
CoNLL-2010

Fourteenth Conference on
Computational Natural Language Learning

Proceedings of the Conference

15-16 July 2010
Uppsala University
Uppsala, Sweden

Production and Manufacturing by
Taberg Media Group AB
Box 94, 562 02 Taberg
Sweden

CoNLL-2010 Best Paper Sponsors:

c©2010 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-83-1 / 1-932432-83-3

ii

Introduction

The 2010 Conference on Computational Natural Language Learning is the fourteenth in the series of
annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CONLL-2010 will be held in Uppsala, Sweden, 15-16 July 2010, in conjunction with ACL.

For our special focus this year in the main session of CoNLL, we invited papers relating to grammar
induction, from a machine learning, natural language engineering and cognitive perspective. We
received 99 submissions on these and other relevant topics, of which 18 were eventually withdrawn. Of
the remaining 81 papers, 12 were selected to appear in the conference programme as oral presentations,
and 13 were chosen as posters. All accepted papers appear here in the proceedings. Following the ACL
2010 policy we allowed an extra page in the camera ready paper for authors to incorporate reviewer
comments, so each accepted paper was allowed to have nine pages plus any number of pages containing
only bibliographic references.

As in previous years, CoNLL-2010 has a shared task, Learning to detect hedges and their scope in
natural language text. The Shared Task papers are collected into an accompanying volume of CoNLL-
2010.

First and foremost, we would like to thank the authors who submitted their work to CoNLL-2010. We
are grateful to our invited speakers, Lillian Lee and Zoubin Ghahramani, who graciously agreed to give
talks at CoNLL. Special thanks to the SIGNLL board members, Lluı́s Màrquez and Joakim Nivre, for
their valuable advice and assistance each step of the way, and Erik Tjong Kim Sang, who acted as the
information officer and maintained the CoNLL-2010 web page.

We also appreciate the help we received from the ACL programme chairs, especially Stephen Clark. The
help of the ACL 2010 publication chairs, Jing-Shin Chang and Philipp Koehn, technical support by Rich
Gerber from softconf.com, as well as input from Priscilla Rasmussen was invaluable in producing these
proceedings.

Finally, many thanks to Google for sponsoring the best paper award at CoNLL-2010.

We hope you enjoy the conference!

Mirella Lapata and Anoop Sarkar

CoNLL 2010 Conference Chairs

iii

Program Chairs

Mirella Lapata (University of Edinburgh, United Kingdom)
Anoop Sarkar (Simon Fraser University, Canada)

Program Committee:

Steven Abney (University of Michigan, United States)
Eneko Agirre (University of the Basque Country, Spain)
Afra Alishahi (Saarland University, Germany)
Jason Baldridge (The University of Texas at Austin, United States)
Tim Baldwin (University of Melbourne, Australia)
Regina Barzilay (Massachusetts Institute of Technology, United States)
Phil Blunsom (University of Oxford, United Kingdom)
Thorsten Brants (Google Inc., United States)
Chris Brew (Ohio State University, United States)
Nicola Cancedda (Xerox Research Centre Europe, France)
Yunbo Cao (Microsoft Research Asia, China)
Xavier Carreras (Technical University of Catalonia, Spain)
Ming-Wei Chang (University of Illinois at Urbana-Champaign, United States)
Colin Cherry (National Research Council, Canada)
Massimiliano Ciaramita (Google Research, Switzerland)
Alexander Clark (Royal Holloway, University of London, United Kingdom)
James Clarke (University of Illinois at Urbana-Champaign, United States)
Walter Daelemans (University of Antwerp, Netherlands)
Vera Demberg (University of Edinburgh, United Kingdom)
Amit Dubey (University of Edinburgh, United Kingdom)
Chris Dyer (Carnegie Mellon University, United States)
Jenny Finkel (Stanford University, United States)
Radu Florian (IBM Watson Research Center, United States)
Robert Frank (Yale University, United States)
Michel Galley (Stanford University, United States)
Yoav Goldberg (Ben Gurion University of the Negev, Israel)
Cyril Goutte (National Research Council, Canada)
Gholamreza Haffari (University of British Columbia, Canada)
Keith Hall (Google Research, Switzerland)
Marti Hearst (University of California at Berkeley, United States)
James Henderson (University of Geneva, Switzerland)
Julia Hockenmaier (University of Illinois at Urbana-Champaign, United States)
Fei Huang (IBM Research, United States)
Rebecca Hwa (University of Pittsburgh, United States)
Richard Johansson (University of Trento, Italy)
Mark Johnson (Macquarie University, Australia)
Rohit Kate (The University of Texas at Austin, United States)
Frank Keller (University of Edinburgh, United Kingdom)
Philipp Koehn (University of Edinburgh, United Kingdom)
Terry Koo (Massachusetts Institute of Technology, United States)

v

Shankar Kumar (Google Inc., United States)
Shalom Lappin (Kings College London, United Kingdom)
Adam Lopez (University of Edinburgh, United Kingdom)
Rob Malouf (San Diego State University, United States)
Yuji Matsumoto (Nara Institute of Science and Technology, Japan)
Takuya Matsuzaki (University of Tokyo, Japan)
Ryan McDonald (Google Inc., United States)
Paola Merlo (University of Geneva, Switzerland)
Haitao Mi (Institute of Computing Technology, Chinese Academy of Sciences, China)
Yusuke Miyao (University of Tokyo, Japan)
Raymond Mooney (University of Texas at Austin, United States)
Alessandro Moschitti (University of Trento, Italy)
Gabriele Musillo (FBK-IRST, Italy)
Mark-Jan Nederhof (University of St Andrews, United Kingdom)
Hwee Tou Ng (National University of Singapore, Singapore)
Vincent Ng (University of Texas at Dallas, United States)
Grace Ngai (Hong Kong Polytechnic University, China)
Joakim Nivre (Uppsala University, Sweden)
Franz Och (Google Inc., United States)
Miles Osborne (University of Edinburgh, United Kingdom)
Christopher Parisien (University of Toronto, Canada)
Slav Petrov (Google Research, United States)
Hoifung Poon (University of Washington, United States)
David Powers (Flinders University of South Australia, Australia)
Vasin Punyakanok (BBN Technologies, United States)
Chris Quirk (Microsoft Research, United States)
Lev Ratinov (University of Illinois at Urbana-Champaign, United States)
Roi Reichart (The Hebrew University, Israel)
Sebastian Riedel (University of Massachusetts, United States)
Ellen Riloff (University of Utah, United States)
Brian Roark (Oregon Health & Science University, United States)
Dan Roth (University of Illinois at Urbana-Champaign, United States)
William Sakas (Hunter College, United States)
William Schuler (The Ohio State University, United States)
Sabine Schulte im Walde (University of Stuttgart, Germany)
Libin Shen (BBN Technologies, United States)
Benjamin Snyder (Massachusetts Institute of Technology, United States)
Richard Sproat (Oregon Health & Science University, United States)
Mark Steedman (University of Edinburgh, United Kingdom)
Jun Suzuki (NTT Communication Science Laboratories, Japan)
Hiroya Takamura (Tokyo Institute of Technology, Japan)
Ivan Titov (Saarland University, Germany)
Kristina Toutanova (Microsoft Research, United States)
Antal van den Bosch (Tilburg University, Netherlands)
Peng Xu (Google Inc., United States)
Charles Yang (University of Pennsylvania, United States)
Daniel Zeman (Charles University in Prague, Czech Republic)
Luke Zettlemoyer (University of Washington at Seattle, United States)

vi

Invited Speakers:

Zoubin Ghahramani, University of Cambridge and Carnegie Mellon University
Lillian Lee, Cornell University

vii

Table of Contents

Improvements in Unsupervised Co-Occurrence Based Parsing
Christian Hänig . 1

Viterbi Training Improves Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky and Christopher D. Manning 9

Driving Semantic Parsing from the World’s Response
James Clarke, Dan Goldwasser, Ming-Wei Chang and Dan Roth . 18

Efficient, Correct, Unsupervised Learning for Context-Sensitive Languages
Alexander Clark . 28

Identifying Patterns for Unsupervised Grammar Induction
Jesús Santamarı́a and Lourdes Araujo . 38

Learning Better Monolingual Models with Unannotated Bilingual Text
David Burkett, Slav Petrov, John Blitzer and Dan Klein . 46

(Invited Talk) Clueless: Explorations in Unsupervised, Knowledge-Lean Extraction of Lexical-Semantic
Information

Lillian Lee . 55

(Invited Talk) Bayesian Hidden Markov Models and Extensions
Zoubin Ghahramani . 56

Improved Unsupervised POS Induction Using Intrinsic Clustering Quality and a Zipfian Constraint
Roi Reichart, Raanan Fattal and Ari Rappoport . 57

Syntactic and Semantic Structure for Opinion Expression Detection
Richard Johansson and Alessandro Moschitti . 67

Type Level Clustering Evaluation: New Measures and a POS Induction Case Study
Roi Reichart, Omri Abend and Ari Rappoport . 77

Recession Segmentation: Simpler Online Word Segmentation Using Limited Resources
Constantine Lignos and Charles Yang . 88

Computing Optimal Alignments for the IBM-3 Translation Model
Thomas Schoenemann . 98

Semi-Supervised Recognition of Sarcasm in Twitter and Amazon
Dmitry Davidov, Oren Tsur and Ari Rappoport . 107

Learning Probabilistic Synchronous CFGs for Phrase-Based Translation
Markos Mylonakis and Khalil Sima’an . 117

A Semi-Supervised Batch-Mode Active Learning Strategy for Improved Statistical Machine Translation
Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard and Prem Natarajan 126

Improving Word Alignment by Semi-Supervised Ensemble
Shujian Huang, Kangxi Li, Xinyu Dai and Jiajun Chen . 135

ix

A Comparative Study of Bayesian Models for Unsupervised Sentiment Detection
Chenghua Lin, Yulan He and Richard Everson . 144

A Hybrid Approach to Emotional Sentence Polarity and Intensity Classification
Jorge Carrillo de Albornoz, Laura Plaza and Pablo Gervás . 153

Cross-Caption Coreference Resolution for Automatic Image Understanding
Micah Hodosh, Peter Young, Cyrus Rashtchian and Julia Hockenmaier . 162

Improved Natural Language Learning via Variance-Regularization Support Vector Machines
Shane Bergsma, Dekang Lin and Dale Schuurmans . 172

Online Entropy-Based Model of Lexical Category Acquisition
Grzegorz Chrupała and Afra Alishahi . 182

Tagging and Linking Web Forum Posts
Su Nam Kim, Li Wang and Timothy Baldwin . 192

Joint Entity and Relation Extraction Using Card-Pyramid Parsing
Rohit Kate and Raymond Mooney . 203

Distributed Asynchronous Online Learning for Natural Language Processing
Kevin Gimpel, Dipanjan Das and Noah A. Smith . 213

On Reverse Feature Engineering of Syntactic Tree Kernels
Daniele Pighin and Alessandro Moschitti . 223

Inspecting the Structural Biases of Dependency Parsing Algorithms
Yoav Goldberg and Michael Elhadad . 234

x

Conference Program

Thursday, July 15, 2010

9:00–9:15 Opening Remarks

Session 1: Parsing (9:15–10:30)

9:15–9:40 Improvements in Unsupervised Co-Occurrence Based Parsing
Christian Hänig

9:40–10:05 Viterbi Training Improves Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky and Christopher D. Man-
ning

10:05–10:30 Driving Semantic Parsing from the World’s Response
James Clarke, Dan Goldwasser, Ming-Wei Chang and Dan Roth

10:30–11:00 Break

Session 2: Grammar Induction (11:00–12:15)

11:00–11:25 Efficient, Correct, Unsupervised Learning for Context-Sensitive Languages
Alexander Clark

11:25–11:50 Identifying Patterns for Unsupervised Grammar Induction
Jesús Santamarı́a and Lourdes Araujo

11:50–12:15 Learning Better Monolingual Models with Unannotated Bilingual Text
David Burkett, Slav Petrov, John Blitzer and Dan Klein

12:15–14:15 Lunch

14:15–15:30 (Invited Talk) Clueless: Explorations in Unsupervised, Knowledge-Lean Extraction
of Lexical-Semantic Information
Lillian Lee

15:30–16:00 Break

xi

Thursday, July 15, 2010 (continued)

CoNLL 2010 Shared Task, Overview and Oral Presentations (16:00–17:30)

16:00–16:20 The CoNLL 2010 Shared Task: Learning to Detect Hedges and their Scope in Natural
Language Text
Richárd Farkas, Veronika Vincze, György Móra, János Csirik and György Szarvas

16:20–16:30 A Cascade Method for Detecting Hedges and their Scope in Natural Language Text
Buzhou Tang, Xiaolong Wang, Xuan Wang, Bo Yuan and Shixi Fan

16:30–16:40 Detecting Speculative Language using Syntactic Dependencies and Logistic Regression
Andreas Vlachos and Mark Craven

16:40–16:50 A Hedgehop over a Max-margin Framework using Hedge Cues
Maria Georgescul

16:50–17:00 Detecting Hedge Cues and their Scopes with Average Perceptron
Feng Ji, Xipeng Qiu and Xuanjing Huang

17:00–17:10 Memory-based Resolution of In-sentence Scopes of Hedge Cues
Roser Morante, Vincent Van Asch and Walter Daelemans

17:10–17:20 Resolving Speculation: MaxEnt Cue Classification and Dependency-Based Scope Rules
Erik Velldal, Lilja Øvrelid and Stephan Oepen

17:20–17:30 Combining Manual Rules and Supervised Learning for Hedge Cue and Scope Detection
Marek Rei and Ted Briscoe

Shared Task Discussion Panel (17:30–18:00)

xii

Friday, July 16, 2010

9:15–10:30 (Invited Talk) Bayesian Hidden Markov Models and Extensions
Zoubin Ghahramani

10:30–11:00 Break

Joint Poster Session: Main conference and shared task posters (11:00–12:30)

11:00–12:30 Main conference posters

Improved Unsupervised POS Induction Using Intrinsic Clustering Quality and a Zipfian
Constraint
Roi Reichart, Raanan Fattal and Ari Rappoport

Syntactic and Semantic Structure for Opinion Expression Detection
Richard Johansson and Alessandro Moschitti

Type Level Clustering Evaluation: New Measures and a POS Induction Case Study
Roi Reichart, Omri Abend and Ari Rappoport

Recession Segmentation: Simpler Online Word Segmentation Using Limited Resources
Constantine Lignos and Charles Yang

Computing Optimal Alignments for the IBM-3 Translation Model
Thomas Schoenemann

Semi-Supervised Recognition of Sarcasm in Twitter and Amazon
Dmitry Davidov, Oren Tsur and Ari Rappoport

Learning Probabilistic Synchronous CFGs for Phrase-Based Translation
Markos Mylonakis and Khalil Sima’an

A Semi-Supervised Batch-Mode Active Learning Strategy for Improved Statistical Machine
Translation
Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard and Prem Natarajan

Improving Word Alignment by Semi-Supervised Ensemble
Shujian Huang, Kangxi Li, Xinyu Dai and Jiajun Chen

xiii

Friday, July 16, 2010 (continued)

A Comparative Study of Bayesian Models for Unsupervised Sentiment Detection
Chenghua Lin, Yulan He and Richard Everson

A Hybrid Approach to Emotional Sentence Polarity and Intensity Classification
Jorge Carrillo de Albornoz, Laura Plaza and Pablo Gervás

Cross-Caption Coreference Resolution for Automatic Image Understanding
Micah Hodosh, Peter Young, Cyrus Rashtchian and Julia Hockenmaier

Improved Natural Language Learning via Variance-Regularization Support Vector Ma-
chines
Shane Bergsma, Dekang Lin and Dale Schuurmans

11:00–12:30 Shared Task posters: Systems for Shared Task 1 and 2

Hedge Detection using the RelHunter Approach
Eraldo Fernandes, Carlos Crestana and Ruy Milidiú

A High-Precision Approach to Detecting Hedges and Their Scopes
Halil Kilicoglu and Sabine Bergler

Exploiting Rich Features for Detecting Hedges and Their Scope
Xinxin Li, Jianping Shen, Xiang Gao and Xuan Wang

Uncertainty Detection as Approximate Max-Margin Sequence Labelling
Oscar Täckström, Sumithra Velupillai, Martin Hassel, Gunnar Eriksson, Hercules Dalianis
and Jussi Karlgren

Hedge Detection and Scope Finding by Sequence Labeling with Procedural Feature Se-
lection
Shaodian Zhang, Hai Zhao, Guodong Zhou and Bao-liang Lu

Learning to Detect Hedges and their Scope using CRF
Qi Zhao, Chengjie Sun, Bingquan Liu and Yong Cheng

Exploiting Multi-Features to Detect Hedges and Their Scope in Biomedical Texts
Huiwei Zhou, Xiaoyan Li, Degen Huang, Zezhong Li and Yuansheng Yang

xiv

Friday, July 16, 2010 (continued)

11:00–12:30 Shared Task posters: Systems for Shared Task 1

A Lucene and Maximum Entropy Model Based Hedge Detection System
Lin Chen and Barbara Di Eugenio

HedgeHunter: A System for Hedge Detection and Uncertainty Classification
David Clausen

Uncertainty Learning using SVMs and CRFs
Vinodkumar Prabhakaran

Exploiting CCG Structures with Tree Kernels for Speculation Detection
Liliana Paola Mamani Sanchez, Baoli Li and Carl Vogel

Features for Detecting Hedge Cues
Nobuyuki Shimizu and Hiroshi Nakagawa

A Simple Ensemble Method for Hedge Identification
Ferenc Szidarovszky, Illés Solt and Domonkos Tikk

A Baseline Approach for Detecting Sentences Containing Uncertainty
Erik Tjong Kim Sang

Hedge Classification with Syntactic Dependency Features based on an Ensemble Classifier
Yi Zheng, Qifeng Dai, Qiming Luo and Enhong Chen

12:30–14:00 Lunch

Session 3: Semantics and Information Extraction (14:00–15:15)

14:00–14:25 Online Entropy-Based Model of Lexical Category Acquisition
Grzegorz Chrupała and Afra Alishahi

14:25–14:50 Tagging and Linking Web Forum Posts
Su Nam Kim, Li Wang and Timothy Baldwin

14:50–15:15 Joint Entity and Relation Extraction Using Card-Pyramid Parsing
Rohit Kate and Raymond Mooney

15:30–16:00 Break

xv

Friday, July 16, 2010 (continued)

Session 4: Machine learning (16:00–17:15)

16:00–16:25 Distributed Asynchronous Online Learning for Natural Language Processing
Kevin Gimpel, Dipanjan Das and Noah A. Smith

16:25–16:50 On Reverse Feature Engineering of Syntactic Tree Kernels
Daniele Pighin and Alessandro Moschitti

16:50–17:15 Inspecting the Structural Biases of Dependency Parsing Algorithms
Yoav Goldberg and Michael Elhadad

Closing Session (17:15–17:45)

17:15–17:45 SIGNLL Business Meeting and Best Paper Award

xvi

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 1–8,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Improvements in unsupervised co-occurrence based parsing

Christian H änig
Daimler AG

Research and Technology
89081 Ulm, Germany

christian.haenig@daimler.com

Abstract

This paper presents an algorithm for unsu-
pervised co-occurrence based parsing that
improves and extends existing approaches.
The proposed algorithm induces a context-
free grammar of the language in question
in an iterative manner. The resulting struc-
ture of a sentence will be given as a hier-
archical arrangement of constituents. Al-
though this algorithm does not use any a
priori knowledge about the language, it
is able to detect heads, modifiers and a
phrase type’s different compound compo-
sition possibilities. For evaluation pur-
poses, the algorithm is applied to manually
annotated part-of-speech tags (POS tags)
as well as to word classes induced by an
unsupervised part-of-speech tagger.

1 Introduction

With the growing amount of textual data available
in the Internet, unsupervised methods for natural
language processing gain a considerable amount
of interest. Due to the very special usage of lan-
guage, supervised methods trained on high quality
corpora (e. g. containing newspaper texts) do not
achieve comparable accuracy when being applied
to data from fora or blogs. Huge annotated corpora
consisting of sentences extracted from the Internet
barely exist until now.

Consequential a lot of effort has been put into
unsupervised grammar induction during the last
years and results and performance of unsuper-
vised parsers improved steadily. Klein and Man-
ning (2002)’s constituent context model (CCM)
obtains 51.2% f-score on ATIS part-of-speech
strings. The same model achieves 71.1% on Wall
Street Journal corpus sentences with length of
at most 10 POS tags. In (Klein and Manning,
2004) an approach combining constituency and

dependency models yields 77.6% f-score. Bod
(2006)’s all-subtree approach — known as Data-
Oriented Parsing (DOP) — reports 82.9% for
UML-DOP. Seginer (2007)’s common cover links
model (CCL) does not need any prior tagging and
is applied on word strings directly. The f-score
for English is 75.9%, and for German (NEGRA10)
59% is achieved. Ḧanig et al. (2008) present a co-
occurrence based constituent detection algorithm
which is applied to word forms, too (unsupervised
POS tags are induced using unsuPOS, see (Bie-
mann, 2006)). An f-score of 63.4% is reported for
German data.

In this paper, we want to present a new unsu-
pervised co-occurrence based grammar induction
model based on Ḧanig et al. (2008). In the fol-
lowing section, we give a short introduction to the
base algorithmunsuParse. Afterwards, we present
improvements to this algorithm. In the final sec-
tion, we evaluate the proposed model against ex-
isting ones and discuss the results.

2 Co-occurrence based parsing

It has been shown in (Ḧanig et al., 2008) that
statistical methods like calculating significant co-
occurrences and context clustering are applicable
to grammar induction from raw text. The underly-
ing assumption states that each word prefers a cer-
tain position within a phrase. Two particular cases
are of special interest: a word’s occurrence at the
beginning of a sentence and a word’s occurrence at
the end of a sentence. Those positions obviously
are constituent borders and can be easily used to
extract syntactic knowledge. One possibility is to
discover constituents employing constituency tests
(see (Adger, 2003)), whereby these two cases can
be used to express and use one of them in a formal
way: the movement test.

Three neighbourhood co-occurrences express
the aforementioned observations:

1

• Value a denotes the significance of wordA
standing at the last position of a sentence
(where$ is an imaginary word to mark a sen-
tences’ end).

a = sig (A, $) (1)

• Contrary, variableb denotes the significance
of a wordB being observed at the beginning
of a sentence (wherêis an imaginary word
to mark the beginning of a sentence).

b = sig (̂ , B) (2)

• Additionally, a third value is necessary to rep-
resent the statistical significance of the neigh-
bourhood co-occurrence containing wordA

andB.
c = sig (A, B) (3)

To compute those significance values for a corpus,
the log-likelihood measure (see (Dunning, 1993))
is applied using corpus sizen, term frequencies
nA andnB (for the wordsA andB) and frequency
nAB of the co-occurrence ofA andB.

To detect constituent borders between two
words, a separation valuesepAB can be defined
as:

sepAB =
a

c
·
b

c
=

a · b

c2
(4)

If word A occurs more significantly at the end of
a sentence as in front ofB, then a

c
> 1. Addi-

tionally, b is larger thanc if B is observed more
significantly at the beginning of a sentence as af-
ter A and b

c
will be > 1. In this casesepAB is

> 1 and obviously, a constituent border would be
situated betweenA andB.

The basic approach to create parse trees from
separation values between two adjacent words is
to consecutively merge the two subtrees contain-
ing the words with the smallest separation value
between them — starting with each word in a sep-
arate subtree. In order to avoid data sparseness
problems, co-occurrences and separation values
are primarily calculated on part-of-speech tags.
However, word co-occurrences will be used to pre-
serve word form specific dependencies.

In this paper, we want to presentunsuParse+
— an extension of this co-occurrence based ap-
proach. The first extension is the distinction be-
tween endocentric and exocentric elements which
introduces the detection of heads along with their

modifiers (see section 2.2). Furthermore, learning
of recursive constructions is facilitated. Secondly,
we will consider discontiguous dependencies and
present a possibility to detect rare constructions
like complex noun phrases (see section 2.3). As
third enhancement, we employ a simple cluster-
ing algorithm to induced phrases in order to detect
constituents holding identical syntactic functions.
Those phrases will be labeled the same way in-
stead of by different phrase numbers (see section
2.4).

First, we will start with the detection of con-
stituent candidates.

2.1 Detection of constituent borders

Instead of usingsepAB to detect constituent bor-
ders we use neighbourhood co-occurrence signif-
icances on account of an experiment in (Hänig et
al., 2008) showing that the pure significance value
c is sufficient.

Furthermore, we do not restrict the detection
of phrases to bigrams and allow the detection of
arbitrary n-grams. The motivation behind this is
basically caused by coordinating conjunctions for
which discussions on thecorrect1 structure are
raised. While Chomsky (1965) argues in favor of
symmetric multiple-branching coordinating con-
structions (see Figure 1), recent discussions in the
context of unification grammars (especially head-
driven phrase structure grammar (see (Pollard and
Sag, 1994)) prefer asymmetric endocentric con-
structions (see (Kayne, 1995) and (Sag, 2002)).
The corresponding structure can be seen in Figure
2. Nevertheless, a symmetric construction con-
taining two heads seems to be more appropriate for
some languages (e. g. German, see (Lang, 2002)).

NP

NNS CC NNS

cats and dogs

Figure 1: Symmetric
coordinating conjunc-
tion

ConJ

NNS Conj’

cats CC NNS

and dogs

Figure 2: Asymmetric
coordinating conjunc-
tion

1correct meaning considered to be correct

2

Thus, the presented algorithm is able to deal
with phrases containing any number of com-
pounds.

As in (Hänig et al., 2008), phrases will be
learned in an iterative manner (see details in sec-
tion 2.5). Within each iteration, the n-gramP
yielding the highest significance is considered to
be the best candidate for being a valid constituent.

P = [p0 . . . pn−1] (5)

The preferred position of part-of-speech tags is
maintained as we definepref (A) for every POS
tagA. This value is initialized as the ratio of two
particular significances as in Equ. 6:

pref (A) =
sig (̂ , A)

sig (A, $)
(6)

Analogous tosepAB (see section 2)pref (A) is
> 1 if POS tagA prefers the first position within
a phrase and vice versa.

Before a phrase candidate is used to create a
new grammar rule, its validity has to be checked.
Using the assumption that every word prefers a
certain position within a constituent leads us to
check the first word of a phrase candidate for pre-
ferring the first position and the last word for fa-
voring the last one.

But there are at least two exceptions: coordi-
nating conjunctions and compound nouns. Those
constructions (e. g.cats/NNS and/CC dogs/NNS,
dog/NN house/NN) usually start and end with the
same phrase respectively POS tag. This would
lead to wrong validation results, because NNS
or NN do prefer the last position within a con-
stituent and should not occur at the beginning. As
both constructions are endocentric, they prefer the
head’s position within the superordinating phrase
and thus, their existence does not stand in contrast
to the assumption made about preferred positions.

Formally, we get the following proposition:

valid (P)⇔ p0 = pn−1 ∨

pref (p0) ≥ ϕ ∧ pref (pn−1) ≤
1

ϕ

(7)

An uncertaintyfactor is introduced byϕ, as some
parts-of-speech tend to not appear at the borders
of a sentence although they prefer a certain posi-
tion within constituents. Some examples (given in
Table 1) of the 5 most frequent English2 and Ger-

2Penn Tree Tagset, see (Marcus et al., 1993)

man3 parts-of-speech will demonstrate this effect.

English German
NN 0.08 NN 0.30
IN 31.45 ART 242.48

NNP 1.39 APPR 143.62
DT 84.19 ADJA 5.06

NNS 0.31 NE 1.11

Table 1: Values ofpref (POS) for the 5 most fre-
quent parts-of-speech of English and German

In both languages proper nouns (NNPresp.NE)
occur slightly more often at the beginning of a sen-
tence than at its end, although proper nouns pre-
fer — like normal nouns — the last position of a
phrase. To account for this effect,pref (A)will be
iteratively adapted to the observations of learned
grammar rules as given in Equ. 8:

pref (p0)←
1

δ
· pref (p0)

pref (pn−1)← δ · pref (pn−1)
(8)

Due to iterative learning of rules, we can use
knowledge obtained during a previous itera-
tion. Every rule contains reinforcing information
about the preferred position of a part-of-speech.
pref (A) is adapted by a factorδ (with 0 < δ < 1)
for the corresponding parts-of-speech and it will
converge to its preferred position.

In later iterations, significances of phrase can-
didates do not differ considerably from each other
and thus, the order of phrase candidates is not very
reliable anymore. Consequently, parts-of-speech
occur at non-preferred positions more often and
trustworthy knowledge (in form ofpref (A))
about the preferred positions of parts-of-speech is
very helpful to avoid those phrase candidates from
being validated.

We want to give one example for English: ad-
jectives (JJ). Before the first iteration,pref (JJ)
is initialized with1.046 which means thatJJ has
no preferred position. The most significant rules
containingJJ are JJ NN, JJ NNSand JJ NNP
— supporting a preference of the first position
within a constituent. An iterative adaption of
pref (JJ) will represent this observation and dis-
approve constituents ending withJJ (like DT JJor
IN JJ) in upcoming iterations.

3Stuttgart-T̈ubingen Tagset, see (Thielen et al., 1999)

3

After having detected a new and valid con-
stituent, we can use context similarity and other
statistical methods to learn more about its be-
haviour and inner construction.

2.2 Classification into endocentric and
exocentric constructions

Endocentric constructions contain a head — or
more than one in symmetric coordinate construc-
tions — which is syntactically identical to the en-
docentric compound. Additionally, at least one
optional element subordinating to the head is con-
tained in the construction. An exocentric con-
struction on the other hand does not contain any
head element which is syntactically identical to the
whole construction.

The following example sentences will demon-
strate the distinction of these two types. Sentence
(a) contains a determiner phrase (DP:a new car)
which has a noun phrase embedded (NP:new car).
The NP can be replaced by its head as in sentence
(b) and thus is regarded to be endocentric. The DP
is exocentric — it can neither be replaced by the
determiner (sentence (c)) nor by the NP (sentence
(d)) without losing its syntactical correctness.

(a) I buy a new car.

(b) I buy a car.

(c) * I buy a.

(d) * I buy new car.

Detection of endocentric constructions yields
valuable information about the language in ques-
tion. It is possible to detect heads along with their
modifiers without any a priori knowledge. Fur-
thermore, detection of optional modifiers reduces
the complexity of sentences and thus, facilitates
learning of high precision rules.

Without classification into endocentric and exo-
centric constructions, two rules (P#1← JJ NN

and P#2 ← JJ P#1 would be necessary to
parse the phrasefirst civil settlementas given in
Figure 3. Using knowledge about subordinating
elements achieves the same result (see Figure 4)
with one rule (NN ← JJ NN). Addition-
ally, data-sparseness problems are circumvented
as no rare occurrences likeJJ . . . JJ NN need
to be contained in the training corpus to eventu-
ally parse those phrases.

Following the definition of endocentricity, a
phrase containing a head and an optional element

P#2

JJ P#1

first JJ NN

civil settlement

Figure 3: Structure
without knowledge
about endocentricity

NN

JJ NN

first JJ NN

civil settlement

Figure 4: Structure
using knowledge
about endocentricity

should be equally distributed — in respect to its
context – as the head. Consequentially, a phrase
is considered to be endocentric, if it contains an
element showing high context similarity (see Equ.
9).

endocentric (P)⇔

∃i : sim (context (P) , context (pi)) ≥ ϑ
(9)

The global contextcontext (P) of a phrase or
POS tagP is the sum of all local contexts ofP
within the training corpus. We use the two left
and right neighbours including the aforementioned
markers for the beginning and the end of a sen-
tence if necessary. We apply the Cosine Measure
to calculate the similarity between the two con-
texts and in case of passing a defined thresholdϑ,
the phrase is considered to be endocentric. See Ta-
ble 2 for some examples (ϑ = 0.9).

NNS ← JJ NNS
NN ← JJ NN

NNP ← NNP CC NNP
NN ← NN CC NN

VBZ ← RB VBZ

Table 2: Examples of endocentric constructions

2.3 Discontiguous dependencies

Additionally to endocentric constructions contain-
ing a head and a modifier, some parts-of-speech
like articles and possessive pronouns do not occur
without a noun or noun phrase. While those parts-
of-speech are grouped together as determiners
(DT) in the Penn Tree Tagset, for other tagsets and
languages they might be distributed among multi-
ple classes (as in the German Stuttgart–Tübingen

4

Tagset amongART, PPOSAT, PIAT . . .). To de-
tect such strong dependencies, we propose a sim-
ple test measuring the relative score of observing
two wordsA andB together within a maximum
rangen.

depn (A, B) =

∑n
d=0

freq (A, B, d)

min (freq (A) , freq (B))
(10)

Equ. 10 formally describes the relative score
wherefreq (A, B, d) denotes the frequency ofA

and B occurring together with exactlyd other
tokens between them. Ifdepn (A, B) passes a
thresholdϑ (0.9 for our experiments), then the
dependency betweenA and B is allowed to oc-
cur discontiguously. Including these dependen-
cies facilitates the parsing of rare and insignificant
phrases like adjectival phrases.

NP

ART AP NN

Der mit zwei Festplatten
ausgestattete

Computer

The with two disks
equipped

computer

Figure 5: Adjectival Phrase

In the example given in Figure 5, the discon-
tiguous dependency between articles (ART) and
normal nouns (NN) can be applied to two possi-
ble word pairs. On the one hand, there isDer . . .

Festplatten(The. . . disks), the other possibility is
Der . . . Computer(The. . . computer). We choose
the pair achieving the highest neighbourhood co-
occurrence significance. Regarding our example,
it is quite obvious thatComputeris the noun to
choose asDer and Computershow grammatical
agreement while this is not the case forFestplat-
ten. Consequently, the significance ofDer Com-
puter is much higher than the one ofDer Festplat-
ten. Although articles and other parts-of-speech
are not unambiguous regarding gender, number
and case for all languages, this approach can re-
solve some of those cases for certain languages.

2.4 Phrase Clustering

One objection to unsupervised parsing is the fact
that phrases belonging to the same phrase type are

not labeled the same way. And of course, without
any prior knowledge, induced phrases will never
be labeledNP, PP or like any other known phrase
type. This complicates the application of any fur-
ther algorithms relying on that knowledge. Never-
theless, it is possible to cluster syntactic identical
phrases into one class.

As in section 2.2, similarity between two global
contexts is calculated. If the similarity of phraseP

(the one being tested) andQ (see most similar one,
see Equ. 11) exceeds a thresholdϑ, then phraseP
is considered to have the same phrase type asQ

(see Equ. 12). In this case,P will be labeled by
the label ofQ and thus, is treated likeQ.

Q = arg max
q ∈ phrases

sim (context (P) , context (q))

(11)
Type (P) = Type (Q)⇔ sim (P, Q) ≥ ϑ (12)

As it can be seen in Table 3 (ϑ = 0.9), cluster-
ing finds syntactic similar phrases and facilitates
iterative learning as rules can be learned for each
phrase type and not for each composition.

P#1 ← DT JJ NN
P#1 ← DT NN
P#1 ← PRP$ NNS
P#2 ← IN P#1
P#2 ← IN NN
P#2 ← IN NNS

Table 3: Results of phrase clustering

2.5 Iterative learning

Learning rules is realized as an iterative process.
A flow chart of the proposed process is given in
Figure 6.

First, an empty parser model is initialized. At
the beginning of an iteration all rules are applied
to transform the corpus. Resulting structures form
the data which is used for the next iteration. The
sentence in Figure 7 will be transformed by al-
ready induced rules.

After application of ruleNN ← JJ NN , the
optional elementJJ is removed (see Fig. 8).

The next rule (P#1 ← DT NN) reduces the
complexity of the sentence and from now on, fur-
ther rules will be created on those parts-of-speech
and phrases (see Fig. 9).

Learning will be aborted after one of the follow-
ing three conditions becomes true:

5

Begin

Initialization

Application of induced rules

Abort
learning? End

Detection of
new phrase candidate

Valid?

Endocentric?
Create a rule

labeled by its head

Discontinuity test

Similar to
existing

phrase type?

Create a rule
labeled by

existing phrase type

Create a rule
labeled by a new unique label

Yes

No

Yes

No

No

Yes

Yes

No

Figure 6: Flow chart
of the proposed learning process

1. The algorithm reaches the maximum number
of rules.

2. The last phrase candidate is not considered to
be significant enough. A threshold in relation
to the highest significance can be set up.

3. All sentences contained in the training corpus
are reduced to one phrase.

Afterwards, the most significant n-gram passing
the validity test will be regarded as a phrase. In the
following steps, the label of the new phrase will be
determined. Either it is labeled by its head (in case
of an endocentric construction) or by a syntactic
identical phrase type that has been learned before.
If neither is the case, it gets a new unique label.
Afterwards, the next iteration is triggered.

S

DT JJ NN VBZ $ CD

The minimum unit is $ 100

Figure 7: Example

S

DT NN VBZ $ CD

The is $ 100

Figure 8: Example after application of rule
NN ← JJ NN

S

P#1 VBZ $ CD

is $ 100

Figure 9: Example after additional application of
ruleP#1 ← DT NN

3 Evaluation

To evaluate unsuParse+ against unsuParse and
other unsupervised parsing algorithms, we apply
the same experimental setup as in (Klein, 2005),
(Bod, 2006) and (Ḧanig et al., 2008). For German
punctuation and empty element tags are removed
from the NEGRA corpus (see (Skut et al., 1998)).
Afterwards, all sentences containing more than 10
elements are dismissed. The resulting corpus is re-
ferred to as NEGRA10 (2175 sentences). To take
more complex sentences into account, we also pre-
pared a corpus containing sentences to a maximum
length of 40 elements (NEGRA40).

We present results for both — POS tags and
word strings. As most unsupervised parsing mod-
els (except (Seginer, 2007)), we apply the hand-
annotated data of the NEGRA corpus. Addition-
ally, we used an unsupervised part-of-speech tag-
ger (see (Biemann, 2006)) to tag the NEGRA cor-
pus to be able to present a complete unsupervised
parsing process relying on word strings only. We
applied the modelde40Mwhich has been created

6

on a corpus containing 40 million sentences and
contains 510 word classes.

To compare the performance of different pars-
ing algorithms, we used the Unlabeled Brackets
Measure as in (Klein and Manning, 2002) and
(Klein and Manning, 2004). Additionally to un-
labeled precision UP and unlabeled recall UR, the
unlabeled f-score UF is defined as:

UF =
2 · UP · UR

UP + UR
(13)

The baseline algorithm is based on neighbour-
hood co-occurrences. First, a parse tree is ini-
tialized and all tokens of a sentence are added as
leaves. Afterwards, the two adjacent nodes con-
taining the POS tags with the highest neighbour-
hood co-occurrence significance are merged con-
secutively until a binary tree has been created.

Results for NEGRA10 are given in Table 4.un-
suParse+improves the performance ofunsuParse
in both categories: supervised and unsupervised
annotated POS tags. While recall is improved sig-
nificantly for hand-annotated data, just a slight im-
provement is achieved for word strings. Especially
clustering of phrases leads to the increased recall
as rules do not need to be learned for every possi-
ble compound composition of a given phrase type
as they are already covered by the phrase type
itself. Models based on unsuParse achieve the
highest precision among all models. This is not
very surprising as most of the other models (ex-
cept Common Cover Links) generate binary parses
achieving a higher recall. Nevertheless,unsu-
Parse+yields comparable results and obtains the
highest f-score for German data.

Parsing Model UP UR UF
Baseline (POS tags) 35.5 66.0 46.2
CCM 48.1 85.5 61.6
DMV + CCM 49.6 89.7 63.9
U-DOP 51.2 90.5 65.4
UML-DOP — — 67.0
U-DOP* — — 63.8
unsuParse (POS tags) 76.9 53.9 63.4
unsuParse+ (POS tags)71.1 67.9 69.5
Baseline (words) 23.6 43.9 30.7
Common Cover Links 51.0 69.8 59.0
unsuParse (words) 61.2 59.1 60.2
unsuParse+ (words) 63.1 60.4 61.7

Table 4: UP, UR and UF for NEGRA10

Performance drops for more complex sentences

(see Table 5). As for short sentences, the recall of
our approach is in the same order as for the base-
line. However, precision is increased by a factor
of two in comparison to the baseline, which is also
similar to short sentences.

Parsing Model UP UR UF
Baseline (POS tags) 24.8 49.3 33.0
unsuParse+ (POS tags)55.3 51.4 53.3

Table 5: UP, UR and UF for NEGRA40

Table 6 shows the most frequently over- and
under-proposed phrases for NEGRA10. Noun and
prepositional phrases are often over-proposed due
to a flat representation within the NEGRA corpus.
The most frequently under-proposed phraseNE
NE is learned and classified as endocentric con-
struction (NE← NE NE). Due to the removal of
punctuation, proper nouns which naturally would
be separated by e. g. commas will be represented
by one flat phrase without deeper analysis of the
inner structure. This includes some underproposi-
tions which will not occur while parsing sentences
containing punctuation.

Overproposed Underproposed
ART NN 369 NE NE 42

CARD NN 111 NN NE 35
ADV ADV 103 ART NN NE 27
ADJA NN 99 ADV ART NN 24

APPR ART NN 93 APPR PPER 23

Table 6: Most frequently over- and under-
proposed constituents

4 Conclusions and further work

In this paper, we presented an improved model for
co-occurrence based parsing. This model creates
high accuracy parses employing a constituent de-
tection algorithm yielding competitive results. Al-
though no a priori knowledge about the language
in question is taken into account, it is possible to
detect heads, modifiers and different phrase types.
Especially noun phrases and prepositional phrases
are clustered into their respective classes. For fur-
ther processing like relation extraction, precise re-
sults for the aforementioned phrase types are es-
sential and provided by this algorithm in an unsu-
pervised manner.

Our future work will include the investigation of
unsupervised methods for dependency identifica-

7

tion between verbs and their arguments. Further-
more, the inclusion of further constituency tests
like substitution and deletion could provide addi-
tional certainty for constituent candidates.

References

David Adger. 2003.Core Syntax: A Minimalist Ap-
proach. Oxford University Press.

Chris Biemann. 2006. Unsupervised part-of-speech
tagging employing efficient graph clustering. In
Proceedings of the COLING/ACL-06 Student Re-
search Workshop, Sydney, Australia.

Rens Bod. 2006. An all-subtrees approach to un-
supervised parsing. InACL-44: Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Asso-
ciation for Computational Linguistics.

Noam Chomsky. 1965.Aspects of the Theory of Syn-
tax. MIT Press, Cambridge, Massachusetts.

Ted Dunning. 1993. Accurate methods for the statis-
tics of surprise and coincidence.Computational
Linguistics, 19(1):61–74.

Christian Ḧanig, Stefan Bordag, and Uwe Quasthoff.
2008. Unsuparse: Unsupervised parsing with un-
supervised part of speech tagging. InProceedings
of the Sixth International Language Resources and
Evaluation (LREC’08).

Richard S. Kayne. 1995.The Antisymmetry of Syntax.
MIT Press.

Dan Klein and Christopher D. Manning. 2002. A
generative constituent-context model for improved
grammar induction. InACL ’02: Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics.

Dan Klein and Christopher D. Manning. 2004.
Corpus-based induction of syntactic structure: mod-
els of dependency and constituency. InACL ’04:
Proceedings of the 42nd Annual Meeting on Associ-
ation for Computational Linguistics.

Dan Klein. 2005.The Unsupervised Learning of Natu-
ral Language Structure. Ph.D. thesis, Stanford Uni-
versity.

Ewald Lang. 2002. Die Wortart ”Konjunktion”. In
Lexikologie. Lexicology. Ein Internationales Hand-
buch zur Natur und Struktur von Ẅortern und
Wortscḧatzen, pages 634–641. de Gruyter.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of en-
glish: The penn treebank.Computational Linguis-
tics, 19(2):313–330.

Carl Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. University Of Chicago
Press.

Ivan Sag. 2002. Coordination and underspecification.
In roceedings of the Ninth International Conference
on Head-Driven Phrase Structure Grammar.

Yoav Seginer. 2007. Fast unsupervised incremental
parsing. InProceedings of the 45th Annual Meeting
of the Association of Computational Linguistics.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and
Hans Uszkoreit. 1998. A linguistically interpreted
corpus of german newspaper text. InESSLLI-98
Workshop on Recent Advances in Corpus Annota-
tion.

C. Thielen, A. Schiller, S. Teufel, and C. Stöckert.
1999. Guidelines f̈ur das Tagging deutscher Tex-
tkorpora mit STTS. Technical report, University of
Stuttgart and University of T̈ubingen.

8

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 9–17,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Viterbi Training Improves Unsupervised Dependency Parsing

Valentin I. Spitkovsky
Computer Science Department

Stanford University and Google Inc.
valentin@cs.stanford.edu

Hiyan Alshawi
Google Inc.

Mountain View, CA, 94043, USA
hiyan@google.com

Daniel Jurafsky and Christopher D. Manning
Departments of Linguistics and Computer Science
Stanford University, Stanford, CA, 94305, USA

jurafsky@stanford.edu and manning@cs.stanford.edu

Abstract

We show that Viterbi (or “hard”) EM is
well-suited to unsupervised grammar in-
duction. It ismoreaccurate than standard
inside-outside re-estimation (classic EM),
significantly faster, and simpler. Our ex-
periments with Klein and Manning’s De-
pendency Model with Valence (DMV) at-
tain state-of-the-art performance — 44.8%
accuracy on Section 23 (all sentences) of
the Wall Street Journal corpus — without
clever initialization; with a good initial-
izer, Viterbi training improves to 47.9%.
This generalizes to the Brown corpus,
our held-out set, where accuracy reaches
50.8% — a 7.5% gain over previous best
results. We find that classic EM learns bet-
ter from short sentences but cannot cope
with longer ones, where Viterbi thrives.
However, we explain that both algorithms
optimize the wrong objectives and prove
that there are fundamental disconnects be-
tween the likelihoods of sentences, best
parses, and true parses, beyond the well-
established discrepancies between likeli-
hood, accuracy and extrinsic performance.

