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Abstract

We show that Viterbi (or “hard”) EM is
well-suited to unsupervised grammar in-
duction. It ismoreaccurate than standard
inside-outside re-estimation (classic EM),
significantly faster, and simpler. Our ex-
periments with Klein and Manning’s De-
pendency Model with Valence (DMV) at-
tain state-of-the-art performance — 44.8%
accuracy on Section 23 (all sentences) of
the Wall Street Journal corpus — without
clever initialization; with a good initial-
izer, Viterbi training improves to 47.9%.
This generalizes to the Brown corpus,
our held-out set, where accuracy reaches
50.8% — a 7.5% gain over previous best
results. We find that classic EM learns bet-
ter from short sentences but cannot cope
with longer ones, where Viterbi thrives.
However, we explain that both algorithms
optimize the wrong objectives and prove
that there are fundamental disconnects be-
tween the likelihoods of sentences, best
parses, and true parses, beyond the well-
established discrepancies between likeli-
hood, accuracy and extrinsic performance.

I ntroduction

task-specific accuracy (Elworthy, 1994; Merialdo,
1994). Both complications are real, but we will
discuss perhaps more significant shortcomings.
We prove that learning can be error-prone even
in cases when likelihoods an appropriate mea-
sure of extrinsic performancand where global
optimization is feasible. This is because a key
challenge in unsupervised learning is that tlee
sired likelihood is unknown. Its absence renders
tasks like structure discovery inherently under-
constrained. Search-based algorithms adopt sur-
rogate metrics, gambling on convergence to the
“right” regularities in data. Their wrong objec-
tives create cases in whitiothefficiencyandper-
formance improve when expensive exact learning
techniques are replaced by cheap approximations.
We propose using Viterbi training (Brown
et al., 1993), instead of inside-outside re-
estimation (Baker, 1979), to induce hierarchical
syntactic structure from natural language text. Our
experiments with Klein and Manning’s (2004) De-
pendency Model with Valence (DMV), a popular
state-of-the-art model (Headden et al., 2009; Co-
hen and Smith, 2009; Spitkovsky et al., 2009),
beat previous benchmark accuracies by 3.8% (on
Section 23 of WSJ) and 7.5% (on parsed Brown).
Since objective functions used in unsupervised
grammar induction are provably wrong, advan-
tages of exact inference may not apply. It makes

Unsupervised learning is hard, often involving dif- sense to try the Viterbi approximation — it is also
ficult objective functions. A typical approach is wrong, only simpler and cheaper than classic EM.
to attempt maximizing the likelihood of unlabeled As it turns out, Viterbi EM is not only faster but
data, in accordance with a probabilistic model.also more accurate, consistent with hypotheses of
Sadly, such functions are riddled with local op-de Marcken (1995) and Spitkovsky et al. (2009).

tima (Charniak, 1993, Ch. Wter alia), since their

We begin by reviewing the model, standard data

number of peaks grows exponentially with in- sets and metrics, and our experimental results. Af-
stances of hidden variables. Furthermore, a higheter relating our contributions to prior work, we
likelihood does not always translate into superiordelve into proofs by construction, using the DMV.
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Figure 1: Sizes of WS, ..., 45,100}, Section 23 of WS¥ and Brown100 (Spitkovsky et al., 2009).

/\ reference parse trees is straight-forward, since
NN NNy maximume-likelihood estimation reduces to count-

NNS VBD I'N NN & Al _ : . _
Payrolls  fell in September | . iNG: Parraca(cn, dir, c,) 1S the fraction of ch!ldren —
. those of clasg, — attached on their side of a
P (1 — Psrop(0, L, T)) Parraca (0, L, VBD) head of class:; Pswe(ch,dir,adj = T), the frac-
= — Psrop (¢, L X aTTACH (€, L, . . .
% (1 —Psop(VBD.L,T)) X Pyrmen (VBD,L,NNg)  UON pf wordg of class;, with no chlldre_n on the
X (1 —Psop(VBD,R,T)) X  Parracu(VBD, R, IN) dir side; andPsye (cn, dir, adj = F), the ratid of the
X (1=Psrop(IN,R,T)) X Pyrraca(IN, R, NN) number of words of class, having a child on the
X ]PSTQP(VBD L F) X PSTQP(VBD R F) 3 d h . I b f h hld
X Psrop (NNS, L, T) X Pgrop(NNS, R, T) dir side to their total number of such children.
X Psrop(IN,L T) X Pstor(IN,R, F)
X Psrop (NN, L, T) x Psmop (NN, R, T) 3 Standard Data Sets and Evaluation
X ]PSTQP (<> L F) X ]PSTQP (<> )
_’_/ . -y .
1 1 The DMV is traditionally trained and tested on

