline on a French to En-
glish translation task.

5.1 Decoding

The joint model of bilingual string derivations pro-
vided by the learned SCFG grammar can be used
for translation given a input source sentence, since
arg maxe p(e|f) = arg maxe p(e, f). We use our
learned stochastic SCFG grammar with the decod-
ing component of the Joshua SCFG toolkit (Li
et al., 2009). The full translation model inter-
polates log-linearly the probability of a grammar
derivation together with the language model prob-
ability of the target string. The model is further
smoothed, similarly to phrase-based models and

the Hiero system, with smoothing features φi such
as the lexical translation scores of the phrase-pairs
involved and rule usage penalties. As usual with
statistical translation, we aim for retrieving the tar-
get sentence e corresponding to the most probable
derivation D

∗⇒ (f, e) with rules r, with:

p(D) ∝ p(e)λlmpscfg(e, f)λscfg
∏

i

∏
r∈D

φi(r)λi

The interpolation weights are tuned using Mini-
mum Error Rate Training (Och, 2003).

5.2 Results
We test empirically the learner’s output gram-
mars for translating from French to English, us-
ing k = 5 for the Cross Validation data partition-
ing. The training material is a GIZA++ word-
aligned corpus of 200K sentence-pairs from the
Europarl corpus (Koehn, 2005), with our devel-
opment and test parallel corpora of 2K sentence-
pairs stemming from the same source. Train-
ing the grammar parameters until convergence de-
mands around 6 hours on an 8-core 2.26 GHz Intel
Xeon system. Decoding employs a 4-gram lan-
guage model, trained on English Europarl data of
19.5M words, smoothed using modified Kneser-
Ney discounting (Chen and Goodman, 1998), and
lexical translation smoothing features based on the
GIZA++ alignments.

In a sense, the real baseline to which we might
compare against should be a system employing the
MLE estimate for the grammar extracted from the
whole training corpus. However, as we have al-
ready discussed, this assigns zero probability to all
sentence-pairs outside of the training data and is
subsequently bound to perform extremely poorly,
as decoding would then completely rely on the
smoothing features. Instead, we opt to compare
against a hierarchical translation baseline provided
by the Joshua toolkit, trained and tuned on the
same data as our learning algorithm. The grammar
used by the baseline is much richer than the ones
learned by our algorithm, also employing rules
which translate with context, as shown in section
2. Nevertheless, since it is not clear how the re-
ordering rules probabilities of a grammar similar
to the ones we use could be trained heuristically,
we choose to relate the performance of our learned
stochastic SCFG grammars to the particular, state-
of-the-art in SCFG-based translation, system.

Table 1 presents the translation performance re-
sults of our systems and the baseline. On first
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System Lexical BLEUSmoothing
joshua-baseline No 27.79

plain scfg No 28.04
switch scfg No 28.48

joshua-baseline Yes 29.96
plain scfg Yes 29.75

switch scfg Yes 29.88

Table 1: Empirical results, with and without addi-
tional lexical translation smoothing features dur-
ing decoding

observation, it is evident that our learning algo-
rithm outputs stochastic SCFGs which manage to
generalise, avoiding the degenerate behaviour of
plain MLE training for these models. Given the
notoriety of the estimation process, this is note-
worthy on its own. Having a learning algorithm
at hand which realises in a reasonable extent the
potential of each stochastic grammar design (as
implemented in the relevant grammar extractors),
we can now compare between the two grammar
extractors used in our experiments. The results
table highlights the importance of conditioning
the reordering process on lexical grounds. The
plain grammar with the single phrase-pair non-
terminal cannot accomplish this and achieves a
lower BLEU score. On the other hand, the switch
SCFG allows such conditioning. The learner takes
advantage of this feature to output a grammar
which performs better in taking reordering deci-
sions, something that is reflected in both the actual
translations as well as the BLEU score achieved.

Furthermore, our results highlight the impor-
tance of the smoothing decoding features. The
unsmoothed baseline system itself scores consid-
erably less when employing solely the heuristic
translation score. Our unsmoothed switch gram-
mar decoding setup improves on the baseline by
a considerable difference of 0.7 BLEU. Subse-
quently, when adding the smoothing lexical trans-
lation features, both systems record a significant
increase in performance, reaching comparable lev-
els of performance.