1 Introduction

Unsupervised learning is hard, often involving dif-
ficult objective functions. A typical approach is
to attempt maximizing the likelihood of unlabeled
data, in accordance with a probabilistic model.
Sadly, such functions are riddled with local op-
tima (Charniak, 1993, Ch. 7,inter alia), since their
number of peaks grows exponentially with in-
stances of hidden variables. Furthermore, a higher
likelihood does not always translate into superior

task-specific accuracy (Elworthy, 1994; Merialdo,
1994). Both complications are real, but we will
discuss perhaps more significant shortcomings.

We prove that learning can be error-prone even
in cases when likelihoodis an appropriate mea-
sure of extrinsic performanceand where global
optimization is feasible. This is because a key
challenge in unsupervised learning is that thede-
sired likelihood is unknown. Its absence renders
tasks like structure discovery inherently under-
constrained. Search-based algorithms adopt sur-
rogate metrics, gambling on convergence to the
“right” regularities in data. Their wrong objec-
tives create cases in whichbothefficiencyandper-
formance improve when expensive exact learning
techniques are replaced by cheap approximations.

We propose using Viterbi training (Brown
et al., 1993), instead of inside-outside re-
estimation (Baker, 1979), to induce hierarchical
syntactic structure from natural language text. Our
experiments with Klein and Manning’s (2004) De-
pendency Model with Valence (DMV), a popular
state-of-the-art model (Headden et al., 2009; Co-
hen and Smith, 2009; Spitkovsky et al., 2009),
beat previous benchmark accuracies by 3.8% (on
Section 23 of WSJ) and 7.5% (on parsed Brown).

Since objective functions used in unsupervised
grammar induction are provably wrong, advan-
tages of exact inference may not apply. It makes
sense to try the Viterbi approximation — it is also
wrong, only simpler and cheaper than classic EM.
As it turns out, Viterbi EM is not only faster but
also more accurate, consistent with hypotheses of
de Marcken (1995) and Spitkovsky et al. (2009).

We begin by reviewing the model, standard data
sets and metrics, and our experimental results. Af-
ter relating our contributions to prior work, we
delve into proofs by construction, using the DMV.

9

Corpus Sentences POS Tokens Corpus Sentences POS Tokens
WSJ1 159 159 WSJ13 12,270 110,760
WSJ2 499 839 WSJ14 14,095 136,310
WSJ3 876 1,970 WSJ15 15,922 163,715
WSJ4 1,394 4,042 WSJ20 25,523 336,555
WSJ5 2,008 7,112 WSJ25 34,431 540,895
WSJ6 2,745 11,534 WSJ30 41,227 730,099
WSJ7 3,623 17,680 WSJ35 45,191 860,053
WSJ8 4,730 26,536 WSJ40 47,385 942,801
WSJ9 5,938 37,408 WSJ45 48,418 986,830
WSJ10 7,422 52,248 WSJ100 49,206 1,028,054
WSJ11 8,856 68,022 Section 23 2,353 48,201
WSJ12 10,500 87,750 Brown100 24,208 391,796

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45
Thousands
of Sentences

Thousands
of Tokens

100

200

300

400

500

600

700

800

900

WSJk

Figure 1: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100 (Spitkovsky et al., 2009).

NNS VBD IN NN ♦

Payrolls fell in September .

P = (1−

0
z }| {

PSTOP(⋄, L, T)) × PATTACH(⋄, L, VBD)
× (1− PSTOP(VBD, L, T)) × PATTACH(VBD, L, NNS)
× (1− PSTOP(VBD, R, T)) × PATTACH(VBD, R, IN)
× (1− PSTOP(IN, R, T)) × PATTACH(IN, R, NN)
× PSTOP(VBD, L, F) × PSTOP(VBD, R, F)
× PSTOP(NNS, L, T) × PSTOP(NNS, R, T)
× PSTOP(IN, L, T) × PSTOP(IN, R, F)
× PSTOP(NN, L, T) × PSTOP(NN, R, T)
× PSTOP(⋄, L, F)

| {z }

1

× PSTOP(⋄, R, T)
| {z }

1

.

Figure 2: A dependency structure for a short sen-
tence and its probability, as factored by the DMV,
after summing outPORDER (Spitkovsky et al., 2009).

2 Dependency Model with Valence

The DMV (Klein and Manning, 2004) is a single-
state head automata model (Alshawi, 1996) over
lexical word classes{cw} — POS tags. Its gener-
ative story for a sub-tree rooted at a head (of class
ch) rests on three types of independent decisions:
(i) initial direction dir ∈ {L, R} in which to attach
children, via probabilityPORDER(ch); (ii) whether to
sealdir, stopping with probabilityPSTOP(ch, dir, adj),
conditioned onadj ∈ {T, F} (true iff considering
dir’s first, i.e., adjacent, child); and (iii) attach-
ments (of classca), according toPATTACH(ch, dir, ca).
This produces only projective trees. A root token
♦ generates the head of a sentence as its left (and
only) child. Figure 2 displays a simple example.

The DMV lends itself to unsupervised learn-
ing via inside-outside re-estimation (Baker, 1979).
Viterbi training (Brown et al., 1993) re-estimates
each next model as if supervised by the previous
best parse trees. And supervised learning from

reference parse trees is straight-forward, since
maximum-likelihood estimation reduces to count-
ing: P̂ATTACH(ch, dir, ca) is the fraction of children —
those of classca — attached on thedir side of a
head of classch; P̂STOP(ch, dir, adj = T), the frac-
tion of words of classch with no children on the
dir side; and̂PSTOP(ch, dir, adj = F), the ratio1 of the
number of words of classch having a child on the
dir side to their total number of such children.

3 Standard Data Sets and Evaluation

The DMV is traditionally trained and tested on
customized subsets of Penn English Treebank’s
Wall Street Journal portion (Marcus et al., 1993).
Following Klein and Manning (2004), we be-
gin with reference constituent parses and com-
pare against deterministically derived dependen-
cies: after pruning out all empty sub-trees, punc-
tuation and terminals (tagged# and $) not pro-
nounced where they appear, we drop all sentences
with more than a prescribed number of tokens
remaining and use automatic “head-percolation”
rules (Collins, 1999) to convert the rest, as is stan-
dard practice. We experiment with WSJk (sen-
tences with at mostk tokens), for1 ≤ k ≤ 45, and
Section 23 of WSJ∞ (all sentence lengths). We
also evaluate on Brown100, similarly derived from
the parsed portion of the Brown corpus (Francis
and Kucera, 1979), as our held-out set. Figure 1
shows these corpora’s sentence and token counts.

Proposed parse trees are judged on accuracy: a
directed scoreis simply the overall fraction of cor-
rectly guessed dependencies. LetS be a set of
sentences, with|s| the number of terminals (to-

1The expected number of trials needed to get one
Bernoulli(p) success isn ∼ Geometric(p), with n ∈ Z

+,
P(n) = (1 − p)n−1p and E(n) = p−1; MoM and MLE
agree,̂p = (# of successes)/(# of trials).

10

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

OracleAd-Hoc∗

Uninformed

WSJk

D
irected

D
ependency

A
ccuracy

on
W

S
J40

(a) %-Accuracy forInside-Outside (Soft EM)

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

Oracle

Ad-Hoc∗
Uninformed

WSJk
(training on all WSJ sentences up tok tokens in length)

D
irected

D
ependency

A
ccuracy

on
W

S
J40

(b) %-Accuracy forViterbi (Hard EM)

5 10 15 20 25 30 35 40

50

100

150

200

350

400

Oracle

Ad-Hoc∗

Uninformed

WSJk

Iterations
to

C
onvergence

(c) Iterations forInside-Outside (Soft EM)

5 10 15 20 25 30 35 40

50

100

150

200

Oracle

Ad-Hoc∗

Uninformed

WSJk

Iterations
to

C
onvergence

(d) Iterations forViterbi (Hard EM)

Figure 3: Directed dependency accuracies attained by the DMV, when trained on WSJk, smoothed, then
tested against a fixed evaluation set, WSJ40, for three different initialization strategies (Spitkovsky et al.,
2009). Red, green and blue graphs represent the supervised (maximum-likelihood oracle) initialization,
a linguistically-biased initializer (Ad-Hoc∗) and the uninformed (uniform) prior. Panel (b) shows results
obtained with Viterbi training instead of classic EM — Panel(a), but is otherwise identical (in both, each
of the 45 vertical slices captures five new experimental results and arrows connect starting performance
with final accuracy, emphasizing the impact of learning). Panels (c) and (d) show the corresponding
numbers of iterations until EM’s convergence.

kens) for eachs ∈ S. Denote byT (s) the set
of all dependency parse trees ofs, and letti(s)
stand for the parent of tokeni, 1 ≤ i ≤ |s|, in
t(s) ∈ T (s). Call the gold referencet∗(s) ∈ T (s).
For a given model of grammar, parameterized by
θ, let t̂θ(s) ∈ T (s) be a (not necessarily unique)
likeliest (also known as Viterbi) parse ofs:

t̂θ(s) ∈

{

arg max
t∈T (s)

Pθ(t)

}

;

thenθ’s directed accuracy on a reference setR is

100% ·

∑

s∈R

∑|s|
i=1 1{t̂θ

i
(s)=t∗

i
(s)}

∑

s∈R
|s|

.

4 Experimental Setup and Results

Following Spitkovsky et al. (2009), we trained the
DMV on data sets WSJ{1, . . . , 45} using three ini-
tialization strategies: (i) the uninformed uniform
prior; (ii) a linguistically-biased initializer, Ad-
Hoc∗;2 and (iii) an oracle — the supervised MLE
solution. Standard training is without smoothing,
iterating each run until successive changes in over-
all per-token cross-entropy drop below2−20 bits.

We re-trained all models using Viterbi EM
instead of inside-outside re-estimation, explored
Laplace (add-one) smoothing during training, and
experimented with hybrid initialization strategies.

2Ad-Hoc∗ is Spitkovsky et al.’s (2009) variation on Klein
and Manning’s (2004) “ad-hoc harmonic” completion.

11

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

OracleAd-Hoc∗

Uninformed

Baby Steps

WSJk

D
irected

D
ependency

A
ccuracy

on
W

S
J40

(a) %-Accuracy forInside-Outside (Soft EM)

5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

Oracle

Ad-Hoc∗
Uninformed

Baby Steps

WSJk

D
irected

D
ependency

A
ccuracy

on
W

S
J40

(b) %-Accuracy forViterbi (Hard EM)

Figure 4: Superimposes directed accuracies attained by DMVmodels trainedwith Laplace smoothing
(brightly-colored curves) over Figure 3(a,b); violet curves represent Baby Steps (Spitkovsky et al., 2009).

4.1 Result #1: Viterbi-Trained Models

The results of Spitkovsky et al. (2009), tested
against WSJ40, are re-printed in Figure 3(a); our
corresponding Viterbi runs appear in Figure 3(b).

We observe crucial differences between the two
training modes for each of the three initialization
strategies. Both algorithms walk away from the
supervised maximum-likelihood solution; how-
ever, Viterbi EM loses at most a few points of
accuracy (3.7% at WSJ40), whereas classic EM
drops nearly twenty points (19.1% at WSJ45). In
both cases, the single best unsupervised result is
with good initialization, although Viterbi peaks
earlier (45.9% at WSJ8) and in a narrower range
(WSJ8-9) than classic EM (44.3% at WSJ15;
WSJ13-20). The uniform prior never quite gets off
the ground with classic EM but manages quite well
under Viterbi training,3 given sufficient data — it
even beats the “clever” initializer everywhere past
WSJ10. The “sweet spot” at WSJ15 — a neigh-
borhood where both Ad-Hoc∗ and the oracle ex-
cel under classic EM — disappears with Viterbi.
Furthermore, Viterbi does not degrade with more
(complex) data, except with a biased initializer.

More than a simple efficiency hack, Viterbi EM
actually improves performance. And its benefits to
running times are also non-trivial: it not only skips
computing the outside charts in every iteration but
also converges (sometimes an order of magnitude)

3In a concurrently published related work, Cohen and
Smith (2010) prove that the uniform-at-random initializeris a
competitive starting M-step for Viterbi EM; our uninformed
prior consists of uniform multinomials, seeding the E-step.

faster than classic EM (see Figure 3(c,d)).4

4.2 Result #2: Smoothed Models

Smoothing rarely helps classic EM and hurts in
the case of oracle training (see Figure 4(a)). With
Viterbi, supervised initialization suffers much less,
the biased initializer is a wash, and the uninformed
uniform prior generally gains a few points of ac-
curacy, e.g., up 2.9% (from 42.4% to 45.2%, eval-
uated against WSJ40) at WSJ15 (see Figure 4(b)).

Baby Steps (Spitkovsky et al., 2009) — iterative
re-training with increasingly more complex data
sets, WSJ1, . . . ,WSJ45 — using smoothed Viterbi
training fails miserably (see Figure 4(b)), due to
Viterbi’s poor initial performance at short sen-
tences (possibly because of data sparsity and sen-
sitivity to non-sentences — see examples in§7.3).

4.3 Result #3: State-of-the-Art Models

Simply training up smoothed Viterbi at WSJ15,
using the uninformed uniform prior, yields 44.8%
accuracy on Section 23 of WSJ∞, already beating
previous state-of-the-art by 0.7% (see Table 1(A)).

Since both classic EM and Ad-Hoc∗ initializers
work well with short sentences (see Figure 3(a)),
it makes sense to use their pre-trained models to
initialize Viterbi training, mixing the two strate-
gies. We judged all Ad-Hoc∗ initializers against
WSJ15 and found that the one for WSJ8 mini-
mizes sentence-level cross-entropy (see Figure 5).
This approach does not involve reference parse

4For classic EM, the number of iterations to convergence
appears sometimes inversely related to performance, giving
credence to the notion of early termination as a regularizer.

12

Model Incarnation WSJ10 WSJ20 WSJ∞

DMV Bilingual Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) 62.0 48.0 42.2 Brown100
Less is More(Ad-Hoc∗ @15) (Spitkovsky et al., 2009) 56.2 48.2 44.1 43.3

A. Smoothed Viterbi Training (@15), Initialized with the Uniform Prior 59.9 50.0 44.8 48.1
B. A Good Initializer (Ad-Hoc∗’s @8), Classically Pre-Trained (@15) 63.8 52.3 46.2 49.3
C. Smoothed Viterbi Training (@15), Initialized withB 64.4 53.5 47.8 50.5
D. Smoothed Viterbi Training (@45), Initialized withC 65.3 53.8 47.9 50.8

EVG Smoothed (skip-head), Lexicalized (Headden et al., 2009) 68.8

Table 1: Accuracies on Section 23 of WSJ{10, 20,∞ } and Brown100 for three recent state-of-the-art
systems, our initializer, and smoothed Viterbi-trained runs that employ different initialization strategies.

5 10 15 20 25 30 35 40 45

4.5
5.0
5.5

WSJk

bpt

lowest cross-entropy (4.32bpt) attained at WSJ8
x-Entropyh (in bits per token) on WSJ15

Figure 5: Sentence-level cross-entropy on WSJ15
for Ad-Hoc∗ initializers of WSJ{1, . . . , 45}.

trees and is therefore still unsupervised. Using the
Ad-Hoc∗ initializer based on WSJ8 to seed classic
training at WSJ15 yields a further 1.4% gain in ac-
curacy, scoring 46.2% on WSJ∞ (see Table 1(B)).

This good initializer boosts accuracy attained
by smoothed Viterbi at WSJ15 to 47.8% (see Ta-
ble 1(C)). Using its solution to re-initialize train-
ing at WSJ45 gives a tiny further improvement
(0.1%) on Section 23 of WSJ∞ but bigger gains
on WSJ10 (0.9%) and WSJ20 (see Table 1(D)).

Our results generalize. Gains due to smoothed
Viterbi training and favorable initialization carry
over to Brown100 — accuracy improves by 7.5%
over previous published numbers (see Table 1).5

5 Discussion of Experimental Results

The DMV has no parameters to capture syntactic
relationships beyond local trees, e.g., agreement.
Spitkovsky et al. (2009) suggest that classic EM
breaks down as sentences get longer precisely be-
cause the model makes unwarranted independence
assumptions. They hypothesize that the DMV re-
serves too much probability mass for what should
be unlikely productions. Since EM faithfully al-
locates such re-distributions across the possible
parse trees, once sentences grow sufficiently long,
this process begins to deplete what began as like-
lier structures. But medium lengths avoid a flood
of exponentially-confusing longer sentences (and

5In a sister paper, Spitkovsky et al. (2010) improve perfor-
mance by incorporating parsing constraints harvested from
the web into Viterbi training; nevertheless, results presented
in this paper remain the best of models trained purely on WSJ.

the sparseness of unrepresentative shorter ones).6

Our experiments corroborate this hypothesis.
First of all, Viterbi manages to hang on to su-
pervised solutions much better than classic EM.
Second, Viterbi does not universally degrade with
more (complex) training sets, except with a biased
initializer. And third, Viterbi learns poorly from
small data sets of short sentences (WSJk, k < 5).

Viterbi may be better suited to unsupervised
grammar induction compared with classic EM, but
neither is sufficient, by itself. Both algorithms
abandon good solutions and make no guarantees
with respect to extrinsic performance. Unfortu-
nately, these two approaches share a deep flaw.

6 Related Work on Improper Objectives

It is well-known that maximizing likelihood may,
in fact, degrade accuracy (Pereira and Schabes,
1992; Elworthy, 1994; Merialdo, 1994). de Mar-
cken (1995) showed that classic EM suffers from
a fatal attraction towards deterministic grammars
and suggested a Viterbi training scheme as a rem-
edy. Liang and Klein’s (2008) analysis of errors
in unsupervised learning began with the inappro-
priateness of the likelihood objective (approxima-
tion), explored problems of data sparsity (estima-
tion) and focused on EM-specific issues related to
non-convexity (identifiability and optimization).

Previous literature primarily relied on experi-
mental evidence. de Marcken’s analytical result is
an exception but pertains only to EM-specific lo-
cal attractors. Our analysis confirms his intuitions
and moreover shows that there can beglobal pref-
erences for deterministic grammars — problems
that would persist with tractable optimization. We
prove that there is a fundamental disconnect be-
tween objective functions even when likelihood is
a reasonable metric and training data are infinite.

6Klein and Manning (2004) originally trained the DMV
on WSJ10 and Gillenwater et al. (2009) found it useful to dis-
card data from WSJ3, which is mostly incomplete sentences.

13

7 Proofs (by Construction)

There is a subtle distinction betweenthreediffer-
ent probability distributions that arise in parsing,
each of which can be legitimately termed “likeli-
hood” — the mass that a particular model assigns
to (i) highest-scoring (Viterbi) parse trees; (ii) the
correct (gold) reference trees; and (iii) the sen-
tence strings (sums over all derivations). A classic
unsupervised parser trains to optimize the third,
makes actual parsing decisions according to the
first, and is evaluated against the second. There
are several potential disconnects here. First of all,
the true generative modelθ∗ may not yield the
largest margin separations for discriminating be-
tween gold parse trees and next best alternatives;
and second,θ∗ may assign sub-optimal mass to
string probabilities. There is no reason why an op-
timal estimateθ̂ should make the best parser or
coincide with a peak of an unsupervised objective.

7.1 The Three Likelihood Objectives

A supervised parser finds the “best” parameters
θ̂ by maximizing the likelihood of all reference
structurest∗(s) — the product, over all sentences,
of the probabilities that it assigns to each such tree:

θ̂SUP = arg max
θ

L(θ) = arg max
θ

∏

s

Pθ(t
∗(s)).

For the DMV, this objective function is convex —
its unique peak is easy to find and should match
the true distributionθ∗ given enough data, barring
practical problems caused by numerical instability
and inappropriate independence assumptions. It is
often easier to work in log-probability space:

θ̂SUP = arg maxθ logL(θ)
= arg maxθ

∑

s
log Pθ(t

∗(s)).

Cross-entropy, measured in bits per token (bpt),
offers an interpretable proxy for a model’s quality:

h(θ) = −

∑

s
lg Pθ(t

∗(s))
∑

s
|s|

.

Clearly,arg maxθ L(θ) = θ̂SUP = arg minθ h(θ).
Unsupervised parsers cannot rely on references

and attempt to jointly maximize the probability of
eachsentenceinstead, summing over the probabil-
ities of all possible trees, according to a modelθ:

θ̂UNS = arg max
θ

∑

s

log
∑

t∈T (s)

Pθ(t)

︸ ︷︷ ︸

Pθ(s)

.

This objective function is not convex and in gen-
eral does not have a unique peak, so in practice one
usually settles for̃θUNS — a fixed point. There is no
reason whŷθSUP should agree witĥθUNS, which is
in turn (often badly) approximated bỹθUNS, in our
case using EM. A logical alternative to maximiz-
ing the probability of sentences is to maximize the
probability of the most likely parse trees instead:7

θ̂VIT = arg max
θ

∑

s

log Pθ(t̂
θ(s)).

This 1-best approximation similarly arrives atθ̃VIT ,
with no claims of optimality. Each next model is
re-estimated as if supervised by reference parses.

7.2 A Warm-Up Case: Accuracy vs. θ̂SUP 6= θ∗

A simple way to derail accuracy is to maximize
the likelihood of an incorrect model, e.g., one that
makes false independence assumptions. Consider
fitting the DMV to a contrived distribution — two
equiprobable structures over identical three-token
sentences from a unary vocabulary{ a©}:

(i)
x x

a© a© a©; (ii)
y y

a© a© a©.

There are six tokens and only two have children
on any given side, so adjacent stopping MLEs are:

P̂STOP(a©, L, T) = P̂STOP(a©, R, T) = 1−
2

6
=

2

3
.

The rest of the estimated model is deterministic:

P̂ATTACH(♦, L, a©) = P̂ATTACH(a©, ∗, a©) = 1

andP̂STOP(a©, ∗, F) = 1,

since all dependents area© and every one is an
only child. But the DMV generates left- and right-
attachments independently, allowing a third parse:

(iii)
x y

a© a© a©.

It also cannot capture the fact that all structures are
local (or that all dependency arcs point in the same
direction), admitting two additional parse trees:

(iv) a©
x

a© a©; (v)
y

a© a© a©.

Each possible structure must make four (out of six)
adjacent stops, incurring identical probabilities:

P̂STOP(a©, ∗, T)4 × (1− P̂STOP(a©, ∗, T))2 =
24

36
.

7It is also possible to usek-best Viterbi, withk > 1.

14

Thus, the MLE model does not break symmetry
and rates each of the five parse trees as equally
likely. Therefore, its expected per-token accuracy
is 40%. Average overlaps between structures (i-v)
and answers (i,ii) are (i) 100% or 0; (ii) 0 or 100%;
and (iii,iv,v) 33.3%: (3+3)/(5×3) = 2/5 = 0.4.

A decoy model without left- or right-branching,

i.e., P̃STOP(a©, L, T) = 1 or P̃STOP(a©, R, T) = 1,

would assign zero probability to some of the train-
ing data. It would be forced to parse every instance
of a© a© a© either as (i) or as (ii), deterministically.
Nevertheless, it would attain a higher per-token ac-
curacy of 50%. (Judged on exact matches, at the
granularity of whole trees, the decoy’s guaranteed
50% accuracy clobbers the MLE’s expected 20%.)

Our toy data set could be replicatedn-fold with-
out changing the analysis. This confirms that, even
in the absence of estimation errors or data sparsity,
there can be a fundamental disconnect between
likelihood and accuracy, if the model is wrong.8

7.3 A Subtler Case: θ∗ = θ̂SUP vs. θ̂UNS vs. θ̂VIT

We now prove that, even with theright model,
mismatches between the different objective like-
lihoods can also handicap the truth. Our calcula-
tions are again exact, so there are no issues with
numerical stability. We work with a set of param-
etersθ∗ already factored by the DMV, so that its
problems could not be blamed on invalid indepen-
dence assumptions. Yet we are able to find another
impostor distributioñθ that outshineŝθSUP = θ∗ on
both unsupervised metrics, which proves that the
true modelŝθSUP andθ∗ are not globally optimal,
as judged by the two surrogate objective functions.

This next example is organic. We began with
WSJ10 and confirmed that classic EM abandons
the supervised solution. We then iteratively dis-
carded large portions of the data set, so long as
the remainder maintained the (un)desired effect —
EM walking away from itsθ̂SUP. This procedure
isolated such behavior, arriving at a minimal set:

NP : NNP NNP ♦

— Marvin Alisky.

S : NNP VBD ♦

(Braniff declined).

NP-LOC : NNP NNP ♦

Victoria, Texas

8And as George Box quipped, “Essentially, all models are
wrong, but some are useful” (Box and Draper, 1987, p. 424).

This kernel is tiny, but, as before, our analysis is
invariant ton-fold replication: the problem cannot
be explained away by a small training size — it
persists even in infinitely large data sets. And so,
we consider three reference parse trees for two-
token sentences over a binary vocabulary{ a©, z©}:

(i)
x

a© a©; (ii)
x

a© z©; (iii)
y

a© a©.

One third of the time,z© is the head; onlya© can
be a child; and onlya© has right-dependents. Trees
(i)-(iii) are the only two-terminal parses generated
by the model and are equiprobable. Thus, these
sentences are representative of a length-two re-
striction of everything generated by the trueθ∗:

PATTACH(♦, L, a©) =
2

3
and PSTOP(a©, ∗, T) =

4

5
,

since a© is the head two out of three times, and
since only one out of fivea©’s attaches a child on
either side. Elsewhere, the model is deterministic:

PSTOP(z©, L, T) = 0;

PSTOP(∗, ∗, F) = PSTOP(z©, R, T) = 1;

PATTACH(a©, ∗, a©) = PATTACH(z©, L, a©) = 1.

Contrast the optimal estimatêθSUP = θ∗ with the
decoyfixed point9 θ̃ that is identical toθ∗, except

P̃STOP(a©, L, T) =
3

5
and P̃STOP(a©, R, T) = 1.

The probability of stopping is now 3/5 on the left
and 1 on the right, instead of 4/5 on both sides —
θ̃ disallows a©’s right-dependents but preserves its
overall fertility. The probabilities of leavesa© (no
children), under the modelŝθSUP andθ̃, are:

P̂(a©) = P̂STOP(a©, L, T)×P̂STOP(a©, R, T) =

(
4

5

)2

and P̃(a©) = P̃STOP(a©, L, T)×P̃STOP(a©, R, T) =
3

5
.

And the probabilities of, e.g., structure
x

a© z©, are:

P̂ATTACH(♦, L, z©)× P̂STOP(z©, R, T)

× (1− P̂STOP(z©, L, T))× P̂STOP(z©, L, F)

× P̂ATTACH(z©, L, a©)× P̂(a©)

9The model estimated from the parse trees induced byθ̃

over the three sentences is againθ̃, for both soft and hard EM.

15

= P̂ATTACH(♦, L, z©)× P̂(a©) =
1

3
·
16

25

and P̃ATTACH(♦, L, z©)× P̃(a©) =
1

3
·
3

5
.

Similarly, the probabilities of all four possible
parse trees for the two distinct sentences,a© a© and
a© z©, under the two models,̂θSUP = θ∗ andθ̃, are:

θ̂SUP = θ∗ θ̃
x

a© z© 1

3

`
16

25

´
= 1

3

`
3

5

´
=

16

75
= 0.213 1

5
= 0.2

y

a© z© 0 0

x

a© a© 2

3

`
4

5

´ `
1− 4

5

´ `
16

25

´
= 2

3

`
1− 3

5

´ `
3

5

´
=

128

1875
= 0.06826 4

25
= 0.16

y

a© a© 0.06826 0

To the threetrue parses, θ̂SUP assigns probability
(

16
75

) (
128
1875

)2
≈ 0.0009942 — about 1.66bpt;θ̃

leaves zero mass for (iii), corresponding to a larger
(infinite) cross-entropy, consistent with theory.

So far so good, but if asked forbest (Viterbi)
parses, θ̂SUP could still produce the actual trees,
whereasθ̃ would happily parse sentences of (iii)
and (i) the same, perceiving a joint probability of
(0.2)(0.16)2 = 0.00512 — just 1.27bpt, appear-
ing to outperformθ̂SUP = θ∗! Asked for sentence
probabilities, θ̃ would remain unchanged (it parses
each sentence unambiguously), butθ̂SUP would ag-
gregate to

(
16
75

) (
2 · 128

1875

)2
≈ 0.003977, improv-

ing to 1.33bpt, but still noticeably “worse” thañθ.
Despite leaving zero probability to the truth,θ̃

beatsθ∗ on both surrogate metrics, globally. This
seems like an egregious error. Judged by (extrin-
sic) accuracy,θ̃ still holds its own: it gets four
directed edges from predicting parse trees (i) and
(ii) completely right, but none of (iii) — a solid
66.7%. Subject to tie-breaking,θ∗ is equally likely
to get (i) and/or (iii) entirely right or totally wrong
(they are indistinguishable): it could earn a perfect
100%, tieθ̃, or score a low 33.3%, at 1:2:1 odds,
respectively — same as̃θ’s deterministic 66.7%
accuracy, in expectation, but with higher variance.

8 Discussion of Theoretical Results

Daumé et al. (2009) questioned the benefits of us-
ing exact models in approximate inference. In our
case, the model already makes strong simplifying
assumptionsand the objective is also incorrect. It
makes sense that Viterbi EM sometimes works,
since an approximate wrong “solution”could, by
chance, be better than one that is exactly wrong.

One reason why Viterbi EM may work well is
that its score is used in selecting actual output
parse trees. Wainwright (2006) provided strong
theoretical and empirical arguments for using the
same approximate inference method in training
as in performing predictions for a learned model.
He showed that if inference involves an approxi-
mation, then using the same approximate method
to train the model gives even better performance
guarantees than exact training methods. If our task
were not parsing but language modeling, where
the relevant score is the sum of the probabilities
over individual derivations, perhaps classic EM
would not be doing as badly, compared to Viterbi.

Viterbi training is not only faster and more accu-
rate but also free of inside-outside’s recursion con-
straints. It therefore invites more flexible model-
ing techniques, including discriminative, feature-
rich approaches that targetconditionallikelihoods,
essentially via (unsupervised) self-training (Clark
et al., 2003; Ng and Cardie, 2003; McClosky et
al., 2006a; McClosky et al., 2006b,inter alia).

Such “learning by doing” approaches may be
relevant to understanding human language ac-
quisition, as children frequently find themselves
forced to interpret a sentence in order to inter-
act with the world. Since most models ofhuman
probabilistic parsing are massively pruned (Juraf-
sky, 1996; Chater et al., 1998; Lewis and Vasishth,
2005, inter alia), the serial nature of Viterbi EM
— or the very limited parallelism ofk-best Viterbi
— may be more appropriate in modeling this task
than the fully-integrated inside-outside solution.

9 Conclusion

Without a known objective, as in unsupervised
learning, correct exact optimization becomes im-
possible. In such cases, approximations, although
liable to pass over a true optimum, may achieve
faster convergence and stillimproveperformance.
We showed that this is the case with Viterbi
training, a cheap alternative to inside-outside re-
estimation, for unsupervised dependency parsing.

We explained why Viterbi EM may be partic-
ularly well-suited to learning from longer sen-
tences, in addition to any general benefits to syn-
chronizing approximation methods across learn-
ing and inference. Our best algorithm is sim-
pler and an order of magnitude faster than clas-
sic EM. It achieves state-of-the-art performance:
3.8% higher accuracy than previous published best

16

results on Section 23 (all sentences) of the Wall
Street Journal corpus. This improvement general-
izes to the Brown corpus, our held-out evaluation
set, where the same model registers a 7.5% gain.

Unfortunately, approximations alone do not
bridge the real gap between objective functions.
This deeper issue could be addressed by drawing
parsing constraints (Pereira and Schabes, 1992)
from specific applications. One example of such
an approach, tied to machine translation, is syn-
chronous grammars (Alshawi and Douglas, 2000).
An alternative — observing constraints induced by
hyper-text mark-up, harvested from the web — is
explored in a sister paper (Spitkovsky et al., 2010),
published concurrently.

Acknowledgments

Partially funded by NSF award IIS-0811974 and by the Air
Force Research Laboratory (AFRL), under prime contract
no. FA8750-09-C-0181; first author supported by the Fan-
nie & John Hertz Foundation Fellowship. We thank An-
gel X. Chang, Mengqiu Wang and the anonymous reviewers
for many helpful comments on draft versions of this paper.

References
H. Alshawi and S. Douglas. 2000. Learning dependency

transduction models from unannotated examples. In
Royal Society of London Philosophical Transactions Se-
ries A, volume 358.

H. Alshawi. 1996. Head automata for speech translation. In
Proc. of ICSLP.

J. K. Baker. 1979. Trainable grammars for speech recogni-
tion. In Speech Communication Papers for the 97th Meet-
ing of the Acoustical Society of America.

G. E. P. Box and N. R. Draper. 1987.Empirical Model-
Building and Response Surfaces. John Wiley.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L.
Mercer. 1993. The mathematics of statistical machine
translation: Parameter estimation.Computational Lin-
guistics, 19.

E. Charniak. 1993. Statistical Language Learning. MIT
Press.

N. Chater, M. J. Crocker, and M. J. Pickering. 1998. The
rational analysis of inquiry: The case of parsing. In
M. Oaksford and N. Chater, editors,Rational Models of
Cognition. Oxford University Press.

S. Clark, J. Curran, and M. Osborne. 2003. Bootstrapping
POS-taggers using unlabelled data. InProc. of CoNLL.

S. B. Cohen and N. A. Smith. 2009. Shared logistic nor-
mal distributions for soft parameter tying in unsupervised
grammar induction. InProc. of NAACL-HLT.

S. B. Cohen and N. A. Smith. 2010. Viterbi training for
PCFGs: Hardness results and competitiveness of uniform
initialization. InProc. of ACL.

M. Collins. 1999. Head-Driven Statistical Models for Nat-
ural Language Parsing. Ph.D. thesis, University of Penn-
sylvania.

H. Daumé, III, J. Langford, and D. Marcu. 2009. Search-
based structured prediction.Machine Learning, 75(3).

C. de Marcken. 1995. Lexical heads, phrase structure and
the induction of grammar. InWVLC.

D. Elworthy. 1994. Does Baum-Welch re-estimation help
taggers? InProc. of ANLP.

W. N. Francis and H. Kucera, 1979.Manual of Information
to Accompany a Standard Corpus of Present-Day Edited
American English, for use with Digital Computers. De-
partment of Linguistic, Brown University.

J. Gillenwater, K. Ganchev, J. Graça, B. Taskar, and
F. Pereira. 2009. Sparsity in grammar induction. In
NIPS: Grammar Induction, Representation of Language
and Language Learning.

W. P. Headden, III, M. Johnson, and D. McClosky. 2009.
Improving unsupervised dependency parsing with richer
contexts and smoothing. InProc. of NAACL-HLT.

D. Jurafsky. 1996. A probabilistic model of lexical and syn-
tactic access and disambiguation.Cognitive Science, 20.

D. Klein and C. D. Manning. 2004. Corpus-based induction
of syntactic structure: Models of dependency and con-
stituency. InProc. of ACL.

R. L. Lewis and S. Vasishth. 2005. An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29.

P. Liang and D. Klein. 2008. Analyzing the errors of unsu-
pervised learning. InProc. of HLT-ACL.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank.Computational Linguistics, 19(2).

D. McClosky, E. Charniak, and M. Johnson. 2006a. Effec-
tive self-training for parsing. InProc. of NAACL-HLT.

D. McClosky, E. Charniak, and M. Johnson. 2006b. Rerank-
ing and self-training for parser adaptation. InProc. of
COLING-ACL.

B. Merialdo. 1994. Tagging English text with a probabilistic
model.Computational Linguistics, 20(2).

V. Ng and C. Cardie. 2003. Weakly supervised natural lan-
guage learning without redundant views. InProc. of HLT-
NAACL.

F. Pereira and Y. Schabes. 1992. Inside-outside reestimation
from partially bracketed corpora. InProc. of ACL.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2009. Baby
Steps: How “Less is More” in unsupervised dependency
parsing. InNIPS: Grammar Induction, Representation of
Language and Language Learning.

V. I. Spitkovsky, D. Jurafsky, and H. Alshawi. 2010. Profit-
ing from mark-up: Hyper-text annotations for guided pars-
ing. In Proc. of ACL.

M. J. Wainwright. 2006. Estimating the “wrong” graphical
model: Benefits in the computation-limited setting.Jour-
nal of Machine Learning Research, 7.

17

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 18–27,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Driving Semantic Parsing from the World’s Response

James Clarke Dan Goldwasser Ming-Wei Chang Dan Roth
Department of Computer Science

University of Illinois
Urbana, IL 61820

{clarkeje,goldwas1,mchang21,danr}@illinois.edu

Abstract

Current approaches to semantic parsing,
the task of converting text to a formal
meaning representation, rely on annotated
training data mapping sentences to logi-
cal forms. Providing this supervision is
a major bottleneck in scaling semantic
parsers. This paper presents a new learn-
ing paradigm aimed at alleviating the su-
pervision burden. We develop two novel
learning algorithms capable of predicting
complex structures which only rely on a
binary feedback signal based on the con-
text of an external world. In addition we
reformulate the semantic parsing problem
to reduce the dependency of the model on
syntactic patterns, thus allowing our parser
to scale better using less supervision. Our
results surprisingly show that without us-
ing any annotated meaning representations
learning with a weak feedback signal is ca-
pable of producing a parser that is compet-
itive with fully supervised parsers.

1 Introduction

Semantic Parsing, the process of converting text
into a formal meaning representation (MR), is one
of the key challenges in natural language process-
ing. Unlike shallow approaches for semantic in-
terpretation (e.g., semantic role labeling and in-
formation extraction) which often result in an in-
complete or ambiguous interpretation of the natu-
ral language (NL) input, the output of a semantic
parser is a complete meaning representation that
can be executed directly by a computer program.

Semantic parsing has mainly been studied in the
context of providing natural language interfaces
to computer systems. In these settings the target
meaning representation is defined by the seman-
tics of the underlying task. For example, provid-

ing access to databases: a question posed in nat-
ural language is converted into a formal database
query that can be executed to retrieve information.
Example 1 shows a NL input query and its corre-
sponding meaning representation.

Example 1 Geoquery input text and output MR
“What is the largest state that borders Texas?”
largest(state(next to(const(texas))))

Previous works (Zelle and Mooney, 1996; Tang
and Mooney, 2001; Zettlemoyer and Collins,
2005; Ge and Mooney, 2005; Zettlemoyer and
Collins, 2007; Wong and Mooney, 2007) employ
machine learning techniques to construct a seman-
tic parser. The learning algorithm is given a set of
input sentences and their corresponding meaning
representations, and learns a statistical semantic
parser — a set of rules mapping lexical items and
syntactic patterns to their meaning representation
and a score associated with each rule. Given a sen-
tence, these rules are applied recursively to derive
the most probable meaning representation. Since
semantic interpretation is limited to syntactic pat-
terns identified in the training data, the learning
algorithm requires considerable amounts of anno-
tated data to account for the syntactic variations
associated with the meaning representation. An-
notating sentences with their MR is a difficult,
time consuming task; minimizing the supervision
effort required for learning is a major challenge in
scaling semantic parsers.

This paper proposes a new model and learning
paradigm for semantic parsing aimed to alleviate
the supervision bottleneck. Following the obser-
vation that the target meaning representation is to
be executed by a computer program which in turn
provides a response or outcome; we propose are-
sponse driven learning frameworkcapable of ex-
ploiting feedback based on the response. The feed-
back can be viewed as a teacher judging whether
the execution of the meaning representation pro-
duced the desired response for the input sentence.

18

This type of supervision is very natural in many
situations and requires no expertise, thus can be
supplied by any user.

Continuing with Example 1, the response gen-
erated by executing a database query would be
used to provide feedback. The feedback would be
whether the generated response is the correct an-
swer for the input question or not, in this caseNew
Mexicois the desired response.

In response driven semantic parsing, the learner
is provided with a set of natural language sen-
tences and a feedback function that encapsulates
the teacher. The feedback function informs the
learner whether its interpretation of the input sen-
tence produces the desired response. We consider
scenarios where the feedback is provided as a bi-
nary signal, correct+1 or incorrect−1.

This weaker form of supervision poses a chal-
lenge to conventional learning methods: semantic
parsing is in essence a structured prediction prob-
lem requiring supervision for a set of interdepen-
dent decisions, while the provided supervision is
binary, indicating the correctness of a generated
meaning representation. To bridge this difference
we propose two novel learning algorithms suited
to the response driven setting.

Furthermore, to account for the many syntac-
tic variations associated with the MR, we propose
a new model for semantic parsing that allows us
to learn effectively and generalize better. Cur-
rent semantic parsing approaches extract parsing
rules mapping NL to their MR, restricting pos-
sible interpretations to previously seen syntactic
patterns. We replace the rigid inference process
induced by the learned parsing rules with a flex-
ible framework. We model semantic interpreta-
tion as a sequence of interdependent decisions,
mapping text spans to predicates and use syntac-
tic information to determine how the meaning of
these logical fragments should be composed. We
frame this process as an Integer Linear Program-
ming (ILP) problem, a powerful and flexible in-
ference framework that allows us to inject rele-
vant domain knowledge into the inference process,
such as specific domain semantics that restrict the
space of possible interpretations.

We evaluate our learning approach and model
on the well studied Geoquery domain (Zelle and
Mooney, 1996; Tang and Mooney, 2001), a
database consisting of U.S. geographical informa-
tion, and natural language questions. Our experi-

mental results show that our model with response
driven learning can outperform existing models
trained with annotated logical forms.

The key contributions of this paper are:

Response driven learning for semantic parsing
We propose a new learning paradigm for learn-
ing semantic parsers without any annotated mean-
ing representations. The supervision for learning
comes from a binary feedback signal based a re-
sponse generated by executing a meaning repre-
sentation. This type of supervision signal is nat-
ural to produce and can be acquired from non-
expert users.

Novel training algorithms Two novel train-
ing algorithms are developed within the response
driven learning paradigm. The training algorithms
are applicable beyond semantic parsing and can be
used in situations where it is possible to obtain bi-
nary feedback for a structured learning problem.

Flexible semantic interpretation process We
propose a novel flexible semantic parsing model
that can handle previously unseen syntactic varia-
tions of the meaning representation.

2 Semantic Parsing

The goal of semantic parsing is to produce a func-
tion F : X → Z that maps from the space natural
language input sentences,X , to the space of mean-
ing representations,Z. This type of task is usu-
ally cast as a structured output prediction problem,
where the goal is to obtain a model that assigns the
highest score to the correct meaning representa-
tion given an input sentence. However, in the task
of semantic parsing, this decision relies on identi-
fying a hidden intermediate representation (or an
alignment) that captures the way in which frag-
ments of the text correspond to the meaning repre-
sentation. Therefore, we formulate the prediction
function as follows:

ẑ = Fw(x) = arg max
y∈Y ,z∈Z

w
T Φ(x,y, z) (1)

WhereΦ is a feature function that describes the
relationships between an input sentencex, align-
menty and meaning representationz. w is the
weight vector which contains the parameters of the
model. We refer to thearg max above as the in-
ference problem. The feature function combined
with the nature of the inference problem defines
the semantic parsing model. The key to producing

19

What is the largest Texas?

largest(const(texas))))

New Mexico

x:

y:

z:

r:

that bordersstate

state(next_to(

Figure 1: Example input sentence, meaning repre-
sentation, alignment and answer for the Geoquery
domain

a semantic parser involves defining a model and a
learning algorithm to obtainw.

In order to exemplify these concepts we con-
sider the Geoquery domain. Geoquery contains a
query language for a database of U.S. geograph-
ical facts. Figure 1 illustrates concrete examples
of the terminology introduce. The input sentences
x are natural language queries about U.S. geog-
raphy. The meaning representationsz are logical
forms which can be executed on the database to
obtain a response which we denote withr. The
alignmenty captures the associations betweenx

andz.
Building a semantic parser involves defining the

model (feature functionΦ and inference problem)
and a learning strategy to obtain weights (w) as-
sociated with the model. We defer discussion of
our model until Section 4 and first focus on our
learning strategy.

3 Structured Learning with Binary
Feedback

Previous approaches to semantic parsing have
assumed a fully supervised setting where
a training set is available consisting of ei-
ther: input sentences and logical forms
{(xl, zl)}Nl=1

(e.g., (Zettlemoyer and Collins,
2005)) or input sentences, logical forms
and a mapping between their constituents
{(xl,yl, zl)}Nl=1

(e.g., (Ge and Mooney, 2005)).
Given such training examples a weight vectorw

can be learned using structured learning methods.
Obtaining, through annotation or other means, this
form of training data is an expensive and difficult
process which presents a major bottleneck for
semantic parsing.

To reduce the burden of annotation we focus
on a new learning paradigm which uses feedback
from a teacher. The feedback signal is binary
(+1,−1) and informs the learner whether a pre-
dicted logical formẑ when executed on the target

Algorithm 1 Direct Approach (Binary Learning)

Input: Sentences{xl}Nl=1
,

Feedback : X ×Z → {+1, 1},
initial weight vectorw

1: Bl ← {} for all l = 1, . . . , N
2: repeat
3: for l = 1, . . . , N do
4: ŷ, ẑ = arg max

y,z w
T Φ(xl,y, z)

5: f = Feedback (xl, ẑ)
6: add(Φ(xl, ŷ, ẑ)/|xl|, f) to Bl

7: end for
8: w← BinaryLearn(B) whereB = ∪lBl

9: until noBl has new unique examples
10: return w

domain produces the desired response or outcome.
This is a very natural method for providing super-
vision in many situations and requires no exper-
tise. For example, a user can observe the response
and provide a judgement. The general form of
the teacher’s feedback is provided by a function
Feedback : X × Z → {+1,−1}.