customized subsets of Penn English Treebank’s
Wall Street Journal portion (Marcus et al., 1993).
Following Klein and Manning (2004), we be-
gin with reference constituent parses and com-
pare against deterministically derived dependen-
2 Dependency Model with Valence cies: after pruning out all empty sub-trees, punc-
tuation and terminals (tagged and $) not pro-
The DMV (Klein and Manning, 2004) is a single- nounced where they appear, we drop all sentences
state head automata model (Alshawi, 1996) ovewith more than a prescribed number of tokens
lexical word classegc.,} — POS tags. Its gener- remaining and use automatic “head-percolation”
ative story for a sub-tree rooted at a head (of clasgules (Collins, 1999) to convert the rest, as is stan-
cn) rests on three types of independent decisionsgard practice. We experiment with WiSJsen-
(i) initial direction dir € {L,&} in which to attach tences with at most tokens), forl < k < 45, and
children, via probabilityPees (cx); (ii) whether to  Section 23 of WS¥ (all sentence lengths). We
sealdir, stopping with probablllt)Psmp(ch, dir,adj),  also evaluate on Brown100, similarly derived from
conditioned onudj € {T,F} (true iff considering the parsed portion of the Brown corpus (Francis
dir’s first, i.e., adjacent child); and (iii) attach- and Kucera, 1979), as our held-out set. Figure 1
ments (of class.), according tQPurman(cn, dir,ca).  shows these corpora’s sentence and token counts.
This produces onIy projective trees. A root token Proposed parse trees are judged on accuracy: a
¢ generates the head of a sentence as its left (anfirected scorés simply the overall fraction of cor-
only) child. Figure 2 displays a simple example. rectly guessed dependencies. l&be a set of
The DMV lends itself to unsupervised learn- sentences, withs| the number of terminals (to-
ing via inside-outside re-estimation (Baker, 1979).
Viterbi training (Brown et al., 1993) re-estimates _ 'The expected number of trials “eeded to gej one
each next model as if supervised by the prewouﬁemou"'( )_Suciesls IS~ Geomewﬁp with n & 2
(1-p) andE(n) = p~; MoM and MLE
best parse trees. And supervised learning fromagree,p_ (# of successe)sx(# of trials).

Figure 2: A dependency structure for a short sen;
tence and its probability, as factored by the DMV,
after summing ouPue (Spitkovsky et al., 2009).
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Figure 3: Directed dependency accuracies attained by th¥,Wen trained on WSk smoothed, then
tested against a fixed evaluation set, WSJ40, for threereliftenitialization strategies (Spitkovsky et al.,
2009). Red, green and blue graphs represent the supermsednjum-likelihood oracle) initialization,

a linguistically-biased initializer (Ad-Hdg and the uninformed (uniform) prior. Panel (b) shows result
obtained with Viterbi training instead of classic EM — Paf@&)| but is otherwise identical (in both, each
of the 45 vertical slices captures five new experimentalltesund arrows connect starting performance
with final accuracy, emphasizing the impact of learning).néta (c) and (d) show the corresponding
numbers of iterations until EM’s convergence.

kens) for eachs € S. Denote byT'(s) the set 4 Experimental Setup and Results

of all dependency parse trees gfand letti(s) oo ina spitkovsky et al. (2009), we trained the

stand for the parent of tokep 1 < i < [s], in . o
DMV on data sets WS, . .., 45} using three ini-
ts) € T(s). Callthe gold reference (s) € T'(s). tialization strategies: (i) the uninformed uniform

For a given model of grammar, parameterized by

9, lett%(s) € T(s) be a (not necessarily unique) prlor,lz(u) a _I_|_ngwst|cally biased |n|t|aI|_zer, Ad

L . i Hoc*;< and (iii) an oracle — the supervised MLE

likeliest (also known as Viterbi) parse of . T :
solution. Standard training is without smoothing,

iterating each run until successive changes in over-
} ; all per-token cross-entropy drop bel@v?° bits.

We re-trained all models using Viterbi EM
instead of inside-outside re-estimation, explored
Laplace (add-one) smoothing during training, and
experimented with hybrid initialization strategies.