The degenerate behaviour of MLE for SCFGs
can be greatly limited by constraining ourselves
to grammars employing minimal phrase-pairs
; phrase-pairs which cannot be further broken
down into smaller ones according to the word-
alignment. One could argue that it is enough to

perform plain MLE with such minimal phrase-pair
SCFGs, instead of using our more elaborate learn-
ing algorithm with phrase-pairs of all lengths. To
investigate this, for our final experiment we used
a plain MLE estimate of the switch grammar to
translate, limiting the grammar’s phrase-pair emis-
sion rules to only those which involve minimal
phrase-pairs. The very low score of 17.82 BLEU
(without lexical smoothing) not only highlights
the performance gains of using longer phrase-pairs
in hierarchical translation models, but most impor-
tantly provides a strong incentive to address the
overfitting behaviour of MLE estimators for such
models, instead of avoiding it.

6 Related work

Most learning of phrase-based models, e.g.,
(Marcu and Wong, 2002; DeNero et al., 2006;
Mylonakis and Sima’an, 2008), works without hi-
erarchical components (i.e., not based on the ex-
plicit learning of an SCFG/BITG). These learning
problems pose other kinds of learning challenges
than the ones posed by explicit learning of SCFGs.
Chiang’s original work (Chiang, 2007) is also re-
lated. Yet, the learning problem is not expressed in
terms of an explicit objective function because sur-
face heuristic counts are used. It has been very dif-
ficult to match the performance of Chiang’s model
without use of these heuristic counts.

A somewhat related work, (Blunsom et al.,
2008b), attempts learning new non-terminal labels
for synchronous productions in order to improve
translation. This work differs substantially from
our work because it employs a heuristic estimate
for the phrase pair probabilities, thereby concen-
trating on a different learning problem: that of re-
fining the grammar symbols. Our approach might
also benefit from such a refinement but we do not
attempt this problem here. In contrast, (Blunsom
et al., 2008a) works with the expanded phrase pair
set of (Chiang, 2005), formulating an exponential
model and concentrating on marginalising out the
latent segmentation variables. Again, the learning
problem is rather different from ours. Similarly,
the work in (Zhang et al., 2008) reports on a multi-
stage model, without a latent segmentation vari-
able, but with a strong prior preferring sparse esti-
mates embedded in a Variational Bayes (VB) esti-
mator. This work concentrates the efforts on prun-
ing both the space of phrase pairs and the space of
(ITG) analyses.

123



To the best of our knowledge, this work is the
first to attempt learning probabilistic phrase-based
BITGs as translation models in a setting where
both a phrase segmentation component and a hi-
erarchical reordering component are assumed la-
tent variables. Like this work, (Mylonakis and
Sima’an, 2008; DeNero et al., 2008) also employ
an all-phrases model. Our paper shows that it is
possible to train such huge grammars under itera-
tive schemes like CV-EM, without need for sam-
pling or pruning. At the surface of it, our CV-
EM estimator is also a kind of Bayesian learner,
but in reality it is a more specific form of regu-
larisation, similar to smoothing techniques used in
language modelling (Chen and Goodman, 1998;
Mackay and Petoy, 1995).

7 Discussion and Future Research

Phrase-based stochastic SCFGs provide a rich for-
malism to express translation phenomena, which
has been shown to offer competitive performance
in practice. Since learning SCFGs for machine
translation has proven notoriously difficult, most
successful SCFG models for SMT rely on rules ex-
tracted from word-alignment patterns and heuris-
tically computed rule scores, with the impact and
the limits imposed by these choices yet unknown.

Some of the reasons behind the challenges of
SCFG learning can be traced back to the introduc-
tion of latent variables at different, competing lev-
els: word and phrase-alignment as well as hier-
archical reordering structure, with larger phrase-
pairs reducing the need for extensive reordering
structure and vice versa. While imposing priors
such as the often used Dirichlet distribution or the
Dirichlet Process provides a method to overcome
these pitfalls, we believe that the data-driven reg-
ularisation employed in this work provides an ef-
fective alternative to them, focusing more on the
data instead of importing generic external human
knowledge.

We believe that this work makes a significant
step towards learning synchronous grammars for
SMT. This is an objective not only worthy be-
cause of promises of increased performance, but,
most importantly, also by increasing the depth of
our understanding on SCFGs as vehicles of latent
translation structures. Our usage of the induced
grammars directly for translation, instead of an in-
termediate task such as phrase-alignment, aims ex-
actly at this.

While the latent structures that we explored
in this paper were relatively simple in compar-
ison with Hiero-like SCFGs, they take a differ-
ent, content-driven approach on learning reorder-
ing preferences than the context-driven approach
of Hiero. We believe that these approaches are not
merely orthogonal, but could also prove comple-
mentary. Taking advantage of the possible syner-
gies between content and context-driven reorder-
ing learning is an appealing direction of future re-
search. This is particularly promising for other
language pairs, such as Chinese to English, where
Hiero-like grammars have been shown to perform
particularly well.
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