For the Geoquery domain this amounts to
whether the logical form produces the correct re-
sponser for the input sentence. Geoquery has the
added benefit that the teacher can be automated
if we have a dataset consisting of input sentences
and response pairs{(xl, rl)}Nl=1

. Feedback eval-
uates whether a logical form produces a response
matchingr:

Feedback (xl, z) =

{

+1 if execute(z) = rl

−1 otherwise

We are now ready to present our learning
with feedback algorithms that operate in situations
where input sentences,{xl}Nl=1

, and a teacher
feedback mechanism,Feedback , are available. We
do not assume the availability of logical forms.

3.1 Direct Approach (Binary Learning)

In general, a weight vector can be considered
good if when used in the inference problem (Equa-
tion (1)) it scores the correct logical form and
alignment (which may be hidden) higher than all
other logical forms and alignments for a given in-
put sentence. The intuition behind thedirect ap-
proachis that the feedback function can be used to
subsample the space of possible structures (align-
ments and logical forms (Y × Z)) for a given in-
putx. The feedback mechanism indicates whether
the structure is good (+1) or bad (−1). Using this

20

intuition we can cast the problem of learning a
weight vector for Equation (1) as a binary classifi-
cation problem where we directly consider struc-
tures the feedback assigns+1 as positive examples
and those assigned−1 as negative.

We represent the input to the binary classifier
as the feature vectorΦ(x,y, z) normalized by the
size of the input sentence1 |x|, and the label as the
result fromFeedback (x, z).

Algorithm 1 outlines the approach in detail. The
first stage of the algorithm iterates over all the
training input sentences and computes the best
logical form ẑ and alignment̂y by solving the in-
ference problem (line 4). The feedback function
is queried (line 5) and a training example for the
binary predictor created using the normalized fea-
ture vector from the triple containing the sentence,
alignment and logical form as input and the feed-
back as the label. This training example is added
to the working set of training examples for this in-
put sentence (line 6). All the feedback training ex-
amples are used to train a binary classifier whose
weight vector is used in the next iteration (line 8).
The algorithm repeats until no new unique training
examples are added to any of the working sets for
any input sentence. Although the number of possi-
ble training examples is very large, in practice the
algorithm is efficient and converges quickly. Note
that this approach is capable of using a wide va-
riety of linear classifiers as the base learner (line
8).

A policy is required to specify the nature of
the working set of training examples (Bl) used for
training the base classifier. This is pertinent in line
6 of the algorithm. Possible policies include: al-
lowing duplicates in the working set (i.e.,Bl is
a multiset), disallowing duplicates (Bl is a set),
or only allowing one example per input sentence
(‖Bl‖ = 1). We adopt the first approach in this
paper.2

3.2 Aggressive Approach (Structured
Learning)

There is important implicit information which
the direct approach ignores. It is implicit that
when the teacher indicates an input paired with
an alignment and logical form is good (+1 feed-

1Normalization is required to ensure that each sentence
contributes equally to the binary learning problem regardless
of the sentence’s length.

2The working setBl for each sentence may contain multi-
ple positive examples with the same and differing alignments.

Algorithm 2 Aggressive Approach (Structured
Learning)

Input: Sentences{xl}Nl=1
,

Feedback : X ×Z → {+1, 1},
initial weight vectorw

1: Sl ← ∅ for all l = 1, . . . , N
2: repeat
3: for l = 1, . . . , N do
4: ŷ, ẑ = arg max

y,z w
T Φ(xl,y, z)

5: f = Feedback (xl, ẑ)
6: if f is +1 then
7: Sl ← {(x

l, ŷ, ẑ)}
8: end if
9: end for

10: w← StructLearn(S,Φ) whereS = ∪lSl

11: until noSl has changed
12: return w

back) that in order to repeat this behavior all other
competing structures should be made suboptimal
(or bad). To leverage this implicit information
we adopt a structured learning strategy in which
we consider the prediction as the optimal structure
and all others as suboptimal. This is in contrast to
the direct approach where only structures that have
explicitly received negative feedback are consid-
ered subopitmal.

When a structure is found with positive feed-
back it is added to the training pool for a struc-
tured learner. We consider this approachaggres-
siveas the structured learner implicitly considers
all other structures as being suboptimal. Negative
feedback indicates that the structure should not be
added to the training pool as it will introduce noise
into the learning process.

Algorithm 2 outlines the learning in more detail.
As before,ŷ and ẑ are predicted using the cur-
rent weight vector and feedback received (lines 4
and 5). When positive feedback is received a new
training instance for a structured learner is created
from the input sentence and prediction (line 7) this
training instance replaces any previous instance
for the input sentence. When negative feedback
is received the training poolSl is not updated. A
weight vector is learned using a structured learner
where the training dataS contains at most one ex-
ample per input sentence. In the first iteration of
the outer loop the training dataS will contain very
few examples. In each subsequent iteration the
newly learned weight vector allows the algorithm
to acquire new examples. This is repeated until no

21

new examples are added or changed inS.
Like the direct approach, this learning frame-

work is makes very few assumptions about the
type of structured learner used as a base learner
(line 10).3

4 Model

Semantic parsing is the process of converting a
natural language input into a formal logic repre-
sentation. This process is performed by associat-
ing lexical items and syntactic patterns with logi-
cal fragments and composing them into a complete
formula. Existing approaches rely on extracting
a set ofparsing rules, mapping text constituents
to a logical representation, from annotated train-
ing data and applying them recursively to obtain
the meaning representation. Adapting to new data
is a major limitation of these approaches as they
cannot handle inputs containing syntactic patterns
which were not observed in the training data. For
example, assume the training data produced the
following set of parsing rules:

Example 2 Typical parsing rules
(1) NP [λx.capital(x)]→ capital

(2) PP [const(texas)]→ of Texas

(3) NNP[const(texas)]→ Texas

(4) NP [capital(const(texas))]→

NP[λx.capital(x)] PP [const(texas)]

At test time the parser is given the sentences in
Example 3. Despite the lexical similarity in these
examples, the semantic parser will correctly parse
the first sentence but fail to parse the second be-
cause the lexical items belong to different a syn-
tactic category (i.e., the wordTexasis not part of a
preposition phrase in the second sentence).

Example 3 Syntactic variations of the same MR
Target logical form:capital(const(texas))

Sentence 1:“What is the capital of Texas?”

Sentence 2:“What is Texas’ capital?”

The ability to adapt to unseen inputs is one
of the key challenges in semantic parsing. Sev-
eral works (Zettlemoyer and Collins, 2007; Kate,
2008) have addressed this issue explicitly by man-
ually defining syntactic transformation rules that
can help the learned parser generalize better. Un-
fortunately these are only partial solutions as a

3Mistake driven algorithms that do not enforce margin
constraints may not be able to generalize using this proto-
col since they will repeat the same prediction at training time
and therefore will not update the model.

manually constructed rule set cannot cover the
many syntactic variations.

Given the previous example, we observe
that it is enough to identify that the function
capital(·) and the constantconst(texas)
appear in the target MR, since there is only a single
way to compose these entities into a single formula
— capital(const(texas)).

Motivated by this observation we define our
meaning derivation process over the rules of the
MR language and use syntactic information as a
way to bias the MR construction process. That
is, our inference process considers theentirespace
of meaning representations irrespective of the pat-
terns observed in the training data. This is possi-
ble as the MRs are defined by a formal language
and formal grammar.4 The syntactic information
present in the natural language is used as soft ev-
idence (features) which guides the inference pro-
cess to good meaning representations.

This formulation is a major shift from existing
approaches that rely on extracting parsing rules
from the training data. In existing approaches
the space of possible meaning representations is
constrained by the patterns in the training data
and syntactic structure of the natural language in-
put. Our formulation considers the entire space of
meaning representations and allows the model to
adapt to previously unseen data andalwayspro-
duce a semantic interpretation by using the pat-
terns observed in the input.

We frame our semantic interpretation process
as a constrained optimization process, maximiz-
ing the objective function defined by Equation 1
which relies on extracting lexical and syntactic
features instead of parsing rules. In the remain-
der of this section we explain the components of
our inference model.

4.1 Target Meaning Representation

Following previous work, we capture the se-
mantics of the Geoquery domain using a sub-
set of first-order logic consisting of typed con-
stants and functions. There are two types: en-
tities E in the domain and numeric valuesN .
Functions describe a functional relationship over
types (e.g.,population : E → N). A com-
plete logical form is constructed through func-
tional composition; in our formalism this is per-

4This is true for all meaning representations designed to
be executed by a computer system.

22

formed by the substitution operator. For ex-
ample, given the functionnext to(x) and
the expressionconst(texas), substitution re-
places the occurrence of the free variablex, with
the expression, resulting in a new logical form:
next to(const(texas)). Due to space lim-
itations we refer the reader to (Zelle and Mooney,
1996) for a detailed description of the Geoquery
domain.

4.2 Semantic Parsing as Constrained
Optimization

Recall that the goal of semantic parsing is to pro-
duce the following function (Equation (1)):

Fw(x) = arg max
y,z

w
T Φ(x,y, z)

However, given thaty and z are complex struc-
tures it is necessary to decompose the structure
into a set of smaller decisions to facilitate efficient
inference.

In order to define our decomposition we intro-
duce additional notation:c is a constituent (or
word span) in the input sentencex andD is the
set of all function and constant symbols in the do-
main. The alignmenty is defined as a set of map-
pings between constituents and symbols in the do-
mainy = {(c, s)} wheres ∈ D.

We decompose the construction of an alignment
and logical form into two types of decisions:
First-order decisions. A mapping between con-
stituents and logical symbols (functions and con-
stants).
Second-order decisions. Expressing how logi-
cal symbols are composed into a complete logical
interpretation. For example, whethernext to
and state forms next to(state(·)) or
state(next to(·)).

Note that for all possible logical forms and
alignments there exists a one-to-one mapping to
these decisions.

We frame the inference problem as an Integer
Linear Programming (ILP) problem (Equation (2))
in which the first-order decisions are governed by
αcs, a binary decision variable indicating that con-
stituentc is aligned with logical symbols. And
βcs,dt capture the second-order decisions indicat-
ing the symbolt (associated with constituentd)
is an argument to functions (associated with con-

stituentc).

Fw(x) = arg max
α,β

∑

c∈x

∑

s∈D

αcs ·w
T Φ1(x, c, s)

+
∑

c,d∈x

∑

s,t∈D

βcs,dt ·w
T Φ2(x, c, s, d, t) (2)

It is clear that there are dependencies between
the α-variables andβ-variables. For example,
given thatβcs,dt is active, the correspondingα-
variablesαcs andαdt must also be active. In order
to ensure a consistent solution we introduce a set
of constraints on Equation (2). In addition we add
constraints which leverage the typing information
inherent in the domain to eliminate logical forms
that are invalid in the Geoquery domain. For ex-
ample, the functionlength only acceptsriver
types as input. The set of constraints are:

• A given constituent can be associated with
exactly one logical symbol.

• βcs,dt is active if and only ifαcs andαdt are
active.

• If βcs,dt is active,s must be a function and
the types ofs andt should be consistent.

• Functional composition is directional and
acyclic.

The flexibility of ILP has previously been advan-
tageous in natural language processing tasks (Roth
and Yih, 2007) as it allows us to easily incorporate
such constraints.

4.3 Features

The inference problem defined in Equation (2)
uses two feature functions:Φ1 andΦ2.

First-order decision features Φ1 Determining
if a logical symbol is aligned with a specific con-
stituent depends mostly on lexical information.
Following previous work (e.g., (Zettlemoyer and
Collins, 2005)) we create a small lexicon, mapping
logical symbols to surface forms.5 This lexicon is
small and only used as a starting point. Existing
approaches rely on annotated logical forms to ex-
tend the lexicon. However, in our setting we do
not have access to annotated logical forms, instead
we rely on external knowledge to supply further

5The lexicon contains on average 1.42 words per func-
tion and 1.07 words per constant. For example the function
next to has the lexical entries:borders, next, adjacentand
the constantillinois the lexical itemillinois.

23

information. We add features which measure the
lexical similarity between a constituent and a logi-
cal symbol’s surface forms (as defined by the lexi-
con). Two metrics are used: stemmed word match
and a similarity metric based on WordNet (Miller
et al., 1990) which allows our model to account
for words not in the lexicon. The WordNet met-
ric measures similarity based on synonymy, hy-
ponymy and meronymy (Do et al., 2010). In the
case where the constituent is a preposition, which
are notorious for being ambiguous, we add a fea-
ture that considers the current lexical context (one
word to the left and right) in addition to word sim-
ilarity.

Second-order decision features Φ2 Determin-
ing how to compose two logical symbols relies on
syntactic information, in our model we use the de-
pendency tree (Klein and Manning, 2003) of the
input sentence. Given a second-order decision
βcs,dt, the dependency feature takes the normal-
ized distance between the head words in the con-
stituentsc andd. A set of features also indicate
which logical symbols are usually composed to-
gether, without considering their alignment to text.

5 Experiments

In this section we describe our experimental setup,
which includes the details of the domain, re-
sources and parameters.

5.1 Domain and Corpus

We evaluate our system on the Geoquery domain
as described previously. The domain consists of
a database and Prolog query language for U.S.
geographical facts. The corpus contains of 880
natural language queries paired with Prolog log-
ical form queries ((x, z) pairs). We follow previ-
ous approaches and transform these queries into a
functional representation. We randomly select 250
sentences for training and 250 sentences for test-
ing.6 We refer to the training set asResponse 250
(R250) indicating that each examplex in this data
set has a corresponding desired database response
r. We refer the testing set asQuery 250(Q250)
where the examples only contain the natural lan-
guage queries.

6Our inference problem is less constrained than previous
approaches thus we limit the training data to 250 examples
due to scalability issues. We also prune the search space by
limiting the number of logical symbol candidates per word
(on average 13 logical symbols per word).

Precision and recall are typically used as eval-
uation metrics in semantic parsing. However, as
our model inherently has the ability to map any
input sentence into the space of meaning repre-
sentations the trade off between precision and re-
call does not exist. Thus, we report accuracy: the
percentage of meaning representations which pro-
duce the correct response. This is equivalent to
recall in previous work (Wong and Mooney, 2007;
Zettlemoyer and Collins, 2005; Zettlemoyer and
Collins, 2007).

5.2 Resources and Parameters

Feedback Recall that our learning framework
does not require meaning representation annota-
tions. However, we do require aFeedback func-
tion that informs the learner whether a predicted
meaning representation when executed produces
the desired response for a given input sentence.
We automatically generate a set of natural lan-
guage queries and response pairs{(x, r)} by exe-
cuting the annotated logical forms on the database.
Using this data we construct an automatic feed-
back function as described in Section 3.

Domain knowledge Our learning approaches
require an initial weight vector as input. In or-
der to provide an initial starting point, we initialize
the weight vector using a similar procedure to the
one used in (Zettlemoyer and Collins, 2007) to set
weights for three features and a bias term. The
weights were developed on the training set using
the feedback function to guide our choices.

Underlying Learning Algorithms In the direct
approach the base linear classifier we use is a lin-
ear kernel Support Vector Machine with squared-
hinge loss. In the aggressive approach we de-
fine our base structured learner to be a structural
Support Vector Machine with squared-hinge loss
and use hamming distance as the distance func-
tion. We use a custom implementation to op-
timize the objective function using the Cutting-
Plane method, this allows us to parrallelize the
learning process by solving the inference problem
for multiple training examples simultaneously.

6 Results

Our experiments are designed to answer three
questions:

1. Is it possible to learn a semantic parserwith-
out annotated logical forms?

24

Algorithm R250 Q250
NOLEARN 22.2 —
DIRECT 75.2 69.2
AGGRESSIVE 82.4 73.2
SUPERVISED 87.6 80.4

Table 1: Accuracy of learned models on R250 data and
Q250 (testing) data. NOLEARN: using initialized weight
vector, DIRECT: using feedback with the direct approach,
AGGRESSIVE: using feedback with the aggressive approach,
SUPERVISED: using gold 250 logical forms for training.
Note that none of the approaches use any annotated logical
forms besides the SUPERVISEDapproach.

Algorithm # LF Accuracy
AGGRESSIVE — 73.2
SUPERVISED 250 80.4
W&M 2006 ∼ 310 ∼ 60.0
W&M 2007 ∼ 310 ∼ 75.0
Z&C 2005 600 79.29
Z&C 2007 600 86.07
W&M 2007 800 86.59

Table 2: Comparison against previously published results.
Results show that with a similar number of logical forms
(# LF) for training our SUPERVISEDapproach outperforms
existing systems, while the AGGRESSIVEapproach remains
competitive without using any logical forms.

2. How much performance do we sacrifice by
not restricting our model to parsing rules?

3. What, if any, are the differences in behaviour
between the two learning with feedback ap-
proaches?

We first compare how well our model performs
under four different learning regimes. NOLEARN

uses a manually initialized weight vector. DIRECT

and AGGRESSIVE use the two response driven
learning approaches, where a feedback function
but no logical forms are provided. As an up-
per bound we train the model using a fully SU-
PERVISEDapproach where the input sentences are
paired with hand annotated logical forms.

Table 1 shows the accuracy of each setup. The
model without learning (NOLEARN) gives a start-
ing point with an accuracy of 22.2%. The re-
sponse driven learning methods perform substan-
tially better than the starting point. The DIRECT

approach which uses a binary learner reaches an
accuracy of 75.2% on the R250 data and 69.2% on
the Q250 (testing) data. While the AGGRESSIVE

approach which uses a structured learner sees a
bigger improvement, reaching 82.4% and 73.2%
respectively. This is only 7% below the fully SU-
PERVISEDupper bound of the model.

To answer the second question, we compare a
supervised version of our model to existing se-
mantic parsers. The results are in Table 2. Al-
though the numbers are not directly comparable
due to different splits in the data7, we can see that
with a similar number of logical forms for train-
ing our SUPERVISED approach outperforms ex-
isting systems (Wong and Mooney, 2006; Wong
and Mooney, 2007), while the AGGRESSIVEap-
proach remains competitive without using any log-
ical forms. Our SUPERVISED model is still very
competitive with other approaches (Zettlemoyer
and Collins, 2007; Wong and Mooney, 2007),
which used considerably more annotated logical
forms in the training phase.

In order to answer the third question, we turn
our attention to the differences between the two
response driven learning approaches. The DIRECT

and AGGRESSIVEapproaches use binary feedback
to learn, however they utilize the signal differently.
DIRECT uses the signal directly to learn a bi-
nary classifier capable of replicating the feedback,
whereas AGGRESSIVElearns a structured predic-
tor that can repeatedly obtain the logical forms
for which positive feedback was received. Thus,
although the AGGRESSIVE outperforms the DI-
RECT approach the concepts each approach learns
may be different. Analysis over the training data
shows that in 66.8% examples both approaches
predict a logical form that gives the correct an-
swer. While AGGRESSIVE correctly answers an
additional 16% which DIRECT gets incorrect. In
the opposite direction, DIRECT correctly answers
8.8% that AGGRESSIVEdoes not. Leaving only
8.4% of the examples that both approaches pre-
dict incorrect logical forms. This suggests that an
approach which combines DIRECT and AGGRES-
SIVE may be able to improve even further.

Figure 2 shows the accuracy on the entire train-
ing data (R250) at each iteration of learning. We
see that the AGGRESSIVEapproach learns to cover
more of the training data and at a faster rate than
DIRECT. Note that the performance of the DI-
RECT approach drops at the first iteration. We hy-
pothesize this is due to imbalances in the binary
feedback dataset (too many negative examples) in
the first iteration.

7It is relatively difficult to compare different approaches
in the Geoquery domain given that many existing papers do
not use the same data split.

25

70 1 2 3 4 5 6

90

0

10

20

30

40

50

60

70

80

Learning Iterations

A
c
c
u
ra
c
y
 o
n
 R
e
s
p
o
n
s
e
 2
5
0

Direct Approach

Aggressive Approach

Initialization

Figure 2: Accuracy on training set as number of learning
iterations increases.

7 Related Work

Learning to map sentences to a meaning repre-
sentation has been studied extensively in the NLP
community. Early works (Zelle and Mooney,
1996; Tang and Mooney, 2000) employed induc-
tive logic programming approaches to learn a se-
mantic parser. More recent works apply statisti-
cal learning methods to the problem. In (Ge and
Mooney, 2005; Nguyen et al., 2006), the input to
the learner consists of complete syntactic deriva-
tions for the input sentences annotated with logi-
cal expressions. Other works (Wong and Mooney,
2006; Kate and Mooney, 2006; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Zettlemoyer and Collins, 2009) try to alleviate the
annotation effort by only taking sentence and log-
ical form pairs to train the models. Learning is
then defined over hidden patterns in the training
data that associate logical symbols with lexical
and syntactic elements.

In this work we take an additional step to-
wards alleviating the difficulty of training seman-
tic parsers and present a world response based
training protocol. Several recent works (Chen and
Mooney, 2008; Liang et al., 2009; Branavan et
al., 2009) explore using an external world context
as a supervision signal for semantic interpretation.
These works operate in settings different to ours as
they rely on an external world state that is directly
referenced by the input text. Although our frame-
work can also be applied in these settings we do
not assume that the text can be grounded in a world
state. In our experiments the input text consists of
generalized statements which describe some infor-
mation need that does not correspond directly to a

grounded world state.
Our learning framework closely follows recent

work on learning from indirect supervision. The
direct approach resembles learning a binary clas-
sifier over a latent structure (Chang et al., 2010a);
while the aggressive approach has similarities with
work that uses labeled structures and a binary
signal indicating the existence of good structures
to improve structured prediction (Chang et al.,
2010b).

8 Conclusions

In this paper we tackle one of the key bottlenecks
in semantic parsing — providing sufficient super-
vision to train a semantic parser. Our solution is
two fold, first we present a new training paradigm
for semantic parsing that relies onnatural, hu-
man level supervision. Second, we suggest a new
model for semantic interpretation that does not
rely on NL syntactic parsing rules, but rather uses
the syntactic information to bias the interpretation
process. This approach allows the model to gener-
alize better and reduce the required amount of su-
pervision. We demonstrate the effectiveness of our
training paradigm and interpretation model over
the Geoquery domain, and show that our model
can outperform fully supervised systems.

Acknowledgements We are grateful to Rohit Kate and

Raymond Mooney for their help with the Geoquery dataset.

Thanks to Yee Seng Chan, Nick Rizzolo, Shankar Vembu

and the three anonymous reviewers for their insightful com-

ments. This material is based upon work supported by the

Air Force Research Laboratory (AFRL) under prime contract

no. FA8750-09-C-0181 and by DARPA under the Bootstrap

Learning Program. Any opinions, findings, and conclusion or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the AFRL

or DARPA.

References

S.R.K. Branavan, H. Chen, L. Zettlemoyer, and
R. Barzilay. 2009. Reinforcement learning for map-
ping instructions to actions. InProc. of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

M. Chang, D. Goldwasser, D. Roth, and V. Srikumar.
2010a. Discriminative learning over constrained la-
tent representations. InProc. of the Annual Meeting
of the North American Association of Computational
Linguistics (NAACL).

26

M. Chang, D. Goldwasser, D. Roth, and V. Srikumar.
2010b. Structured output learning with indirect su-
pervision. InProc. of the International Conference
on Machine Learning (ICML).

D. Chen and R. Mooney. 2008. Learning to sportscast:
a test of grounded language acquisition. InProc. of
the International Conference on Machine Learning
(ICML).

Q. Do, D. Roth, M. Sammons, Y. Tu, and V.G. Vydis-
waran. 2010. Robust, Light-weight Approaches to
compute Lexical Similarity. Computer Science Re-
search and Technical Reports, University of Illinois.
http://hdl.handle.net/2142/15462.

R. Ge and R. Mooney. 2005. A statistical semantic
parser that integrates syntax and semantics. InProc.
of the Annual Conference on Computational Natural
Language Learning (CoNLL).

R. Kate and R. Mooney. 2006. Using string-kernels
for learning semantic parsers. InProc. of the An-
nual Meeting of the Association for Computational
Linguistics (ACL).

R. Kate. 2008. Transforming meaning representation
grammars to improve semantic parsing. InProc. of
the Annual Conference on Computational Natural
Language Learning (CoNLL).

D. Klein and C. D. Manning. 2003. Fast exact in-
ference with a factored model for natural language
parsing. InProc. of the Conference on Advances in
Neural Information Processing Systems (NIPS).

P. Liang, M. I. Jordan, and D. Klein. 2009. Learning
semantic correspondences with less supervision. In
Proc. of the Annual Meeting of the Association for
Computational Linguistics (ACL).

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K.J. Miller. 1990. Wordnet: An on-line lexical
database.International Journal of Lexicography.

L. Nguyen, A. Shimazu, and X. Phan. 2006. Semantic
parsing with structured svm ensemble classification
models. InProc. of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

D. Roth and W. Yih. 2007. Global inference for entity
and relation identification via a linear programming
formulation. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning.

L. Tang and R. Mooney. 2000. Automated construc-
tion of database interfaces: integrating statistical and
relational learning for semantic parsing. InProc. of
the Conference on Empirical Methods for Natural
Language Processing (EMNLP).

L. R. Tang and R. J. Mooney. 2001. Using multiple
clause constructors in inductive logic programming
for semantic parsing. InProc. of the European Con-
ference on Machine Learning (ECML).

Y.-W. Wong and R. Mooney. 2006. Learning for
semantic parsing with statistical machine transla-
tion. In Proc. of the Annual Meeting of the North
American Association of Computational Linguistics
(NAACL).

Y.-W. Wong and R. Mooney. 2007. Learning
synchronous grammars for semantic parsing with
lambda calculus. InProc. of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

J. M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic proramming.
In Proc. of the National Conference on Artificial In-
telligence (AAAI).

L. Zettlemoyer and M. Collins. 2005. Learning to map
sentences to logical form: Structured classification
with probabilistic categorial grammars. InProc. of
the Annual Conference in Uncertainty in Artificial
Intelligence (UAI).

L. Zettlemoyer and M. Collins. 2007. Online learn-
ing of relaxed CCG grammars for parsing to logical
form. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Pro-
cessing and on Computational Natural Language
Learning (EMNLP-CoNLL).

L. Zettlemoyer and M. Collins. 2009. Learning
context-dependent mappings from sentences to log-
ical form. In Proc. of the Annual Meeting of the
Association for Computational Linguistics (ACL).

27

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 28–37,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Efficient, correct, unsupervised learning of context-sensitive languages

Alexander Clark
Department of Computer Science

Royal Holloway, University of London
alexc@cs.rhul.ac.uk

Abstract

A central problem for NLP is grammar in-
duction: the development of unsupervised
learning algorithms for syntax. In this pa-
per we present a lattice-theoretic represen-
tation for natural language syntax, called
Distributional Lattice Grammars. These
representations are objective or empiri-
cist, based on a generalisation of distribu-
tional learning, and are capable of repre-
senting all regular languages, some but not
all context-free languages and some non-
context-free languages. We present a sim-
ple algorithm for learning these grammars
together with a complete self-contained
proof of the correctness and efficiency of
the algorithm.

1 Introduction

Grammar induction, or unsupervised learning of
syntax, no longer requires extensive justification
and motivation. Both from engineering and cog-
nitive/linguistic angles, it is a central challenge
for computational linguistics. However good al-
gorithms for this task are thin on the ground.
There are numerous heuristic algorithms, some of
which have had significant success in inducing
constituent structure (Klein and Manning, 2004).
There are algorithms with theoretical guarantees
as to their correctness – such as for example
Bayesian algorithms for inducing PCFGs (John-
son, 2008), but such algorithms are inefficient: an
exponential search algorithm is hidden in the con-
vergence of the MCMC samplers. The efficient
algorithms that are actually used are heuristic ap-
proximations to the true posteriors. There are al-
gorithms like the Inside-Outside algorithm (Lari
and Young, 1990) which are guaranteed to con-
verge efficiently, but not necessarily to the right
answer: they converge to a local optimum that

may be, and in practice nearly always is very far
from the optimum. There are naive enumerative
algorithms that are correct, but involve exhaus-
tively enumerating all representations below a cer-
tain size (Horning, 1969). There are no correct
and efficient algorithms, as there are for parsing,
for example.

There is a reason for this: from a formal point
of view, the problem is intractably hard for the
standard representations in the Chomsky hierar-
chy. Abe and Warmuth (1992) showed that train-
ing stochastic regular grammars is hard; Angluin
and Kharitonov (1995) showed that regular gram-
mars cannot be learned even using queries; these
results obviously apply also to PCFGs and CFGs
as well as to the more complex representations
built by extending CFGs, such as TAGs and so
on. However, these results do not necessarily ap-
ply to other representations. Regular grammars
are not learnable, but deterministic finite automata
are learnable under various paradigms (Angluin,
1987). Thus it is possible to learn by changing to
representations that have better properties: in par-
ticular DFAs are learnable because they are “ob-
jective”; there is a correspondence between the
structure of the language, (the residual languages)
and the representational primitives of the formal-
ism (the states) which is expressed by the Myhill-
Nerode theorem.

In this paper we study the learnability of a class
of representations that we call distributional lat-
tice grammars (DLGs). Lattice-based formalisms
were introduced by Clark et al. (2008) and Clark
(2009) as context sensitive formalisms that are po-
tentially learnable. Clark et al. (2008) established
a similar learnability result for a limited class of
context free languages. In Clark (2009), the ap-
proach was extended to a significantly larger class
but without an explicit learning algorithm. Most of
the building blocks are however in place, though
we need to make several modifications and ex-

28

tensions to get a clean result. Most importantly,
we need to replace the representation used there,
which naively could be exponential, with a lazy,
exemplar based model.

In this paper we present a simple algorithm
for the inference of these representations and
prove its correctness under the following learning
paradigm: we assume that as normal there is a sup-
ply of positive examples, and additionally that the
learner can query whether a string is in the lan-
guage or not (an oracle for membership queries).
We also prove that the algorithm is efficient in
the sense that it will use a polynomial amount of
computation and makes a polynomial number of
queries at each step.

The contributions of this paper are as follows:
after some basic discussion of distributional learn-
ing in Section 2, we define in Section 3 an
exemplar-based grammatical formalism which we
call Distributional Lattice Grammars. We then
give a learning algorithm under a reasonable learn-
ing paradigm, together with a self contained proof
in elementary terms (not presupposing any exten-
sive knowledge of lattice theory), of the correct-
ness of this algorithm.

2 Basic definitions

We now define our notation; we have a finite al-
phabet Σ; let Σ∗ be the set of all strings (the free
monoid) over Σ, with λ the empty string. A (for-
mal) language is a subset of Σ∗. We can concate-
nate two languages A and B to get AB = {uv|u ∈
A, b ∈ B}.

A context or environment, as it is called in struc-
turalist linguistics, is just an ordered pair of strings
that we write (l, r) where l and r refer to left and
right; l and r can be of any length. We can com-
bine a context (l, r) with a string u with a wrap-
ping operation that we write �: so (l, r) � u is
defined to be lur. We will sometimes write f for
a context (l, r). There is a special context (λ, λ):
(λ, λ) � w = w. We will extend this to sets of
contexts and sets of strings in the natural way. We
will write Sub(w) = {u|∃(l, r) : lur = w} for
the set of substrings of a string, and Con(w) =
{(l, r)|∃u ∈ Σ∗ : lur = w}.

For a given string w we can define the distribu-
tion of that string to be the set of all contexts that it
can appear in: CL(w) = {(l, r)|lwr ∈ L}, equiv-
alently {f |f � w ∈ L}. Clearly (λ, λ) ∈ CL(w)
iff w ∈ L.

Distributional learning (Harris, 1954) as a tech-
nical term refers to learning techniques which
model directly or indirectly properties of the dis-
tribution of strings or words in a corpus or a lan-
guage. There are a number of reasons to take
distributional learning seriously: first, historically,
CFGs and other PSG formalisms were intended
to be learnable by distributional means. Chomsky
(2006) says (p. 172, footnote 15):

The concept of “phrase structure
grammar” was explicitly designed to ex-
press the richest system that could rea-
sonably be expected to result from the
application of Harris-type procedures to
a corpus.

Second, empirically we know they work well at
least for lexical induction, (Schütze, 1993; Cur-
ran, 2003) and are a component of some imple-
mented unsupervised learning systems (Klein and
Manning, 2001). Linguists use them as one of the
key tests for constituent structure (Carnie, 2008),
and finally there is some psycholinguistic evidence
that children are sensitive to distributional struc-
ture, at least in artificial grammar learning tasks
(Saffran et al., 1996). These arguments together
suggest that distributional learning has a some-
what privileged status.

3 Lattice grammars

Clark (2009) presents the theory of lattice based
formalisms starting algebraically from the theory
of residuated lattices. Here we will largely ig-
nore this, and start from a straightforward com-
putational treatment. We start by defining the rep-
resentation.

Definition 1. Given a non-empty finite alphabet,
Σ, a distributional lattice grammar (DLG) is a 3-
tuple consisting of 〈K, D, F 〉, where F is a finite
subset of Σ∗ × Σ∗, such that (λ, λ) ∈ F , K is a
finite subset of Σ∗ which contains λ and Σ, and D
is a subset of (F �KK).

K here can be thought of as a finite set of exem-
plars, which correspond to substrings or fragments
of the language. F is a set of contexts or fea-
tures, that we will use to define the distributional
properties of these exemplars; finally D is a set
of grammatical strings, the data; a finite subset of
the language. F �KK using the notation above is
{luvr|u, v ∈ K, (l, r) ∈ F}. This is the finite part
of the language that we examine. If the language

29

we are modeling is L, then D = L ∩ (F �KK).
Since λ ∈ K, K ⊆ KK.

We define a concept to be an ordered pair 〈S, C〉
where S ⊆ K and C ⊆ F , which satisfies the fol-
lowing two conditions: first C � S ⊆ D; that is
to say every string in S can be combined with any
context in C to give a grammatical string, and sec-
ondly they are maximal in that neither K nor F
can be increased without violating the first condi-
tion.

We define B(K, D, F) to be the set of all such
concepts. We use the B symbol (Begriff) to bring
out the links to Formal Concept Analysis (Ganter
and Wille, 1997; Davey and Priestley, 2002). This
lattice may contain exponentially many concepts,
but it is clearly finite, as the number of concepts is
less than min(2|F |, 2|K|).

There is an obvious partial order defined by
〈S1, C1〉 ≤ 〈S2, C2〉 iff S1 ⊆ S2, Note that
S1 ⊆ S2 iff C2 ⊆ C1.

Given a set of strings S we can define a set of
contexts S′ to be the set of contexts that appear
with every element of S.

S′ = {(l, r) ∈ F : ∀w ∈ S, lwr ∈ D}

Dually we can define for a set of contexts C the
set of strings C ′ that occur with all of the elements
of C:

C ′ = {w ∈ K : ∀(l, r) ∈ C, lwr ∈ D}

The concepts 〈S, C〉 are just the pairs that sat-
isfy S′ = C and C ′ = S; the two maps denoted
by ′ are called the polar maps. For any S ⊆ K,
S′′′ = S′ and for any C ⊆ F , C ′′′ = C ′. Thus we
can form a concept from any set of strings S ⊆ K
by taking 〈S′′, S′〉; this is a concept as S′′′ = S′.
We will write this as C(S), and for any C ⊆ F ,
we will write C(C) = 〈C ′, C ′′〉.

If S ⊆ T then T ′ ⊆ S′, and S′′ ⊆ T ′′. For any
set of strings S ⊆ K, S ⊆ S′′.

One crucial concept here is the concept de-
fined by (λ, λ) or equivalently by the set K ∩ D
which corresponds to all of the elements in the
language. We will denote this concept by L =
C({(λ, λ)}) = C(K ∩D).

We also define a meet operation by

〈S1, C1〉 ∧ 〈S2, C2〉 = 〈S1 ∩ S2, (S1 ∩ S2)′〉

This is the greatest lower bound of the two con-
cepts; this is a concept since if S′′

1 = S1 and

S′′
2 = S2 then (S1 ∩ S2)′′ = (S1 ∩ S2). Note that

this operation is associative and commutative. We
can also define a join operation dually; with these
operations B(K, D, D) is a complete lattice.

So far we have only used strings in F �K; we
now define a concatenation operation as follows.

〈S1, C1〉 ◦ 〈S2, C2〉 = 〈(S1S2)′′, (S1S2)′′′〉

Since S1 and S2 are subsets of K, S1S2 is a sub-
set of KK, but not necessarily of K. (S1S2)′ is
the set of contexts shared by all elements of S1S2

and (S1S2)′′ is the subset of K, not KK, that
has all of the contexts of (S1S2)′. (S1S2)′′′ might
be larger than (S1S2)′. We can also write this as
C((S1S2)′).

Both ∧ and ◦ are monotonic in the sense that if
X ≤ Y then X ◦ Z ≤ Y ◦ Z, Z ◦ X ≤ Z ◦ Y
and X ∧ Z ≤ Y ∧ Z. Note that all of these oper-
ations can be computed efficiently; using a perfect
hash, and a naive algorithm, we can do the polar
maps and ∧ operations in timeO(|K||F |), and the
concatenation in time O(|K|2|F |).

We now define the notion of derivation in this
representation. Given a string w we recursively
compute a concept for every substring of w; this
concept will approximate the distribution of the
string. We define φG as a function from Σ∗ to
B(K, D, F); we define it recursively:

• If |w| ≤ 1, then φG(w) = 〈{w}′′, {w}′〉

• If |w| > 1 then
φG(w) =

∧
u,v∈Σ+:uv=w φG(u) ◦ φG(v)

The first step is well defined because all of the
strings of length at most 1 are already in K so
we can look them up directly. To clarify the sec-
ond step, if w = abc then φG(abc) = φG(a) ◦
φG(bc) ∧ φG(ab) ◦ φG(c); we compute the string
from all possible non-trivial splits of the string
into a prefix and a suffix. By using a dynamic
programming table that stores the values of φ(u)
for all u ∈ Sub(w) we can compute this in time
O(|K|2|F ||w|3); this is just an elementary variant
of the CKY algorithm. We define the language de-
fined by the DLG G to be

L(G) = {w|φG(w) ≤ C({(λ, λ)})}

That is to say, a string is in the language if we
predict that a string has the context (λ, λ). We now
consider a trivial example: the Dyck language.

30

Example 1. Let L be the Dyck language (matched
parenthesis language) over Σ = {a, b}, where
a corresponds to open bracket, and b to close
bracket. Define

• K = {λ, a, b, ab}

• F = {(λ, λ), (λ, b), (a, λ)}.

• D = {λ, ab, abab, aabb}

G = 〈K, D, F 〉 is a DLG. We will now write down
the 5 elements of the lattice:

• > = 〈K, ∅〉

• ⊥ = 〈∅, F 〉

• L = 〈{λ, ab}, {(λ, λ)}〉

• A = 〈{a}, {(λ, b)}〉

• B = 〈{b}, {(a, λ)}〉

To compute the concatenation A ◦ B we first
compute {a}{b} = {ab}; we then compute {ab}′
which is {(λ, λ)}, and {(λ, λ)}′ = {λ, ab}, so
A ◦ B = L. Similarly to compute L ◦ L, we first
take {λ, ab}{λ, ab} = {λ, ab, abab}. These all
have the context (λ, λ), so the result is the con-
cept L. If we compute A ◦A we get {a}{a} which
is {aa} which has no contexts so the result is >.
We have φG(λ) = L, φG(a) = A,φG(b) = B.
Applying the recursive computation we can verify
that φG(w) = L iff w ∈ L and so L(G) = L. We
can also see that D = L ∩ (F �KK).

4 Search

In order to learn these grammars we need to find a
suitable set of contexts F , a suitable set of strings
K, and then work out which elements of F �KK
are grammatical. So given a choice for K and F
it is easy to learn these models under a suitable
regime: the details of how we collect information
about D depend on the learning model.

The question is therefore whether it is easy
to find suitable sets, K and F . Because of the
way the formalism is designed, it transpires that
the search problem is entirely tractable. In or-
der to analyse the search space, we define two
maps between the lattices as K and F are in-
creased. We are going to augment our notation
slightly; we will write B(K, L, F) for B(K, L ∩
(F�KK), F) and similarly 〈K, L, F 〉 for 〈K, L∩
(F �KK), F 〉. When we use the two polar maps

(such as C ′, S′), though we are dealing with more
than one lattice, there is no ambiguity as the maps
agree; we will when necessary explicitly restrict
the output (e.g. C ′ ∩ J) to avoid confusion.

Definition 2. For any language L and any set of
contexts F ⊆ G, and any sets of strings J ⊆
K ⊆ Σ∗. We define a map g from B(J, L, F) to
B(K, L, F) (from the smaller lattice to the larger
lattice) as g(〈S, C〉) = 〈C ′, C〉.

We also define a map f from B(K, L, G)
to B(K, L, F), (from larger to smaller) as
f(〈S, C〉) = 〈(C ∩ F)′, C ∩ F 〉.

These two maps are defined in opposite direc-
tions: this is because of the duality of the lattice.
By defining them in this way, as we will see, we
can prove that these two maps have very similar
properties. We can verify that the outputs of these
maps are in fact concepts.

We now need to define two monotonicity lem-
mas: these lemmas are crucial to the success of
the formalism. We show that as we increase K
the language defined by the formalism decreases
monotonically, and that as we increase F the lan-
guage increases monotonically. There is some du-
plication in the proofs of the two lemmas; we
could prove them both from more abstract prop-
erties of the maps f, g which are what are called
residual maps, but we will do it directly.

Lemma 1. Given two lattices B(K, L, F) and
B(K, L, G) where F ⊆ G; For all X, Y ∈
B(K, L, G) we have that

1. f(X) ◦ f(Y) ≥ f(X ◦ Y)

2. f(X) ∧ f(Y) ≥ f(X ∧ Y)

Proof. The proof is elementary but difficult to
read. We write X = 〈SX , CX〉 and similarly for
Y . For part 1 of the lemma: Clearly (S′

X ∩ F) ⊆
S′

X , so (S′
X ∩ F)′ ⊇ S′′

X = SX and the same for
SY . So (S′

X ∩F)′(S′
Y ∩F)′ ⊇ SXSY (as subsets

of KK). So ((S′
X∩F)′(S′

Y ∩F)′)′ ⊆ (SXSY)′ ⊆
(SXSY)′′′. Now by definition, f(X) ◦ f(Y) is
C(Z) where Z = ((S′

X ∩F)′(S′
Y ∩F)′)′ ∩F and

f(X ◦Y) has the set of contexts ((SXSY)′′′ ∩F).
Therefore f(X ◦ Y) has a bigger set of contexts
than f(X) ◦ f(Y) and is thus a smaller concept.
For part 2: by definition f(X ∧ Y) = 〈((SX ∩
Sy)′ ∩ F)′, (SX ∩ Sy)′ ∩ F 〉 and f(X) ∧ f(Y) =
〈(S′

X∩F)′∩(S′
y∩F)′, ((S′

X∩F)′∩(S′
y∩F)′)′∩F 〉

Now S′
X ∩ F ⊆ S′

X , so (since S′′
X = SX) SX ⊆

(S′
X∩F)′, and so SX∩Sy ⊆ (S′

X∩F)′∩(S′
y∩F)′.

31

So (SX ∩ Sy)′ ⊇ ((S′
X ∩ F)′ ∩ (S′

y ∩ F)′) which
gives the result by comparing the context sets of
the two sides of the inequality.

Lemma 2. For any language L, and two sets of
contexts F ⊆ G, and any K, if we have two DLGs
〈K, L, F 〉 with map φF : Σ∗ → B(K, L, F) and
〈K, L, G〉 with map φG : Σ∗ → B(K, L, G) then
for all w, f(φG(w)) ≤ φF (w).

Proof. By induction on the length of w; clearly
if |w| ≤ 1, f(φG(w)) = φF (w). We now take
the inductive step; by definition, (suppressing the
definition of u, v in the meet)

f(φG(w)) = f(
∧
u,v

φG(u) ◦ φG(v))

By Lemma 1, part 2:

f(φG(w)) ≤
∧
u,v

f(φG(u) ◦ φG(v))

By Lemma 1, part 1:

f(φG(w)) ≤
∧
u,v

f(φG(u)) ◦ f(φG(v))

By the inductive hypothesis we have f(φG(u)) ≤
φF (u) and similarly for v and so by the mono-
tonicity of ∧ and ◦:

f(φG(w)) ≤
∧
u,v

φF (u) ◦ φF (v)

Since the right hand side is equal to φF (w), the
proof is done.

It is then immediate that

Lemma 3. If F ⊆ G then L(〈K, L, F 〉) ⊆
L(〈K, L, G〉),

Proof. If w ∈ L(〈K, L, F 〉), then φF (w) ≤ L,
and so f(φG(w)) ≤ L and so φG(w) has the con-
text (λ, λ) and is thus in L(〈K, L, G〉).

We now prove the corresponding facts about g.

Lemma 4. For any J ⊆ K and any concepts X, Y
in B(J, L, F), we have that

1. g(X) ◦ g(Y) ≥ g(X ◦ Y)

2. g(X) ∧ g(Y) ≥ g(X ∧ Y)

Proof. For the first part: Write X = 〈SX , CX〉 as
before. Note that SX = C ′

X ∩ J . SX ⊆ C ′
X , so

SXSY ⊆ C ′
XC ′

Y , and so (SXSY)′′ ⊆ (C ′
XC ′

Y)′′,
and ((SXSY)′′ ∩ J)′ ⊇ (C ′

XC ′
Y)′′′. By calcu-

lation g(X) ◦ g(Y) = 〈(C ′
XC ′

Y)′′, (C ′
XC ′

Y)′′′〉
On the other hand, g(X ◦ Y) = 〈((SXSY)′′ ∩
J)′′, ((SXSY)′′ ∩ J)′〉 and so g(X ◦ Y) is smaller
as it has a larger set of contexts.