(s) e Py(t
(s) {argtrenﬁf) o(t)

then@’s directed accuracy on a reference geis

D seR S Liio )=tz (s)}

100% - 2Ad-Hoc* is Spitkovsky et al.’s (2009) variation on Klein

ZseR ‘5‘ and Manning’s (2004) “ad-hoc harmonic” completion.
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Figure 4: Superimposes directed accuracies attained by DidWels trainedvith Laplace smoothing
(brightly-colored curves) over Figure 3(a,b); violet caswepresent Baby Steps (Spitkovsky et al., 2009).

4.1 Result #1: Viterbi-Trained M odels faster than classic EM (see Figure 3(c/1)).

The results of Spitkovsky et al. (2009), tested4.2 Result #2: Smoothed M odéds
against WSJ40, are re-printed in Figure 3(a); OurSmoothing rarely helps classic EM and hurts in

corresponding Viterbi runs appear in Figure 3(b). the case of oracle training (see Figure 4(a)). With
We observe crucial differences between the tWQjterhi, supervised initialization suffers much less,
training modes for each of the three initialization ¢ piased initializer is a wash, and the uninformed
strategies. Both algorithms walk away from the sitorm prior generally gains a few points of ac-
supervised maximume-likelihood solution; how- curacy, e.g., up 2.9% (from 42.4% to 45.2%, eval-

ever, Viterbi EM loses at most a few points of | 5ted against WSJ40) at WSJ15 (see Figure 4(b)).
accuracy (3.7% at WSJ40), whereas classic EM Baby Steps (Spitkovsky et al., 2009) — iterative

drops nearly twenty points (19.1% at WSJ45). INge_training with increasingly more complex data

both cases, the single best unsupervised result igyts \wsg. . WSJ45 — using smoothed Viterbi
Wlth gOOd initialization, although Viterbi peaks training fails miserably (See Figure 4(b)), due to
earlier (45.9% at WSJ8) and in a narrower range jerhi's poor initial performance at short sen-

(WSJ8-9) than classic EM (44.3% at WSJ15iiances (possibly because of data sparsity and sen-
WSJ13-20). The uniform prior never quite gets Oﬁsitivity to non-sentences — see example§7rB).
the ground with classic EM but manages quite well

under Viterbi training? given sufficient data — it 4.3 Result #3; State-of-the-Art Models
even beats the “clever” initializer everywhere F_’aStSimpIy training up smoothed Viterbi at WSJ15,
WSJI10. The “sweet spot” at WSJ15 — a neigh- iqin g the uninformed uniform prior, yields 44.8%

bolrhood wr;ere_both Ad-H_c‘jcand the ore;]cle. €X° " accuracy on Section 23 of WSJ already beating
ce L;]nder classic iMd_ dlsapgearsdwn _\r/]'terb" previous state-of-the-art by 0.7% (see Tabl&)L(
Furthermore, Viterbi does not degrade with more Since both classic EM and Ad-Hoitializers

(complex) data, except with a biased initializer. work well with short sentences (see Figure 3(a)),
More than a simple efficiency hack, Viterbi EM jt makes sense to use their pre-trained models to
actually improves performance. And its benefits tintialize Viterbi training, mixing the two strate-
running times are also non-trivial: it not only skips gies. We judged all Ad-Hdcinitializers against
computing the outside charts in every iteration bulys 315 and found that the one for WSJ8 mini-

also converges (sometimes an order of magnitudgizes sentence-level cross-entropy (see Figure 5).

- This approach does not involve reference parse
%In a concurrently published related work, Cohen and—
Smith (2010) prove that the uniform-at-random initialimea “For classic EM, the number of iterations to convergence
competitive starting M-step for Viterbi EM; our uninformed appears sometimes inversely related to performance, givin
prior consists of uniform multinomials, seeding the E-step credence to the notion of early termination as a regularizer
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Model Incarnation WSJ10| WSJ200 WS3
DMV  Bilingual Log-Normals (tie-verb-noun) (Cohen and Smi2009) 62.0 48.0 42.2 Brown100
Less is MorgAd-Hoc™ @15) (Spitkovsky et al., 2009 56.2 48.2 44.1 43.3

A. " Smoothed Viterbi Training (@15), Initialized with the Uaifn Prior | “59.9 T ~50.0 T = 4487 =~ = 48.1 ]
B. A Good Initializer (Ad-Ho¢’s @8), Classically Pre-Trained (@15) 63.9 52.8 462 49.3
C. Smoothed Viterbi Training (@15), Initialized wit 64.4 53.5 47.8 50.5
D. Smoothed Viterbi Training (@45), Initialized with 65.3 53.8 47.9 50.8

EVG Smoothed (skip-head), Lexicalized (Headden et al.9200 68.8

Table 1: Accuracies on Section 23 of W30, 20,> } and Brown100 for three recent state-of-the-art
systems, our initializer, and smoothed Viterbi-trainedsthat employ different initialization strategies.

brty\ x-Entropy # (in bits per token) on WSJ15  the sparseness of unrepresentative shorter énes).