For the second part: g(X) ∧ g(Y) = 〈C ′
X ∩

C ′
Y , (C ′

X ∩ C ′
Y)′〉 and g(X ∧ Y) = 〈(SX ∩

SY)′′, (SX ∩ SY)′〉. Since SX = C ′
X ∩ J , SX ⊆

C ′
X , so (SX ∩ SY) ⊆ C ′

X ∩ C ′
Y , and therefore

(SX ∩ SY)′′ ⊆ (C ′
X ∩ C ′

Y)′′ = C ′
X ∩ C ′

Y .

We now state and prove the monotonicity
lemma for g.

Lemma 5. For all J ⊆ K ⊆ Σ∗×Σ∗, and for all
strings w; we have that g(φJ(w)) ≤ φK(w).

Proof. By induction on length of w. Both J and
K include the basic elements of Σ and λ. First
suppose |w| ≤ 1, then φJ(w) = 〈(CL(w) ∩
F)′∩J,CL(w)∩F 〉, and g(φJ(w)) = 〈(CL(w)∩
F)′, CL(w) ∩ F 〉 which is equal to φK(w).

Now suppose true for all w of length at most k,
and take some w of length k + 1. By definition of
φJ :

g(φJ(w)) = g

(∧
u,v

φJ(u) ◦ φJ(v)

)
Next by Lemma 4, Part 2

g(φJ(w)) ≤
∧
u,v

g(φJ(u) ◦ φJ(v))

By Lemma 4, Part 1

g(φJ(w)) ≤
∧
u,v

g(φJ(u)) ◦ g(φJ(v))

By the inductive hypothesis and monotonicity of ◦
and ∧:

g(φJ(w)) ≤
∧
u,v

φK(u) ◦ φK(v) = φK(w)

Lemma 6. If J ⊆ K then L(〈J, L, F 〉) ⊇
L(〈K, L, F 〉)

Proof. Suppose w ∈ L(〈K, L, F 〉). this means
that φK(w) ≤ LK . therefore g(φJ(w)) ≤
Lk; which means that (λ, λ) is in the concept
g(φJ(w)), which means it is in the concept φJ(w),
and therefore w ∈ L(〈J, L, F 〉).

32

Given these two lemmas we can make the fol-
lowing observations. First, if we have a fixed L
and F , then as we increase K, the language will
decrease until it reaches a limit, which it will at-
tain after a finite limit.

Lemma 7. For all L, and finite context sets F ,
there is a finite K such that for all K2, K ⊂ K2,
L(〈K, L, F 〉) = L(〈K2, L, F 〉).

Proof. We can define the lattice B(Σ∗, L, F). De-
fine the following equivalence relation between
pairs of strings, where (u1, v1) ∼ (u2, v2) iff
C(u1) = C(u2) and C(v1) = C(v2) and C(u1v1) =
C(u2v2). The number of equivalence classes is
clearly finite. If K is sufficiently large that there is
a pair of strings (u, v) in K for each equivalence
class, then clearly the lattice defined by this K will
be isomorphic to B(Σ∗, L, F). Any superset of K
will not change this lattice.

Moreover this language is unique for each L,F .
We will call this the limit language of L,F , and we
will write it as L(〈Σ∗, L, F 〉).

If F ⊆ G, then L(〈Σ∗, L, F 〉) ⊆
L(〈Σ∗, L,G〉). Finally, we will show that
the limit languages never overgeneralise.

Lemma 8. For any L, and for any F ,
L(〈Σ∗, L, F 〉) ⊆ L.

Proof. Recall that C(w) = 〈{w}′′, {w}′〉 is the
real concept. If G is a limit grammar, we can
show that we always have φG(w) > C(w), which
will give us the result immediately. First note
that C(u) ◦ C(v) ≥ C(uv), which is immedi-
ate by the definition of ◦. We proceed, again,
by induction on the length of w. For |w| ≤ 1,
φG(w) = C(w). For the inductive step we have
φG(w) =

∧
u,v φG(u) ◦ φG(v); by inductive hy-

pothesis we have that this must be more than∧
u,v C(u) ◦ C(v) >

∧
u,v C(uv) = C(w)

5 Weak generative power

First we make the following observation: if we
consider an infinite variant of this, where we set
K = Σ∗ and F = Σ∗ × Σ∗ and D = L, we
can prove easily that, allowing infinite “represen-
tations”, for any L, L(〈K, D, F 〉) = L. In this
infinite data limit, ◦ becomes associative, and the
structure of B(K, D, F) becomes a residuated lat-
tice, called the syntactic concept lattice of the lan-
guage L, B(L). This lattice is finite iff the lan-
guage is regular. The fact that this lattice now has

residuation operations suggest interesting links to
the theory of categorial grammar. It is the finite
case that interests us.

We will use LDLG to refer to the class of lan-
guages that are limit languages in the sense de-
fined above.

LDLG = {L|∃F,L(〈Σ∗, L, F 〉) = L}

Our focus in this paper is not on the language
theory: we present the following propositions.
First LDLG properly contains the class of regular
languages. Secondly LDLG contains some non-
context-free languages (Clark, 2009). Thirdly it
does not contain all context-free languages.

A natural question to ask is how to convert a
CFG into a DLG. This is in our view the wrong
question, as we are not interested in modeling
CFGs but modeling natural languages, but given
the status of CFGs as a default model for syn-
tactic structure, it will help to give a few exam-
ples, and a general mechanism. Consider a non-
terminal N in a CFG with start symbol S. We
can define C(N) = {(l, r)|S ∗⇒ lNr} and the
yield Y (N) = {w|N ∗⇒ w}. Clearly C(N) �
Y (N) ⊆ L, but these are not necessarily maxi-
mal, and thus 〈C(N), Y (N)〉 is not necessarily a
concept. Nonetheless in most cases, we can con-
struct a grammar where the non-terminals will cor-
respond to concepts, in this way.

The basic approach is this: for each non-
terminal, we identify a finite set of contexts that
will pick out only the set of strings generated
from that non-terminal: we find some set of con-
texts FN typically a subset of C(N) such that
Y (N) = {w|∀(l, r) ∈ FN , lwr ∈ L}. We say
that we can contextually define this non-terminal
if there is such a finite set of contexts FN . If a
CFG in Chomsky normal form is such that every
non-terminal can be contextually defined then the
language defined by that grammar is in LDLG. If
we can do that, then the rest is trivial. We take
any set of features F that includes all of these FN ;
probably just F =

⋃
N FN ; we then pick a set of

strings K that is sufficiently large to rule out all
incorrect generalisations, and then define D to be
L ∩ (F �KK).

Consider the language L = {anbncm|n, m ≥
0} ∪ {ambncn|n, m ≥ 0}. L is a classic ex-
ample of an inherently ambiguous and thus non-
deterministic language.

The natural CFG in CNF for L has
non-terminals that generate the following

33

sets: {anbn|n ≥ 0}, {an+1bn|n ≥ 0},
{bncn|n ≥ 0}, {bncn+1|n ≥ 0}, {a∗}
and {c∗}. We note that the six contexts
(aa, bbc), (aa, bbbc), (abb, cc)(abbb, cc), (λ, a)
and (c, λ) will define exactly these sets, in
the sense that the set of strings that oc-
cur in each context will be exactly the
corresponding set. We can also pick out
λ, a, b, c with individual contexts. Let F =
{(λ, λ), (aaabb, bccc), (aaabbc, λ), (λ, abbccc),
(aaab, bccc), (aa, bbc), (aa, bbbc), (abb, cc),
(abbb, cc), (λ, a), (c, λ)}. If we take a sufficiently
large set K, say λ, a, b, c, ab, aab, bc, bcc, abc, and
set D = L ∩ F �KK, then we will have a DLG
for the language L. In this example, it is sufficient
to have one context per non-terminal. This is not
in general the case.

Consider L = {anbn|n ≥ 0} ∪ {anb2n|n ≥
0}. Here we clearly need to identify sets of strings
corresponding to the two parts of this language,
but it is easy to see that no one context will suffice.
However, note that the first part is defined by the
two contexts (λ, λ), (a, b) and the second by the
two contexts (λ, λ), (a, bb). Thus it is sufficient to
have a set F that includes these four contexts, as
well as similar pairs for the other non-terminals in
the grammar, and some contexts to define a and b.

We can see that we will not always be able to do
this for every CFG. One fixable problem is if the
CFG has two separate non-terminals, M,N such
that C(M) ⊇ C(N). If this is the case, then we
must have that Y (N) ⊇ Y (M), If we pick a set
of contexts to define Y (N), then clearly any string
in Y (M) will also be picked out by the same con-
texts. If this is not the case, then we can clearly try
to rectify it by adding a rule N → M which will
not change the language defined.

However, we cannot always pick out the non-
terminals with a finite set of contexts. Consider
the language L = {anb|n > 0} ∪ {ancm|m >
n > 0} defined in Clark et al. (2008). Sup-
pose wlog that F contains no context (l, r) such
that |l| + |r| ≥ k. Then it is clear that we will
not be able to pick out b without also picking out
ck+1, since CL(ck+1) ∩ F ⊇ CL(b) ∩ F . Thus
L, which is clearly context-free, is not in LDLG.
Luckily, this example is highly artificial and does
not correspond to any phenomena we are aware of
in linguistics.

In terms of representing natural languages, we
clearly will in many cases need more than one

context to pick out syntactically relevant groups
of strings. Using a very simplified example from
English, if we want to identify say singular noun
phrases, a context like (that is, λ) will not be suf-
ficient since as well as noun phrases we will also
have some adjective phrases. However if we in-
clude multiple contexts such as (λ, is over there)
and so on, eventually we will be able to pick out
exactly the relevant set of strings. One of the
reasons we need to use a context sensitive repre-
sentation, is so that we can consider every possi-
ble combination of contexts simultaneously: this
would require an exponentially large context free
grammar.

6 Learning Model

In order to prove correctness of the learning algo-
rithm we will use a variant of Gold-style inductive
inference (Gold, 1967). Our choice of this rather
old-fashioned model requires justification. There
are two problems with learning – the information
theoretic problems studied under VC-dimension
etc., and the computational complexity issues of
constructing a hypothesis from the data. In our
view, the latter problems are the key ones. Ac-
cordingly, we focus entirely on the efficiency is-
sue, and allow ourself a slightly unrealistic model;
see (Clark and Lappin, 2009) for arguments that
this is a plausible model.

We assume that we have a sequence of posi-
tive examples, and that we can query examples for
membership. Given a language L a presentation
for L is an infinite sequence of strings w1, w2, . . .
such that {wi|i ∈ N} = L. An algorithm receives
a sequence T and an oracle, and must produce a
hypothesis H at every step, using only a polyno-
mial number of queries to the membership oracle
– polynomial in the total size of the presentation.
It identifies in the limit the language L iff for ev-
ery presentation T of L there is a N such that for
all n > N Hn = HN , and L(HN) = L. We say
it identifies in the limit a class of languages L iff
it identifies in the limit all L in L. We say that it
identifies the class in polynomial update time iff
there is a polynomial p, such that at each step the
model uses an amount of computation (and thus
also a number of queries) that is less than p(n, l),
where n is the number of strings and l is the max-
imum length of a string in the observed data. We
note that this is slightly too weak. It is possible
to produce vacuous enumerative algorithms that

34

can learn anything by only processing a logarith-
mically small prefix of the string (Pitt, 1989).

7 Learning Algorithm

We now define a simple learning algorithm, that
establishes learnability under this paradigm.

There is one minor technical detail we need to
deal with. We need to be able to tell when adding
a string to a lazy DLG will leave the grammar un-
changed. We use a slightly weaker test. Given
G1 = 〈K, D, F 〉 we define as before the equiva-
lence relation between pairs of strings of K, where
(u1, v1) ∼G1 (u2, v2) iff CD(u1) = CD(u2) and
CD(v1) = CD(v2) and CD(u1v1) = CD(u2v2).
Note that CD(u) = {(l, r)|lur ∈ D}.

Given two grammars G1 = 〈K, D, F 〉 and
G2 = 〈K2, D2, F 〉 where K ⊆ K2 and D ⊆ D2

but F is unchanged, we say that these two are
indistinguishable iff the number of equivalence
classes of K ×K under ∼G1 is equal to the num-
ber of equivalence classes of K2×K2 under∼G2 .
This can clearly be computed efficiently using a
union-find algorithm, in time polynomial in |K|
and |F |. If they are indistinguishable then they de-
fine the same language.

7.1 Algorithm
Algorithm 1 presents the basic algorithm. At var-
ious points we compute sets of strings like (F �
KK)∩L; these can be computed using the mem-
bership oracle.

First we prove that the program is efficient in
the sense that it runs in polynomial update time.

Lemma 9. There is a polynomial p, such that Al-
gorithm 1, for each wn, runs in time bounded by
p(n, l) where l is the maximum length of a string
in w1, . . . wn.

Proof. First we note that K, K2 and F are always
subsets of Sub(E)∪Σ and Con(E), and thus both
|K| and |F | are bounded by nl(l+1)/2+ |Σ|+1.
Computing D is efficient as |F �KK| is bounded
by |K|2|F |. We can compute φG as mentioned
above in time |K|2|F |l3; distinguishability is as
observed earlier also polynomial.

Before we prove the correctness of the algo-
rithm we make some informal points. First, we
are learning under a rather pessimistic model – the
positive examples may be chosen to confuse us,
so we cannot make any assumptions. Accordingly
we have to very crudely add all substrings and all

Algorithm 1: DLG learning algorithm
Data: Input strings S = {w1, w2 . . . , },

membership oracle O
Result: A sequence of DLGs G1, G2, . . .
K ← Σ ∪ {λ}, K2 = K ;
F ← {(λ, λ)}, E = {} ;
D = (F �KK) ∩ L ;
G = 〈K, D, F 〉 ;
for wi do

E ← E ∪ {wi} ;
K2 ← K2 ∪ Sub(wi) ;
if there is some w ∈ E that is not in
L(G) then

F ← Con(E) ;
K ← K2 ;
D = (F �KK) ∩ L ;
G = 〈K, D, F 〉 ;

end
else

D2 ← (F �K2K2) ∩ L ;
if 〈K2, D2, F 〉 not indistinguishable
from 〈K, D, F 〉 then

K ← K2 ;
D = (F �KK) ∩ L ;
G = 〈K, D, F 〉 ;

end
end
Output G;

end

contexts, rather than using sensible heuristics to
select frequent or likely ones.

Intuitively the algorithm works as follows: if we
observe a string not in our current hypothesis, then
we increase the set of contexts which will increase
the language defined. Since we only see positive
examples, we will never explicitly find out that our
hypothesis overgenerates, accordingly we always
add strings to a tester set K2 and see if this gives
us a more refined model. If this seems like it might
give a tighter hypothesis, then we increase K.

In what follows we will say that the hypothesis
at step n, Gn = 〈Kn, Dn, Fn〉, and the language
defined is Ln. We will assume that the target lan-
guage is some L ∈ LDLG and w1, . . . is a presen-
tation of L.

Lemma 10. Then there is a point n, and a finite set
of contexts F such that for all N > n, FN = F .,
and L(〈Σ∗, L, F 〉) = L.

Proof. Since L ∈ LDLG there is some set of con-

35

texts G ⊂ Con(L), such that L = L(〈Σ∗, L,G〉).
Any superset of G will define the correct limit lan-
guage. Let n be the smallest n such that G is a
subset of Con({w1, . . . , wn}). Consider Fn. If
Fn defines the correct limit language, then we will
never change F as the hypothesis will be a super-
set of the target. Otherwise it must define a subset
of the correct language. Then either there is some
N > n at which it has converged to the limit lan-
guage which will cause the first condition in the
loop to be satisfied and F will be increased to a
superset of G, or F will be increased before it con-
verges, and thus the result holds.

Lemma 11. After F converges according to the
previous lemma, there is some n, such that for all
N > n, KN = Kn and L(〈Kn, L, Fn〉) = L.

Proof. let n0 be the convergence point of F ; for
all n > n0 the hypothesis will be a superset of
the target language; therefore the only change that
can happen is that K will increase. By definition
of the limit language, it must converge after a finite
number of examples.

Theorem 1. For every language L ∈ LDLG, and
every presentation of L, Algorithm 1 will converge
to a grammar G such that L(G) = L.

This result is immediate by the two preceding
lemmas.

8 Conclusion

We have presented an efficient, correct learning al-
gorithm for an interesting class of languages; this
is the first such learning result for a class of lan-
guages that is potentially large enough to describe
natural language.

The results presented here lack a couple of tech-
nical details to be completely convincing. In par-
ticular we would like to show that given a repre-
sentation of size n, we can learn once we have seen
a set of examples that is polynomially bounded by
n. This will be challenging, as the size of the K
we need to converge can be exponentially large
in F . We can construct DFAs where the num-
ber of congruence classes of the language is an
exponential function of the number of states. In
order to learn languages like this, we will need
to use a more efficient algorithm that can learn
even with “insufficient” K: that is to say when
the lattice B(K, L, F) has fewer elements that
B(KK, L, F).

This algorithm can be implemented directly and
functions as expected on synthetic examples, but
would need modification to run efficiently on nat-
ural languages. In particular rather than consider-
ing whole contexts of the form (l, r) it would be
natural to restrict them just to a narrow window
of one or two words or tags on each side. Rather
than using a membership oracle, we could prob-
abilistically cluster the data in the table of counts
of strings in F � K. In practice we will have a
limited amount of data to work with and we can
control over-fitting in a principled way by control-
ling the relative size of K and F .

This formalism represents a process of anal-
ogy from stored examples, based on distributional
learning – this is very plausible in terms of what
we know about cognitive processes, and is com-
patible with much non-Chomskyan theorizing in
linguistics (Blevins and Blevins, 2009). The class
of languages is a good fit to the class of natural
languages; it contains, as far as we can tell, all
standard examples of context free grammars, and
includes non-deterministic and inherently ambigu-
ous grammars. It is hard to say whether the class
is in fact large enough to represent natural lan-
guages; but then we don’t know that about any for-
malism, context-free or context-sensitive. All we
can say is that there are no phenomena that we are
aware of that don’t fit. Only large scale empirical
work can answer this question.

Ideologically these models are empiricist – the
structure of the representation is based on the
structure of the data: this has to be a good thing
for computational modeling. By minimizing the
amount of hidden, unobservable structure, we can
improve learnability. Languages are enormously
complex, and it would be simplistic to try to re-
duce their acquisition to a few pages of mathe-
matics; nonetheless, we feel that the representa-
tions and grammar induction algorithms presented
in this paper could be a significant piece of the
puzzle.

36

References
N. Abe and M. K. Warmuth. 1992. On the computa-

tional complexity of approximating distributions by
probabilistic automata. Machine Learning, 9:205–
260.

D. Angluin and M. Kharitonov. 1995. When won’t
membership queries help? J. Comput. Syst. Sci.,
50:336–355.

D. Angluin. 1987. Learning regular sets from queries
and counterexamples. Information and Computa-
tion, 75(2):87–106.

James P. Blevins and Juliette Blevins. 2009. Analogy
in grammar: Form and acquisition. Oxford Univer-
sity Press.

A. Carnie. 2008. Constituent structure. Oxford Uni-
versity Press, USA.

Noam Chomsky. 2006. Language and mind. Cam-
bridge University Press, 3rd edition.

Alexander Clark and Shalom Lappin. 2009. Another
look at indirect negative evidence. In Proceedings of
the EACL Workshop on Cognitive Aspects of Com-
putational Language Acquisition, Athens, March.

Alexander Clark, Rémi Eyraud, and Amaury Habrard.
2008. A polynomial algorithm for the inference of
context free languages. In Proceedings of Interna-
tional Colloquium on Grammatical Inference, pages
29–42. Springer, September.

Alexander Clark. 2009. A learnable representation
for syntax using residuated lattices. In Proceedings
of the 14th Conference on Formal Grammar, Bor-
deaux, France.

J.R. Curran. 2003. From distributional to semantic
similarity. Ph.D. thesis, University of Edinburgh.

B. A. Davey and H. A. Priestley. 2002. Introduction to
Lattices and Order. Cambridge University Press.

B. Ganter and R. Wille. 1997. Formal Concept Analy-
sis: Mathematical Foundations. Springer-Verlag.

E. M. Gold. 1967. Language identification in the limit.
Information and control, 10(5):447 – 474.

Zellig Harris. 1954. Distributional structure. Word,
10(2-3):146–62.

J. J. Horning. 1969. A Study of Grammatical Infer-
ence. Ph.D. thesis, Stanford University, Computer
Science Department, California.

M. Johnson. 2008. Using adaptor grammars to identify
synergies in the unsupervised acquisition of linguis-
tic structure. In 46th Annual Meeting of the ACL,
pages 398–406.

Dan Klein and Chris Manning. 2001. Distribu-
tional phrase structure induction. In Proceedings of
CoNLL 2001, pages 113–121.

Dan Klein and Chris Manning. 2004. Corpus-based
induction of syntactic structure: Models of depen-
dency and constituency. In Proceedings of the 42nd
Annual Meeting of the ACL.

K. Lari and S. J. Young. 1990. The estimation of
stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language,
4:35–56.

L. Pitt. 1989. Inductive inference, dfa’s, and computa-
tional complexity. In K. P. Jantke, editor, Analogical
and Inductive Inference, number 397 in LNAI, pages
18–44. Springer-Verglag.

J. R. Saffran, R. N. Aslin, and E. L. Newport. 1996.
Statistical learning by eight month old infants. Sci-
ence, 274:1926–1928.

Hinrich Schütze. 1993. Part of speech induction from
scratch. In Proceedings of the 31st annual meet-
ing of the Association for Computational Linguis-
tics, pages 251–258.

37

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 38–45,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Identifying Patterns for Unsupervised Grammar Induction

Jeśus Santamaŕıa
U. Nacional de Educación a Distancia

NLP-IR Group, Madrid, Spain.
jsant@lsi.uned.es

Lourdes Araujo
U. Nacional de Educación a Distancia

NLP-IR Group, Madrid, Spain.
lurdes@lsi.uned.es

Abstract

This paper describes a new method for un-
supervised grammar induction based on
the automatic extraction of certain pat-
terns in the texts. Our starting hypoth-
esis is that there exist some classes of
words that function as separators, mark-
ing the beginning or the end of new con-
stituents. Among these separators we dis-
tinguish those which trigger new levels in
the parse tree. If we are able to detect these
separators we can follow a very simple
procedure to identify the constituents of a
sentence by taking the classes of words be-
tween separators. This paper is devoted to
describe the process that we have followed
to automatically identify the set of sepa-
rators from a corpus only annotated with
Part-of-Speech (POS) tags. The proposed
approach has allowed us to improve the re-
sults of previous proposals when parsing
sentences from the Wall Street Journal cor-
pus.

1 Introduction

Most works dealing with Grammar Induction (GI)
are focused on Supervised Grammar Induction,
using a corpus of syntactically annotated sen-
tences, or treebank, as a reference to extract the
grammar. The existence of a treebank for the lan-
guage and for a particular type of texts from which
we want to extract the grammar is a great help to
GI, even taking into account the theoretical limi-
tations of GI, such as the fact that grammars can-
not be correctly identified from positive examples
alone (Gold, 1967). But the manual annotation
of thousands of sentences is a very expensive task
and thus there are many languages for which there
are not treebanks available. Even in languages for
which there is a treebank, it is usually composed

of a particular kind of texts (newspaper articles,
for example) and may not be appropriate for other
kind of texts, such as tales or poetry. These rea-
sons have led to the appearance of several works
focused on unsupervised GI.

Thanks to our knowledge of the language we
know that some classes of words are particularly
influential to determine the structure of a sentence.
For example, let us consider the tree in Figure 1,
for which the meaning of the POS tags appears in
Table 1. We can observe that the tag MD (Modal)
breaks the sentence into two parts. Analogously,
in the tree appearing in Figure 2 the POS tag VBZ
breaks the sentence. In both cases, we can see that
after the breaking tag, a new level appears in the
parse tree. A similar effect is observed for other
POS tags, such as VB in the tree of Figure 1 and
IN in the tree of Figure 2. We call these kind of
POS tagsseparators. There are also other POS
tags which are frequently the beginning or the end
of a constituent1. For example in the tree in Fig-
ure 1 we can find the sequences (DT NN) and (DT
JJ NN), which according to the parse tree are con-
stituents. In the tree in Figure 2 we find the se-
quence (DT NNP VBG NN). In both trees we can
also find sequences beginning with the tag NNP:
(NNP NNP) and (NNP CD) in the tree in Figure 1
and (NNP NNP), which appears twice, in the tree
in Figure 2. This suggests that there are classes
of words with a trend to be the beginning or the
end of constituents without giving rise to new lev-
els in the parse tree. We call these POS tagssub-
separators. These observations reflect some of our
intuitions, such as the fact that most sentences are
composed of a noun phrase and a verb phrase, be-
ing frequently the verb the beginning of the verbal
phrase, which usually leads to a new level of the
parse tree. We also know that determiners (DT)
are frequently the beginning of the noun phrases.

1Constituents are language units in which we can arrange
the structure of a sentence.

38

S

NP-SBJ

NP

NNP NNP

ADJP

NP

CD NNS

JJ

VP

MD VP

VB NP

DT NN

PP-CLR

IN NP

DT JJ NN

NP-TMP

NNP CD

Figure 1: Parse tree for the sentencePierre Vinken,
61 years old, will join the board as a nonexecutive
director Nov. 29. from the Penn Treebank

S

NP-SBJ

NNP NNP

VP

VBZ NP-PRD

NP

NN

PP

IN NP

NP

NNPNNP

NP

DT NNPVBG NN

Figure 2: Parse tree for the sentenceMr. Vinken
is chairman of Elsevier N.V., the Dutch publishing
group. from the Penn Treebank

At this point we could either try to figure out
what is the set of tags which work as separators, or
to compute them from a parsed corpus for the con-
sidered language, provided it is available. How-
ever, because we do not want to rely on the exis-
tence of a treebank for the corresponding language
and type of texts we have done something differ-
ent: we have devised a statistical procedure to au-
tomatically capture the word classes which func-
tion as separators. In this way our approach can
be applied to most languages, and apart from pro-
viding a tool for extracting grammars and parsing
sentences, it can be useful to study the different
classes of words that work as separators in differ-
ent languages.

Our statistical mechanism to detect separators
is applied to a corpus of sentences annotated with
POS tags. This is not a strong requirement since
there are very accurate POS taggers (about 97%)
for many languages. The grammar that we obtain
does not specify the left-hand-side of the rules, but
only sequences of POS tags that are constituents.

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition / subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PP$ Possessive pronoun
RB Adverb.
RBR Adverb, comparative
RBS Adverb., superlative
RP Particle
SYM Symbol (mathematical or scientific)
TO To
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund / present participle
VBN Verb, past participle
VBP Verb, non-3rd ps. sing. present
VBZ Verb, 3rd ps. sing. present
WDT wh-determiner
WP wh-pronoun
WP$ Possessive wh-pronoun
WRB wh-adverb

Table 1: Alphabetical list of part-of-speech tags
used in the Penn Treebank, the corpus used in our
experiments

At this point we have followed the Klein and Man-
ning (2005) setting for the problem, which allows
us to compare our results to theirs. As far as we
know these are the best results obtained so far for
unsupervised GI using a monolingual corpus. As
they do, we have used the Penn treebank (Mar-
cus et al., 1994) for our experiments, employing
the syntactic annotations that it provides for eval-
uation purposes only. Specifically, we have used
WSJ10, composed of 6842 sentences, which is the
subset of the Wall Street Journal section of the
Penn Treebank, containing only those sentences of
10 words or less after removing punctuation and
null elements, such as $, ”, etc.

The rest of the paper is organized as follows:
section 2 reviews some related works; section 3
describes the details of the proposal to automati-
cally extract the separators from a POS tagged cor-
pus; section 4 is devoted to describe the procedure
to find a parse tree using the separators; section

39

5 presents and discusses the experimental results,
and section 6 draws the main conclusions of this
work.

2 State of the Art

A growing interest in unsupervised GI has been
observed recently with the appearance of several
works in the topic. Some of these works have fo-
cused on finding patterns of words (Solan et al.,
2005) more than syntactic structures. It has been
noted that the rules produced by GI can also be in-
terpreted semantically (David et al., 2003), where
a non-terminal describes interchangeable elements
which are instances of the same concepts.

Distributional approaches to unsupervised GI
exploit the principle of substitutability: con-
stituents of the same type may be exchanged with
one another without affecting the syntax of the
surrounding context. Distributional approaches to
grammar induction fall into two categories, de-
pending on their treatment of nested structure. The
first category covers Expectation-Maximization
(EM) systems (Dempster et al., 1977). These sys-
tems propose constituents based on analysis of the
text, and then select a non-contradictory combina-
tion of constituents for each sentence that maxi-
mizes a given metric, usually parsing probability.
One of the most successful proposals in this area
is the one by Klein and Manning (2005), which,
as mentioned before, starts from a corpus labelled
only with POS tags. The key idea of the model
proposed in this work is that constituents appear
in constituent contexts. However, the EM algo-
rithm presents some serious problems: it is very
slow (Lari and Young, 1990), and is easily trapped
in local maxima (Carroll and Charniak, 1992).
Alignment Based Learning (ABL) (van Zaanen
and Leeds, 2000) is the only EM system applied
directly to raw text. However, ABL is relatively
inefficient and has only been applied to small cor-
pora. Brooks (Brooks, 2006) reverses the notion
of distributional approaches: if we can identify
“surrounding context” by observation, we can hy-
pothesize that word sequences occurring in that
context will be constituents of the same type. He
describes a simplified model of distributional anal-
ysis (for raw test) which uses heuristics to reduce
the number of candidate constituents under con-
sideration. This is an interesting idea in spite that
Brook showed that the system was only capable of
learning a small subset of constituent structures in

a large test corpus.
The second category is that of incremental

learning systems. An incremental system analyzes
a corpus in a bottom-up fashion: each time a new
constituent type is found it is inserted into the cor-
pus to provide data for later learning. The EMILE
(Adriaans, 1999) and ADIOS (David et al., 2003)
systems are examples for this category, not yet
evaluated on large corpora.

Bilingual experiments have been also conducted
with the aim to exploit information from one lan-
guage to disambiguate another. Usually such a
setting requires a parallel corpus or another an-
notated data that ties the two languages. Co-
hen and Smith (2009) use the English and Chi-
nese treebanks, which are not parallel corpora, to
train parsers for both languages jointly. Their re-
sults shown that the performance on English im-
proved in the bilingual setting. Another related
work (Snyder et al., 2009) uses three corpora of
parallel text. Their approach is closer to the un-
supervised bilingual parsing model developed by
Kuhn (2004), which aims to improve monolingual
performance.

The approach considered in this work follows a
different direction, trying to identify certain pat-
terns that can determine the structure of the parse
trees.

3 Extracting Separators from the Corpus

To automatically extract the set of separators and
sub-separators from a corpus of POS tagged sen-
tences we start from some assumptions:

• The most frequent sequence (of any length)
of POS tags in the corpus is a constituent,
that we callsafe constituent (sc). It is quite a
sensible assumption, since we can expect that
at least for the most frequent constituent the
number of occurrences overwhelms the num-
ber of sequences appearing by chance.

• We also assume that the POS tag on the left,
Lsc, and on the right,Rsc, of the safe con-
stituent are a kind of context for other se-
quences that play the same role. Accord-
ing to this, other extended sequences with
Lsc andRsc at the ends but with other POS
tags inside are also considered constituents.
This assumption is somehow related to the
Klein and Manning’s (2005) idea underlying
their unsupervised GI proposal. According

40

to them, constituents appear in constituent
contexts. Their model exploits the fact that
long constituents often have short, common
equivalents, which appear in similar contexts
and whose constituency as a grammar rule is
more easily found.

• According to the previous point, we use the
tag on the left (Lsc) and on the right (Rsc) of
the safe constituent as discriminant with re-
spect to which to study the behavior of each
POS tag. A POS tagE can have a bias to be
inside the safe constituent, to be outside the
safe constituent (separator), or not to have a
bias at all (sub-separator). We define thede-
termining side of a tagE, as the end tag,Lsc

or Rsc, of the sc with the greater difference
on the number of occurrences ofE on both
sides of the end tag. For example, if the ra-
tio of occurrences ofE on the left and on the
right of Lsc is smaller (they are more differ-
ent) than the ratio ofE on the left and on the
right of Rsc, thenLsc is the determining side
of E, ds(E)2. Then:

– E is considered a separator in the fol-
lowing cases:
∗ if Lsc is the determining side forE

andE appears a 75% more often to
the left ofLsc than to the right (the
75% has been fixed after some esti-
mates described below), or

∗ if Rsc is the determining side forE
andE appears a 75% more often to
the right ofRsc than to the left.

– E is considered a sub-separator if the
following conditions hold:
∗ if Lsc is the determining side forE

andE appears a 75% less often to
the left ofLsc than to the right (the
ratios are very similar) , or

∗ if Rsc is the determining side forE
andE appears a 75% less often to
the right ofRsc than to the left.

– In the remaining casesE is considered
to be part of a constituent (the prefer-
ence is to be inside).

Let us introduce some notation to define more
formally the separators and sub-separators. Let

2If the number of occurrences ofE on any side ofLsc

or Rsc is zero, then we compare differences between occur-
rences instead of ratios.

#(E1, · · · , En) be the number of occurrences of
the sequence of tags(E1, · · · , En). We define a
predicatesim to denote the similarity between the
number of occurrences of a sequence of two tags
and the one with reverse order, as

sim(E1, E2)) =

#(E1, E2)

#(E2, E1)
≥ 0.75 if #(E1, E2) ≤ #(E2, E1)

#(E2, E1)

#(E1, E2)
≥ 0.75 if #(E2, E1) ≤ #(E1, E2)

Then a tagE is considered a separator if the
following predicate is true:

sep(Lsc, E, Rsc) =

(sd(Lsc) ∧ (#(E, Lsc) > #(Lsc, E)∧

¬sim(E, Lsc)))∨

(sd(Rsc) ∧ (#(Rsc, E) > #(E, Rsc) ∧ ¬sim(E, Rsc))

. A tag is considered a sub-separator when the
following predicate is true:

subsep(Lsc, E, Rsc) =

(sd(Lsc) ∧ sim(E, Lsc))∨

(sd(Rsc) ∧ sim(E, Rsc))

.

We have computed the number of occurrences
of every sequence of POS tags in the corpus, find-
ing that the most frequent sequence of tags is
(DT,NN). This sequence, which is our safe con-
stituent, appears 2222 times in the considered cor-
pus WSJ10.

Applying our procedure to the corpus we have
obtained the following sets of separators and sub-
separators:

Separators MD, PRP, IN, RB, RBR,
CC, TO, VB, VBD, VBN,
VBZ, VBP, VBG, EX, LS,
RP, UH, WP, WRB, WDT

Sub-separators DT, PDT, POS, SYM, NN,
NNS, NNP, NNPS

For selecting a threshold value to discriminate
the preference of a POS tag to be inside or out-
side of a constituent we have studied the results
obtained for different threshold values greater than
50%. Table 2 shows the results. We can observe
all of them are very similar for all the thresholds,
as long as they are greater than 50%. Analyzing
the set of POS-tags that have been classified as
separators and sub-separators with each threshold
we have found that the only differences are that the
tag POS (Possessive ending), which is classified
as sub-separator using a threshold between 50%

41

and 75%, is classified as separator using higher
thresholds, and the tagSYM (Symbol), which is
classified as sub-separator using a threshold be-
tween 50% and 75%, is classified neither as a sep-
arator nor as a sub-separator using higher thresh-
olds. We have adopted a threshold value of 75%
because higher values can be too restrictive, and in
fact provide worse results.

Similarity F1
55% 74.55
65% 74.55
75% 74.55
85% 72.24
95% 72.24

Table 2: F-measure results obtained for different
values of the threshold used to classify the set of
POS-tags.

Sub-separators can be grouped to their right or
to their left, depending on the case. In order to
measure the bias of each of them for one direc-
tion or another we have compared the number of
occurrences of the most frequent sequence com-
posed of the sub-separator and a POS tag on the
right and on the left. We choose as preference di-
rection for a sub-separator the corresponding to
the most frequent sequence. Table 3 shows the
results obtained, the preference direction of each
sub-separator appearing in the last column. In the
case of NNP, for which the frequency of the most
frequent tag to the right and to the left are the
same, we have looked at the second most frequent
sequence to choose the grouping direction.

sub-sep left freq. right freq. D
DT (DT, NN)(2222) (IN,DT)(894) L
PDT (PDT,DT)(28) (NN,PDT)(14) L
POS (POS, NN)(169) (NNP, POS)(223) R
SYM (SYM, IN)(11) (NN,SYM)(4) L
NN (NN, IN)(892) (DT,NN)(2222) R
NNS (NNS, VBP)(591) (JJ,NNS)(797) R
NNP (NNP, NNP)(2127) (NNP,NNP)(2127) R
NNPS (NNPS, NNP)(42) (NNP,NNPS)(82) R

Table 3: Preference direction to which each sub-
separator clusters. The first column corresponds
to the sub-separator, the second one to the most
frequent sequence composed of the sub-separator
and a tag on its right, the third one to the most fre-
quent sequence of the sub-separator and a tag on
its left, and the last column to the resulting direc-
tion.

4 Identifying Constituents

Once we have the sets of separators and sub-
separators the procedure to identify the con-
stituents of each sentence is as follows:

• We identify the separators in the sentence.
For example, if we consider the sentence:

CC DT NN IN NNP NNP POS NN VBZ

the separators are marked in boldface:

CC DT NN IN NNP NNP POS NNVBZ

• The next step is to split the sentence ac-
cording to the separators. The first separator
which is a verb, if any, is used to split the sen-
tence into two parts. Each separator can give
rise to two groups: one composed of the tag
sequence between the separator and the next
separator, and another one which includes the
separator and the POS tags up to the end of
the part of the sentence in which it appears
(usually sentences are divided into two parts
using the first separator which is a verb). In
our example, this mechanism leads to the fol-
lowing structure:

[[CC [DT NN] [IN [NNP NNP POS NN]]]
[VBZ]]

• Now it is the turn of the sub-separators (DT,
PDT, POS, SYM, NN, NNS, NNP, NNPS),
which are underlined in the sentence:

[[CC [DT NN] [IN [NNP NNP POSNN]]]
[VBZ]]

• Finally, each group of the sentence is split
according to the sub-separators. Each sub-
separator has been assigned a preference di-
rection to form the group with the next POS
tag. Looking at Table 3, which tells us the
direction in which each sub-separator forms
the group, we apply this step to our sentence
example, obtaining:

[[CC [DT NN] [IN [[NNP NNP POS] NN]]]
[VBZ]]

42

The sub-separator DT is grouped with the
tags on its right, while NN is grouped with
the tags on its left, thus composing the group
(DT NN). When two or more sub-separators
appear in a sequence, they are grouped to-
gether in a unique constituent whenever they
have the same grouping direction. In our sen-
tence example this criterion leads to [NNP
NNP POS] instead of [NNP[NNP[POS]]]. A
constituent finishes if the next POS tag is a
separator or if it is a sub-separator that makes
groups towards the left. Since POS (Pos-
sessive ending) tends to be grouped with the
POS tag on its left, it is the end of the con-
stituent.

Figure 3 represents the obtained structure as a
parse tree. Figure 4 represents the correct parse
tree according to the Penn treebank. We can ob-
serve that both structures are very similar. The
method based on separators has been able to cap-
ture most of the constituent appearing in the parse
tree: (DT, NN), (NNP, NNP, POS), (NNP, NNP,
POS, NN), (IN, NNP, NNP, POS, NN). The differ-
ences between both trees come from our criterion
of splitting the sequence of tags into two subse-
quences using the first verb. This problem will be
tackled in the future in a more refined model.

C

C

CC C

DT NN

C

IN C

C

NNP NNP POS

NN

VBZ

Figure 3: Parse tree for the sentenceAnd the nose
on Mr. Courter’s face grows from the Penn tree-
bank (WSJ), obtained with our separators method.

5 Evaluation

Our proposal has been evaluated by comparing the
tree structures produced by the system to the gold-
standard trees produced by linguists, which can be
found in the Penn Treebank. Because we do not
assign class name to our constituents, i.e. a left
hand side symbol for the grammar rules, as the lin-
guists do in treebanks, the comparison ignores the
class labels, considering only groups of tags.

S

CC NP-SBJ

NP

DT NN

PP-LOC

IN NP

NP

NNP NNP POS

NN

VP

VBZ

Figure 4: Parse tree appearing in the Penn tree-
bank (WSJ) for the sentenceAnd the nose on Mr.
Courter’s face grows.

The results presented in the work by Klein and
Manning (2005) have been our reference, since as
far we know they are the best ones obtained so far
for unsupervised GI. For the sake of comparison,
we have considered the same corpus and the same
measures. Accordingly, we performed the experi-
ments on the 6842 sentences3 of the WSJ10 selec-
tion from the Penn treebank Wall Street Journal
section.

In order to evaluate the quality of the obtained
grammar we have used the most common mea-
sures for parsing and grammar induction evalua-
tion: recall, precision, and their harmonic mean
(F-measure). They are defined assuming a bracket
representation of a parse tree.

Precision is given by the number of brackets
in the parse to evaluate which match those in the
correct tree andrecall measures how many of the
brackets in the correct tree are in the parse. These
measures have counterparts for unlabeled trees,
the ones considered in this work – in which the
label assigned to each constituent is not checked.
Constituents which could not be wrong (those of
size one and those spanning the whole sentence)
have not been included in the measures.

The definitions of Unlabeled Precision (UP) and
Recall (UR) of a proposed corpusP = [Pi] against
a gold corpusG = [Gi] are:

UP (P, G) =

∑
i
|brackets(Pi) ∩ brackets(Gi)|∑

i
|brackets(Pi)|

,

UR(P, G) =

∑
i
|brackets(Pi) ∩ brackets(Gi)|∑

i
|brackets(Gi)|

.

Finally, UF (Unlabeled F-measure) is given by:

UF =
2 · UP (P, G) · UR(P, G)

UP (P, G) + UR(P, G)
.

3More precisely sequences of POS tags

43

1 2 3 4 5 6 7 8 9 10
Constituent size

60

70

80

90

100
%

Recall
Precision
F-measure

Figure 5: Results obtained per constituent size:
unlabeled recall, precision, and F-measure.

Figure 5 shows the results of unlabeled recall,
precision and F-measure obtained per constituent
size. We can observe that recall and precision, and
thus the corresponding F-measure, are quite sim-
ilar for every constituent size. This is important,
because obtaining a high F-measure thanks to a
very high recall but with a poor precision, is not
so useful. We can also observe that the best results
are obtained for short and long constituents, with
lower values for middle lengths, such as 5 and 6.
We believe that this is because intermediate size
constituents present more variability. Moreover,
for intermediate sizes, the composition of the con-
stituents is more dependent on sub-separators, for
which the statistical differences are less significant
than for separators.

2 3 4 5 6 7 8 9
Constituent size

50

60

70

80

90

F
-m

ea
su

re

Separator approach
Klein-Manning approach

Figure 6: Comparison of the separator approach
and Klein and Manning’s approach per constituent
size.

We have compared our results to those obtained
by Klein and Manning (2005) for the same corpus.

Table 4 shows the obtained results for WSJ10. We
can observe that we have obtained more balanced
values of recall and precision, as well as a better
value for the F-measure. Thus the method pro-
posed in this work, that we expect to refine by
assigning different probabilities to separators and
sub-separators, depending on the context they ap-
pear in, provides a very promising approach.

UR UP UF

Separ. A. 77,63% 71,71% 74,55%
KM 80.2% 63.8% 71.1%

Table 4: Results (unlabeled recall, precision, and
F-measure), obtained with the separator approach
(first row) and with the Klein and Manning ap-
proach (second row) for the WSJ10 corpus.

Figure 6 compares the F-measure for the two
approaches by constituents length. We can ob-
serve that the separator approach obtains better re-
sults for all the lengths. The figure also shows that
the results per constituent length follow the same
trend in both approaches, thus reflecting that the
difficulty for middle length constituents is greater.

6 Conclusions

We have proposed a novel approach for unsuper-
vised grammar induction which is based on iden-
tifying certain POS tags that very often divide the
sentences in particular manners. These separators
are obtained from POS tagged texts, thus making
the model valid for many languages. The con-
stituents corresponding to a sentence are found by
means of a simple procedure based on the sepa-
rators. This simple method has allowed us to im-
prove the results of previous proposals.

We are currently working in defining a more re-
fined statistical model which takes into account
the probability of a tag to be a separator or sub-
separator, depending on its context. We plan to
apply a similar study to other languages, in order
to study the different classes of words that func-
tion as separator in each of them.

Acknowledgements

This paper has been funded in part by the Span-
ish MICINN project QEAVis-Catiex (Spanish
Ministerio de Educación y Ciencia - TIN2007-
67581), as well as by the Regional Government of
Madrid under the Research Network MA2VICMR
(S2009/TIC-1542).

44

References

Pieter Adriaans. 1999. Learning Shallow Context-Free
Languages under Simple Distributions. Technical
Report, Institute for Logic, Language, and Compu-
tation, Amsterdam.

David J. Brooks. 2006. Unsupervised grammar in-
duction by distribution and attachment. InCoNLL-X
’06: Proceedings of the Tenth Conference on Com-
putational Natural Language Learning, pages 117–
124. Association for Computational Linguistics.

Glenn Carroll and Eugene Charniak. 1992. Two exper-
iments on learning probabilistic dependency gram-
mars from corpora. InWorking Notes of the Work-
shop Statistically-Based NLP Techniques, pages 1–
13. AAAI.

Shay B. Cohen and Noah A. Smith. 2009. Shared
logistic normal distributions for soft parameter ty-
ing in unsupervised grammar induction. InNAACL
’09: Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 74–82. Association for
Computational Linguistics.

Zach Solan David, David Horn, and Shimon Edelman.
2003. Unsupervised efficient learning and represen-
tation of language structure. InProc. 25th Confer-
ence of the Cognitive Science Society, pages 2577–
3596. Erlbaum.

A. Dempster, N. Laird, and D. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM
algorithm.Royal statistical Society B, 39:1–38.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10(5):447–474.

Dan Klein and Christopher D. Manning. 2005. Nat-
ural language grammar induction with a genera-
tive constituent-context model.Pattern Recognition,
38(9):1407–1419.

Jonas Kuhn. 2004. Experiments in parallel-text based
grammar induction. InACL ’04: Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, page 470. Association for Com-
putational Linguistics.

K. Lari and S. J. Young. 1990. The estimation of
stochastic context-free grammars using the inside-
outside algorithm.Computer Speech and Language,
4:35–56.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of english: The penn treebank.Computa-
tional Linguistics, 19(2):313–330.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. InACL-IJCNLP ’09: Proceedings of the
Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 1, pages 73–81. Association for Computational
Linguistics.

Zach Solan, David Horn, Eytan Ruppin, and Shi-
mon Edelman. 2005. Unsupervised learning of
natural languages. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 102(33):11629–11634.

Menno van Zaanen and Ls Jt Leeds. 2000. Learning
structure using alignment based learning. InUniver-
sities of Brighton and Sussex, pages 75–82.

45

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 46–54,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Learning Better Monolingual Models with Unannotated Bilingual Text

David Burkett† Slav Petrov‡ John Blitzer† Dan Klein†

†University of California, Berkeley ‡Google Research
{dburkett,blitzer,klein}@cs.berkeley.edu slav@google.com

Abstract

This work shows how to improve state-of-the-art
monolingual natural language processing models
using unannotated bilingual text. We build a mul-
tiview learning objective that enforces agreement
between monolingual and bilingual models. In
our method the first, monolingual view consists of
supervised predictors learned separately for each
language. The second, bilingual view consists of
log-linear predictors learned over both languages
on bilingual text. Our training procedure estimates
the parameters of the bilingual model using the
output of the monolingual model, and we show how
to combine the two models to account for depen-
dence between views. For the task of named entity
recognition, using bilingual predictors increases F1

by 16.1% absolute over a supervised monolingual
model, and retraining on bilingual predictions
increases monolingual model F1 by 14.6%. For
syntactic parsing, our bilingual predictor increases
F1 by 2.1% absolute, and retraining a monolingual
model on its output gives an improvement of 2.0%.

1 Introduction

Natural language analysis in one language can be
improved by exploiting translations in another lan-
guage. This observation has formed the basis for
important work on syntax projection across lan-
guages (Yarowsky et al., 2001; Hwa et al., 2005;
Ganchev et al., 2009) and unsupervised syntax
induction in multiple languages (Snyder et al.,
2009), as well as other tasks, such as cross-lingual
named entity recognition (Huang and Vogel, 2002;
Moore, 2003) and information retrieval (Si and
Callan, 2005). In all of these cases, multilingual
models yield increased accuracy because differ-
ent languages present different ambiguities and
therefore offer complementary constraints on the
shared underlying labels.

In the present work, we consider a setting where
we already possess supervised monolingual mod-
els, and wish to improve these models using unan-
notated bilingual parallel text (bitext). We cast this

problem in the multiple-view (multiview) learning
framework (Blum and Mitchell, 1998; Collins and
Singer, 1999; Balcan and Blum, 2005; Ganchev et
al., 2008). Our two views are a monolingual view,
which uses the supervised monolingual models but
not bilingual information, and a bilingual view,
which exploits features that measure agreement
across languages. The parameters of the bilin-
gual view are trained to reproduce the output of
the monolingual view. We show that by introduc-
ing weakened monolingual models into the bilin-
gual view, we can optimize the parameters of the
bilingual model to improve monolingual models.
At prediction time, we automatically account for
the between-view dependence introduced by the
weakened monolingual models with a simple but
effective view-combination heuristic.

We demonstrate the performance of this method
on two problems. The first is named en-
tity recognition (NER). For this problem, our
method automatically learns (a variation on) ear-
lier hand-designed rule-based bilingual NER pre-
dictors (Huang and Vogel, 2002; Moore, 2003),
resulting in absolute performance gains of up to
16.1% F1. The second task we consider is statis-
tical parsing. For this task, we follow the setup
of Burkett and Klein (2008), who improved Chi-
nese and English monolingual parsers using par-
allel, hand-parsed text. We achieve nearly iden-
tical improvements using a purely unlabeled bi-
text. These results carry over to machine transla-
tion, where we can achieve slightly better BLEU
improvements than the supervised model of Bur-
kett and Klein (2008) since we are able to train
our model directly on the parallel data where we
perform rule extraction.

Finally, for both of our tasks, we use our bilin-
gual model to generate additional automatically
labeled monolingual training data. We compare

46

this approach to monolingual self-training and
show an improvement of up to 14.4% F1 for entity
recognition. Even for parsing, where the bilingual
portion of the treebank is much smaller than the
monolingual, our technique still can improve over
purely monolingual self-training by 0.7% F1.

2 Prior Work on Learning from
Bilingual Text

Prior work in learning monolingual models from
bitexts falls roughly into three categories: Unsu-
pervised induction, cross-lingual projection, and
bilingual constraints for supervised monolingual
models. Two recent, successful unsupervised
induction methods are those of Blunsom et al.
(2009) and Snyder et al. (2009). Both of them es-
timate hierarchical Bayesian models and employ
bilingual data to constrain the types of models that
can be derived. Projection methods, on the other
hand, were among the first applications of parallel
text (after machine translation) (Yarowsky et al.,
2001; Yarowsky and Ngai, 2001; Hwa et al., 2005;
Ganchev et al., 2009). They assume the existence
of a good, monolingual model for one language
but little or no information about the second lan-
guage. Given a parallel sentence pair, they use the
annotations for one language to heavily constrain
the set of possible annotations for the other.

Our work falls into the final category: We wish
to use bilingual data to improve monolingual mod-
els which are already trained on large amounts of
data and effective on their own (Huang and Vo-
gel, 2002; Smith and Smith, 2004; Snyder and
Barzilay, 2008; Burkett and Klein, 2008). Proce-
durally, our work is most closely related to that
of Burkett and Klein (2008). They used an an-
notated bitext to learn parse reranking models for
English and Chinese, exploiting features that ex-
amine pieces of parse trees in both languages. Our
method can be thought of as the semi-supervised
counterpart to their supervised model. Indeed, we
achieve nearly the same results, but without anno-
tated bitexts. Smith and Smith (2004) consider
a similar setting for parsing both English and Ko-
rean, but instead of learning a joint model, they
consider a fixed combination of two parsers and
a word aligner. Our model learns parameters for
combining two monolingual models and poten-
tially thousands of bilingual features. The result
is that our model significantly improves state-of-
the-art results, for both parsing and NER.

3 A Multiview Bilingual Model

Given two input sentences x = (x1, x2) that
are word-aligned translations of each other, we
consider the problem of predicting (structured)
labels y = (y1, y2) by estimating conditional
models on pairs of labels from both languages,
p(y1, y2|x1, x2). Our model consists of two views,
which we will refer to as monolingual and bilin-
gual. The monolingual view estimates the joint
probability as the product of independent marginal
distributions over each language, pM (y|x) =
p1(y1|x1)p2(y2|x2). In our applications, these
marginal distributions will be computed by state-
of-the-art statistical taggers and parsers trained on
large monolingual corpora.

This work focuses on learning parameters for
the bilingual view of the data. We parameterize
the bilingual view using at most one-to-one match-
ings between nodes of structured labels in each
language (Burkett and Klein, 2008). In this work,
we use the term node to indicate a particular com-
ponent of a label, such as a single (multi-word)
named entity or a node in a parse tree. In Fig-
ure 2(a), for example, the nodes labeled NP1 in
both the Chinese and English trees are matched.
Since we don’t know a priori how the components
relate to one another, we treat these matchings as
hidden. For each matching a and pair of labels
y, we define a feature vector φ(y1, a, y2) which
factors on edges in the matching. Our model is
a conditional exponential family distribution over
matchings and labels:

pθ(y, a|x) = exp
[
θ>φ(y1, a, y2)−A(θ;x)

]
,

where θ is a parameter vector, and A(θ;x) is the
log partition function for a sentence pair x. We
must approximate A(θ;x) because summing over
all at most one-to-one matchings a is #P-hard. We
approximate this sum using the maximum-scoring
matching (Burkett and Klein, 2008):

Ã(θ;x) = log
∑
y

max
a

(
exp

[
θ>φ(y1, a, y2)

])
.

In order to compute the distribution on labels y, we
must marginalize over hidden alignments between
nodes, which we also approximate by using the
maximum-scoring matching:

qθ(y|x) def= max
a

exp
[
θ>φ(y1, a, y2)−Ã(θ;x)

]
.

47

the reports of European Court

ORG1

of Auditors

die Berichte des Europäischen Rechnungshofes

ORG1

the

Figure 1: An example where English NER can be
used to disambiguate German NER.

We further simplify inference in our model by
working in a reranking setting (Collins, 2000;
Charniak and Johnson, 2005), where we only con-
sider the top k outputs from monolingual models
in both languages, for a total of k2 labels y. In
practice, k2 ≤ 10, 000 for our largest problem.

3.1 Including Weakened Models
Now that we have defined our bilingual model, we
could train it to agree with the output of the mono-
lingual model (Collins and Singer, 1999; Ganchev
et al., 2008). As we will see in Section 4, however,
the feature functions φ(y1, a, y2) make no refer-
ence to the input sentences x, other than through a
fixed word alignment. With such limited monolin-
gual information, it is impossible for the bilingual
model to adequately capture all of the information
necessary for NER or parsing. As a simple ex-
ample, a bilingual NER model will be perfectly
happy to label two aligned person names as ORG
instead of PER: both labelings agree equally well.
We briefly illustrate how poorly such a basic bilin-
gual model performs in Section 10.

One way to solve this problem is to include the
output of the full monolingual models as features
in the bilingual view. However, we are training the
bilingual view to match the output of these same
models, which can be trivially achieved by putting
weight on only the monolingual model scores and
never recruiting any bilingual features. There-
fore, we use an intermediate approach: we intro-
duce the output of deliberately weakened mono-
lingual models as features in the bilingual view.
A weakened model is from the same class as the
full monolingual models, but is intentionally crip-
pled in some way (by removing feature templates,
for example). Crucially, the weakened models will
make predictions that are roughly similar to the
full models, but systematically worse. Therefore,
model scores from the weakened models provide
enough power for the bilingual view to make accu-

Feat. types Examples
Algn Densty INSIDEBOTH=3 INENONLY=0

Indicators LBLMATCH=true BIAS=true

Table 1: Sample features used for named entity
recognition for the ORG entity in Figure 1.

rate predictions, but ensure that bilingual features
will be required to optimize the training objective.

Let `W1 = log pW1 (y1|x1), `W2 = log pW2 (y2|x2)
be the log-probability scores from the weakened
models. Our final approximation to the marginal
distribution over labels y is:

qλ1,λ2,θ(y|x) def= max
a

exp
h
λ1`

W
1 + λ2`

W
2 +

θ>φ(y1, a, y2)− Ã(λ1, λ2,θ;x)
i
.

(1)

Where

Ã(λ1, λ2,θ;x) =

log
X
y

max
a

exp
h
λ1`

W
1 + λ2`

W
2 + θ>φ(y1, a, y2)

i
is the updated approximate log partition function.

4 NER and Parsing Examples

Before formally describing our algorithm for find-
ing the parameters [λ1, λ2,θ], we first give exam-
ples of our problems of named entity recognition
and syntactic parsing, together with node align-
ments and features for each. Figure 1 depicts a
correctly-labeled sentence fragment in both En-
glish and German. In English, the capitalization of
the phrase European Court of Auditors helps iden-
tify the span as a named entity. However, in Ger-
man, all nouns are capitalized, and capitalization
is therefore a less useful cue. While a monolin-
gual German tagger is likely to miss the entity in
the German text, by exploiting the parallel English
text and word alignment information, we can hope
to improve the German performance, and correctly
tag Europäischen Rechnungshofes.

The monolingual features are standard features
for discriminative, state-of-the-art entity recogniz-
ers, and we can produce weakened monolingual
models by simply limiting the feature set. The
bilingual features, φ(y1, a, y2), are over pairs of
aligned nodes, where nodes of the labels y1 and
y2 are simply the individual named entities. We
use a small bilingual feature set consisting of two
types of features. First, we use the word alignment
density features from Burkett and Klein (2008),
which measure how well the aligned entity pair
matches up with alignments from an independent

48

Input: full and weakened monolingual models:
p1(y1|x1), p2(y2|x2), pw1 (y1|x1), pw2 (y2|x2)
unannotated bilingual data: U

Output: bilingual parameters: θ̂, λ̂1, λ̂2

1. Label U with full monolingual models:
∀x ∈ U, ŷM = argmaxy p1(y1|x1)p2(y2|x2).

2. Return argmaxλ1,λ2,θ
Q
x∈U qθ,λ1,λ2 (ŷM |x),

where qθ,λ1,λ2 has the form in Equation 1.

Figure 3: Bilingual training with multiple views.

word aligner. We also include two indicator fea-
tures: a bias feature that allows the model to learn
a general preference for matched entities, and a
feature that is active whenever the pair of nodes
has the same label. Figure 1 contains sample val-
ues for each of these features.

Another natural setting where bilingual con-
straints can be exploited is syntactic parsing. Fig-
ure 2 shows an example English prepositional
phrase attachment ambiguity that can be resolved
bilingually by exploiting Chinese. The English
monolingual parse mistakenly attaches to to the
verb increased. In Chinese, however, this ambi-
guity does not exist. Instead, the word 对, which
aligns to to, has strong selectional preference for
attaching to a noun on the left.

In our parsing experiments, we use the Berke-
ley parser (Petrov et al., 2006; Petrov and Klein,
2007), a split-merge latent variable parser, for our
monolingual models. Our full model is the re-
sult of training the parser with five split-merge
phases. Our weakened model uses only two. For
the bilingual model, we use the same bilingual fea-
ture set as Burkett and Klein (2008). Table 2 gives
some examples, but does not exhaustively enumer-
ate those features.

5 Training Bilingual Models

Previous work in multiview learning has focused
on the case of agreement regularization (Collins
and Singer, 1999; Ganchev et al., 2008). If we had
bilingual labeled data, together with our unlabeled
data and monolingual labeled data, we could ex-
ploit these techniques. Because we do not possess
bilingual labeled data, we must train the bilingual
model in another way. Here we advocate train-
ing the bilingual model (consisting of the bilin-
gual features and weakened monolingual models)
to imitate the full monolingual models. In terms
of agreement regularization, our procedure may be
thought of as “regularizing” the bilingual model to
be similar to the full monolingual models.

Input: full and weakened monolingual models:
p1(y1|x1), p2(y2|x2), pw1 (y1|x1), pw2 (y2|x2)

bilingual parameters: θ̂, λ̂1, λ̂2
bilingual input: x = (x1, x2)

Output: bilingual label: y∗

Bilingual w/ Weak Bilingual w/ Full
1a. l1 = log

`
pw1 (y1|x1)

´
1b. l1 = log

`
p1(y1|x1)

´
2a. l2 = log

`
pw2 (y2|x2)

´
2b. l2 = log

`
p2(y2|x2)

´
3. Return argmaxy maxa λ̂1l1 + λ̂2l2+θ̂

>
φ(y1, a, y2)

Figure 4: Prediction by combining monolingual
and bilingual models.

Our training algorithm is summarized in Fig-
ure 3. For each unlabeled point x = (x1, x2), let
ŷM be the joint label which has the highest score
from the independent monolingual models (line
1). We then find bilingual parameters θ̂, λ̂1, λ̂2

that maximize qθ̂,λ̂1,λ̂2
(ŷx|x) (line 2). This max-

likelihood optimization can be solved by an EM-
like procedure (Burkett and Klein, 2008). This
procedure iteratively updates the parameter esti-
mates by (a) finding the optimum alignments for
each candidate label pair under the current pa-
rameters and then (b) updating the parameters to
maximize a modified version of Equation 1, re-
stricted to the optimal alignments. Because we re-
strict alignments to the set of at most one-to-one
matchings, the (a) step is tractable using the Hun-
garian algorithm. With the alignments fixed, the
(b) step just involves maximizing likelihood under
a log-linear model with no latent variables – this
problem is convex and can be solved efficiently
using gradient-based methods. The procedure has
no guarantees, but is observed in practice to con-
verge to a local optimum.

6 Predicting with Monolingual and
Bilingual Models

Once we have learned the parameters of the bilin-
gual model, the standard method of bilingual pre-
diction would be to just choose the y that is most
likely under qθ̂,λ̂1,λ̂2

:

ŷ = argmax
y

qθ̂,λ̂1,λ̂2
(y|x) . (2)

We refer to prediction under this model as “Bilin-
gual w/ Weak,” to evoke the fact that the model is
making use of weakened monolingual models in
its feature set.

Given that we have two views of the data,
though, we should be able to leverage additional
information in order to make better predictions. In

49

VB

NP1

NP

VP

S

These measures increased the attractiveness of Tianjin to Taiwanese merchants

(a)

NP PP PP

These measures increased the attractiveness of Tianjin to Taiwanese merchants

VB

NP

NP

VP1

S

NP PP PP

!"#$! %&'! ()! *+,! -! ./0!

S

NP

VB NNP
PP

DE NN

NP1

VP

!"#$! %&'! ()! *+,! -! ./0!

S

NP

VB NNP
PP

DE NN

NP1

VP

(b)

Figure 2: An example of PP attachment that is ambiguous in English, but simple in Chinese. In (a) the
correct parses agree (low PP attachment), whereas in (b) the incorrect parses disagree.

Feature Types Feature Templates Examples
Correct Incorrect

Alignment Density INSIDEBOTH, INSIDEENONLY INSIDEENONLY=0 INSIDEENONLY=1
Span Difference ABSDIFFERENCE ABSDIFFERENCE=3 ABSDIFFERENCE=4

Syntactic Indicators LABEL〈E,C〉, NUMCHILDREN〈E,C〉 LABEL〈NP,NP〉=true LABEL〈VP,NP〉=true

Table 2: Sample bilingual features used for parsing. The examples are features that would be extracted
by aligning the parents of the PP nodes in Figure 2(a) (Correct) and Figure 2(b) (Incorrect).

particular, the monolingual view uses monolingual
models that are known to be superior to the mono-
lingual information available in the bilingual view.
Thus, we would like to find some way to incorpo-
rate the full monolingual models into our predic-
tion method. One obvious choice is to choose the
labeling that maximizes the “agreement distribu-
tion” (Collins and Singer, 1999; Ganchev et al.,
2008). In our setting, this amounts to choosing:

ŷ = argmax
y

pM (y|x) qθ̂,λ̂1λ̂2
(y|x) . (3)

This is the correct decision rule if the views are
independent and the labels y are uniformly dis-
tributed a priori,1 but we have deliberately in-
troduced between-view dependence in the form
of the weakened monolingual models. Equa-
tion 3 implicitly double-counts monolingual infor-
mation.

One way to avoid this double-counting is to
simply discard the weakened monolingual models
when making a joint prediction:

ŷ = argmax
y

max
a

pM (y|x)

exp
[
θ̂
>
φ(y1, a, y2)

]
.

(4)

1See, e.g. Ando & Zhang(Ando and Zhang, 2007) for a
derivation of the decision rule from Equation 3 under these
assumptions.

This decision rule uniformly combines the two
monolingual models and the bilingual model.
Note, however, that we have already learned non-
uniform weights for the weakened monolingual
models. Our final decision rule uses these weights
as weights for the full monolingual models:

ŷ = argmax
y

max
a

exp
[
λ̂1 log

(
p1(y1|x1)

)
+

λ̂2 log
(
p2(y2|x2)

)
+θ̂

>
φ(y1, a, y2)

]
. (5)

As we will show in Section 10, this rule for com-
bining the monolingual and bilingual views per-
forms significantly better than the alternatives, and
comes close to the optimal weighting for the bilin-
gual and monolingual models.

We will refer to predictions made with Equa-
tion 5 as “Bilingual w/ Full”, to evoke the use of
the full monolingual models alongside our bilin-
gual features. Prediction using “Bilingual w/
Weak” and “Bilingual w/ Full” is summarized in
Figure 4.

7 Retraining Monolingual Models

Although bilingual models have many direct ap-
plications (e.g. in machine translation), we also
wish to be able to apply our models on purely
monolingual data. In this case, we can still take

50

Input: annotated monolingual data: L1, L2
unannotated bilingual data: U
monolingual models: p1(y1|x1), p2(y2|x2)

bilingual parameters: θ̂, λ̂1, λ̂2

Output: retrained monolingual models:
pr1(y1|x1), pr2(y2|x2)

∀x = (x1, x2) ∈ U:
Self-Retrained Bilingual-Retrained

1a. ŷx1 = argmaxy1 p1(y1|x1) 1b. Pick ŷx, Fig. 4
ŷx2 = argmaxy2 p2(y2|x2) (Bilingual w/ Full)

2. Add (x1, ŷx1) to L1 and add (x2, ŷx2) to L2.

3. Return full monolingual models pr1(y1|x1),
pr2(y2|x2) trained on newly enlarged L1, L2.

Figure 5: Retraining monolingual models.

advantage of parallel corpora by using our bilin-
gual models to generate new training data for the
monolingual models. This can be especially use-
ful when we wish to use our monolingual models
in a domain for which we lack annotated data, but
for which bitexts are plentiful.2

Our retraining procedure is summarized in Fig-
ure 5. Once we have trained our bilingual param-
eters and have a “Bilingual w/ Full” predictor (us-
ing Equation 5), we can use that predictor to an-
notate a large corpus of parallel data (line 1b). We
then retrain the full monolingual models on a con-
catenation of their original training data and the
newly annotated data (line 3). We refer to the new
monolingual models retrained on the output of the
bilingual models as “Bilingual-Retrained,” and we
tested such models for both NER and parsing. For
comparison, we also retrained monolingual mod-
els directly on the output of the original full mono-
lingual models, using the same unannotated bilin-
gual corpora for self-training (line 1a). We refer to
these models as “Self-Retrained”.

We evaluated our retrained monolingual mod-
els on the same test sets as our bilingual mod-
els, but using only monolingual data at test time.
The texts used for retraining overlapped with the
bitexts used for training the bilingual model, but
both sets were disjoint from the test sets.

8 NER Experiments

We demonstrate the utility of multiview learn-
ing for named entity recognition (NER) on En-
glish/German sentence pairs. We built both our
full and weakened monolingual English and Ger-
man models from the CoNLL 2003 shared task

2Of course, unannotated monolingual data is even more
plentiful, but as we will show, with the same amount of data,
our method is more effective than simple monolingual self-
training.

training data. The bilingual model parameters
were trained on 5,000 parallel sentences extracted
from the Europarl corpus. For the retraining
experiments, we added an additional 5,000 sen-
tences, for 10,000 in all. For testing, we used
the Europarl 2006 development set and the 2007
newswire test set. Neither of these data sets were
annotated with named entities, so we manually an-
notated 200 sentences from each of them.

We used the Stanford NER tagger (Finkel et
al., 2005) with its default configuration as our full
monolingual model for each language. We weak-
ened both the English and German models by re-
moving several non-lexical and word-shape fea-
tures. We made one more crucial change to our
monolingual German model. The German entity
recognizer has extremely low recall (44 %) when
out of domain, so we chose ŷx from Figure 3 to
be the label in the top five which had the largest
number of named entities.

Table 3 gives results for named entity recogni-
tion. The first two rows are the full and weak-
ened monolingual models alone. The second two
are the multiview trained bilingual models. We
first note that for English, using the full bilin-
gual model yields only slight improvements over
the baseline full monolingual model, and in prac-
tice the predictions were almost identical. For this
problem, the monolingual German model is much
worse than the monolingual English model, and so
the bilingual model doesn’t offer significant im-
provements in English. The bilingual model does
show significant German improvements, however,
including a 16.1% absolute gain in F1 over the
baseline for parliamentary proceedings.

The last two rows of Table 3 give results for
monolingual models which are trained on data that
was automatically labeled using the our models.
English results were again mixed, due to the rel-
atively weak English performance of the bilin-
gual model. For German, though, the “Bilingual-
Retrained” model improves 14.4% F1 over the
“Self-Retrained” baseline.

9 Parsing Experiments

Our next set of experiments are on syntactic pars-
ing of English and Chinese. We trained both our
full and weakened monolingual English models
on the Penn Wall Street Journal corpus (Marcus
et al., 1993), as described in Section 4. Our full
and weakened Chinese models were trained on

51

Eng Parliament Eng Newswire Ger Parliament Ger Newswire
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Monolingual Models (Baseline)
Weak Monolingual 52.6 65.9 58.5 67.7 83.0 74.6 71.3 36.4 48.2 80.0 51.5 62.7
Full Monolingual 65.7 71.4 68.4 80.1 88.7 84.2 69.8 44.0 54.0 73.0 56.4 63.7

Multiview Trained Bilingual Models
Bilingual w/ Weak 56.2 70.8 62.7 71.4 86.2 78.1 70.1 66.3 68.2 76.5 76.1 76.3
Bilingual w/ Full 65.4 72.4 68.7 80.6 88.7 84.4 70.1 70.1 70.1 74.6 77.3 75.9

Retrained Monolingual Models
Self-Retrained 71.7 74.0 72.9 79.9 87.4 83.5 70.4 44.0 54.2 79.3 58.9 67.6
Bilingual-Retrained 68.6 70.8 69.7 80.7 89.3 84.8 74.5 63.6 68.6 77.9 69.3 73.4

Table 3: NER Results. Rows are grouped by data condition. We bold all entries that are best in their
group and beat the strongest monolingual baseline.

Chinese English
Monolingual Models (Baseline)

Weak Monolingual 78.3 67.6
Full Monolingual 84.2 75.4

Multiview Trained Bilingual Models
Bilingual w/ Weak 80.4 70.8
Bilingual w/ Full 85.9 77.5

Supervised Trained Bilingual Models
Burkett and Klein (2008) 86.1 78.2

Retrained Monolingual Models
Self-Retrained 83.6 76.7
Bilingual-Retrained 83.9 77.4

Table 4: Parsing results. Rows are grouped by data
condition. We bold entries that are best in their
group and beat the the Full Monolingual baseline.

the Penn Chinese treebank (Xue et al., 2002) (ar-
ticles 400-1151), excluding the bilingual portion.
The bilingual data consists of the parallel part of
the Chinese treebank (articles 1-270), which also
includes manually parsed English translations of
each Chinese sentence (Bies et al., 2007). Only
the Chinese sentences and their English transla-
tions were used to train the bilingual models – the
gold trees were ignored. For retraining, we used
the same data, but weighted it to match the sizes
of the original monolingual treebanks. We tested
on the standard Chinese treebank development set,
which also includes English translations.

Table 4 gives results for syntactic parsing. For
comparison, we also show results for the super-
vised bilingual model of Burkett and Klein (2008).
This model uses the same features at prediction
time as the multiview trained “Bilingual w/ Full”
model, but it is trained on hand-annotated parses.
We first examine the first four rows of Table 4. The
“Bilingual w/ Full” model significantly improves
performance in both English and Chinese relative
to the monolingual baseline. Indeed, it performs

Phrase-Based System
Moses (No Parser) 18.8

Syntactic Systems
Monolingual Parser 18.7
Supervised Bilingual (Treebank Bi-trees) 21.1
Multiview Bilingual (Treebank Bitext) 20.9
Multiview Bilingual (Domain Bitext) 21.2

Table 5: Machine translation results.

only slightly worse than the supervised model.
The last two rows of Table 4 are the results of

monolingual parsers trained on automatically la-
beled data. In general, gains in English, which
is out of domain relative to the Penn Treebank,
are larger than those in Chinese, which is in do-
main. We also emphasize that, unlike our NER
data, this bitext was fairly small relative to the an-
notated monolingual data. Therefore, while we
still learn good bilingual model parameters which
give a sizable agreement-based boost when doing
bilingual prediction, we don’t expect retraining to
result in a coverage-based boost in monolingual
performance.

9.1 Machine Translation Experiments

Although we don’t have hand-labeled data for our
largest Chinese-English parallel corpora, we can
still evaluate our parsing results via our perfor-
mance on a downstream machine translation (MT)
task. Our experimental setup is as follows: first,
we used the first 100,000 sentences of the English-
Chinese bitext from Wang et al. (2007) to train
Moses (Koehn et al., 2007), a phrase-based MT
system that we use as a baseline. We then used the
same sentences to extract tree-to-string transducer
rules from target-side (English) trees (Galley et al.,
2004). We compare the single-reference BLEU
scores of syntactic MT systems that result from
using different parsers to generate these trees.

52

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

68-71

65-68

62-65

59-62

56-59

English Weight

G
er

m
an

 W
ei

g
h

t

German F1

70.3

70.1

59.1

*

+ * +

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

81.8-82.1

81.5-81.8

81.2-81.5

80.9-81.2

80.6-80.9

English Weight

C
h
in

es
e

W
ei

g
h
t

Combined F1

82.1

82.0

81.4

*

+

–

*
+

–

(b)

Figure 6: (a) NER and (b) parsing results for different values of λ1 and λ2 (see Equation 6). ‘*’ shows
optimal weights, ‘+’ shows our learned weights, and ‘-’ shows uniform combination weights.

For our syntactic baseline, we used the mono-
lingual English parser. For our remaining experi-
ments, we parsed both English and Chinese simul-
taneously. The supervised model and the first mul-
tiview trained model are the same Chinese tree-
bank trained models for which we reported pars-
ing results. We also used our multiview method to
train an additional bilingual model on part of the
bitext we used to extract translation rules.

The results are shown in Table 5. Once again,
our multiview trained model yields comparable re-
sults to the supervised model. Furthermore, while
the differences are small, our best performance
comes from the model trained on in-domain data,
for which no gold trees exist.

10 Analyzing Combined Prediction

In this section, we explore combinations of the full
monolingual models, p1(y1|x1) and p2(y2|x2),
and the bilingual model, max

a
θ̂
>
φ(y1, a, y2). For

parsing, the results in this section are for combined
F1. This simply computes F1 over all of the sen-
tences in both the English and Chinese test sets.
For NER, we just use German F1, since English is
relatively constant across runs.

We begin by examining how poorly our model
performs if we do not consider monolingual in-
formation in the bilingual view. For parsing, the
combined Chinese and English F1 for this model
is 78.7%. When we combine this model uniformly
with the full monolingual model, as in Equation 4,
combined F1 improves to 81.2%, but is still well
below our best combined score of 82.1%. NER
results for a model trained without monolingual
information show an even larger decline.

Now let us consider decision rules of the form:
ŷ = argmax

y
max
a

exp[λ1 log
`
p1(y1|x1)

´
+

λ2 log
`
p2(y2|x2)

´
+θ̂

>
φ(y1, a, y2)] .

Note that when λ1 = λ2 = 1, this is exactly
the uniform decision rule (Equation 4). When
λ1 = λ̂1 and λ2 = λ̂2, this is the “Bilingual w/
Full” decision rule (Equation 5). Figure 6 is a
contour plot of F1 with respect to the parameters
λ1 and λ2. Our decision rule “Bilingual w/ Full”
(Equation 5, marked with a ‘+’) is near the opti-
mum (‘*’), while the uniform decision rule (‘-’)
performs quite poorly. This is true for both NER
(Figure 6a) and parsing (Figure 6b).

There is one more decision rule which we have
yet to consider: the “conditional independence”
decision rule from Equation 3. While this rule can-
not be shown on the plots in Figure 6 (because
it uses both the full and weakened monolingual
models), we note that it also performs poorly in
both cases (80.7% F1 for parsing, for example).

11 Conclusions

We show for the first time that state-of-the-art,
discriminative monolingual models can be signifi-
cantly improved using unannotated bilingual text.
We do this by first building bilingual models that
are trained to agree with pairs of independently-
trained monolingual models. Then we combine
the bilingual and monolingual models to account
for dependence across views. By automatically
annotating unlabeled bitexts with these bilingual
models, we can train new monolingual models that
do not rely on bilingual data at test time, but still
perform substantially better than models trained
using only monolingual resources.

Acknowledgements

This project is funded in part by NSF grants
0915265 and 0643742, an NSF graduate research
fellowship, the DNI under grant HM1582-09-1-
0021, and BBN under DARPA contract HR0011-
06-C-0022.

53

References
Rie Kubota Ando and Tong Zhang. 2007. Two-view

feature generation model for semi-supervised learn-
ing. In ICML.

Maria-Florina Balcan and Avrim Blum. 2005. A pac-
style model for learning from labeled and unlabeled
data. In COLT.

Ann Bies, Martha Palmer, Justin Mott, and Colin
Warner. 2007. English chinese translation treebank
v 1.0. Web download. LDC2007T02.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In COLT.

Phil Blunsom, Trevor Cohn, and Miles Osborne. 2009.
Bayesian synchronous grammar induction. In NIPS.

David Burkett and Dan Klein. 2008. Two lan-
guages are better than one (for syntactic parsing). In
EMNLP.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In ACL.

Michael Collins and Yoram Singer. 1999. Unsuper-
vised models for named entity classification. In
EMNLP.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In ICML.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In ACL.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In HLT-NAACL.

Kuzman Ganchev, Joao Graca, John Blitzer, and Ben
Taskar. 2008. Multi-view learning over structured
and non-identical outputs. In UAI.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In ACL.

Fei Huang and Stephan Vogel. 2002. Improved named
entity translation and bilingual named entity extrac-
tion. In ICMI.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Special Issue of the Journal of Natural Language
Engineering on Parallel Texts, 11(3):311–325.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The penn treebank. Compu-
tational Linguistics, 19(2):313–330.

Robert Moore. 2003. Learning translations of named-
entity phrases from parallel corpora. In EACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In HLT-NAACL.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In COLING-ACL.

Luo Si and Jamie Callan. 2005. Clef 2005: Multi-
lingual retrieval by combining multiple multilingual
ranked lists. In CLEF.

David A. Smith and Noah A. Smith. 2004. Bilingual
parsing with factored estimation: using english to
parse korean. In EMNLP.

Benjamin Snyder and Regina Barzilay. 2008. Cross-
lingual propagation for morphological analysis. In
AAAI.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. In ACL.

Wen Wang, Andreas Stolcke, and Jing Zheng. 2007.
Reranking machine translation hypotheses with
structured and web-based language models. In IEEE
ASRU Workshop.

Nianwen Xue, Fu-Dong Chiou, and Martha Palmer.
2002. Building a large-scale annotated chinese cor-
pus. In COLING.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual pos taggers and np bracketers via robust
projection across aligned corpora. In NAACL.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In Human Language Technologies.

54

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, page 55,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Clueless: Explorations in unsupervised, knowledge-lean extraction of
lexical-semantic information

Invited Talk
Lillian Lee

Department of Computer Science, Cornell University
llee@cs.cornell.edu

I will discuss two current projects on automatically extracting certain types of lexical-semantic
information in settings wherein we can rely neither on annotations nor existing knowledge resources
to provide us with clues. The name of the game in such settings is to find and leverage auxiliary sources
of information.

Why is it that if you know I’ll give a silly talk, it follows that you know I’ll give a talk, whereas if you
doubt I’ll give a good talk, it doesn’t follow that you doubt I’ll give a talk? This pair of examples
shows that the word “doubt” exhibits a special but prevalent kind of behavior known as downward
entailingness — the licensing of reasoning from supersets to subsets, so to speak, but not vice versa. The
first project I’ll describe is to identify words that are downward entailing, a task that promises to enhance
the performance of systems that engage in textual inference, and one that is quite challenging since it is
difficult to characterize these items as a class and no corpus with downward-entailingness annotations
exists. We are able to surmount these challenges by utilizing some insights from the linguistics literature
regarding the relationship between downward entailing operators and what are known as negative polarity
items — words such as “ever” or the idiom “have a clue” that tend to occur only in negative contexts.
A cross-linguistic analysis indicates some potentially interesting connections to findings in linguistic
typology.

That previous paragraph was quite a mouthful, wasn’t it? Wouldn’t it be nice if it were written in plain
English that was easier to understand? The second project I’ll talk about, which has the eventual aim to
make it possible to automatically simplify text, aims to learn lexical-level simplifications, such as “work
together” for “collaborate”. (This represents a complement to prior work, which focused on syntactic
transformations, such as passive to active voice.) We exploit edit histories in Simple English Wikipedia
for this task. This isn’t as simple (ahem) as it might at first seem because Simple English Wikipedia and
the usual Wikipedia are far from a perfect parallel corpus and because many edits in Simple Wikipedia
do not constitute simplifications. We consider both explicitly modeling different kinds of operations and
various types of bootstrapping, including as clues the comments Wikipedians sometimes leave when they
edit.

Joint work with Cristian Danescu-Niculescu-Mizil, Bo Pang, and Mark Yatskar.

55

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, page 56,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Bayesian Hidden Markov Models and Extensions
Invited Talk

Zoubin Ghahramani
Engineering Department, University of Cambridge, Cambridge, UK

zoubin@eng.cam.ac.uk

Hidden Markov models (HMMs) are one of the cornerstones of time-series modelling. I will review
HMMs, motivations for Bayesian approaches to inference in them, and our work on variational Bayesian
learning. I will then focus on recent nonparametric extensions to HMMs. Traditionally, HMMs have
a known structure with a fixed number of states and are trained using maximum likelihood techniques.
The infinite HMM (iHMM) allows a potentially unbounded number of hidden states, letting the model
use as many states as it needs for the data. The recent development of ’Beam Sampling’ — an efficient
inference algorithm for iHMMs based on dynamic programming — makes it possible to apply iHMMs to
large problems. I will show some applications of iHMMs to unsupervised POS tagging and experiments
with parallel and distributed implementations. I will also describe a factorial generalisation of the iHMM
which makes it possible to have an unbounded number of binary state variables, and can be thought of
as a time-series generalisation of the Indian buffet process. I will conclude with thoughts on future
directions in Bayesian modelling of sequential data.

56

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 57–66,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Improved Unsupervised POS Induction Using Intrinsic Clustering Quality
and a Zipfian Constraint

Roi Reichart
ICNC

The Hebrew University
roiri@cs.huji.ac.il

Raanan Fattal
Institute of computer science

The Hebrew University
raananf@cs.huji.ac.il

Ari Rappoport
Institute of computer science

The Hebrew University
arir@cs.huji.ac.il

Abstract

Modern unsupervised POS taggers usually
apply an optimization procedure to a non-
convex function, and tend to converge to
local maxima that are sensitive to start-
ing conditions. The quality of the tag-
ging induced by such algorithms is thus
highly variable, and researchers report av-
erage results over several random initial-
izations. Consequently, applications are
not guaranteed to use an induced tagging
of the quality reported for the algorithm.

In this paper we address this issue using
an unsupervised test for intrinsic cluster-
ing quality. We run a base tagger with
different random initializations, and select
the best tagging using the quality test. As
a base tagger, we modify a leading un-
supervised POS tagger (Clark, 2003) to
constrain the distributions of word types
across clusters to be Zipfian, allowing us
to utilize a perplexity-based quality test.
We show that the correlation between our
quality test and gold standard-based tag-
ging quality measures is high. Our re-
sults are better in most evaluation mea-
sures than all results reported in the liter-
ature for this task, and are always better
than the Clark average results.

1 Introduction

Unsupervised part-of-speech (POS) induction is
of major theoretical and practical importance. It
counters the arbitrary nature of manually designed
tag sets, and avoids manual corpus annotation
costs. The task enjoys considerable current inter-
est in the research community (see Section 3).

Most unsupervised POS tagging algorithms ap-
ply an optimization procedure to a non-convex
function, and tend to converge to local maxima

that strongly depend on the algorithm’s (usually
random) initialization. The quality of the tag-
gings produced by different initializations varies
substantially. Figure 1 demonstrates this phe-
nomenon for a leading POS induction algorithm
(Clark, 2003). The absolute variability of the in-
duced tagging quality is 10-15%, which is around
20% of the mean. Strong variability has also been
reported by other authors (Section 3).

The common practice in the literature is to re-
port mean results over several random initializa-
tions of the algorithm (e.g. (Clark, 2003; Smith
and Eisner, 2005; Goldwater and Griffiths, 2007;
Johnson, 2007)). This means that applications us-
ing the induced tagging are not guaranteed to use
a tagging of the reported quality.

In this paper we address this issue using an
unsupervised test for intrinsic clustering quality.
We present a quality-based algorithmic family Q.
Each of its concrete member algorithms Q(B) runs
a base tagger B with different random initializa-
tions, and selects the best tagging according the
quality test. If the test is highly positively corre-
lated with external tagging quality measures (e.g.,
those based on gold standard tagging), Q(B) will
produce better results than B with high probability.

We experiment with two base taggers, Clark’s
original tagger (CT) andZipf Constrained Clark
(ZCC). ZCC is a novel algorithm of interest in its
own right, which is especially suitable as a base
tagger in the family Q. ZCC is a modification of
Clark’s algorithm in which the distribution of the
number of word types in a cluster (cluster type
size) is constrained to be Zipfian. This property
holds for natural languages, hence we can expect
a higher correlation between ZCC and an accepted
unsupervised quality measure, perplexity.

We show that for both base taggers, the corre-
lation between our unsupervised quality test and
gold standard based tagging quality measures is
high. For the English WSJ corpus, the Q(ZCC)

57

0.45 0.5 0.55
0

20

40

V
0.7 0.8 0.9
0

10

20

NVI

0.4 0.5 0.6
0

20

40

Many to 1
0.4 0.5

0

20

40

1 to 1

Figure 1: Distribution of the quality of the tag-
gings produced in 100 runs of the Clark POS in-
duction algorithm (with different random initial-
izations) for sections 2-21 of the WSJ corpus. All
graphs are 10-bin histograms presenting the num-
ber of runs (y-axis) with the corresponding qual-
ity (x-axis). Quality is evaluated with 4 clustering
evaluation measures: V, NVI, greedy m-1 map-
ping and greedy 1-1 mapping. The quality of the
induced tagging varies considerably.

algorithm gives better results than CT with proba-
bility 82-100% (depending on the external quality
measure used). Q(CT) is shown to be better than
the original CT algorithm as well. Our results are
better in most evaluation measures than all previ-
ous results reported in the literature for this task,
and are always better than Clark’s average results.

Section 2 describes the ZCC algorithm and our
quality measure. Section 3 discusses previous
work. Section 4 presents the experimental setup
and Section 5 reports our results.

2 The Q(ZCC) Algorithm

Given anN word corpusM consisting of plain
text, with word typesW = {w1, . . . , wm}, the
unsupervised POS inductiontask is to find a class
membership functiong from W into a set of class
labels{c1, . . . , cn}. In the version tackled in this
paper, the number of classesn is an input of the al-
gorithm. The membership functiong can be used
to tag a corpus if it is deterministic (as the func-
tion learned in this work) or if a rule for selecting
a single tag for every word is provided.

Most modern unsupervised POS taggers pro-
duce taggings of variable quality that strongly de-
pend on their initialization. Our approach towards
generating a single high quality tagging is to use a
family of algorithms Q. Each member Q(B) of Q
utilizes a base tagger B, which is run using several
random initializations. The final output is selected
according to an unsupervised quality test. We fo-

cus here on Clark’s tagger (Clark, 2003) (CT),
probably the leading POS induction algorithm (see
Table 3).

We start with a description of the original CT.
We then detail ZCC, a modification of CT that
constrains the clustering space by adding a Zipf-
based constraint. Our perplexity-based unsuper-
vised tagging quality test is discussed next. Fi-
nally, we provide an unsupervised technique for
selecting the parameter of the Zipfian constraint.

2.1 The Original Clark Tagger (CT)

The tagger’s statistical model combines dis-
tributional and morphological information with
the likelihood function of the Brown algorithm
(Brown et al., 1992; Ney et al., 1994; Martin et
al., 1998). In the Brown algorithm a class assign-
ment functiong is selected such that the class bi-
gram likelihood of the corpus,p(M |g), is max-
imized. Morphological and distributional infor-
mation is introduced to the Clark model through
a prior p(g). The prior prefers morphologically
uniform clusters and skewed cluster sizes.

The probability function the algorithm tries to
maximize is:
(1) p(M, g) = p(M |g) · p(g)

(2) p(M |g) =
∏i=N

i=2 p(g(wi)|g(wi−1))

(3) p(g) =
∏n

j=1 αj

∏

g(w)=j qj(w)

Where qj(wi) is the probability of assigning
wi ∈ W by clustercj according to the morpho-
logical model andαj is the coefficient of cluster
j, which equals to the number of word types as-
signed to that cluster divided by the total number
of word types in the vocabularyW . The objective
of the algorithm is formally specified by:

g∗ = argmaxgp(M, g)

To find the cluster assignmentg∗ an iterative
algorithm is applied. As initialization, the words
in W are randomly assigned to clusters (clusters
are thus of similar sizes). Then, for each word
(words are ordered by their frequency in the cor-
pus) the algorithm computes the effect that mov-
ing it from its current cluster to each of the other
clusters would have on the probability function.
The word is moved to the cluster having the high-
est positive effect (if there is no such cluster, the
word is not moved). The last step is performed it-
eratively until no improvement to the probability
function is possible through a single operation.

58

The probability function has many local max-
ima and the one to which the algorithm conver-
gences strongly depends on the initial assignment
of words to clusters. The quality of the clusters in-
duced in different runs of the algorithm is highly
variable (Figure 1).