5.5 . . , .
5.0 lowest cross-entropy (4.32bpt) attained atWSJ8  Qur experiments corroborate this hypothesis.
450 0~ First of all, Viterbi manages to hang on to su-

pervised solutions much better than classic EM.
gecond, Viterbi does not universally degrade with
more (complex) training sets, except with a biased
initializer. And third, Viterbi learns poorly from
small data sets of short sentences (W3J< 5).
trees and is therefore still unsupervised. Using the Viterbi may be better suited to unsupervised
Ad-Hoc initializer based on WSJS8 to seed classicgrammar induction compared with classic EM, but
training at WSJ15 yields a further 1.4% gain in ac-neither is sufficient, by itself. Both algorithms
curacy, scoring 46.2% on WSJ(see Table B)). abandon good solutions and make no guarantees
This good initializer boosts accuracy attainedwith respect to extrinsic performance. Unfortu-
by smoothed Viterbi at WSJ15 to 47.8% (see Tanately, these two approaches share a deep flaw.

ble 1(C)). Using its solution to re-initialize train- o
ing at WSJ45 gives a tiny further improvement © Related Work on Improper Objectives

(0.1%) on Sectcjon 23 of WSJ but bigge 9ains ¢ js well-known that maximizing likelihood may,
on WSJ10 (0.9%) and WSJ20 (see TabiB))( in fact, degrade accuracy (Pereira and Schabes,

Our results generalize. Gains due to smoothqugz; Elworthy, 1994: Merialdo, 1994). de Mar-
Viterbi training and favorable initialization carry cxen (1995) showed that classic EM suffers from
over to Brown100 — accuracy improves by 7.5%g fata| attraction towards deterministic grammars
over previous published numbers (see Table 1). 4nq syggested a Viterbi training scheme as a rem-
edy. Liang and Klein’s (2008) analysis of errors
in unsupervised learning began with the inappro-

The DMV has no parameters to capture Syntacti(priateness of the likelihood objective (approxima-
relationships beyond local trees, e.g., agreemention), explored problems of data sparsity (estima-
Spitkovsky et al. (2009) suggest that classic gption) and focused on EM-specific issues related to
breaks down as sentences get longer precisely b8on-convexity (identifiability and optimization).
cause the model makes unwarranted independencePrevious literature primarily relied on experi-
assumptions. They hypothesize that the DMV reimental evidence. de Marcken’s analytical result is
serves too much probability mass for what shoulcd®n exception but pertains only to EM-specific lo-
be unlikely productions. Since EM faithfully al- cal attractors. Our analysis confirms his intuitions
locates such re-distributions across the possibl@nd moreover shows that there cangiebal pref-
parse trees, once sentences grow sufficiently longrences for deterministic grammars — problems
this process begins to deplete what began as likdhat would persist with tractable optimization. We
lier structures. But medium lengths avoid a floodProve that there is a fundamental disconnect be-

of exponentia”y_confusing |0nger sentences (andween ObjeCtive functions even when likelihood is
a reasonable metric and training data are infinite.

WSk 5 10 15 20 25 30 35 40 45
Figure 5: Sentence-level cross-entropy on WSJ1
for Ad-Hoc" initializers of WSJ1, ..., 45}.