2.2 The Cluster Type Size Zipf Constraint

The motivation behind using a Zipfian constraint is
the following observation: when a certain statistic
is known to affect the quality of the induced clus-
tering and it is not explicitly manipulated by the al-
gorithm, strong fluctuations in its values are likely
to imply that there are uncontrolled fluctuations in
the quality of the induced clusterings. Thus, in-
troducing a constraint that we believe holds in real
data increases the correlation between clustering
quality and a well accepted unsupervised quality
measure (perplexity).

Our ZCC algorithm searches for a class assign-
ment functiong that maximizes the probability
function (1) under a constraint on the clustering
space, namely constraining the cluster type size
distribution induced byg to be Zipfian. This con-
straint holds in many languages (Mitzenmacher,
2004) and is demonstrated in Figure 3 for the En-
glish corpus with which we experiment in this pa-
per.

Zipf’s law predicts that the fraction of elements
in classk is given by:

f(k; s; n) =
1/ks

∑n
i=1(1/is)

wheres is a parameter of the distribution andn the
number of clusters.

Denote the cluster type size distribution derived
from the algorithm’s cluster assignment functiong
by T (g). The objective of the algorithm is

g∗∗ = argmaxgp(M, g) s.t. T (g) ∼ Zipf(s)

To impose the Zipfian distribution on the in-
duced clusters size, we make two modifications to
the original CT algorithm. First, at initialization,
words are randomly assigned to clusters in a way
that cluster sizes are distributed according to the
Zipfian distribution (with a parameters). Specifi-
cally, we randomly select words to be assigned to
the first cluster until the fraction of word types in
the cluster equals to the prediction given by Zipf’s
law. We then randomly assign words to the second
cluster and so on.

Second, we change the basic operation of the al-
gorithm from moving a word to a cluster to swap-
ping two words between two different clusters.
For each wordwi (again, words are ordered by
their frequency in the corpus as in CT), the algo-
rithm computes the effect on the probability func-
tion of moving it from its current clusterccurr to
each of the other clusters. We denote the cluster
showing the best effect bycbest. Then, we search
the words ofcbest for the wordwj whose transition
to ccurr has the best effect on the probability func-
tion. If the sum of the effects of movingwi from
ccurr to cbest and movingwj from cbest to ccurr

is positive, the swapping is performed. If swap-
ping is not performed, we repeat the process for
wi, this time searching forcbest among all other
clusters except of formercbest candidates1.

2.3 Unsupervised Identification of High
Quality Runs

Perplexity is a standard measure for language
model evaluation. A language model defines the
transition probabilities for every wordwi given the
words that precede it. The perplexity of a language
model for a given corpus havingN words is de-
fined to be

N

√

√

√

√

N
∏

i=1

1

p(wi|w1 . . . wi−1)

An important property of perplexity that makes
it attractive as a measure for language model per-
formance is that in some sense the best model for
any corpus has the lowest perplexity for that cor-
pus (Goodman, 2001). Thus, the lower the per-
plexity of the language model, the better it is.

Clark (2003) proposed a perplexity based test
for the quality of his POS induction algorithm. In
that test, a bigram class-based language model is
trained on a training corpus (using the tagging of
the unsupervised tagger) and applied to another
test corpus. In such a model the transition prob-
ability from a word wj to a word wi is given
by p(C(wi)|C(wj)) whereC(wk) is the class as-
signed by the POS induction algorithm towk. In
the training phase the bigram transition probabili-
ties are computed using the training corpus, and in

1To make the algorithm more time efficient, for each word
wi we perform only three iterations of the searching forcbest,
and for eachcbest candidate we compute for at most 500
words the effect on the probability function of the removal
to ccurr.

59

2 4 6 8 10
880

882

884

886

888

890

K

A
v
e
ra

g
e
 P

e
rp

le
x
it
y

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

K

R
a

n
k
 C

o
rr

e
la

ti
o

n
Figure 2: Left: average perplexity vs. the param-
eterK (tightness of the entropy outliers filter; see
text for a full explanation). Right: Spearman’s
rank correlation between perplexity and an exter-
nal (many-to-one) quality of the clustering as a
function of K. The three curves are for ZCC,
using different exponents (triangles: 0.9, circles:
1.3, solid: 1.1). A model whose quality improves
(decreased perplexity) withK (left) demonstrates
better correlation between perplexity and external
quality (right). In all three graphs thex axis is in
units of5K (e.g., a graphx value of 2 means that
10 clusterings were removed from the top of the
list and 10 from its bottom).

the test phase the perplexity of the learned model
is evaluated on the test corpus. Better POS induc-
tion algorithms yield lower perplexity language
models. However, Clark did not study the correla-
tion between the perplexity measure and the gold
standard tagging.

In this paper, we use Clark’s perplexity based
test as the unsupervised quality test used by the
family Q. To provide a high quality prediction, this
test should highly correlate with external cluster-
ing quality. To the best of our knowledge, such a
correlation has not been explored so far.

2.4 Unsupervised Parameter Selection

The base ZCC algorithm has one input parame-
ter, the exponents of the Zipfian distribution. Vir-
tually all unsupervised algorithms utilize param-
eters whose values affect their results. While it
is methodologically valid to simply determine a
value based on reasonable considerations or a de-
velopment set, to keep the fully unsupervised na-
ture of our work we now present a method for
identifying the best parameter assignment. The
method also casts some additional interesting light
on the nature of the problem.

Like cluster type size, the distribution of cluster
instance size in natural languages is also Zipfian

(see Figure 3). A naive application of this con-
straint into the ZCC algorithm would be to allow
swapping words between clusters only if they an-
notate the same number of word instances in the
corpus. However, this constraint, either by itself
or in combination with the cluster type size con-
straint, is too restrictive.

We utilize it for parameter selection as follows.
Recall that our family of algorithms Q(B) runs a
base tagger B several times. Each specific run
yields a clusteringCi. The final result is selected
from the set of clusteringsC = {Ci}. We do
not explicitly address the number of instances con-
tained in a cluster, but we can prune fromC those
clusterings for which this distribution is very dif-
ferent. Again, imposing a constraint that is known
to hold reduces quality fluctuations between dif-
ferent runs.

To measure the similarity between the cluster
instance size distribution of two clusterings in-
duced by two runs of the algorithm, we treat the
clusters induced by a given run as samples from
a random variable. The events of this variable are
the induced clusters and the probability assigned
to each event is equal to the number of word in-
stances contained in the corresponding cluster, di-
vided by the total number of word instances in the
tagged corpus. The entropy of this random vari-
able is used as a statistic for the word instance
distribution. Clusterings having similar cluster in-
stance size distributions also have similar values
of this statistic.

We apply an entropy outliers filter to the set of
clusteringsC. In this filter, we sort the members
of C (these are clusterings obtained in different
runs of the base tagger) according to their clus-
ter instance size entropy, and pruneK runs from
the beginning andK runs from the end of the list.
The perplexity-based quality test described above
is applied only to members ofC that were not
pruned in this step.

Figure 2 (left) shows the average perplexity of
a set of clusterings as a function of the parame-
ter K of the entropy-based filter. Results are pre-
sented for 100 runs of ZCC2 with three different
exponent values (0.9, 1.1, 1.3). These assignments
yield considerably different Zipfian distributions.

While all three models have similar average per-
plexity over all 100 runs, only the solid line (cor-
responding to an exponent value of 1.1) consis-

2See Section 4 for the experimental setup.

60

tently decreases (improves) withK. The circled
line (corresponding to an exponent value of 1.3)
monotonically decreases withK until a certainK
value, while the line with triangles (correspond-
ing to an exponent value of 0.9) remains relatively
constant.

Figure 2 (right) shows that models for which
the entropy-based filter improves perplexity more
drastically, exhibit better correlation between per-
plexity and external clustering quality3.

Our unsupervised parameter selection method is
thus based on finding a value which exhibits a con-
sistent decrease in perplexity as a function ofK,
the number of clusterings pruned from the begin-
ning and end of the entropy-sorted list. In the rest
of this paper we show results where the exponent
value is 1.1.

3 Previous Work

Unsupervised POS induction/tagging is a fruitful
area of research. A major direction is Hidden
Markov Models (HMM) (Merialdo, 1994; Banko
and Moore, 2004; Wang and Schuurmans, 2005).
Several recent works have tried to improve this
model using Bayesian estimation (Goldwater and
Griffiths, 2007; Johnson, 2007; Gao and Johnson,
2008), sophisticated initialization (Goldberg et al.,
2008), induction of an initial clustering used to
train an HMM (Freitag, 2004; Biemann, 2006),
infinite HMM models (Van Gael et al., 2009), in-
tegration of integer linear programming into the
parameter estimation process (Ravi and Knight,
2009), and biasing the model such that the num-
ber of possible tags that each word can get is small
(Graça et al., 2009).

The Bayesian works integrated into the model
information about the distribution of words to POS
tags. For example, Johnson (2007) integrated to
the EM-HMM model a prior that prefers cluster-
ings where the distributions of hidden states to
words is skewed.

Other approaches include transformation based
learning (Brill, 1995), contrastive estimation for
conditional random fields (Smith and Eisner,
2005), Markov random fields (Haghighi and
Klein, 2006), a multilingual approach (Snyder et
al., 2008; Snyder et al., 2008) and expanding a

3The figure is for greedy many-to-one mapping and
Spearman’s rank correlation coefficient, explained in further
Sections. Other external measures and rank correlation scores
demonstrate the same pattern.

partial dictionary and use it to learn disambigua-
tion rules (Zhao and Marcus, 2009).

These works, except (Haghighi and Klein,
2006; Johnson, 2007; Gao and Johnson, 2008)
and one experiment in (Goldwater and Griffiths,
2007), used a dictionary listing the allowable tags
for each word in the text. This dictionary is usu-
ally extracted from the manual tagging of the text,
contradicting the unsupervised nature of the task.
Clearly, the availability of such a dictionary is not
always a reasonable assumption (see e.g. (Gold-
water and Griffiths, 2007)).

In a different algorithmic direction, (Schuetze,
1995) applied latent semantic analysis with SVD
based dimensionality reduction, and (Schuetze,
1995; Clark, 2003; Dasgupta and NG, 2007) used
distributional and morphological statistics to find
meaningful word types clusters. Clark (2003) is
the only such work to have evaluated its algorithm
as a POS tagger for large corpora, like we do in
this paper.

A Zipfian constraint was utilized in (Goldwater
and et al., 2006) for language modeling and mor-
phological disambiguation.

The problem of convergence to local maxima
has been discussed in (Smith and Eisner, 2005;
Haghighi and Klein, 2006; Goldwater and Grif-
fiths, 2007; Johnson, 2007; Gao and Johnson,
2008) with a detailed demonstration in (Johnson,
2007). All these authors (except Smith and Eisner
(2005), see below), however, reported average re-
sults over several runs and did not try to identify
the runs that produce high quality tagging.

Smith and Eisner (2005) initialized with all
weights equal to zero (uninformed, deterministic
initialization) and performed unsupervised model
selection across smoothing parameters by evaluat-
ing the training criterion on unseen, unlabeled de-
velopment data. In this paper we show that for the
tagger of (Clark, 2003) such a method provides
mediocre results (Table 2) even when the train-
ing criterion (likelihood or data probability for this
tagger) is evaluated on the test set. Moreover, we
show that our algorithm outperforms existing POS
taggers for most evaluation measures (Table 3).

Identifying good solutions among many runs of
a randomly-initialized algorithm is a well known
problem. We discuss here the work of (Smith and
Eisner, 2004) that addressed the problem in the un-
supervised POS tagging context. In this work, de-
terministic annealing (Rose et al., 1990) was ap-

61

plied to an HMM model for unsupervised POS
tagging with a dictionary. This method is not sen-
sitive to its initialization, and while it is not the-
oretically guaranteed to converge to a better so-
lution than the traditional EM-HMM, it was ex-
perimentally shown to achieve better results. The
problem has, of course, been addressed in other
contexts as well (see, e.g., (Wang et al., 2002)).

4 Experimental Setup and Evaluation

Setup. We used the English WSJ PennTreebank
corpus in our experiments. We induced POS tags
for sections 2-21 (43K word types, 950K word in-
stances of which 832K (87.6%) are not punctua-
tion marks), using Q(ZCC), Q(CT), and CT. For
the unsupervised quality test, we trained the bi-
gram class-based language model on sections 2-21
with the induced clusters, and computed its per-
plexity on section 23.

In Q(ZCC) and Q(CT), the base taggers were
run a 100 times each, using different random ini-
tializations. In each run we induce 13 clusters,
since this is the number of unique POS tags re-
quired to cover 98% of the word types in WSJ
(Figure 3)4. Some previous work (e.g., (Smith and
Eisner, 2005)) also induced 13 non-punctuation
tags.

We compare the results of our algorithm to
those of the original Clark algorithm5. The in-
duced clusters are evaluated against two POS tag
sets: one is the full set of WSJ POS tags, and the
other consists of the non-punctuation tags of the
first set.

Punctuation marks constitute a sizeable volume
of corpus tokens and are easy to cluster correctly.
Hence, evaluting against the full tag set that in-
cludes punctuation artificially increases the qual-
ity of the reported results, which is why we report
results for the non-punctuation tag set. However,
to be able to directly compare with previous work,
we also report results for the full WSJ POS tag
set. We do so by assigning a singleton cluster to
each punctuation mark (in addition to the 13 clus-
ters). This simple heuristic yields very high per-
formance on punctuation, scoring (when all other
terminals are assumed perfect tagging) 99.6% in
1-to-1 accuracy.

4Some words can get more than one POS tag. In the fig-
ure, for these words we increased the counters of all their
possible tags.

5Downloaded from www.cs.rhul.ac.uk/home/alexc/
RHUL/Downloads.html.

In addition to comparing the different algo-
rithms, we compare the correlation between our
tagging quality test and external clustering quality
for both the original CT algorithm and our ZCC
algorithm.

Clustering Quality Evaluation. The induced
POS tags have arbitrary names. To evaluate them
against a manually annotated corpus, a proper
correspondence with the gold standard POS tags
should be established. Many evaluation measures
for unsupervised clustering against gold standard
exist. Here we use measures from two well ac-
cepted families: mapping based and information
theoretic (IT) based. For a recent discussion on
this subject see (Reichart and Rappoport, 2009).

The mapping based measures are accuracy with
greedy many-to-1 (M-1) and with greedy 1-to-1
(1-1) mappings of the induced to the gold labels.
In the former mapping, two induced clusters can
be mapped to the same gold standard cluster, while
in the latter mapping each and every induced clus-
ter is assigned a unique gold cluster.

After each induced label is mapped to a gold
label, tagging accuracy is computed. Accuracy is
defined to be the number of correctly tagged words
in the corpus divided by the total number of words
in the corpus.

The IT based measures we use are V (Rosen-
berg and Hirschberg, 2007) and NVI (Reichart and
Rappoport, 2009). The latter is a normalization of
the VI measure (Meila, 2007). VI and NVI induce
the same order over clusterings but NVI values for
good clusterings lie in[0, 1]. For V, the higher
the score, the better the clustering. For NVI lower
scores imply improved clustering quality. We use
e as the base of the logarithm.

Evaluation of the Quality Test. To mea-
sure the correlation between the score produced
by the tagging quality test and the external qual-
ity of a tagging, we use two well accepted mea-
sures: Spearman’s rank correlation coefficient
and Kendall Tau (Kendall and Dickinson, 1990).
These measure the correlation between two sorted
lists. For the computation of these measures, we
rank the clusterings once according to the identifi-
cation criterion and once according to the external
quality measure.

The measures are given by the equations:
(6) kendall − tau = 2(nc−nd)

r(r−1)

(7) Spearsman = 1 −
6
∑

r

i=1
d2

i

r(r2
−1)

62

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of POS Tags

F
ra

c
ti
o
n
 o

f
It
e
m

s

Figure 3: The fraction of word types (solid curve)
and word instances (dashed curve) labeled with
the k (X axis) most frequent POS tags (in types
and tokens respectively) in sections 2-21 of the
WSJ corpus.

wherer is the number of runs (100 in our case),
nc andnd are the numbers of concordant and dis-
cordant pairs respectively6 anddi is the absolute
value of the difference between the ranks of item
i.

The two measures have the properties that a
perfect agreement between rankings results in a
score of 1, a perfect disagreement results in a score
of −1, completely independent rankings have the
value of 0 on the average, the range of values is
between−1 and 1, and increasing values imply
increasing agreement between the rankings. For a
discussion see (Lapata, 2006).

5 Results

Table 1 presents the results of the Q(ZCC) and
Q(CT) algorithms, which are both better than
those of the original Clark tagger CT. The Q al-
gorithms provide a tagging that is better than that
produced by CT in 82-100% (Q(ZCC)) and 75-
100% (Q(CT)) of the cases.

The Q(ZCC) algorithm is superior when eval-
uated with the mapping based measures. The
Q(CT) algorithm is superior when evaluated with
the IT measures.

Table 3 presents reported results for all recent
algorithms we are aware of that tackled the task
of unsupervised POS induction from plain text7.
The settings of the various experiments vary in
terms of the exact gold annotation scheme used
for evaluation (the full WSJ set was used by all
authors except Goldwater and Griffiths (2007) and

6A pair r, t in two lists X and Y is concordant if
sign(Xt − Xr) = sign(Yt − Yr), whereXr is the index
of r in the listX.

7VG and GG used 2 as the base of the logarithm in IT
measures, which affects VI. We converted the VI numbers
reported in their papers to basee.

the GGTP-17 model which used the set of 17
coarse grained tags proposed by (Smith and Eis-
ner, 2005)) and the size of the test set. The num-
bers reported for the algorithms of other works are
the average performance over multiple runs, since
no method for identification of high quality tag-
gings was used.

The results of our algorithms are superior, ex-
cept for the M-1 performance of some of the mod-
els of (Johnson, 2007) and of the GGTP-17 and
GGTP-45 models of (Graça et al., 2009). Note
that the models of (Johnson, 2007) and the GGTP-
45 model induce 40-50 clusters compared to our
34 (13 non-punctuation plus the additional 21 sin-
gleton punctuation tags). Increasing the number
of clusters is known to improve the M-1 mea-
sure (Reichart and Rappoport, 2009). GGTP-17
gives the best M-1 results, but its 1-1 results are
much worse than those of Q(ZCC), Q(CT), and
CT, and the information theoretic measures V and
NVI were not reported for it.

Recall that the Q algorithms tag punctuation
marks according to the scheme which assigns each
of them a unique cluster (Section 4), while previ-
ous work does not distinguish punctuation marks
from other tokens. To quantify the effect vari-
ous punctuation schemes have on the results re-
ported in Table 3, we evaluated the‘iHMM: PY-
fixed’ model (Van Gael et al., 2009) and the Q al-
gorithms when punctuation is excluded and when
both PY-fixed and Q algorithms use the punctua-
tion scheme described in Section 4.

For the PY-fixed, which induces 91 clusters,
results are (punctuation is excluded, heuristic is
used): V(0.530, 0.608), NVI (0.999, 0.823), 1-1
(0.484, 0.543), M-1 (0.591, 0.639). The results
for the Q algorithms are given in Table 1 (top
line: excluding punctuation, bottom line: using
the heuristic). The Q algorithms are better for the
V, NVI and 1-1 measures. For M-1 evaluation,
PY-fixed, which induces substantially more clus-
ters (91 compared to our 34) is better.

In what follows, we provide an analysis of the
components of our algorithms. To explore the
quality of our tagging component, ZCC, table 4
compares the mean, mode and standard deviation
of a 100 runs of ZCC with 100 runs of the original
CT algorithm8. The performance of the tagging

8In mode calculation we treat the 100 runs as samples of
a continuous random variable. We divide the results range
to 10 bins of the same size. The mode is the center of the
bin having the largest number of runs. If there is more than

63

Alg. V NVI 1-1 M-1
Q(ZCC)
no punct. 0.538 (85, 2.6) 0.849 (82, 3.2) 0.521 (100, 4.3) 0.533 (84, 1.7)
with punct. 0.637 (85, 1.8) 0.678 (82, 2.6) 0.58 (100, 3) 0.591 (84, 1.18)
Q(CT)
no punct. 0.545 (92, 3.3) 0.837 (88, 4.4) 0.492 (99,1.4) 0.526 (75, 1)
with punct. 0.644 (92, 2.5) 0.662 (88, 4.2) 0.555 (99, 0.5) 0.585 (75, 0.58)

Table 1: Quality of the tagging produced by Q(ZCC) and Q(CT). The top (bottom) line for each algorithm
presents the results when punctuation is not included (is included) in the evaluation (Section 4). The left
number in the parentheses is the fraction of Clark’s (CT) results that scored worse than our models (%
from 100 runs). The right number in the parentheses is 100 times the difference between the score of our
model and the mean score of 100 runs of Clark’s (CT). Q(ZCC) is better than Q(CT) in the mappings
measures, while Q(CT) is better in the IT measures. Both are better than the original Clark tagger CT.

Data Probability Likelihood Perplexity
V m-to-1 V m-to-1 V m-to-1

Alg. SRC KT SRC KT SRC KT SRC KT SRC KT SRC KT
CT 0.2 0.143 0.071 0.045 0.338 0.23 0.22 0.148 0.568 0.397 0.476 0.33
ZCC 0.134 0.094 0.118 0.078 0.517 0.352 0.453 0.321 0.82 0.62 0.659 0.484

Table 2: Correlation of unsupervised quality measures (columns) with clustering quality of two base
taggers (CT and ZCC, rows). Correlation is measured by Spearman (SRC) and Kendall Tau (KT) rank
correlation coefficients. The quality measures are data probability (left part), likelihood (middle side)
and perplexity (right part), and correlation is between these and two of theexternal evaluation measures,
m-to-1 mapping and V (results for the other two clustering evaluation measures, 1-1 mapping and NVI,
are very similar). Results for the perplexity quality test used by family Q are superior; data probability
and likelihood provide only a mediocre indication for the quality of induced clustering. Note that the
correlation values are much higher for ZCC than for CT.

components are quite similar, with a small advan-
tage to CT in mean and to ZCC in mode.

Our quality test is based on the perplexity of a
class bigram language model trained with the in-
duced tagging. To emphasize its strength we com-
pare it to two natural quality tests: the likelihood
and value of the probability function to which the
tagging algorithm converges (equations (2) and (1)
in Section 2.1). The results are shown in Table
2 First, we see that our perplexity quality test is
much better correlated with the quality of the tag-
ging induced by both ZCC and CT. Second, the
correlation is indeed much higher for ZCC than
for CT.

The power of Q(ZCC) lies in the combination
between the perplexity-based quality test and the
tagging component ZCC. The performance of the
tagging component ZCC does not provide a def-
inite improvement over the original Clark tagger.
ZCC compromises mean tagging results for an im-
proved correlation between Q’s quality measure

one such bin, we average their centers. We use this technique
since it is rare to see two different runs of either algorithm
with the exact same quality.

and gold standard-based tagging evaluation.

6 Conclusion

In this paper we addressed unsupervised POS tag-
ging as a task where the quality of a single tag-
ging is to be reported, rather than the average per-
formance of a tagging algorithm over many runs.
We introduced a family of algorithms Q(B) based
on an unsupervised test for tagging quality that is
used to select a high quality tagging from the out-
put of multiple runs of a POS tagger B.

We introduced the ZCC tagger which modifies
the original Clark tagger by constraining the clus-
tering space using a cluster type size Zipfian con-
straint, conforming with a known property of nat-
ural languages.

We showed that the tagging produced by our
Q(ZCC) algorithm is better than that of the Clark
algorithm with a probability of 82-100%, depend-
ing on the measure used. Moreover, our tagging
outperforms in most evaluation measures the re-
sults reported in all recent works that addressed
the task.

In future work, we intend to try to improve

64

Alg. V VI M-1 1-1
Q(ZCC) 0.637 2.06 0.591 0.58
Q(CT) 0.644 2.01 0.585 0.555
CT 0.619 2.14 0.576 0.543
HK – – – 0.413
J – 4.23 -

5.74
0.43 -
0.62

0.37 –
0.47

GG – 2.8 – –
G-J – 4.03 –

4.47
– 0.4 –

0.499
VG 0.54 -

0.59
2.49 –
2.91

– –

GGTP-45 — — 0.654 0.445
GGTP-17 — — 0.702 0.495

Table 3: Comparison of our algorithms with the
recent fully unsupervised POS taggers for which
results are reported. HK: (Haghighi and Klein,
2006), trained and evaluated with a corpus of
193K tokens and 45 induced tags. GG: (Goldwa-
ter and Griffiths, 2007), trained and evaluated with
a corpus of 24K tokens and 17 induced tags. J :
(Johnson, 2007) inducing 25-50 tags (the results
that are higher than Q in the M-1 measure are for
40-50 tags). GJ: (Gao and Johnson, 2008), induc-
ing 50 tags. VG: (Van Gael et al., 2009), inducing
47-192 tags. GGTP-45: (Graça et al., 2009), in-
ducing 45 tags. GGTP-17: (Graça et al., 2009),
inducing 17 tags. All five were trained and evalu-
ated with the full WSJ PTB (1.17M words). Lower
VI values indicates better clustering.

Statistic V NVI M-1 1-1
CT

Mean 0.512 0.881 0.516 0.478
Mode 0.502 0.886 0.514 0.465
Std 0.022 0.035 0.018 0.028

ZCC
Mean 0.503 0.908 0.512 0.478
Mode 0.509 0.907 0.518 0.47
Std 0.021 0.036 0.018 0.0295

Table 4: Average performance of ZCC compared
with CT (results presented without punctuation).
Presented are mean, mode (see text for its calcu-
lation), and standard deviation (std). CT mean re-
sults are slightly better, and both algorithms have
about the same standard deviation. ZCC sacrifices
a small amount of mean quality for a good corre-
lation with our quality test, which allows Q(ZCC)
to be much better than the mean of CT and most
of its runs.

our quality measure, experiment with additional
languages, and apply the ‘family of algorithms’
paradigm to additional relevant NLP tasks.

References

Michele Banko and Robert C. Moore, 2003. Part of
Speech Tagging in Context.COLING ’04.

Chris Biemann, 2006. Unsupervised Part-of-
Speech Tagging Employing Efficient Graph Cluster-
ing. COLING-ACL ’06 Student Research Work-
shop.

Thorsten Brants, 1997. The NEGRA Export Format.
CLAUS Report, Saarland University.

Eric Brill, 1995. Unsupervised Learning if Disam-
biguation Rules for Part of Speech Tagging.3rd
Workshop on Very Large Corpora.

Peter F. Brown, Vincent J. Della Pietra, Peter V. de
Souze, Jenifer C. Lai and Robert Mercer, 1992.
Class-Based N-Gram Models of Natural Language.
Computational Linguistics, 18:467-479.

Alexander Clark, 2003. Combining Distributional and
Morphological Information for Part of Speech In-
duction.EACL ’03.

Sajib Dasgupta and Vincent Ng, 2007. Unsu-
pervised Part-of-Speech Acquisition for Resource-
Scarce Languages.EMNLP ’07.

Steven Finch, Nick Chater and Martin Redington,
1995. Acquiring syntactic information from distri-
butional statistics.Connectionist models of memory
and language.UCL Press, London.

Dayne Freitag, 2004.Toward Unsupervised Whole-
Corpus Tagging.COLING ’04.

Jianfeng Gao and Mark Johnson, 2008. A compari-
son of Bayesian estimators for unsupervised Hidden
Markov Model POS taggers.EMNLP ’08.

Yoav Goldberg, Meni Adler and Michael Elhadad,
2008. EM Can Find Pretty Good HMM POS-
Taggers (When Given a Good Start).ACL ’08

Sharon Goldwater, Tom Griffiths, and Mark Johnson,
2006. Interpolating between types and tokens by es-
timating power-law generators.NIPS ’06.

Sharon Goldwater and Tom Griffiths, 2007. A fully
Bayesian approach to unsupervised part-of-speech
tagging.ACL ’07.

Joshua Goodman, 2001. A Bit of Progress in Lan-
guage Modeling, Extended Version.Microsoft Re-
search Technical Report MSR-TR-2001-72.

Jõao Graça, Kuzman Ganchev, Ben Taskar and Fre-
nando Pereira, 2009. Posterior vs. Parameter Spar-
sity in Latent Variable Models.NIPS ’09.

65

Maurice Kendall and Jean Dickinson, 1990. Rank
Correlation methods. Oxford University Press, New
York.

Aria Haghighi and Dan Klein, 2006. Prototype-driven
Learning for Sequence Labeling.HLT-NAACL ’06.

Mark Johnson, 2007. Why Doesnt EM Find Good
HMM POS-Taggers?EMNLP-CoNLL ’07.

Harold W. Kuhn, 1955. The Hungarian method for
the assignment problem.Naval Research Logistics
Quarterly, 2:83-97.

Mirella Lapata, 2006. Automatic Evaluation of In-
formation Ordering: Kendall’s Tau.Computational
Linguistics, 4:471-484.

Sven Martin, Jorg Liermann, and Hermann Ney, 1998.
Algorithms for bigram and trigram word clustering.
Speech Communication, 24:19-37.

Marina Meila, 2007. Comparing Clustering - an In-
formation Based Distance.Journal of Multivariate
Analysis, 98:873-895.

Bernard Merialdo, 1994. Tagging English Text with
a Probabilistic Model.Computational Linguistics,
20(2):155-172.

Michael Mitzenmacher , 2004. A Brief History of
Generative Models for Power Law and Lognormal
Distributions.Internet Mathematics, 1(2):226-251.

James Munkres, 1957. Algorithms for the Assignment
and Transportation Problems.Journal of the SIAM,
5(1):32-38.

Hermann Ney, Ute Essen, and Reinhard Kneser,
1994. On structuring probabilistic dependencies in
stochastic language modelling.Computer Speech
and Language, 8:1-38.

Sujith Ravi and Kevin Knight, 2009. Minimized Mod-
els for Unsupervised Part-of-Speech Tagging.ACL
’09.

Roi Reichart and Ari Rappoport, 2009. The NVI Clus-
tering Evaluation Measure.CoNLL ’09.

Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox,
1990. Statistical Mechanics and Phase Transitions
in Clustering. Physical Review Letters, 65(8):945-
948.

Andrew Rosenberg and Julia Hirschberg, 2007. V-
Measure: A Conditional Entropy-Based External
Cluster Evaluation Measure.EMNLP ’07.

Hinrich Schuetze, 1995. Distributional part-of-speech
tagging.EACL ’95.

Noah A. Smith and Jason Eisner, 2004. Annealing
Techniques for Unsupervised Statistical Language
Learning.ACL ’04.

Noah A. Smith and Jason Eisner, 2005. Contrastive
Estimation: Training Log-Linear Models on Unla-
beled Data.ACL ’05.

Benjamin Snyder, Tahira Naseem, Jacob Eisenstein,
and Regina Barzilay, 2009. Adding More Lan-
guages Improves Unsupervised Multilingual Part-
of-Speech Tagging: A Bayesian Non-Parametric
Approach.NAACL ’09.

Benjamin Snyder, Tahira Naseem, Jacob Eisenstein,
and Regina Barzilay, 2008. Unsupervised Multi-
lingual Learning for POS Tagging.EMNLP ’08.

Jurgen Van Gael, Andreas Vlachos and Zoubin Ghahra-
mani, 2009. The Infinite HMM for Unsupervised
POS Tagging.EMNLP ’09.

Qin Iris Wang and Dale Schuurmans, 2005. Im-
proved Estimation for Unsupervised Part-of-Speech
Tagging.IEEE NLP-KE ’05.

Shaojun Wang, Dale Schuurmans and Yunxin Zhao,
2002. The Latent Maximum Entropy Principle.
ISIT ’02.

Qiuye Zhao and Mitch Marcus, 2009.A Simple Un-
supervised Learner for POS Disambiguation Rules
Given Only a Minimal Lexicon.EMNLP ’09.

66

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 67–76,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Syntactic and Semantic Structure for Opinion Expression Detection

Richard Johansson and Alessandro Moschitti
DISI, University of Trento

Via Sommarive 14 Povo, 38123 Trento (TN), Italy
{johansson, moschitti}@disi.unitn.it

Abstract

We demonstrate that relational features
derived from dependency-syntactic and
semantic role structures are useful for the
task of detecting opinionated expressions
in natural-language text, significantly im-
proving over conventional models based
on sequence labeling with local features.
These features allow us to model the way
opinionated expressions interact in a sen-
tence over arbitrary distances.

While the relational features make the pre-
diction task more computationally expen-
sive, we show that it can be tackled effec-
tively by using a reranker. We evaluate
a number of machine learning approaches
for the reranker, and the best model re-
sults in a 10-point absolute improvement
in soft recall on the MPQA corpus, while
decreasing precision only slightly.

1 Introduction

The automatic detection and analysis of opinion-
ated text – subjectivity analysis – is potentially
useful for a number of natural language processing
tasks. Examples include retrieval systems answer-
ing queries about how a particular person feels
about a product or political question, and various
types of market analysis tools such as review min-
ing systems.

A primary task in subjectivity analysis is to
mark up the opinionated expressions, i.e. the
text snippets signaling the subjective content of
the text. This is necessary for further analysis,
such as the determination of opinion holder and
the polarity of the opinion. The MPQA corpus
(Wiebe et al., 2005), a widely used corpus anno-
tated with subjectivity information, defines two
types of subjective expressions: direct subjective
expressions (DSEs), which are explicit mentions

of opinion, and expressive subjective elements
(ESEs), which signal the attitude of the speaker
by the choice of words. DSEs are often verbs of
statement and categorization, where the opinion
and its holder tend to be direct semantic arguments
of the verb. ESEs, on the other hand, are less easy
to categorize syntactically; prototypical examples
would include value-expressing adjectives such
as beautiful, biased, etc. In addition to DSEs and
ESEs, the MPQA corpus also contains annotation
for non-subjective statements, which are referred
to as objective speech events (OSEs). Examples
(1) and (2) show two sentences from the MPQA
corpus where DSEs and ESEs have been manually
annotated.

(1) For instance, he [denounced]DSE as a [human
rights violation]ESE the banning and seizure of
satellite dishes in Iran.
(2) This [is viewed]DSE as the [main
impediment]ESE to the establishment of po-
litical order in the country .

The task of marking up these expressions has
usually been approached using straightforward
sequence labeling techniques using simple fea-
tures in a small contextual window (Choi et al.,
2006; Breck et al., 2007). However, due to the
simplicity of the feature sets, this approach fails
to take into account the fact that the semantic
and pragmatic interpretation of sentences is not
only determined by words but also by syntactic
and shallow-semantic relations. Crucially, taking
grammatical relations into account allows us to
model how expressions interact in various ways
that influence their interpretation as subjective
or not. Consider, for instance, the word said in
examples (3) and (4) below, where the interpre-
tation as a DSE or an OSE is influenced by the
subjective content of the enclosed statement.

67

(3) “We will identify the [culprits]ESE of these
clashes and [punish]ESE them,” he [said]DSE .
(4) On Monday, 80 Libyan soldiers disembarked
from an Antonov transport plane carrying military
equipment, an African diplomat [said]OSE .

In this paper, we demonstrate how syntactic
and semantic structural information can be used
to improve opinion detection. While this fea-
ture model makes it impossible to use the stan-
dard sequence labeling method, we show that with
a simple strategy based on reranking, incorporat-
ing structural features results in a significant im-
provement. We investigate two different reranking
strategies: the Preference Kernel approach (Shen
and Joshi, 2003) and an approach based on struc-
ture learning (Collins, 2002). In an evaluation
on the MPQA corpus, the best system we evalu-
ated, a structure learning-based reranker using the
Passive–Aggressive learning algorithm, achieved
a 10-point absolute improvement in soft recall,
and a 5-point improvement in F-measure, over the
baseline sequence labeler .

2 Motivation and Related Work

Most approaches to analysing the sentiment of
natural-language text have relied fundamentally
on purely lexical information (see (Pang et al.,
2002; Yu and Hatzivassiloglou, 2003), inter alia)
or low-level grammatical information such as part-
of-speech tags and functional words (Wiebe et al.,
1999). This is in line with the general consensus
in the information retrieval community that very
little can be gained by complex linguistic process-
ing for tasks such as text categorization and search
(Moschitti and Basili, 2004).

However, it has been suggested that subjectiv-
ity analysis is inherently more subtle than cate-
gorization and that structural linguistic informa-
tion should therefore be given more attention in
this context. For instance, Karlgren et al. (2010)
argued from a Construction Grammar viewpoint
(Croft, 2005) that grammatical constructions not
only connect words, but can also be viewed as lex-
ical items in their own right. Starting from this
intuition, they showed that incorporating construc-
tion items into a bag-of-words feature representa-
tion resulted in improved results on a number of
coarse-grained opinion analysis tasks. These con-
structional features were domain-independent and
were manually extracted from dependency parse

trees. They found that the most prominent con-
structional feature for subjectivity analysis was the
Tense Shift construction.

While the position by Karlgren et al. (2010)
– that constructional features signal opinion –
originates from a particular theoretical framework
and may be controversial, syntactic and shallow-
semantic relations have repeatedly proven useful
for subtasks of subjectivity analysis that are in-
herently relational, above all for determining the
holder or topic of a given opinion. Works us-
ing syntactic features to extract topics and holders
of opinions are numerous (Bethard et al., 2005;
Kobayashi et al., 2007; Joshi and Penstein-Rosé,
2009; Wu et al., 2009). Semantic role analysis has
also proven useful: Kim and Hovy (2006) used
a FrameNet-based semantic role labeler to deter-
mine holder and topic of opinions. Similarly, Choi
et al. (2006) successfully used a PropBank-based
semantic role labeler for opinion holder extrac-
tion, and Wiegand and Klakow (2010) recently ap-
plied tree kernel learning methods on a combina-
tion of syntactic and semantic role trees for the
same task. Ruppenhofer et al. (2008) argued that
semantic role techniques are useful but not com-
pletely sufficient for holder and topic identifica-
tion, and that other linguistic phenomena must be
studied as well. One such linguistic pheonomenon
is the discourse structure, which has recently at-
tracted some attention in the opinion analysis com-
munity (Somasundaran et al., 2009).

3 Opinion Expression Detection Using
Syntactic and Semantic Structures

Previous systems for opinionated expression
markup have typically used simple feature sets
which have allowed the use of efficient off-the-
shelf sequence labeling methods based on Viterbi
search (Choi et al., 2006; Breck et al., 2007). This
is not possible in our case since we would like to
extract structural, relational features that involve
pairs of opinionated expressions and may apply
over an arbitrarily long distance in the sentence.

While it is possible that search algorithms for
exact or approximate inference can be construc-
tured for the arg max problem in this model, we
sidestepped this issue by using a reranking decom-
position of the problem: We first apply a standard
Viterbi-based sequence labeler using no structural
features and generate a small candidate set of size
k. Then, a second and more complex model picks

68

the top candidate from this set without having to
search the whole candidate space.

The advantages of a reranking approach com-
pared to more complex approaches requiring ad-
vanced search techniques are mainly simplicity
and efficiency: this approach is conceptually sim-
ple and fairly easy to implement provided that k-
best output can be generated efficiently, and fea-
tures can be arbitrarily complex – we don’t have
to think about how the features affect the algorith-
mic complexity of the inference step. A common
objection to reranking is that the candidate set may
not be diverse enough to allow for much improve-
ment unless it is very large; the candidates may
be trivial variations that are all very similar to the
top-scoring candidate (Huang, 2008).

3.1 Syntactic and Semantic Structures

We used the syntactic–semantic parser by Johans-
son and Nugues (2008a) to annnotate the sen-
tences with dependency syntax (Mel’čuk, 1988)
and shallow semantic structures in the PropBank
(Palmer et al., 2005) and NomBank (Meyers et
al., 2004) frameworks. Figure 1 shows an example
of the annotation: The sentence they called him a
liar, where called is a DSE and liar is an ESE, has
been annotated with dependency syntax (above the
text) and PropBank-based semantic role structure
(below the text). The predicate called, which is
an instance of the PropBank frame call.01, has
three semantic arguments: the Agent (A0), the
Theme (A1), and the Predicate (A2), which are re-
alized on the surface-syntactic level as a subject,
a direct object, and an object predicative comple-
ment, respectively.

]
ESE

They called

call.01

SBJ
OPRD

liarhim[[a

A1A0 A2

]
DSE

NMODOBJ

Figure 1: Syntactic and shallow semantic struc-
ture.

3.2 Sequence Labeler

We implemented a standard sequence labeler fol-
lowing the approach of Collins (2002), while
training the model using the Passive–Aggressive

algorithm (Crammer et al., 2006) instead of the
perceptron. We encoded the opinionated expres-
sion brackets using the IOB2 encoding scheme
(Tjong Kim Sang and Veenstra, 1999). Figure 2
shows an example of a sentence with a DSE and
an ESE and how they are encoded in the IOB2 en-
coding.

This O
is O
viewed B-DSE
as O
the O
main B-ESE
impediment I-ESE

Figure 2: Sequence labeling example.

The sequence labeler used word, POS tag, and
lemma features in a window of size 3. In addi-
tion, we used prior polarity and intensity features
derived from the lexicon created by Wilson et al.
(2005). In the example, viewed is listed as hav-
ing strong prior subjectivity but no polarity, and
impediment has strong prior subjectivity and neg-
ative polarity. Note that prior subjectivity does not
always imply subjectivity in a particular context;
this is why contextual features are essential for this
task.

This sequence labeler is used to generate the
candidate set for the reranker; the Viterbi algo-
rithm is easily modified to give k-best output. To
generate training data for the reranker, we carried
out a 5-fold cross-validation procedure: We split
the training set into 5 pieces, trained a sequence
labeler on pieces 1 to 4, applied it to piece 5 and
so on.

3.3 Reranker Features

The rerankers use two types of structural fea-
tures: syntactic features extracted from the depen-
dency tree, and semantic features extracted from
the predicate–argument (semantic role) graph.

The syntactic features are based on paths
through the dependency tree. This creates a small
complication for multiword opinionated expres-
sions; we select the shortest possible path in such
cases. For instance, in Example (1), the path will
be computed between denounced and violation,
and in Example (2) between viewed and impedi-
ment.

We used the following syntactic features:

69

SYNTACTIC PATH. Given a pair of opinion ex-
pressions, we use a feature representing the
labels of the two expressions and the path be-
tween them through the syntactic tree. For
instance, for the DSE called and the ESE liar
in Figure 1, we represent the syntactic config-
uration using the feature DSE:OPRD↓:ESE,
meaning that the path from the DSE to the
ESE consists of a single link, where the de-
pendency edge label is OPRD (object predica-
tive complement).

LEXICALIZED PATH. Same as above,
but with lexical information attached:
DSE/called:OPRD↓:ESE/liar.

DOMINANCE. In addition to the features based
on syntactic paths, we created a more generic
feature template describing dominance re-
lations between expressions. For instance,
from the graph in Figure 1, we extract the
feature DSE/called→ESE/liar, mean-
ing that a DSE with the word called domi-
nates an ESE with the word liar.

The semantic features were the following:

PREDICATE SENSE LABEL. For every predi-
cate found inside an opinion expression, we
add a feature consisting of the expression la-
bel and the predicate sense identifier. For in-
stance, the verb call which is also a DSE is
represented with the feature DSE/call.01.

PREDICATE AND ARGUMENT LABEL. For
every argument of a predicate inside an
opinion expression, we create a feature
representing the predicate–argument pair:
DSE/call.01:A0.

CONNECTING ARGUMENT LABEL. When a
predicate inside some opinion expression is
connected to some argument inside another
opinion expression, we use a feature con-
sisting of the two expression labels and the
argument label. For instance, the ESE liar
is connected to the DSE call via an A2 la-
bel, and we represent this using a feature
DSE:A2:ESE.

Apart from the syntactic and semantic features,
we also used the score output from the base se-
quence labeler as a feature. We normalized the
scores over the k candidates so that their exponen-
tials summed to 1.

3.4 Preference Kernel Approach

The first reranking strategy we investigated was
the Preference Kernel approach (Shen and Joshi,
2003). In this method, the reranking problem –
learning to select the correct candidate h1 from a
candidate set {h1, . . . , hk} – is reduced to a bi-
nary classification problem by creating pairs: pos-
itive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and
negative instances 〈h2, h1〉, . . . , 〈hk, h1〉. This ap-
proach has the advantage that the abundant tools
for binary machine learning can be exploited.

It is also easy to show (Shen and Joshi, 2003)
that if we have a kernel K over the candidate space
T , we can construct a valid kernel PK over the
space of pairs T × T as follows:

PK(h1, h2) = K(h1
1, h

1
2) + K(h2

1, h
2
2)

− K(h1
1, h

2
2)−K(h2

1, h
1
2),

where hi are the pairs of hypotheses 〈h1
i , h

2
i 〉 gen-

erated by the base model. This makes it possible
to use kernel methods to train the reranker. We
tried two types of kernels: linear kernels and tree
kernels.

3.4.1 Linear Kernel

We created feature vectors extracted from the can-
didate sequences using the features described in
Section 3.3. We then trained linear SVMs using
the LIBLINEAR software (Fan et al., 2008), using
L1 loss and L2 regularization.

3.4.2 Tree Kernel

Tree kernels have been successful for a number of
structure extraction tasks, such as relation extrac-
tion (Zhang et al., 2006; Nguyen et al., 2009) and
opinion holder extraction (Wiegand and Klakow,
2010). A tree kernel implicitly represents a large
space of fragments extracted from trees and could
thus reduce the need for manual feature design.
Since the paths that we extract manually (Sec-
tion 3.3) can be expressed as tree fragments, this
method could be an interesting alternative to the
manually extracted features used with the linear
kernel.

We therefore implemented a reranker using
the Partial Tree Kernel (Moschitti, 2006), and
we trained it using the SVMLight-TK software1,
which is a modification of SVMLight (Joachims,

1Available at http://dit.unitn.it/∼moschitt

70

1999)2. It is still an open question how depen-
dency trees should be represented for use with
tree kernels (Suzuki et al., 2003; Nguyen et al.,
2009); we used the representation shown in Fig-
ure 3. Note that we have concatenated the opinion
expression labels to the POS tag nodes. We did not
use any of the features from Section 3.3 except for
the base sequence labeler score.

TOP

ROOT

OBJSBJ

PRP

they him

OPRD

PRP

NMOD

DT

NN−ES

VBD−DS

called

a

liar

Figure 3: Representation of a dependency tree
with opinion expressions for tree kernels.

3.5 Structure Learning Approach

The Preference Kernel approach reduces the
reranking problem to a binary classification task
on pairs, after which a standard SVM optimizer is
used to train the reranker. A problem with this
method is that the optimization problem solved
by the SVM – maximizing the classification ac-
curacy on a set of independent pairs – is not di-
rectly related to the performance of the reranker.
Instead, the method employed by many rerankers
following Collins and Duffy (2002) directly learn
a scoring function that is trained to maximize per-
formance on the reranking task. We will refer to
this approach as the structure learning method.

While there are batch learning algorithms that
work in this setting (Tsochantaridis et al., 2005),
online learning methods have been more popular
for efficiency reasons. We investigated two online
learning algorithms: the popular structured per-
ceptron Collins and Duffy (2002) and the Passive–
Aggressive (PA) algorithm (Crammer et al., 2006).
To increase robustness, we averaged the weight
vectors seen during training as in the Voted Per-
ceptron (Freund and Schapire, 1999).

The difference between the two algorithms is
the way the weight vector is incremented in each
step. In the perceptron, for a given input x, we up-
date based on the difference between the correct

2http://svmlight.joachims.org

output y and the predicted output ŷ, where Φ is
the feature representation function:

ŷ ← arg maxh w · Φ(x, h)
w ← w + Φ(x, y)−Φ(x, ŷ)

In the PA algorithm, which is based on the the-
ory of large-margin learning, we instead find the
ŷ that violates the margin constraints maximally.
The update step length τ is computed based on the
margin; this update is bounded by a regularization
constant C:

ŷ ← arg maxh w · Φ(x, h) +
√

ρ(y, h)

τ ← min
(

C,
w(Φ(x,ŷ)−Φ(x,y))+

√
ρ(y,ŷ)

‖Φ(x,ŷ)−Φ(x,y)‖2

)

w ← w + τ(Φ(x, y)− Φ(x, ŷ))

The algorithm uses a cost function ρ. We used
the function ρ(y, ŷ) = 1 − F (y, ŷ), where F is
the soft F-measure described in Section 4.1. With
this approach, the learning algorithm thus directly
optimizes the measure we are interested in, i.e. the
F-measure.

4 Experiments

We carried out the experiments on version 2 of the
MPQA corpus (Wiebe et al., 2005), which we split
into a test set (150 documents, 3,743 sentences)
and a training set (541 documents, 12,010 sen-
tences).

4.1 Evaluation Metrics

Since expression boundaries are hard to define ex-
actly in annotation guidelines (Wiebe et al., 2005),
we used soft precision and recall measures to score
the quality of the system output. To derive the soft
precision and recall, we first define the span cov-
erage c of a span s with respect to another span s′,
which measures how well s′ is covered by s:

c(s, s′) =
|s ∩ s′|
|s′|

In this formula, the operator | · | counts tokens, and
the intersection ∩ gives the set of tokens that two
spans have in common. Since our evaluation takes
span labels (DSE, ESE, OSE) into account, we set
c(s, s′) to zero if the labels associated with s and
s′ are different.

Using the span coverage, we define the span set
coverage C of a set of spans S with respect to a
set S′:

C(S,S′) =
∑
sj∈S

∑
s′
k
∈S′

c(sj, s
′
k)

71

We now define the soft precision P and recall R
of a proposed set of spans Ŝ with respect to a gold
standard set S as follows:

P (S, Ŝ) = C(S,Ŝ)

|Ŝ| R(S, Ŝ) = C(Ŝ,S)
|S|

Note that the operator | · | counts spans in this for-
mula.

Conventionally, when measuring the quality of
a system for an information extraction task, a pre-
dicted entity is counted as correct if it exactly
matches the boundaries of a corresponding en-
tity in the gold standard; there is thus no reward
for close matches. However, since the boundaries
of the spans annotated in the MPQA corpus are
not strictly defined in the annotation guidelines
(Wiebe et al., 2005), measuring precision and re-
call using exact boundary scoring will result in fig-
ures that are too low to be indicative of the use-
fulness of the system. Therefore, most work us-
ing this corpus instead use overlap-based preci-
sion and recall measures, where a span is counted
as correctly detected if it overlaps with a span in
the gold standard (Choi et al., 2006; Breck et al.,
2007). As pointed out by Breck et al. (2007), this
is problematic since it will tend to reward long
spans – for instance, a span covering the whole
sentence will always be counted as correct if the
gold standard contains any span for that sentence.

The precision and recall measures proposed
here correct the problem with overlap-based mea-
sures: If the system proposes a span covering the
whole sentence, the span coverage will be low and
result in a low soft precision. Note that our mea-
sures are bounded below by the exact measures
and above by the overlap-based measures.

4.2 Reranking Approaches

We compared the reranking architectures and the
machine learning methods described in Section 3.
In these experiments, we used a candidate set size
k of 8. Table 1 shows the results of the evaluations
using the precision and recall measures described
above. The baseline is the result of taking the top-
scoring output from the sequence labeler without
applying any reranking.

The results show that the rerankers using man-
ual feature extraction outperform the tree-kernel-
based reranker, which obtains a score just above
the baseline. It should be noted that the mas-
sive training time of kernel-based machine learn-
ing precluded a detailed tuning of parameters and

System P R F

Baseline 63.36 46.77 53.82
Pref-linear 64.60 50.17 56.48
Pref-TK 63.97 46.94 54.15
Struct-Perc 62.84 48.13 54.51
Struct-PA 63.50 51.79 57.04

Table 1: Evaluation of reranking architectures and
learning methods.

representation – on the other hand, we did not need
to spend much time on parameter tuning and fea-
ture design for the other rerankers.

In addition, we note that the best performance
was obtained using the PA algorithm and the struc-
ture learning architecture. The PA algorithm is
a simple online learning method and still out-
performs the SVM used in the preference-kernel
reranker. This suggests that the structure learning
approach is superior for this task. It is possible
that a batch learning method such as SVMstruct

(Tsochantaridis et al., 2005) could improve the re-
sults even further.

4.3 Candidate Set Size

In any method based on reranking, it is important
to study the influence of the candidate set size on
the quality of the reranked output. In addition, an
interesting question is what the upper bound on
reranker performance is – the oracle performance.
Table 2 shows the result of an experiment that in-
vestigates these questions. We used the reranker
based on the Passive–Aggressive method in this
experiment since this reranker gave the best results
in the previous experiment.

Reranked Oracle
k P R F P R F
1 63.36 46.77 53.82 63.36 46.77 53.82
2 63.70 48.17 54.86 72.66 55.18 62.72
4 63.57 49.78 55.84 79.12 62.24 69.68
8 63.50 51.79 57.04 83.72 68.14 75.13
16 63.00 52.94 57.54 86.92 72.79 79.23
32 62.15 54.50 58.07 89.18 76.76 82.51
64 61.02 55.67 58.22 91.08 80.19 85.28
128 60.22 56.45 58.27 92.63 83.00 87.55
256 59.87 57.22 58.51 94.01 85.27 89.43

Table 2: Oracle and reranker performance as a
function of candidate set size.

As is common in reranking tasks, the reranker
can exploit only a fraction of the potential im-
provement – the reduction of the F-measure error

72

is between 10 and 15 percent of the oracle error
reduction for all candidate set sizes.

The most visible effect of the reranker is that
the recall is greatly improved. However, this does
not seem to have an adverse effect on the precision
until the candidate set size goes above 8 – in fact,
the precision actually improves over the baseline
for small candidate set sizes. After the size goes
above 8, the recall (and the F-measure) still rises,
but at the cost of decreased precision.

4.4 Impact of Features

We studied the impact of syntactic and seman-
tic structural features on the performance of the
reranker. Table 3 shows the result of the inves-
tigation for syntactic features. Using all the syn-
tactic features (and no semantic features) gives an
F-measure roughly 4 points above the baseline, us-
ing the PA reranker with a k of 64. We then mea-
sured the F-measure obtained when each one of
the three syntactic features had been removed. It
is clear that the unlexicalized syntactic path is the
most important syntactic feature; the effect of the
two lexicalized features seems to be negligible.

System P R F

Baseline 63.36 46.77 53.82
All syntactic 62.45 53.19 57.45
No SYN PATH 64.40 48.69 55.46
No LEX PATH 62.62 53.19 57.52
No DOMINANCE 62.32 52.92 57.24

Table 3: Effect of syntactic features.

A similar result was obtained when studying the
semantic features (Table 4). Removing the CON-
NECTING ARGUMENT LABEL feature, which is
unlexicalized, has a greater effect than removing
the other two semantic features, which are lexical-
ized.

System P R F

Baseline 63.36 46.77 53.82
All semantic 61.26 53.85 57.31
No PREDICATE SL 61.28 53.81 57.30
No PRED+ARGLBL 60.96 53.61 57.05
No CONN ARGLBL 60.73 50.47 55.12

Table 4: Effect of semantic features.

Since our most effective structural features
combine a pair of opinion expression labels with

a tree fragment, it is interesting to study whether
the expression labels alone would be enough. If
this were the case, we could conclude that the
improvement is caused not by the structural fea-
tures, but just by learning which combinations
of labels are common in the training set, such
as that DSE+ESE would be more common than
OSE+ESE. We thus carried out an experiment
comparing a reranker using label pair features
against rerankers based on syntactic features only,
semantic features only, and the full feature set. Ta-
ble 5 shows the results. We see that the reranker
using label pairs indeed achieves a performance
well above the baseline. However, its performance
is below that of any reranker using structural fea-
tures. In addition, we see no improvement when
adding label pair features to the structural feature
set; this is to be expected since the label pair infor-
mation is subsumed by the structural features.

System P R F

Baseline 63.36 46.77 53.82
Label pairs 62.05 52.68 56.98
All syntactic 62.45 53.19 57.45
All semantic 61.26 53.85 57.31
Syn + sem 61.02 55.67 58.22
Syn + sem + pairs 61.61 54.78 57.99

Table 5: Structural features compared to label
pairs.

4.5 Comparison with Breck et al. (2007)

Comparison of systems in opinion expression de-
tection is often nontrivial since evaluation settings
have differed widely. Since our problem setting
– marking up and labeling opinion expressions in
the MPQA corpus – is most similar to that de-
scribed by Breck et al. (2007), we carried out an
evaluation using the setting used in their experi-
ment.

For compatibility with their experimental setup,
this experiment differed from the ones described
in the previous sections in the following ways:

• The system did not need to distinguish DSEs
and ESEs and did not have to detect the
OSEs.

• The results were measured using the overlap-
based precision and recall, although this is
problematic as pointed out in Section 4.1.

73

• Instead of the training/test split we used in the
previous evaluations, the systems were evalu-
ated using a 10-fold cross-validation over the
same set of 400 documents as used in Breck’s
experiment.

Again, our reranker uses the PA method with a
k of 64. Table 6 shows the results.

System P R F

Breck et al. (2007) 71.64 74.70 73.05
Baseline 80.85 64.38 71.68
Reranked 76.40 78.23 77.30

Table 6: Results using the Breck et al. (2007) eval-
uation setting.

We see that the performance of our system is
clearly higher – in both precision and recall – than
that reported by Breck et al. (2007). This shows
again that the structural features are effective for
the task of finding opinionated expressions.

We note that the performance of our base-
line sequence labeler is lower than theirs; this
is to be expected since they used a more com-
plex batch learning algorithm (conditional random
fields) while we used an online learner, and they
spent more effort on feature design. This indicates
that we should be able to achieve even higher per-
formance using a stronger base model.

5 Conclusion

We have shown that features derived from gram-
matical and semantic role structure can be used to
improve the detection of opinionated expressions
in subjectivity analysis. Most significantly, the re-
call is drastically increased (10 points) while the
precision decreases only slightly (3 points). This
result compares favorably with previously pub-
lished results, which have been biased towards
precision and scored low on recall.

The long-distance structural features gives us a
model that has predictive power as well as being of
theoretical interest: this model takes into account
the interactions between opinion expressions in a
sentence. While these structural features give us
a powerful model, they come at a computational
cost; prediction is more complex than in a stan-
dard sequence labeler based on purely local fea-
tures. However, we have shown that a prediction
strategy based on reranking suffices for this task.

We analyzed the impact of the syntactic and se-
mantic features and saw that the best model in-
cludes both types of features. The most effective
features we have found are purely structural, i.e.
based on tree fragments in a syntactic or seman-
tic tree. Features involving words did not seem to
have the same impact. We also showed that the im-
provement is not explainable by mere correlations
between opinion expression labels.

We investigated a number of implementation
strategies for the reranker and concluded that the
structural learning framework seemed to give the
best performance. We were not able to achieve
the same performance using tree kernels as with
manually extracted features. It is possible that this
could be improved with a better strategy for rep-
resenting dependency structure for tree kernels, or
if the tree kernels could be incorporated into the
structural learning framework.

The flexible architecture we have presented en-
ables interesting future research: (i) a straight-
forward improvement is the use of lexical simi-
larity to reduce data sparseness, e.g. (Basili et
al., 2005; Basili et al., 2006; Bloehdorn et al.,
2006). However, the similarity between subjective
words, which have multiple senses against other
words may negatively impact the system accu-
racy. Therefore, the use of the syntactic/semantic
kernels, i.e. (Bloehdorn and Moschitti, 2007a;
Bloehdorn and Moschitti, 2007b), to syntactically
contextualize word similarities may improve the
reranker accuracy. (ii) The latter can be fur-
ther boosted by studying complex structural ker-
nels, e.g. (Moschitti, 2008; Nguyen et al., 2009;
Dinarelli et al., 2009). (iii) More specific pred-
icate argument structures such those proposed in
FrameNet, e.g. (Baker et al., 1998; Giuglea and
Moschitti, 2004; Giuglea and Moschitti, 2006; Jo-
hansson and Nugues, 2008b) may be useful to
characterize the opinion holder and the sentence
semantic context.

Finally, while the strategy based on reranking
resulted in a significant performance boost, it re-
mains to be seen whether a higher accuracy can
be achieved by developing a more sophisticated
inference algorithm based on dynamic program-
ming. However, while the development of such
an algorithm is an interesting problem, it will not
necessarily result in a more usable system – when
using a reranker, it is easy to trade accuracy for
efficiency.

74

Acknowledgements

The research leading to these results has received
funding from the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) un-
der grant agreement 231126: LivingKnowledge –
Facts, Opinions and Bias in Time, and from Trust-
worthy Eternal Systems via Evolving Software,
Data and Knowledge (EternalS, project number
FP7 247758). In addition, we would like to thank
Eric Breck for clarifying his results and experi-
mental setup.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proceed-
ings of COLING/ACL-1998.

Roberto Basili, Marco Cammisa, and Alessandro Mos-
chitti. 2005. Effective use of WordNet seman-
tics via kernel-based learning. In Proceedings of
CoNLL-2005, pages 1–8, Ann Arbor, Michigan.

Roberto Basili, Marco Cammisa, and Alessandro Mos-
chitti. 2006. A semantic kernel to classify texts with
very few training examples. In in Informatica, an in-
ternational journal of Computing and Informatics.

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios
Hatzivassiloglou, and Dan Jurafsky. 2005. Extract-
ing opinion propositions and opinion holders using
syntactic and lexical cues. In James G. Shanahan,
Yan Qu, and Janyce Wiebe, editors, Computing Atti-
tude and Affect in Text: Theory and Applications.

Stephan Bloehdorn and Alessandro Moschitti. 2007a.
Combined syntactic and semantic kernels for text
classification. In Proceedings of ECIR 2007, Rome,
Italy.

Stephan Bloehdorn and Alessandro Moschitti. 2007b.
Structure and semantics for expressive text kernels.
In In Proceedings of CIKM ’07.

Stephan Bloehdorn, Roberto Basili, Marco Cammisa,
and Alessandro Moschitti. 2006. Semantic kernels
for text classification based on topological measures
of feature similarity. In Proceedings of ICDM 06,
Hong Kong, 2006.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In Pro-
ceedings of IJCAI-2007, Hyderabad, India.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In Proceedings of EMNLP 2006.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of ACL’02.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In Proceed-
ings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2002),
pages 1–8.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Schwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 2006(7):551–585.

William Croft. 2005. Radical and typological argu-
ments for radical construction grammar. In J.-O.
Östman and M. Fried, editors, Construction Gram-
mars: Cognitive grounding and theoretical exten-
sions.

Marco Dinarelli, Alessandro Moschitti, and Giuseppe
Riccardi. 2009. Re-ranking models based-on small
training data for spoken language understanding.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1076–1085, Singapore, August.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Yoav Freund and Robert E. Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296.

Ana-Maria Giuglea and Alessandro Moschitti. 2004.
Knowledge Discovering using FrameNet, VerbNet
and PropBank. In In Proceedings of the Workshop
on Ontology and Knowledge Discovering at ECML
2004, Pisa, Italy.

Ana-Maria Giuglea and Alessandro Moschitti. 2006.
Semantic role labeling via FrameNet, VerbNet and
PropBank. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 929–936, Sydney, Aus-
tralia, July.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of
ACL-08: HLT, pages 586–594, Columbus, United
States.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. Advances in Kernel Methods –
Support Vector Learning, 13.

Richard Johansson and Pierre Nugues. 2008a.
Dependency-based syntactic–semantic analysis with
PropBank and NomBank. In CoNLL 2008: Pro-
ceedings of the Twelfth Conference on Natural
Language Learning, pages 183–187, Manchester,
United Kingdom.

75

Richard Johansson and Pierre Nugues. 2008b. The
effect of syntactic representation on semantic role
labeling. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008), pages 393–400, Manchester, UK.

Mahesh Joshi and Carolyn Penstein-Rosé. 2009. Gen-
eralizing dependency features for opinion mining.
In Proceedings of ACL/IJCNLP 2009, Short Papers
Track.

Jussi Karlgren, Gunnar Eriksson, Magnus Sahlgren,
and Oscar Täckström. 2010. Between bags
and trees – constructional patterns in text used for
attitude identification. In Proceedings of ECIR
2010, 32nd European Conference on Information
Retrieval, Milton Keynes, United Kingdom.

Soo-Min Kim and Eduard Hovy. 2006. Extract-
ing opinions, opinion holders, and topics expressed
in online news media text. In Proceedings of
ACL/COLING Workshop on Sentiment and Subjec-
tivity in Text.

Nozomi Kobayashi, Kentaro Inui, and Yuji Matsumoto.
2007. Extracting aspect-evaluation and aspect-of re-
lations in opinion mining. In Proceedings of Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP-CoNLL-2007).

Igor A. Mel’čuk. 1988. Dependency Syntax: Theory
and Practice. State University Press of New York,
Albany.

Adam Meyers, Ruth Reeves, Catherine Macleod,
Rachel Szekely, Veronika Zielinska, Brian Young,
and Ralph Grishman. 2004. The NomBank project:
An interim report. In HLT-NAACL 2004 Work-
shop: Frontiers in Corpus Annotation, pages 24–31,
Boston, United States.

Alessandro Moschitti and Roberto Basili. 2004. Com-
plex linguistic features for text classification: A
comprehensive study. In Proceedings of ECIR.

Alessandro Moschitti. 2006. Making tree kernels prac-
tical for natural language learning. In Proccedings
of EACL’06.

Alessandro Moschitti. 2008. Kernel methods, syntax
and semantics for relational text categorization. In
Proceeding of CIKM ’08, NY, USA.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution kernels on
constituent, dependency and sequential structures
for relation extraction. In Proceedings of EMNLP.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of se-
mantic roles. Computational Linguistics, 31(1):71–
105.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification us-
ing machine learning techniques. In Proceedings of
EMNLP.

Josef Ruppenhofer, Swapna Somasundaran, and Janyce
Wiebe. 2008. Finding the sources and targets of
subjective expressions. In Proceedings of LREC.

Libin Shen and Aravind Joshi. 2003. An SVM based
voting algorithm with application to parse reranking.
In Proceedings of the CoNLL.

Swapna Somasundaran, Galileo Namata, Janyce
Wiebe, and Lise Getoor. 2009. Supervised and
unsupervised methods in employing discourse rela-
tions for improving opinion polarity classification.
In Proceedings of EMNLP 2009: conference on Em-
pirical Methods in Natural Language Processing.

Jun Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku
Maeda. 2003. Hierarchical directed acyclic graph
kernel: Methods for structured natural language
data. In Proceedings of the 41th Annual Meeting of
Association for Computational Linguistics (ACL).

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. In Proceedings of EACL99,
pages 173–179, Bergen, Norway.

Iannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output
variables. Journal of Machine Learning Research,
6(Sep):1453–1484.

Janyce Wiebe, Rebecca Bruce, and Thomas O’Hara.
1999. Development and use of a gold standard data
set for subjectivity classifications. In Proceedings
of the 37th Annual Meeting of the Association for
Computational Linguistics.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation, 39(2-3):165–210.

Michael Wiegand and Dietrich Klakow. 2010. Con-
volution kernels for opinion holder extraction. In
Proceedings of HLT-NAACL 2010. To appear.

Theresa Wilson, Janyce Wiebe, and Paul Hoff-
mann. 2005. Recognizing contextual polarity in
phrase-level sentiment analysis. In Proceedings of
HLT/EMNLP 2005.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In Proceedings of EMNLP.

Hong Yu and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating facts
from opinions and identifying the polarity of opin-
ion sentences. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP-2003), pages 129–136, Sapporo, Japan.

Min Zhang, Jie Zhang, and Jian Su. 2006. Exploring
Syntactic Features for Relation Extraction using a
Convolution tree kernel. In Proceedings of NAACL.

76

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 77–87,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Type Level Clustering Evaluation: New Measures
and a POS Induction Case Study

Roi Reichart1∗ Omri Abend 2∗† Ari Rappoport 2

1ICNC 2Institute of Computer Science
Hebrew University of Jerusalem

{roiri|omria01|arir}@cs.huji.ac.il

Abstract

Clustering is a central technique in NLP.
Consequently, clustering evaluation is of
great importance. Many clustering algo-
rithms are evaluated by their success in
tagging corpus tokens. In this paper we
discusstype levelevaluation, which re-
flects class membership only and is inde-
pendent of the token statistics of a partic-
ular reference corpus. Type level evalua-
tion casts light on the merits of algorithms,
and for some applications is a more natural
measure of the algorithm’s quality.

We propose new type level evaluation
measures that, contrary to existing mea-
sures, are applicable when items are pol-
ysemous, the common case in NLP. We
demonstrate the benefits of our measures
using a detailed case study, POS induc-
tion. We experiment with seven leading
algorithms, obtaining useful insights and
showing that token and type level mea-
sures can weakly or even negatively corre-
late, which underscores the fact that these
two approaches reveal different aspects of
clustering quality.

1 Introduction

Clustering is a central machine learning technique.
In NLP, clustering has been used for virtually ev-
ery semi- and unsupervised task, including POS
tagging (Clark, 2003), labeled parse tree induction
(Reichart and Rappoport, 2008), verb-type clas-
sification (Schulte im Walde, 2006), lexical ac-
quisition (Davidov and Rappoport, 2006; Davi-
dov and Rappoport, 2008), multilingual document

∗* Both authors equally contributed to this paper.
† Omri Abend is grateful to the Azrieli Foundation for

the award of an Azrieli Fellowship.

clustering (Montavlo et al., 2006), coreference res-
olution (Nicolae and Nicolae, 2006) and named
entity recognition (Elsner et al., 2009). Conse-
quently, the methodology of clustering evaluation
is of great importance. In this paper we focus
on external clustering evaluation, i.e., evaluation
against manually annotated gold standards, which
exist for almost all such NLP tasks. External eval-
uation is the dominant form of clustering evalu-
ation in NLP, although other methods have been
proposed (see e.g. (Frank et al., 2009)).

In this paper we discusstype levelevaluation,
which evaluates the set membership structure cre-
ated by the clustering, independently of the token
statistics of the gold standard corpus. Many clus-
tering algorithms are evaluated by their success
in tagging corpus tokens (Clark, 2003; Nicolae
and Nicolae, 2006; Goldwater and Griffiths, 2007;
Gao and Johnson, 2008; Elsner et al., 2009). How-
ever, in many cases a type level evaluation is the
natural one. This is the case, for example, when
a POS induction algorithm is used to compute a
tag dictionary (the set of tags that each word can
take), or when a lexical acquisition algorithm is
used for constructing a lexicon containing the set
of frames that a verb can participate in, or when a
sense induction algorithm computes the set of pos-
sible senses of each word. In addition, even when
the goal is corpus tagging, a type level evaluation
is highly valuable, since it may cast light on the
relative or absolute merits of different algorithms
(as we show in this paper).

Clustering evaluation has been extensively in-
vestigated (Section 3). However, the discussion
centers around the monosemous case, where each
item belongs to exactly one cluster, although pol-
ysemy is the common case in NLP.

The contribution of the present paper is as fol-
lows. First, we discuss the issue of type level eval-
uation and explain why even in the monosemous
case a token level evaluation presents a skewed

77

picture (Section 2). Second, we show for the
common polysemous case why adapting existing
information-theoretic measures to type level eval-
uation is not natural (Section 3). Third, we pro-
pose new mapping-based measures and algorithms
to compute them (Section 4). Finally, we perform
a detailed case study with part-of-speech (POS)
induction (Section 5). We compare seven lead-
ing algorithms, showing that token and type level
measures can weakly or even negatively correlate.
This shows that type level evaluation indeed re-
veals aspects of a clustering solution that are not
revealed by the common tagging-based evaluation.

Clustering is a vast research area. As far as we
know, this is the first NLP paper to propose type
level measures for the polysemous case.

2 Type Level Clustering Evaluation

This section motivates why both type and token
level external evaluations should be done, even in
the monosemous case.

Clustering algorithms compute a set ofinduced
clusters(a clustering). Some algorithms directly
compute a clustering, while some others produce
a tagging of corpus tokens from which a clustering
can be easily derived. A clustering ismonosemous
if each item is allowed to belong to a single cluster
only, andpolysemousotherwise. Anexternaleval-
uation is one which is based on a comparison of an
algorithm’s result to a gold standard. In this paper
we focus solely on external evaluation, which is
the most common evaluation approach in NLP.

Token and type level evaluations reflect differ-
ent aspects of a clustering. External token level
evaluation assesses clustering quality according to
the clustering’s accuracy on a given manually an-
notated corpus. This is certainly a useful evalua-
tion measure, e.g. when the purpose of the cluster-
ing algorithm is to annotate a corpus to serve as
input to another application.

External type level evaluation views the com-
puted clustering as a set membership structure and
evalutes it independently of the token statistics in
the gold standard corpus. There are two main
cases in which this is useful. First, a type level
evaluation can be the natural one in light of the
problem itself. For example, if the purpose of
the clustering algorithm is to automatically build
a lexicon (e.g., VerbNet (Kipper et al., 2000)),
then the lexicon structure itself should be evalu-
ated. Second, it may be valuable to decouple cor-

pus statistics from the induced clustering when the
latter is to be used for annotating corpora that ex-
hibit different statistics. In other words, if we eval-
uate an algorithm that will be invoked on a diverse
set of corpora having different token statistics, a
type level evaluation might provide a better picture
(or at least a complementary one) on the quality of
the clustering algorithm.

To motivate type level evaluation, consider POS
induction, which exemplifies both cases above.
Clearly, a word form may belong to several parts
of speech (e.g., ‘contrast’ is both a noun and a
verb, ‘fast’ is both an adjective and an adverb,
‘that’ can be a determiner, conjunction and adverb,
etc.). As an evaluation of a POS induction algo-
rithm, it is natural to evaluate the lexicon it gener-
ates, even if the main goal is to annotate a corpus.
The lexicon lists the possible POS tags for each
word, and thus its evaluation is a polysemous type
level one.

Even if we ignore polysemy, type level evalua-
tion is useful for a POS induction algorithm used
to tag a corpus. There are POS classes whose
members are very frequent, e.g., determiners and
prepositions. Here, a very small number of word
types usually accounts for a large portion of corpus
tokens. For example, in the WSJ Penn Treebank
(Marcus et al., 1993), there are 43,740 word types
and over 1M word tokens. Of the types, 88 are
tagged as prepositions. These types account for
only 0.2% of the types, but for as many as 11.9%
of the tokens. An algorithm which is accurate only
on prepositions would do much better in a token
level evaluation than in a type level one.

This phenomenon is not restricted to preposi-
tions or English. In the WSJ corpus, determiners
account for 0.05% of the types but for 9.8% of the
tokens. In the German NEGRA corpus (Brants,
1997), the article class (both definite and indefi-
nite) accounts for 0.04% of the word types and for
12.5% of the word tokens, and the coordinating
conjunctions class accounts for 0.05% of the word
types but for 3% of the tokens.

The type and token behavior differences result
from the Zipfian distribution of word tokens to
word types (Mitzenmacher, 2004). Since the word
frequency distribution is Zipfian, any clustering al-
gorithm that is accurate only on a small number of
frequent words (not necessarily members of a par-
ticular class) would perform well in a token level
evaluation but not in a type one. For example,

78

the most frequent 100 word types (regardless of
POS class) in WSJ (NEGRA) account for 43.9%
(41.3%) of the tokens in the corpus. These words
appear in 32 out of the 34 non-punctuation POS
classes in WSJ and in 38 out of the 51 classes in
NEGRA.

Other natural language entities also demonstrate
Zipfian distribution of tokens to types. For exam-
ple, the distribution of syntactic categories in parse
tree constituents is Zipfian, as shown in (Reichart
and Rappoport, 2008) for English, German and
Chinese corpora. Thus, the distinction between to-
ken and type level evaluation is important also for
grammar induction algorithms.

It may be argued that a token level evaluation
is sufficient since it already reflects type informa-
tion. In this paper we demonstrate that this is not
the case, by showing that they correlate weakly or
even negatively in an important NLP task.

3 Existing Clustering Evaluation
Measures

Clustering evaluation is challenging. Many mea-
sures have been proposed in the past decades
(Pfitzner et al., 2008). In this section, we briefly
survey the three main types: mapping based,
counting pairs, and information theoretic mea-
sures, and motivate our decision to focus on the
first in this paper.

Mapping based measuresare based on a post-
processing step in which each induced cluster is
mapped to a gold class (or vice versa). The stan-
dard mappings are greedy many-to-one (M-1) and
greedy one-to-one (1-1). Several measures which
rely on these mappings were proposed. The most
common and perhaps the simplest one is accu-
racy, which computes the fraction of items cor-
rectly clustered under the mapping. Other mea-
sures include: L (Larsen, 1999), D (Van Dongen,
2000), misclassification index (MI) (Zeng et al.,
2002), H (Meila and Heckerman, 2001), clustering
F-measure (Fung et al., 2003) and micro-averaged
precision and recall (Dhillon et al., 2003). In Sec-
tion 4 we show why existing mapping-based mea-
sures cannot be applied to the polysemous type
case and present new mapping-based measures for
this case.

Counting pairs measuresare based on a com-
binatorial approach which examines the number
of data element pairs that are clustered similarly
in the reference and proposed clustering. Among

these are Rand Index (Rand, 1971), Adjusted Rand
Index (Hubert and Arabie, 1985),Γ statistic (Hu-
bert and Schultz, 1976), Jaccard (Milligan et al.,
1983), Fowlkes-Mallows (Fowlkes and Mallows,
1983) and Mirkin (Mirkin, 1996). Schulte im
Walde (2006) used such a measure for type level
evaluation of monosemous verb type clustering.

Meila (2007) described a few problems with
such measures. A serious one is that their values
are unbounded, making it hard to interpret their
results. This can be solved by adjusting their val-
ues to lie in[0, 1], but even adjusted measures suf-
fer from severe distributional problems, limiting
their usability in practice. We thus do not address
counting pairs measures in this paper.

Information-theoretic (IT) measures. IT
measures assume that the items in the dataset are
taken from a known distribution (usually the uni-
form distribution), and thus the gold and induced
clusters can be treated as random variables. These
measures utilize a co-occurrence matrixI between
the gold and induced clusters. We denote the in-
duced clustering byK and the gold clustering by
C. Iij contains the number of items in the in-
tersection of thei-th gold class and thej-th in-
duced cluster. When assuming the uniform dis-
tribution, the probability of an event (a gold class
c or an induced clusterk) is its relative size, so
p(c) =

∑|K|
k=1

Ick

N
andp(k) =

∑|C|
c=1

Ick

N
(N is the

total number of clustered items).
Under this assumption we define the entropies

and the conditional entropies:

H(C) = −
P|C|

c=1

P|K|
k=1

Ick
N

log

P|K|
k=1

Ick
N

H(C|K) = −
P|K|

k=1

P|C|
c=1

Ick
N

log
Ick

P|C|
c=1 Ick

H(K) andH(K|C) are defined similarly.
In Section 5 we use two IT measures for token

level evaluation, V (Rosenberg and Hirschberg,
2007) and NVI (Reichart and Rappoport, 2009)
(a normalized version of VI (Meila, 2007)). The
appealing properties of these measures have been
extensively discussed in these references; see also
(Pfitzner et al., 2008). V and NVI are defined as
follows:

h =

(

1 H(C) = 0

1 −
H(C|K)

H(C)
H(C) 6= 0

c =

(

1 H(K) = 0

1 −
H(K|C)

H(K)
H(K) 6= 0

V =
2hc

h + c

79

NV I(C, K) =

(

H(C|K)+H(K|C)
H(C)

H(C) 6= 0

H(K) H(C) = 0

In the monosemous case (type or token), the ap-
plication of the measures described in this section
to type level evaluation is straightforward. In the
polysemous case, however, they suffer from seri-
ous shortcomings.

Consider a case in which each item is assigned
exactlyr gold clusters and each gold cluster has
the exact same number of items (i.e., each has a
size of l·r

|C| , wherel is the number of items). Now,
consider an induced clustering where there are|C|
induced clusters (|K| = |C|) and each item is as-
signed to all induced clusters. The co-occurrence
matrix in this case should have identical values in
all its entries. Even if we allow the weight each
item contributes to the matrix to depend on its gold
and induced entry sizes, the situation will remain
the same. This is because all items have the exact
same entry size and both gold and induced cluster-
ings have uniform cluster sizes.

In this case, the random variables defined by the
induced and gold clustering assignments are in-
dependent (this easily follows from the definition
of independent events, since the joint probability
is the multiplication of the marginals). Hence,
H(K|C) = H(K) andH(C|K) = H(C), and
both V and NVI obtain their worst possible val-
ues1. However, the score should surely depend on
r (the size of each word’s gold entry). Specifi-
cally, whenr = |C| we get that the induced and
gold clusterings are identical. This case should not
get the worst score, and it should definitely score
higher than the case in whichr = 1, whereK is
dramatically different fromC.

The problem can in theory be solved by pro-
viding the number of clusters per item as an input
to the algorithm. However, in NLP this is unre-
alistic (even if the total number of clusters can be
provided) and the number should be determined
by the algorithm. We therefore do not consider
IT-based measures in this paper, deferring them to
future work.

4 Mapping Based Measures for
Polysemous Type Evaluation

In this section we present new type level evalu-
ation measures for the polysemous case. As we

1V values are in[0, 1], 0 being the worst. NVI obtains its
highest and worst possible value,1 + log(|K|)

H(C)
.

show below, these measures do not suffer from the
problems discussed for IT measures in Section 3.

All measures are mapping-based: first, a map-
ping between the induced and gold clusters is per-
formed, and then a measureE is computed. As
is common in the clustering evaluation literature
(Section 3), we use M-1 and 1-1 greedy mappings,
defined to be those that maximize the correspond-
ing measureE.

Let C = {c1, ..., cn} be the set of gold classes
andK = {k1, ..., km} be the set of induced clus-
ters. Denote the number of words types byl. Let
Ai ⊂ C, Bi ⊂ K, i = 1...l be the set of gold
classes and set of induced clusters for each word.
The polysemous nature of task is reflected by the
fact thatAi andBi are subsets, rather than mem-
bers, ofC andK respectively.

Our measures address quality from two persec-
tives, that of the individual items clustered (Sec-
tion 4.1) and that of the clusters (Section 4.2).
Item-based measures especially suit evaluation of
clustering quality for the purpose of lexicon induc-
tion, and have no counterpart in the monosemous
case. Cluster-based measures are a direct general-
ization of existing mapping based measures to the
polysemous case.

The difficulty in designing item-based and
cluster-based measures is that the number of clus-
ters assigned to each item is determined by the
clustering algorithm. Below we show how to over-
come this.

4.1 Item-Based Evaluation

For a given mappingh : K → C, denote
h(Bi) = {h(x) : x ∈ Bi}. A fundamental quan-
tity for item-based evaluation is the number of cor-
rect clusters for each item (word type) under this
mapping, denoted byIMi (IM stands for ‘item
match’):

IMi = |Ai ∩ h(Bi)|

The total item matchIM is defined to be:

IM =
∑l

i=1 IMi =
∑l

i=1 |Ai ∩ h(Bi)|

In the monosemous case,IM is normalized by
the number of items, yielding an accuracy score.
Applying a similar definition in the polysemous
case, normalizing instead by the total number of
gold clusters assigned to the items, can be easily
manipulated. Even a clustering which has the cor-
rect number of induced clusters (equal to the num-
ber of gold classes) but which assigns each item to

80

all induced clusters, receives a perfect score under
both greedy M-1 and 1-1 mappings. This holds for
any induced clustering for which∀i, Ai ⊂ h(Bi).
Note that using a mapping fromC to K (or a
combination of both directions) would exhibit the
same problem.

To overcome the problem, we use the harmonic
average of two normalized terms (F-score). We
use two average variants, micro and macro. Macro
average computes the total number of matches
over all words and normalizes in the end. Recall
(R), Precision (P) and their harmonic average (F-
score) are accordingly defined:

R = IM
P

l
i=1 |Ai|

P = IM
P

l
i=1 |h(Bi)|

MacroI =
2RP

R + P
=

=
2IM

Pl

i=1 |Ai| +
Pl

i=1 |h(Bi)|
= F (h) ·

l
X

i=1

IMi

F (h) is a constant depending onh. As all items
are equally weighted, those with larger gold and
induced entries have more impact on the measure.

The micro average, aiming to give all items an
equal status, first computes an F-score for each
item and then averages over them. Hence, each
item contributes at most 1 to the measure. This
MicroI measure is given by:

Ri = IMi

|Ai|
Pi = IMi

|h(Bi)|
Fi = 2RiPi

Ri+Pi
= 2IMi

|Ai|+|h(Bi)|

MicroI =
1

l

l
X

i=1

Fi =
1

l

l
X

i=1

2IMi

|Ai| + |h(Bi)|
=

=
1

l

l
X

i=1

wi(h) · IMi

Wherewi(h) is a weight depending onh but
also oni.

For both measures, the maximum score is1. It
is obtained if and only ifAi = h(Bi) for everyi.

In 1-1 mapping, when the number of induced
clusters is larger than the number of gold clus-
ters, some of the induced clusters are not mapped.
To preserve the nature of 1-1 mapping that pun-
ishes for excessive clusters2, we define|h(Bi)| to
be equal to|Bi| even for these unmapped clusters.

Recall that any induced clustering in which
∀i, Ai ⊂ h(Bi) gets the best score under a greedy
mapping with the accuracy measure. In MacroI
and MicroI the obtained recalls are perfect, but the
precision terms reflect deviation from the correct
solution.

2And to allow us to compute it accurately, see below.

In the example in Section 3 showing an unrea-
sonable behavior of IT-based measures, the score
depends onr for both MacroI and MicroI. With
our new measures, recall is always 1, but precision
is r

n
. This is true both for 1-1 and M-1 mappings.

Hence, the new measures show reasonable behav-
ior in this example for allr values.

MicroI was used in (Dasgupta and Ng, 2007)
with a manually compiled mapping. Their map-
ping was not based on a well-defined scheme but
on a heuristic. Moreover, providing a manual
mapping might be impractical when the number of
clusters is large, and can be inaccurate, especially
when the clustering is not of very high quality.

In the following we discuss how to compute the
1-1 and M-1 greedy mappings for each measure.

1-1 Mapping. We computeh by finding the
maximal weighted matching in a bipartite graph.
In this graph one side represents the induced clus-
ters, the other represents the gold classes and
the matchings correspond to 1-1 mappings. The
problem can be efficiently solved by the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957).

To be able to use this technique, edge weights
must not depend uponh. In 1-1 mapping,
|h(Bi)| = |Bi|, and thereforeF (h) = F and
wi(h) = wi. That is, both quantities are inde-
pendent ofh3. For MacroI, the weight on the edge
between thes-th gold class and thej-th induced
cluster is:W (esj) =

∑l
i=1 F · Is∈Ai

Ij∈Bi
. For

MicroI it is: W (esj) =
∑l

i=1 wi · Is∈Ai
Ij∈Bi

.
Is∈Ai

is 1 if s ∈ Ai and 0 otherwise.

M-1 Mapping. There are two problems in ap-
plying the bipartite graph technique to finding an
M-1 mapping. First, under such mappingwi(h)
and F (h) do depend onh. The problem may
be solved by selecting some constant weighting
scheme. However, a more serious problem also
arises.

Consider a case in which an itemx has a gold
entry {C1} and an induced entry{K1, K2}. Say
the chosen mapping mapped bothK1 andK2 to
C1. By summing over the graph’s edges selected
by the mapping, we add weight (F (h) for MacroI
andwi(h) for MicroI) both to the edge between
K1 andC1 and to the edge betweenK2 andC1.
However, the item’sIMi is only 1. This prohibits

3Consequently, the increase in MacroI and MicroI follow-
ing an increase of 1 in an item’s gold/induced intersection size
(IMi) is independent ofh.

81

the use of the bipartite graph method for the M-1
case.

Since we are not aware of any exact method for
solving this problem, we use a hill-climbing al-
gorithm. We start with a random mapping and a
random order on the induced clusters. Then we
iterate over the induced clusters and map each of
them to the gold class which maximizes the mea-
sure given that the rest of the mapping remains
constant. We repeat the process until no improve-
ment to the measure can be obtained by changing
the assignment of a single induced cluster. Since
the score depends on the initial random mapping
and random order, we repeat this process several
times and choose the maximum between the ob-
tained scores.

4.2 Cluster-Based Evaluation

The cluster-based evaluation measures we propose
are a direct generalization of existing monose-
mous mapping based measures to the polysemous
type case.

For a given mappingh : K → C, we definēh :
Kh → C. Kh is defined to be a clustering which
is obtained by performing set union between every
two clusters inK that are mapped to the same gold
cluster. The resultinḡh is always 1-1. We denote
|Kh| = mh.

Our motivation for usinḡh in the definition of
the measures instead ofh is to stay as close as
possible to accuracy, the most common mapping-
based measure in the monosemous case. M-1
(monosemous) accuracy does not punish for split-
ing classes. For instance, in a case where there is
a gold clusterci and two induced clustersk1 and
k2 such thatci = k1 ∪ k2, the M-1 accuracy is the
same as in the case where there is one clusterk1

such thatci = k1. M-1 accuracy, despite its in-
difference to splitting, was shown to reflect better
than 1-1 accuracy the clustering’s applicability for
subsequent applications (at least in some contexts)
(Headden III et al., 2008).

Recall that in item-based evaluation,IMi mea-
sures the intersection between the induced and
gold entries of each item. Therefore, the set union
operation is not needed for that case, since when
an item appears in two induced clusters that are
mapped to the same gold cluster, itsIMi is in-
creased only by 1.

A fundamental quantity for cluster-based eval-
uation is the intersection between each induced

cluster and the gold class to which it is mapped.
We denote this value byCMj (CM stands for
‘cluster match’):

CMj = |kj ∩ h̄(kj)|

The total intersection (CM) is accordingly de-
fined to be:

CM =
∑mh

j=1 CMj =
∑mh

j=1 |kj ∩ h̄(kj)|

As with the item-based evaluation (Section 4.1),
usingCM or a derived accuracy as a measure is
problematic. A clustering that assignsn induced
classes to each word (n is the number of gold
classes) will get the highest possible score under
every greedy mapping (1-1 or M-1), as will any
clustering in which∀i, Ai ⊂ h(Bi).

As in the item-based evaluation, a possible so-
lution is based on defining recall, precision and F-
score measures, computed either in the micro or in
the macro level. The macro cluster-based measure
turns out to be identical to the macro item-based
measure MacroI4.

The following derivation shows the equivalence
for the 1-1 case. The M-1 case is similar. We note
that h = h̄ in the 1-1 case and we therefore ex-
change them in the definition ofCM . It is enough
to show thatCM = IM , since the denominator is
the same in both cases:

CM =
Pm

j=1 |kj ∩ h(kj)| =

=
Pm

j=1

Pl

i=1 Ii∈kj
Ii∈h(kj) =

=
Pl

i=1

Pm

j=1 Ii∈kj
Ii∈h(kj) =

=
Pl

i=1 |Ai ∩ h(Bi)| = IM

The micro cluster-based measures are defined:

Rj =
CMj

|h̄(kj)|
Pj =

CMj

|kj |
Fj =

2RjPj

Rj+Pj

The micro cluster measure MicroC is obtained
by taking a weighted average over theFj ’s:

MicroC =
∑

k∈Kh
|k|
N∗Fk

WhereN∗ =
∑

z∈Kh |z| is the number of clus-
tered items after performing the set union and
including repetitions. If, in the 1-1 case where
m > n, an induced cluster is not mapped, we de-
fine Fk = 0. A definition of the measure using
a reverse mapping (i.e., fromC to K) would have
used a weighted average with weights proportional
to the gold classes’ sizes.

4Hence, we have six type level measures: MacroI (which
is equal to MacroC), MicroI, and MicroC, each of which in
two versions, M-1 and 1-1.