5 Discussion of Experimental Results

®In a sister paper, Spitkovsky et al. (2010) improve perfor-—
mance by incorporating parsing constraints harvested from ®Klein and Manning (2004) originally trained the DMV
the web into Viterbi training; nevertheless, results ppped  on WSJ10 and Gillenwater et al. (2009) found it useful to dis-
in this paper remain the best of models trained purely on WSJcard data from WSJ3, which is mostly incomplete sentences.
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7 Proofs (by Construction) This objective function is not convex and in gen-
eral does not have a unique peak, so in practice one
e S . usually settles fof,s — a fixed point. There is no
ent probability distributions that arise in parsing, reason whyf..» should agree with,ye, which is

each of which can be legitimately termed “likeli- . . =
, . - _in turn (often badly) approximated s, in our
hood” — the mass that a particular model assigns ) . . .
o . o o case using EM. A logical alternative to maximiz-
to (i) highest-scoring (Viterbi) parse trees; (ii) the . - . o
i ing the probability of sentences is to maximize the
correct (gold) reference trees; and (iii) the sen-

. - . probability of the most likely parse trees instead:

tence strings (sums over all derivations). A classﬂO y yp
unsupervised parser trains_ Fo optimize _the third, Oy = arg maleog Pg(fg(s)).
makes actual parsing decisions according to the 0 =
first, and is evaluated against the second. There ~
are several potential disconnects here. First of allThis 1-best approximation similarly arriveseys,
the true generative modé* may not yield the Wwith no claims of optimality. Each next model is
largest margin separations for discriminating be-e-estimated as if supervised by reference parses.
tween gold parse trees and next best alternatives; -

9 p* . . s/'.2 A Warm-Up Case: Accuracy Vs. fg,p # 0*
and secondf* may assign sub-optimal mass to '™ _ _ .
string probabilities. There is no reason why an op-A simple way to derail accuracy is to maximize
timal estimated should make the best parser orthe likelihood of an incorrect model, e.g., one that

coincide with a peak of an unsupervised objectivemakes false independence assumptions. Consider
fitting the DMV to a contrived distribution — two

7.1 TheThreeLikelihood Objectives equiprobable structures over identical three-token
A supervised parser finds the “best” parametersentences from a unary vocabuldi®}:

6 by maximizing the likelihood of all reference ~ ~

structurest*(s) — the product, over all sentences, @ @f@; (i @@ @.

of the probabilities that it assigns to each such tree_'l_here are six tokens and only two have children
fsup = arg max £(0) = arg max Hpa(t*(s)). on any given side, so adjacent stopping MLEs are:
0 0
S

2 2

For the DMV, this objective function is convex — Ps10r(@, 1, T) = Psror(@,R,T) = 1 — & = 3.

Its unique pgak Is easy to find and should rT?atChI'he rest of the estimated model is deterministic:
the true distributiord* given enough data, barring

practical problems caused by numerical instability P, (¢, L, @) = Pyrraca(@, %, @) = 1
and inappropriate independence assumptions. Itis A
often easier to work in log-probability space: andPsrop (@, %, F) = 1,

There is a subtle distinction betwethree differ-

fspp = argmaxy log £(6) since qll dependents ar®@ and every one is' an
= argmaxy Y, log Po(t*(s)). only child. But the DMV generates left- and right-

attachments independently, allowing a third parse:
Cross-entropy, measured in bits per token (bpt),

offers an interpretable proxy for a model’s quality: (iii) @m@m@.
A(0) = — 2518 Po(t"(s)) ' It also cannot capture the fact that all structures are
> sl local (or that all dependency arcs point in the same

- Y . tional :
Clearly, arg maxy £(6) = floup = arg ming A(0). direction), admitting two additional parse trees

Unsupervised parsers cannot rely on references (iv) 6@; V) g\v@%@
and attempt to jointly maximize the probability of - -
eachsentencénstead, summing over the probabil- Each possible structure must make four (out of six)
ities of all possible trees, according to a model adjacent stops, incurring identical probabilities:

Ouns = 1 Py(t) . N . 24
UNS arg maaxz og Z 6( ) PSTOP(@7*,T)4 % (1 _PSTOP(@,*7T))2 = .
s teT(s) 3
Po(s) ltis also possible to usk-best Viterbi, withk > 1.
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Thus, the MLE model does not break symmetry This kernel is tiny, but, as before, our analysis is
and rates each of the five parse trees as equalipvariant ton-fold replication: the problem cannot
likely. Therefore, its expected per-token accuracybe explained away by a small training size — it
is 40%. Average overlaps between structures (i-vpersists even in infinitely large data sets. And so,
and answers (i,ii) are (i) 100% or O; (ii) 0 or 100%; we consider three reference parse trees for two-
and (iii,iv,v) 333%: (3+3)/(5x3) =2/5=0.4.  token sentences over a binary vocabulegy, @}:

A decoy model without left- or right-branching,

e, Porop(@.L.T) = 1 o Berop(@.R.T) = 1, () @@; (i) @®@; (i) @@.

would assign zero probability to some of the train-One third of the time( is the head; onlya can
ing data. It would be forced to parse every instancée a child; and onlya has right-dependents. Trees
of @@@ either as (i) or as (i), deterministically. (i)-(iii) are the only two-terminal parses generated
Nevertheless, it would attain a higher per-token acby the model and are equiprobable. Thus, these
curacy of 50%. (Judged on exact matches, at theentences are representative of a length-two re-
granularity of whole trees, the decoy’s guaranteedtriction of everything generated by the tréie
50% accuracy clobbers the MLE’s expected 20%.) 9 4

Our toy data set could be replicateefold with-  Pyrrycr (O, L, @) = = and Psrop (@, *,T) = —,
out changing the analysis. This confirms that, even 3 5
in the absence of estimation errors or data sparsitsince @ is the head two out of three times, and
there can be a fundamental disconnect betweesince only one out of fives’s attaches a child on
likelihood and accuracy, if the model is wrofig.  either side. Elsewhere, the model is deterministic:

73 A &Jbtla Ca% 0* = ésup VS. éUNS VS. évn’ PSTOP(@) L’ T) — O’

We now prove that, even with theght model,

mismatches between the different objective like- Psrop (%, %, F) = Ps1op(@, R, T) = 1;

Ii_hoods can a'lso handicap the truth. Ogr calcula_l- Parrace (@, *, @) = Parmacu(@, L, @) = 1.

tions are again exact, so there are no issues with

numerical stability. We work with a set of param- _ L .

eters9* already factored by the DMV, so that its  Contrast the optimal estimafig,» = 6* with the

problems could not be blamed on invalid indepen-decoyfixed poin? 6 that is identical t@*, except

dence assumptions. Yetwe are able to find another _ 3 _

impostor distributiord that outshine§s,> = 6* on Psrop (@, L, T) = R and Psrop(@, R, T) = 1.

both unsupervised metrics, which proves that the

true modelss,» and§* are not globally optimal, The probability of stopping is now 3/5 on the left

as judged by the two surrogate objective functionsand 1 on the right, instead of 4/5 on both sides —
This next example is organic. We began with? disallows@’s right-dependents but preserves its

WSJ10 and confirmed that classic EM abandongverall fertility. The probabilities of leave® (no

the supervised solution. We then iteratively dis-children), under the modets,» andd, are:

carded large portions of the data set, so long as 9

the remainder maintained the (un)desired effect—ﬁm(@) - PSTDP(@,LaT)XPSTDP(@aRaT) - (%)

EM walking away from itsfs.e. This procedure 5

isolated such behavior, arriving at a minimal set:

. . - 3
— o and P(@) = PSTOP(@: L, T) XPSTOP(@v R, T) = 3
NP - NNP NNP o
—Marvin  Alisky. And the probabilities of, e.g., structu@ (), are:
s: NP~ vBD o i :
(Bréniff declfned). Prracw(¢,L, @) x Psror(@, R, T)
\P. LaC, Nmo X (1 = Psrep(@,L,T)) X Psrop(@, L, F)
Victoria, Texas X Parmacu(@,L, @) x P(@)

- 5 _ _ -
®And as George Box quipped, “Essentially, all models are '€ model estimated from the parse trees induced by
wrong, but some are useful” (Box and Draper, 1987, p. 424)_0verthe three sentences is agaifor both soft and hard EM.
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= Pyrraca (O, L, @) x P(@) = 116 One reason why Viterbi EM may work well is
325 that its score is used in selecting actual output
13 parse trees. Wainwright (2006) provided strong

and Pyrmaca (O, L, @) x P(@) = 35 theoretical and empirical arguments for using the

Similarly, the probabilities of all four possible Same approximate inference method in training

@@, under the two modelds » — 6* andd, are:  He _showed that_ if inference involveg an approxi-
mation, then using the same approximate method

fsup = 0 4 to train the model gives even better performance

@n_ 3(3) = (%) = guarantees than exact training methods. If our task

N 75 = 0.213 =02 were not parsing but language modeling, where
@@, o/ 0 the relevant score is the sum of the probabilities
@n_ 15 (0-3) ()= 21-3) (3= over individual derivations, perhaps classic EM
R Teor5 = 0.06826 5 =0.16  would not be doing as badly, compared to Viterbi.
@@ 0.06826 0 Viterbi training is not only faster and more accu-

rate but also free of inside-outside’s recursion con-

To the threetrue parses fs,» assigns probability straints. It therefore invites more flexible model-
(L) (%)2 ~ 0.0009942 — about 1.66bpty  Ing techniques, including discriminative, feature-
leaves zero mass for (iii), corresponding to a largefich approaches that targesnditionallikelihoods,
(infinite) cross-entropy, consistent with theory. ~ €ssentially via (unsupervised) self-training (Clark

So far so good’ but if asked meSt(Vn:erbD et al., 2003; Ng and Cardie, 2003; MCCIOSky et
parses fs.» could still produce the actual trees, al., 2006a; McClosky et al., 2006inter alia).
whereasd would happily parse sentences of (i) Such “learning by doing” approaches may be
and (i) the same, perceiving a joint probability of relevant to understanding human language ac-
(0.2)(0.16)% = 0.00512 — just 1.27bpt, appear- quisition, as children frequently find themselves
ing to outperformds,» = 6*! Asked forsentence forced to interpret a sentence in order to inter-
probabilities 6 would remain unchanged (it parses act with the world. Since most models lbéiman
each sentence unambiguously), Byt would ag- ~ probabilistic parsing are massively pruned (Juraf-

gregate to( 1) (2 %)2 ~ 0.003977, improv-  SKy, 1996; Chater etal., 1998; Lewis and Vasishth,

ing to 1.33bpt, but still noticeably “worse” thah ~ 2005, inter alia), the serial nature of Viterbi EM
Despite leaving zero probability to the truth, — OF the very limited parallelism ot-best Viterbi

beatsf* on both surrogate metrics, globally. This — May be more appropriate in modeling this task

seems like an egregious error. Judged by (extrinthan the fully-integrated inside-outside solution.

sic) accuracyg still holds its own: it gets four .

directed edges from predicting parse trees (i) anc? Conclusion

(if) completely right, but none of (i) — a solid \yjthout a known objective, as in unsupervised
66.7%. Subject to tie-breaking; is equally likely - |oarming, correct exact optimization becomes im-

to get (i) and/or (iii) entirely .ri_ght ortotally wrong  yssiple. In such cases, approximations, although
(they are indistinguishable): it could earn a perfect; pia to pass over a true optimum, may achieve

100%, tied, or score a low 33.3%, at 1:2:1 0dds, ¢y qter convergence and siithproveperformance.
respectively — same a#s deterministic 66.7% \ye showed that this is the case with Viterbi
accuracy, in expectation, but with higher variance aining, a cheap alternative to inside-outside re-

estimation, for unsupervised dependency parsing.
We explained why Viterbi EM may be partic-
Daumé et al. (2009) questioned the benefits of usdlarly well-suited to learning from longer sen-
ing exact models in approximate inference. In ourtences, in addition to any general benefits to syn-
case, the model already makes strong simplifyingchronizing approximation methods across learn-
assumptiongind the objective is also incorrect. It ing and inference. Our best algorithm is sim-
makes sense that Viterbi EM sometimes workspler and an order of magnitude faster than clas-
since an approximate wrong “solutiogbuld, by  sic EM. It achieves state-of-the-art performance:
chance, be better than one that is exactly wrong. 3.8% higher accuracy than previous published best

8 Discussion of Theoretical Results
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results on Section 23 (all sentences) of the WalM. Collins. 1999. Head-Driven Statistical Models for Nat-
Street Journal corpus. This improvement general-
izes to the Brown corpus, our held-out evaluation
set, where the same model registers a 7.5% gain.H- Daumé, lIl, J. Langford, and D. Marcu. 2009. Search-

Unfortunately, approximations alone do not

ural Language ParsingPh.D. thesis, University of Penn-
sylvania.

based structured predictioMachine Learning75(3).

bridge the real gap between objective functionsC- de Marcken. 1995. Lexical heads, phrase structure and
This deeper issue could be addressed by drawing
parsing constraints (Pereira and Schabes, 199®) Elworthy. 1994. Does Baum-Welch re-estimation help
from specific applications. One example of such
an approach, tied to machine translation, is synW. N. Francis and H. Kucera, 197%anual of Information
chronous grammars (Alshawi and Douglas, 2000).

An alternative — observing constraints induced by

hyper-text mark-up, harvested from the web — is;
explored in a sister paper (Spitkovsky et al., 2010),

published concurrently.
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