82

The definition ofh̄ causes a similar computa-
tional difficulty as in the M-1 item-based mea-
sures. Consequently, we apply a hill climbing
algorithm similar to the one described in Sec-
tion 4.1.

The 1-1 mapping is computed using the same
bipartite graph method described in Section 4.1.
The graph’s vertices correspond to gold and in-
duced clusters and an edge’s weight is the F-score
between the class and cluster corresponding to its
vertices times the cluster’s weight (|k|/N∗).

5 Evaluation of POS Induction Models

As a detailed case study for the ideas presented
in this paper, we apply the various measures for
the POS induction task, using seven leading POS
induction algorithms.

5.1 Experimental Setup

POS Induction Algorithms. We experimented
with the following models: ARR10 (Abend et al.,
2010), Clark03 (Clark, 2003), GG07 (Goldwa-
ter and Griffiths, 2007), GJ08 (Gao and Johnson,
2008), and GVG09 (Van Gael et al., 2009) (three
models). Additional recent good results for vari-
ous variants of the POS induction problem are de-
scribed in e.g., (Smith and Eisner, 2004; Graça et
al., 2009).

Clark03 and ARR10 are monosemous algo-
rithms, allowing a single cluster for each word
type. The other algorithms are polysemous. They
perform sequence labeling where each token is
tagged in its context, and different tokens (in-
stances) of the same type (word form) may receive
different tags.

Data Set. All models were tested on sections
2-21 of the PTB-WSJ, which consists of 39832
sentences, 950028 tokens and 39546 unique types.
Of the tokens, 832629 (87.6%) are not punctuation
marks.

Evaluation Measures. Type level evaluation
used the measures MacroI (which is equal to
MacroC), MicroI and MicroC both with greedy
1-1 and M-1 mappings as described in Section 4.
The type level gold (induced) entry is defined to
be the set of all gold (induced) clusters with which
it appears.

For the token level evaluation, six measures are
used (see Section 3): accuracy with M-1 and 1-1
mappings, NVI, V, H(C|K) and H(K|C), usinge
as the logarithm’s base. We use the full WSJ POS

tags set excluding punctuation5.
Punctuation. Punctuation marks occupy a

large volume of the corpus tokens (12.4% in our
experimental corpus), and are easy to cluster.
Clustering punctuation marks thus greatly inflates
token level results. To study the relationship be-
tween type and token level evaluations in a fo-
cused manner, we excluded punctuation from the
evaluation (they are still used during training, so
algorithms that rely on them are not harmed).

Number of Induced Clusters. The number
of gold POS tags in WSJ is 45, of which 11 are
punctuation marks. Therefore, for the ARR10 and
Clark03 models, 34 clusters were induced. For
GJ08 we received the output with 45 clusters. The
iHMM models of GVG09 determine the number
of clusters automatically (resulting in 47, 91 and
192 clusters, see below). For GG07, our com-
puting resources did not enable us to induce 45
clusters and we therefore used 176. Our focus in
this paper is to study the type vs. token distinction
rather than to provide a full scope comparison be-
tween algorithms, for which more clustering sizes
would need to be examined.

Configurations. We ran the ARR10 tagger
with the configuration detailed in (Abend et al.,
2010). For Clark03, we ran hisneyessenmorph
model7 10 times (using an unknown words thresh-
old of 5) and report the average score for each
measure. The models of GVG09 were run in the
three configurations reported in their paper: one
with a Dirichlet process prior and fixed parame-
ters, another with a Pittman-Yore prior with fixed
parameters, and a third with a Dirichlet process
prior with parameters learnt from the data. All five
models were run in an optimal configuration.

We obtained the code of Goldwater and Grif-
fiths’ BHMM model and ran it for 10K iterations
with an annealing technique for parameter estima-
tion. That was the best parameter estimation tech-
nique available to us. This is the first time that this
model is evaluated on such a large experimental
corpus, and it performed well under these condi-
tions.

The output of the model of GJ08 was sent to
us by the authors. The model was run on sec-

5We use all WSJ tokens in the training stage, but omit
punctuation marks during evaluation.

6The 17 most frequent tags cover 94% of the word in-
stances and more than 99% of the word types in the WSJ
gold standard tagging.

7www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html

83

tions 2-21 of the WSJ-PTB using significantly
inferior computing resources compared to those
used for producing the results reported in their
paper. While this model cannot be compared to
the aforementioned six models due to the subopti-
mal configuration, we evaluate its output using our
measures to get a broader variety of experimental
results8.

5.2 Results and Discussion

Table 1 presents the scores of the compared mod-
els under all evaluation measures (six token level,
six type level). What is important here to note
are the differences between type and token level
evaluations for the algorithms. We are mainly
interested in two things: (1) seeing how relative
rankings change in the two evaluation types, thus
showing that the two types are not highly corre-
lated and are both useful; and (2) insights gained
by using a type level evaluation in addition to the
usual token level one.

Note that the table should not be used to deduce
which algorithm is the ‘best’ for the task, even ac-
cording to a single evaluation type. This is be-
cause, as explained above, the algorithms do not
induce the same number of clusters and this affects
their results.

Results indicate that type level evaluation re-
veals aspects of the clustering quality that are not
expressed in the token level. For the Clark03
model the disparity is most apparent. While in
the token level it performs very well (better than
the polysemous algorithms for the 1-1, V and NVI
token level measures), in the type level it is the
second worst in the item-based 1-1 scores and the
worst in the M-1 scores.

Here we have a clear demonstration of the value
of type level evaluation. The Clark03 algorithm
is assessed as excellent using token level evalua-
tion (second only to ARR10 in M-1, 1-1, V and
NVI), and only a type level one shows its rela-
tively poor type performance. Although readers
may think that this is natural due to the algorithm’s
monosemous nature, this is not the case, since the
monosemous ARR10 generally ranked first in the
type level measures (more on this below).

The disparity is also observed for polysemous
algorithms. The GG07 model’s token level scores
are mediocre, while in the type level MicroC 1-1

8We would like to thank all authors for sending us the
data.

measure this model is the best and in the type level
MicroI and MacroI 1-1 measures it is the second
best.

Monosemous vs. polysemous algorithms.The
table shows that the ARR10 model achieves the
best results in most type and token level evalua-
tion measures. The fact that this monosemous al-
gorithm outperforms the polysemous ones, even
in a type level evaluation, may seem strange at
first sight but can be explained as follows. Pol-
ysemous tokens account for almost 60% of the
corpus (565K out of 950K), so we could expect
that a monosemous algorithm should do badly in
a token-level evaluation. However, for most of the
polysemous tokens the polysemy is only weakly
present in the corpus9, so it is hard to detect even
for polysemous algorithms. Regarding types, pol-
ysemous types constitute only 16.6% of the cor-
pus types, so a monosemous algorithm which is
quite good in assigning types to clusters has a good
chance of beating polysemous algorithms in a type
level evaluation.

Hence, monosemous POS induction algorithms
are not at such a great disadvantage relative to pol-
ysemous ones. This observation, which was fully
motivated by our type level case study, might be
used to guide future work on POS induction, and
it thus serves as another demonstration for the util-
ity of type level evaluation.

Hill climbing algorithm. For the type level
measures with greedy M-1 mapping, we used the
hill-climbing algorithm described in Section 4.
Recall that the mapping to which our algorithm
converges depends on its random initialization.
We therefore ran the algorithm with 10 differ-
ent random initializations and report the obtained
maximum for MacroI, MicroI and MicroC in Ta-
ble 1. The different initializations caused very lit-
tle fluctuation: not more than 1% in the 9 (7) best
runs for the item-based (MicroC) measures. We
take this result as an indication that the obtained
maximum is a good approximation of the global
maximum.

We tried to improve the algorithm by selecting
an intelligent initialization heuristic. We used the
M-1 mapping obtained by mapping each induced
cluster to the gold class with which it has the high-

9Only about 27% of the tokens are instances of words that
are polysemous but not weakly polysemous (we call a word
weakly polysemousif more than 95% of its instances (tokens)
are tagged by the same tag).

84

Token Level Evaluation Type Level Evaluation
MacroI MicroI MicroC

M-1 1-1 NVI V H(C|K) H(K|C) M-1 1-1 M-1 1-1 M-1 1-1
ARR10 0.675 0.588 0.809 0.608 1.041 1.22 0.579 0.444 0.596 0.455 0.624 0.403
Clark03 0.65 0.484 0.887 0.586 1.04 1.441 0.396 0.301 0.384 0.288 0.463 0.347
GG07 0.5 0.415 0.989 0.479 1.523 1.241 0.497 0.405 0.461 0.398 0.563 0.445
GVG09(1) 0.51 0.444 1.033 0.477 1.471 1.409 0.513 0.354 0.436 0.352 0.486 0.33
GVG09(2) 0.591 0.484 0.998 0.529 1.221 1.564 0.637 0.369 0.52 0.373 0.548 0.32
GVG09(3) 0.668 0.368 1.132 0.534 0.978 2.18 0.736 0.280 0.558 0.276 0.565 0.199
GJ08* 0.605 0.383 1.09 0.506 1.231 1.818 0.467 0.298 0.446 0.311 0.561 0.291

Table 1: Token level (left columns) and type level (right columns) resultsfor seven POS induction
algorithms (rows) (see text for details). Token and type level performance are weakly correlated and
complement each other as evaluation measures. ARR10, a monosemous algorithm, yields the best results
in most measures. (GJ08* results are different from those reported in the original paper because it was
run with weaker computing resources than those used there.)

est weight edge in the bipartite graph. Recall from
Section 4.1 that this is a reasonable approximation
of the greedy M-1 mapping. Again, we ran it for
the three type level measures for 10 times with a
random update order on the induced clusters. This
had only a minor effect on the final scores.

Number of clusters. Previous work (Reichart
and Rappoport, 2009) demonstrated that in data
sets where a relatively small fraction of the gold
classes covers most of the items, it is reasonable
to choose this number to be the number of induced
clusters. In our experimental data set, this number
(the ‘prominent cluster number’) is around 17 (see
Section 5.1). Up to this number, increasing the
number of clusters is likely to have a positive ef-
fect on token level M-1, 1-1, H(C|K), and H(K|C)
scores. Inducing a larger number of clusters, how-
ever, is likely to positively affect M-1 and H(C|K)
but to have a negative effect on 1-1 and H(K|C).

This tendency is reflected in Table 1. For the
GG07 model the number of induced clusters, 17,
approximates the number of prominent clusters
and is lower than the number of induced clus-
ters of the other models. This is reflected by
its low token level M-1 and H(C|K) performance
and its high quality H(K|C) and NVI token level
scores. The GVG (1)-(3) models induced 47, 91
and 192 clusters respectively. This might explain
the high token level M-1 and H(C|K) performance
of GVG(3), as well as its high M-1 type level
performance, compared to its mediocre scores in
other measures.

The item based measures. The table indicates
that there is no substantial difference between the
two item based type level scores with 1-1 map-
ping. The definitions of MacroI and MicroI imply

that if |Ai|+ |h(Bi)| (which equals|Ai|+ |Bi| un-
der a 1-1 mapping) is constant for all word types,
then a clustering will score equally on both 1-1
type measures. Indeed, in our experimental cor-
pus 83.4% of the word types have one POS tag,
12.5% have 2, 3.1% have 3 and only 1% of the
words have more. Therefore,|Ai| is roughly con-
stant. The ARR10 and Clark03 models assign a
word type to a single cluster. For the other models,
the number of clusters per word type is generally
similar to that of the gold standard. Consequently,
|Bi| is roughly constant as well, which explains
the similar behavior of the two measures.

Note that for other clustering tasks|Ai| may not
necessarily be constant, so the MacroI and MicroI
scores are not likely to be as similar under the 1-1
mapping.

6 Summary

We discussed type level evaluation for polysemous
clustering, presented new mapping-based evalu-
ation measures, and applied them to the evalua-
tion of POS induction algorithms, demonstrating
that type level measures provide value beyond the
common token level ones.

We hope that type level evaluation in general
and the proposed measures in particular will be
used in the future for evaluating clustering perfor-
mance in NLP tasks.

References

Omri Abend, Roi Reichart and Ari Rappoport, 2010.
Improved Unsupervised POS Induction through Pro-
totype Discovery.ACL ’10.

Thorsten Brants, 1997. The NEGRA Export Format.
CLAUS Report, Saarland University.

85

Alexander Clark, 2003. Combining Distributional and
Morphological Information for Part of Speech In-
duction.EACL ’03.

Sajib Dasgupta and Vincent Ng, 2007. Unsu-
pervised Part-of-Speech Acquisition for Resource-
Scarce Languages.EMNLP-CoNLL ’07.

Dmitry Davidov, Ari Rappoport, 2006. Efficient
Unsupervised Discovery of Word Categories us-
ing Symmetric Patterns and High Frequency Words.
COLING-ACL ’06.

Dmitry Davidov, Ari Rappoport. 2008. Unsupervised
Discovery of Generic Relationships Using Pattern
Clusters and its Evaluation by Automatically Gen-
erated SAT Analogy Questions.ACL ’08

I. S. Dhillon, S. Mallela, and D. S. Modha, 2003. In-
formation Theoretic Co-clustering.KDD ’03

Micha Elsner, Eugene Charniak, and Mark Johnson,
2009. Structured Generative Models for Unsuper-
vised Named-Entity Clustering.NAACL ’09.

Stella Frank, Sharon Goldwater, and Frank Keller,
2009. Evaluating Models of Syntactic Category
Acquisition without Using a Gold Standard.Proc.
31st Annual Conf. of the Cognitive Science Society,
2576–2581.

E.B Fowlkes and C.L. Mallows, 1983. A Method for
Comparing Two Hierarchical Clusterings.Journal
of American statistical Association,78:553-569.

Benjamin C. M. Fung, Ke Wang, and Martin Ester,
2003. Hierarchical Document Clustering using Fre-
quent Itemsets.SIAM International Conference on
Data Mining ’03.

Jianfeng Gao and Mark Johnson, 2008.A Compar-
ison of Bayesian Estimators for Unsupervised Hid-
den Markov Model POS Taggers. EMNLP ’08.

Sharon Goldwater and Tom Griffiths, 2007. Fully
Bayesian Approach to Unsupervised Part-of-Speech
Tagging.ACL ’07.

Jõao Graça, Kuzman Ganchev, Ben Taskar and Fre-
nando Pereira, 2009. Posterior vs. Parameter Spar-
sity in Latent Variable Models.NIPS ’09.

William P. Headden III, David McClosky and Eugene
Charniak, 2008.Evaluating Unsupervised Part-of-
Speech Tagging for Grammar Induction.COLING
’08.

L. Hubert and J. Schultz, 1976. Quadratic Assignment
as a General Data Analysis Strategy.British Journal
of Mathematical and Statistical Psychology, 29:190-
241.

L. Hubert and P. Arabie, 1985. Comparing Partitions.
Journal of Classification, 2:193-218.

Maurice Kandall and Jean Dickinson, 1990. Rank
Correlation Methods.Oxford University Press, New
York.

Karin Kipper, Hoa Trang Dang and Martha Palmer,
2000. Class-Based Construction of a Verb Lexicon.
AAAI ’00.

Harold W. Kuhn, 1955. The Hungarian Method for
the Assignment Problem.Naval Research Logistics
Quarterly, 2:83-97.

Bjornar Larsen and Chinatsu Aone, 1999. Fast and ef-
fective text mining using linear-time document clus-
tering. KDD ’99.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.Computa-
tional Linguistics, 19(2):313-330.

Marina Meila and David Heckerman, 2001. An Ex-
perimental Comparison of Model-based Clustering
Methods.Machine Learning, 42(1/2):9-29.

Marina Meila, 2007. Comparing Clustering – an In-
formation Based Distance.Journal of Multivariate
Analysis, 98:873-895.

C.W Milligan, S.C Soon and L.M Sokol, 1983. The
Effect of Cluster Size, Dimensionality and the Num-
ber of Clusters on Recovery of True Cluster Struc-
ture. IEEE transactions on Pattern Analysis and
Machine Intelligence, 5:40-47.

Boris G. Mirkin, 1996. Mathematical Classification
and Clustering.Kluwer Academic Press.

Michael Mitzenmacher , 2004. A Brief History of
Generative Models for Power Law and Lognormal
Distributions .Internet Mathematics, 1(2):226-251.

Soto Montalvo, Raquel Martnez, Arantza Casillas, and
Vctor Fresno, 2006. Multilingual Document Clus-
tering: an Heuristic Approach Based on Cognate
Named Entities.ACL ’06.

James Munkres, 1957. Algorithms for the Assignment
and Transportation Problems.Journal of the SIAM,
5(1):32-38.

Cristina Nicolae and Gabriel Nicolae, 2006. BEST-
CUT: A Graph Algorithm for Coreference Resolu-
tion. EMNLP ’06.

Darius M. Pfitzner, Richard E. Leibbrandt and David
M.W Powers, 2008. Characterization and Evalua-
tion of Similarity Measures for Pairs of Clusterings.
Knowledge and Information Systems: An Interna-
tional Journal, DOI 10.1007/s10115-008-0150-6.

William Rand, 1971. Objective Criteria for the Evalu-
ation of Clustering Methods.Journal of the Ameri-
can Statstical Association, 66(336):846-850.

86

Roi Reichart and Ari Rappoport, 2008. Unsupervised
Induction of Labeled Parse Trees by Clustering with
Syntactic Features.COLING ’08.

Roi Reichart and Ari Rappoport, 2009. The NVI Clus-
tering Evaluation Measure.CoNLL ’09.

Andrew Rosenberg and Julia Hirschberg, 2007. V-
Measure: A Conditional Entropy-based External
Cluster Evaluation Measure.EMNLP ’07.

Sabine Schulte im Walde, 2006. Experiments on
the Automatic Induction of German Semantic Verb
Classes.Computational Linguistics, 32(2):159-194.

Noah A. Smith and Jason Eisner, 2004. Annealing
Techniques for Unsupervised Statistical Language
Learning.ACL ’04.

Stijn Van Dongen, 2000. Performance Criteria for
Graph Clustering and Markov Cluster Experiments.
Technical report CWI, Amsterdam

Jurgen Van Gael, Andreas Vlachos and Zoubin Ghahra-
mani, 2009. The Infinite HMM for Unsupervised
POS Tagging.EMNLP ’09.

Yujing Zeng, Jianshan Tang, Javier Garcia-Frias, and
Guang R. Gao, 2002. An Adaptive Meta-clustering
Approach: Combining the Information from Differ-
ent Clustering Results .CSB00:276

87

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 88–97,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Recession Segmentation: Simpler Online Word Segmentation Using
Limited Resources∗

Constantine Lignos, Charles Yang
Dept. of Computer and Information Science, Dept. of Linguistics

University of Pennsylvania
lignos@cis.upenn.edu, charles.yang@ling.upenn.edu

Abstract

In this paper we present a cognitively plau-
sible approach to word segmentation that
segments in an online fashion using only
local information and a lexicon of pre-
viously segmented words. Unlike popu-
lar statistical optimization techniques, the
learner uses structural information of the
input syllables rather than distributional
cues to segment words. We develop a
memory model for the learner that like a
child learner does not recall previously hy-
pothesized words perfectly. The learner at-
tains an F-score of 86.69% in ideal condi-
tions and 85.05% when word recall is un-
reliable and stress in the input is reduced.
These results demonstrate the power that a
simple learner can have when paired with
appropriate structural constraints on its hy-
potheses.

1 Introduction

The problem of word segmentation presents an
important challenge in language acquisition. The
child learner must segment a continuous stream of
sounds into words without knowing what the in-
dividual words are until the stream has been seg-
mented. Computational models present an op-
portunity to test the potentially innate constraints,
structures, and algorithms that a child may be us-
ing to guide her acquisition. In this work we de-
velop a segmentation model from the constraints
suggested by Yang (2004) and evaluate it in ideal-
ized conditions and conditions that better approx-
imate the environment of a child learner. We seek
to determine how these limitations in the learner’s
input and memory affect the learner’s performance
and to demonstrate that the presented learner is ro-
bust even under non-ideal conditions.

∗Portions of this work were adapted from an earlier
manuscript, Word Segmentation: Quick But Not Dirty.

2 Related Work

Most recent work in word segmentation of child-
directed speech has operated within statistical op-
timization frameworks, particularly Bayesian ap-
proaches (Goldwater et al., 2009; Johnson and
Goldwater, 2009). These models have established
the state-of-the-art for the task of selecting appro-
priate word boundaries from a stream of unstruc-
tured phonemes. But while these models deliver
excellent performance, it is not clear how they in-
form the process of acquisition.

Trying to find cognitive insight from these types
of models is difficult because of the inherent mis-
match in the quality and types of hypotheses they
maintain during learning. Children are incremen-
tal learners (Brown, 1973), and learners relying
on statistical optimization are generally not. A
child’s competence grows gradually as she hears
and produces more and more utterances, going
through predictable changes to her working gram-
mar (Marcus et al., 1992) that statistical optimiza-
tion techniques typically do not go through and do
not intend to replicate.

Statistical models provide excellent information
about the features, distributional cues, and priors
that can be used in learning, but provide little in-
formation about how a child learner can use this
information and how her knowledge of language
develops as the learning process evolves. Previ-
ous simulations in word segmentation using the
same type of distributional information as many
statistical optimization-based learners but without
an optimization model suggest that statistics alone
are not sufficient for learning to succeed in a com-
putationally efficient online manner; further con-
straints on the search space are needed (Yang,
2004).

Previous computational models have demanded
tremendous memory and computational capacity
from human learners. For example, the algorithm

88

of Brent & Cartwright (1996) produces a set of
possible lexicons that describe the learning cor-
pus, each of which is evaluated as the learner it-
erates until no further improvement is possible. It
is unlikely that an algorithm of this type is some-
thing a human learner is capable of using given the
requirement to remember at the very least a long
history of recent utterances encountered and con-
stantly reanalyze them to find a optimal segmenta-
tion. Work in this tradition makes no claims, how-
ever, that these methods are actually the ones used
by human learners.

On the other hand, previous computational
models often underestimate the human learner’s
knowledge of linguistic representations. Most of
these models are “synthetic” in the sense of Brent
(1999): the raw material for segmentation is a
stream of segments, which are then successively
grouped into larger units and eventually, conjec-
tured words. This assumption may make the child
learner’s job unnecessarily hard; since syllables
are hierarchical structures consisting of segments,
treating the linguistic data as unstructured segment
sequences makes the problem harder than it actu-
ally is. For a given utterance, there are fewer sylla-
bles than segments, and hence fewer segmentation
possibilities.

Modeling the corpus using hierarchical gram-
mars that can model the input at varying levels
(word collocations, words, syllables, onsets, etc.)
provide the learner the most flexibility, allowing
the learner to build structure from the individual
phonemes and apply distributions at each level of
abstraction (Johnson and Goldwater, 2009). While
this results in state-of-the-art performance for seg-
mentation performed at the phoneme level, this
approach requires significant computational re-
sources as each additional level of representation
increases the complexity of learning. In addition,
it is not clear that some of the intermediate levels
in such an approach, such as word level colloca-
tions which are not syntactic constituents, would
have any linguistic or psychological reality to a
human learner.

A number of psychologically-motivated mod-
els of word segmentation rely on the use of syl-
labic transitional probabilities (TPs), basing the
use of TPs on experimental work in artificial lan-
guage learning (Saffran et al., 1996a; Saffran et
al., 1996b) and in corpus studies (Swingley, 2005).
The identification of the syllable as the basic unit

of segmentation is supported research in experi-
mental psychology using infants as young as 4-
days-old (Bijeljac-Babic et al., 1993), but when
syllable transitional probabilities are evaluated in
online learning procedures that only use local in-
formation (Yang, 2004), the results are surpris-
ingly poor, even under the assumption that the
learner has already syllabified the input perfectly.
Precision is 41.6%, and recall is 23.3%, which
we will show is worse than a simple baseline of
assuming every syllable is a word. The below-
baseline performance is unsurprising given that in
order for this type of model to posit a word bound-
ary, a transitional probability between syllables
must be lower than its neighbors. This condition
cannot be met if the input is a sequence of mono-
syllabic words for which a boundary must be pos-
tulated for every syllable; it is impossible to treat
every boundary as a local minimum.

While the pseudo-words used in infant stud-
ies measuring the ability to use transitional prob-
ability information are uniformly three-syllables
long, much of child-directed English consists of
sequences of monosyllabic words. Corpus statis-
tics reveal that on average a monosyllabic word
is followed by another monosyllabic word 85%
of time (Yang, 2004), and thus learners that use
only local transitional probabilities without any
global optimization are unlikely to succeed. This
problem does not affect online approaches that
use global information, such as computing the
maximum likelihood of the corpus incrementally
(Venkataraman, 2001). Since these approaches do
not require each boundary be a local minimum,
they are able to correctly handle a sequence of
monosyllable words.

We believe that the computational modeling of
psychological processes, with special attention to
concrete mechanisms and quantitative evaluations,
can play an important role in identifying the con-
straints and structures relevant to children’s acqui-
sition of language. Rather than using a prior which
guides the learner to a desired distribution, we ex-
amine learning with respect to a model in which
the hypothesis space is constrained by structural
requirements.

In this paper we take a different approach than
statistical optimization approaches by exploring
how well a learner can perform while processing
a corpus in an online fashion with only local in-
formation and a lexicon of previously segmented

89

words. We present a simple, efficient approach
to word segmentation that uses structural informa-
tion rather than distributional cues in the input to
segment words. We seek to demonstrate that even
in the face of impoverished input and limited re-
sources, a simple learner can succeed when it op-
erates with the appropriate constraints.

3 Constraining the Learning Space

Modern machine learning research (Gold, 1967;
Valiant, 1984; Vapnik, 2000) suggests that con-
straints on the learning space and the learning
algorithm are essential for realistically efficient
learning. If a domain-neutral learning model fails
on a specific task where children succeed, it is
likely that children are equipped with knowledge
and constraints specific to the task at hand. It
is important to identify such constraints to see to
what extent they complement, or even replace, do-
main neutral learning mechanisms.

A particularly useful constraint for word seg-
mentation, introduced to the problem of word
segmentation by Yang (2004) but previously dis-
cussed by Halle and Vergnaud (1987), is as fol-
lows:

Unique Stress Constraint (USC): A word can
bear at most one primary stress.

A simple example of how adult learners might
use the USC is upon hearing novel names or
words. Taking Star Wars characters as an exam-
ple, it is clear that chewbacca is one word but
darthvader cannot be as the latter bears two pri-
mary stresses.

The USC could give the learner many isolated
words for free. If the learner hears an utterance
that contains exactly one primary stress, it is likely
it is a single word. Moreover, the segmenta-
tion for a multiple word utterance can be equally
straightforward under USC. Consider a sequence
W1S1S2S3W2, where W stands for a weak sylla-
ble and S stands for a strong syllable. A learner
equipped with USC will immediately know that
the sequence consists of three words: specifically,
W1S1, S2, and S2W2.

The USC can also constrain the use of other
learning techniques. For example, the syllable
consequence S1W1W2W3S2 cannot be segmented
by USC alone, but it may still provide cues that
facilitate the application of other segmentation
strategies. For instance, the learner knows that the

sequence consists of at least two words, as indi-
cated by two strong syllables. Moreover, it also
knows that in the window between S1 and S2 there
must be one or more word boundaries.

Yang (2004) evaluates the effectiveness of the
USC in conjunction with a simple approach to us-
ing transitional probabilities. The performance of
the approach presented there improves dramati-
cally if the learner is equipped with the assump-
tion that each word can have only one primary
stress. If the learner knows this, then it may
limit the search for local minima to only the win-
dow between two syllables that both bear primary
stress, e.g., between the two a’s in the sequence
languageacquisition. This assumption is plau-
sible given that 7.5-month-old infants are sensi-
tive to strong/weak prosodic distinctions (Jusczyk,
1999). Yang’s stress-delimited algorithm achieves
the precision of 73.5% and recall of 71.2%, a sig-
nificant improvement over using TPs alone, but
still below the baseline presented in our results.

The improvement of the transitional
probability-based approach when provided
with a simple linguistic constraint suggests
that structural constraints can be powerful in
narrowing the hypothesis space so that even
sparse, local information can prove useful and
simple segmentation strategies can become more
effective.

It should be noted that the classification of every
syllable as “weak” or “strong” is a significant sim-
plification. Stress is better organized into hierar-
chical patterns constructed on top of syllables that
vary in relative prominence based on the domain
of each level of the hierarchy, and generally lan-
guages avoid adjacent strong syllables (Liberman
and Prince, 1977). We later discuss a manipula-
tion of the corpus used by Yang (2004) to address
this concern.

Additionally, there are significant challenges
in reconstructing stress from an acoustic signal
(Van Kuijk and Boves, 1999). For a child learner
to use the algorithm presented here, she would
need to have mechanisms for detecting stress in
the speech signal and categorizing the gradient
stress in utterances into a discrete level for each
syllable. These mechanisms are not addressed in
this work; our focus is on an algorithm that can
succeed given discrete stress information for each
syllable. Given the evidence that infants can dis-
tinguish weak and strong syllables and use that in-

90

formation to detect word boundaries (Jusczyk et
al., 1999), we believe that it is reasonable to as-
sume that identifying syllabic stress is a task an
infant learner can perform at the developmental
stage of word segmentation.

4 A Simple Algorithm for Word
Segmentation

We now present a simple algebraic approach to
word segmentation based on the constraints sug-
gested by Yang (2004). The learner we present is
algebraic in that it has a lexicon which stores pre-
viously segmented words and identifies the input
as a combination of words already in the lexicon
and novel words. No transitional probabilities or
any distributional data are calculated from the in-
put. The learner operates in an online fashion, seg-
menting each utterance in a primarily left-to-right
fashion and updating its lexicon as it segments.

The USC is used in two ways by the learner.
First, if the current syllable has primary stress and
the next syllable also has primary stress, a word
boundary is placed between the current and next
syllable. Second, whenever the algorithm is faced
with the choice of accepting a novel word into the
lexicon and outputting it as a word, the learner
“abstains” from doing so if the word violates USC,
that is if it contains more than one primary stress.
Since not all words are stressed, if a word contains
no primary stresses it is considered an acceptable
word; only a word with more that one primary
stress is prohibited. If a sequence of syllables has
more than one primary stress and cannot be seg-
mented further, the learner does not include that
sequence in its segmentation of the utterance and
does not add it to the lexicon as it cannot be a valid
word.

The algorithm is as follows, with each step ex-
plained in further detail in the following para-
graphs.

For each utterance in the corpus, do the following:

1. As each syllable is encountered, use Initial
Subtraction and USC Segmentation to seg-
ment words from the beginning of the utter-
ance if possible.

2. If unsegmented syllables still remain, apply
Final Subtraction, segmenting words itera-
tively from the end of the utterance if pos-
sible.

3. If unsegmented syllables still remain, if those
syllables constitute a valid word under the
USC, segment them as a single word and add
them to the lexicon. Otherwise, abstain, and
do not include these syllables in the segmen-
tation of the sentence and do not add them to
the lexicon.

Initial Subtraction. If the syllables of the utter-
ance from the last segmentation (or the start of the
utterance) up to this point matches a word in the
lexicon but adding one more syllable would result
in it not being a known word, segment off the rec-
ognized word and increase its frequency. This iter-
atively segments the longest prefix word from the
utterance.

USC Segmentation. If the current and next syl-
lables have primary stress, place a word bound-
ary after the current syllable, treating all syllables
from the last segmentation point up to and and in-
cluding the current syllable as a potential word. If
these syllables form a valid word under the USC,
segment them as a word and add them to the lex-
icon. Otherwise, abstain, not including these syl-
lables in the segmentation of the sentence and not
adding them to the lexicon.

Final Subtraction. After initial subtraction and
USC Segmentation have been maximally applied
to the utterance, the learner is often left with a
sequence of syllables that is not prefixed by any
known word and does not have any adjacent pri-
mary stresses. In this situation the learner works
from right to left on the remaining utterance, iter-
atively removing words from the end of the utter-
ance if possible. Similar to the approach used in
Initial Subtraction, the longest word that is a suf-
fix word of the remaining syllables is segmented
off, and this is repeated until the entire utterance is
segmented or syllables remain that are not suffixed
by any known word.

The ability to abstain is a significant difference
between this learner and most recent work on this
task. Because the learner has a structural descrip-
tion for a word, the USC, it is able to reject any
hypothesized words that do not meet the descrip-
tion. This improves the learner’s precision and
recall because it reduces the number of incorrect
predictions the learner makes. The USC also al-
lows the learner keep impossible words out of its
lexicon.

91

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Count

P
ro

ba
bi

lit
y

of
 R

ec
al

l

Figure 1: The selected probabilistic memory func-
tion for α = 0.05. The dashed line at 0.05 rep-
resents the threshold above which a word is more
likely than not to be recalled, occurring at a count
of approximately 14.

5 A Probabilistic Lexicon

To simulate the imperfect memory of a child
learner, we use a simple exponential function to
generate the probability with which a word is re-
trieved from the lexicon:

pr(word) = 1.0− e−αc(word)

pr(word) is the probability of a word being re-
trieved, α is a constant, and c(word) is the number
of times the word has been identified in segmen-
tations thus far. This type of memory function is
a simplified representation of models of humans’
memory recall capabilities (Anderson et al., 1998;
Gillund and Shiffrin, 1984). This memory func-
tion for the value of α = 0.05, the value used in
our experiments, is given in Figure 1. We later
show that the choice of α has little impact on the
learner’s segmentation performance, and thus the
more or less arbitrary selection of a value for α is
of little consequence.

When the algorithm attempts to subtract words
from the beginning or end of an utterance, it may
miss words in the lexicon due to this probabilis-
tic retrieval. The learner only has one opportu-
nity to recall a word in a given utterance. For ex-
ample, in the utterance P.EH1.N S.AH0.L (pencil),
if the learner has P.EH1.N and P.EH1.N S.AH0.L

in its lexicon but P.EH1.N is more frequent, it
may fail to recall P.EH1.N S.AH0.L when exam-
ining the second syllable but succeed in recog-
nizing P.EH1.N in the first. Thus it will break
off P.EH1.N instead of P.EH1.N S.AH0.L. This
means the learner may fail to reliably break off
the longest words, instead breaking off the longest
word that is successfully recalled.

While probabilistic memory means that the
learner will fail to recognize words it has seen be-
fore, potentially decreasing recall, it also provides
the learner the benefit of probabilistically failing
to repeat previous mistakes if they occur rarely.

Probabilistic word recall results in a “rich
get richer” phenomenon as the learner segments;
words that are used more often in segmentations
are more likely to be reused in later segmentations.
While recent work from Bayesian approaches has
used a Dirichlet Process to generate these distri-
butions (Goldwater et al., 2006), in this learner the
reuse of frequent items in learning is a result of
the memory model rather than an explicit process
of reusing old outcomes or generating new ones.
This growth is an inherent property of the cogni-
tive model of memory used here rather than an ex-
ternally imposed computational technique.

6 Evaluation

Our computational model is designed to process
child-directed speech. The corpus we use to eval-
uate it is the same corpus used by Yang (2004).
Adult utterances were extracted from the Brown
(1973) data in the CHILDES corpus (MacWhin-
ney, 2000), consisting of three children’s data:
Adam, Eve, and Sarah. We obtained the pho-
netic transcriptions of words from the Carnegie
Mellon Pronouncing Dictionary (CMUdict) Ver-
sion 0.6 (Weide, 1998), using the first pronunci-
ation of each word. In CMUdict, lexical stress
information is preserved by numbers: 0 for un-
stressed, 1 for primary stress, 2 for secondary
stress. For instance, cat is represented as K.AE1.T,
catalog is K.AE1.T.AH0.L.AO0.G, and catapult is
K.AE1.T.AH0.P.AH2.L.T. We treat primary stress
as “strong” and secondary or unstressed syllables
as “weak.”

For each word, the phonetic segments were
grouped into syllables. This process is straightfor-
ward by the use of the principle “Maximize On-
set,” which maximizes the length of the onset as
long as it is valid consonant cluster of English, i.e.,

92

it conforms to the phonotactic constraints of En-
glish. For example, Einstein is AY1.N.S.T.AY0.N
as segments and parsed into AY1.N S.T.AY0.N as
syllables: this is because /st/ is the longest valid
onset for the second syllable containing AY0 while
/nst/ is longer but violates English phonotac-
tics. While we performed syllabification as a pre-
processing step outside of learning, a child learner
would presumably learn the required phonotac-
tics as a part of learning to segment words. 9-
month old infants are believed to have learned
some phonotactic constraints of their native lan-
guage (Mattys and Jusczyk, 2001), and learning
these constraints can be done with only minimal
exposure (Onishi et al., 2002).

Finally, spaces and punctuation between
words were removed, but the boundaries be-
tween utterances–as indicated by line breaks in
CHILDES–are retained. Altogether, there are
226,178 words, consisting of 263,660 syllables.
The learning material is a list of unsegmented
syllable sequences grouped into utterances, and
the learner’s task is to find word boundaries that
group substrings of syllables together, building a
lexicon of words as it segments.

We evaluated the learner’s performance to ad-
dress these questions:

• How does probabilistic memory affect
learner performance?

• How much does degrading stress information
relied on by USC segmentation reduce per-
formance?

• What is the interaction between the proba-
bilistic lexicon and non-idealized stress infor-
mation?

To evaluate the learner, we tested configurations
that used a probabilistic lexicon and ones with per-
fect memory in two scenarios: Dictionary Stress,
and Reduced Stress. We create the Reduced Stress
condition in order to simulate that stress is of-
ten reduced in casual speech, and that language-
specific stress rules may cause reductions or shifts
in stress that prevent two strong syllables from oc-
curring in sequence. The difference between the
scenarios is defined as follows:

Dictionary Stress. The stress information is
given to the learner as it was looked up in CMU-
dict. For example, the first utterance from the
Adam corpus would be B.IH1.G D.R.AH1.M (big

drum), an utterance with two stressed monosyl-
lables (SS). In most languages, however, condi-
tions where two stressed syllables are in sequence
are handled by reducing the stress of one syllable.
This is simulated in the reduced stress condition.

Reduced Stress. The stress information ob-
tained from CMUdict is post-processed in the con-
text of each utterance. For any two adjacent pri-
mary stressed syllables, the first syllable is re-
duced from a strong syllable to a weak one. This is
applied iteratively from left to right, so for any se-
quence of n adjacent primary-stress syllables, only
the nth syllable retains primary stress; all others
are reduced. This removes the most valuable clue
as to where utterances can be segmented, as USC
segmentation no longer applies. This simulates the
stress retraction effect found in real speech, which
tries to avoid adjacent primary stresses.

Learners that use probabilistic memory were al-
lowed to iterate over the input two times with ac-
cess to the lexicon developed over previous iter-
ations but no access to previous segmentations.
This simulates a child hearing many of the same
words and utterances again, and reduces the effect
of the small corpus size used on the learning pro-
cess. Because the probabilistic memory reduces
the algorithm’s ability to build a lexicon, perfor-
mance in a single iteration is lower than perfect
memory conditions. In all other conditions, the
learner is allowed only a single pass over the cor-
pus.

The precision and recall metrics are calculated
for the segmentation that the learner outputs and
the lexicon itself. For an utterance, each word
in the learner’s segmentation that also appears in
the gold standard segmentation is counted as cor-
rect, and each word in the learner’s segmentation
not present in the gold standard segmentation is
a false alarm. F-score is computed using equally
balanced precision and recall (F0). The correct
words, false words, and number of words in the
gold standard are summed over the output in each
iteration to produce performance measures for that
iteration.

Precision, recall, and F-score are similarly com-
puted for the lexicon; every word in the learner’s
lexicon present in the gold standard is counted as
correct, and every word in the learner’s lexicon not
present in the gold standard is a false alarm. These
computations are performed over word types in
the lexicon, thus all words in the lexicon are of

93

equal weight in computing performance regard-
less of their frequency. In the probabilistic mem-
ory conditions, however, the memory function de-
fines the probability of each word being recalled
(and thus being considered a part of the lexicon)
at evaluation time.

In addition to evaluating the learner, we also im-
plemented three baseline approaches to compare
the learner against. The Utterance baseline seg-
menter assumes every utterance is a single word.
The Monosyllabic baseline segmenter assumes ev-
ery syllable is a single word. The USC segmenter
inserts word boundaries between all adjacent syl-
lables with primary stress in the corpus.

6.1 Results

The performance of the learner and baseline seg-
menters is given in Table 1. While the Utterance
segmenter provides expectedly poor performance,
the Monosyllabic segmenter sets a relatively high
baseline for the task. Because of the impoverished
morphology of English and the short words that
tend to be used in child-directed speech, assuming
each syllable is a word proves to be an excellent
heuristic. It is unlikely that this heuristic will per-
form as well in other languages. Because the USC
segmenter only creates segmentation points where
there are words of adjacent primary stress, it is
prone to attaching unstressed monosyllabic func-
tion words to content words, causing very low lex-
icon precision (13.56%).

With both perfect memory and dictionary stress
information, the learner attains an F-score of
86.69%, with precision (83.78%) lower than re-
call (89.81%). First, we consider the effects of
probabilistic memory on the learner. In the Dictio-
nary Stress condition, using probabilistic memory
decreases Fo by 1.15%, a relatively small impact
given that with the setting of α = 0.05 the learner
must use a word approximately 14 times before it
can retrieve it with 50% reliability and 45 times
before it can retrieve it with 90% reliability. In the
first iteration over the data set, 17.87% of lexicon
lookups for words that have been hypothesized be-
fore fail. The impact on F0 is caused by a drop in
recall, as would be expected for a such a memory
model.

To examine the effect of the α parameter for
probabilistic memory on learner performance, we
plot the utterance and lexicon F0 after the learner
iterates over the corpus once in the Probabilistic

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Memory Parameter

F
−

S
co

re

● ● ●
●

● ● ● ● ● ● ●

● Utterance
Lexicon

Figure 2: Learner utterance and lexicon F-scores
after two iterations when α is varied in the Proba-
bilistic Memory, Dictionary Stress condition

Perfect
Memory,
Dictionary
Stress

Perfect
Memory,
Reduced
Stress

USC Seg. 114,333 0
Initial Sub. 65,800 164,989
Final Sub. 5,690 14,813
Total 185,823 179,802

Table 2: Number of segmentations performed by
each operation: USC Segmentation, Initial Sub-
traction, and Final Subtraction.

Memory, Dictionary Stress condition. As Figure 2
shows, the choice of α has little effect on the ut-
terance F0 through most of a broad range from
0.01 to 0.9. Because the setting of α determines
the number of times a word must be hypothesized
before it can reliably be recalled, it expectedly
has a significant effect on lexicon F0. The selec-
tion of α = 0.05 for our experiments is thus un-
likely to have had any significant bearing on the
utterance segmentation performance, although for
lower values of α precision is favored while for
larger values recall is favored. Larger values of
α imply the learner is able to recall items after
fewer exposures. While a larger value of α would
have yielded higher performance in lexicon per-
formance, it also assumes much more about the
learner’s memory capabilities.

The Reduced Stress condition also has only a

94

Utterances Lexicon
Segmenter Precision Recall F0 Precision Recall F0

Utterance 18.61% 4.67% 7.47% 3.57% 30.35% 6.39%
Monosyllabic 73.29% 85.44% 78.90% 55.41% 43.88% 48.97%
USC 81.06% 61.52% 69.95% 13.56% 66.97% 22.55%
Perfect Memory, Dictionary Stress 83.78% 89.81% 86.69% 67.72% 58.60% 62.83%
Perfect Memory, Reduced Stress 82.32% 85.81% 84.03% 39.18% 50.08% 43.97%
Prob. Memory, Dictionary Stress 84.05% 87.07% 85.54% 72.34% 30.01% 42.42%
Prob. Memory, Reduced Stress 84.85% 85.24% 85.05% 41.13% 22.91% 29.43%

Table 1: Baseline and Learner Performance. Performance is reported after two iterations over the corpus
for probabilistic memory learners and after a single iteration for all other learners.

small impact on utterance segmentation perfor-
mance. This suggests that the USC’s primary
value to the learner is in constraining the contents
of the lexicon and identifying words in isolation as
good candidates for the lexicon. In the Reduced
Stress condition where the USC is not directly re-
sponsible for any segmentations as there are no
adjacent primary-stressed syllables, the learner re-
lies much more heavily on subtractive techniques.
Table 2 gives the number of segmentations per-
formed using each segmentation operation. The
total number of segmentations is very similar be-
tween the Dictionary and Reduced Stress condi-
tions, but because USC Segmentation is not effec-
tive on Reduced Stress input, Initial and Final Sub-
traction are used much more heavily.

7 Discussion

The design of the segmenter presented here sug-
gests that both the quality of memory and the
structural purity of the input would be critical fac-
tors in the learner’s success. Our results suggest,
however, that using probabilistic memory and a
less idealized version of stress in natural language
have little impact on the performance of the pre-
sented learner. They do cause the learner to learn
much more slowly, causing the learner to need to
be presented with more material and resulting in
worse performance in the lexicon evaluation. But
this slower learning is unlikely to be a concern for
a child learner who would be exposed to much
larger amounts of data than the corpora here pro-
vide.

Cognitive literature suggests that limited mem-
ory during learning may be essential to a learner in
its early stages (Elman, 1993). But we do not see
any notable improvement as a result of the prob-
abilistic memory model used in our experiments,

although the learner does do better in the Reduced
Stress condition with Probabilistic Memory than
Perfect Memory. This should not be interpreted
as a negative result as we only analyze a single
learner and memory model. Adding decay to the
model such that among words of equal frequency
those that have not been used in segmentation re-
cently are less likely to be remembered may be
sufficient to create the desired effect.

The success of this learner suggests that the
type of “bootstrapping” approaches can succeed
in word segmentation. The learner presented uses
USC to identify utterances that are likely to be
lone words, seeding the lexicon with initial infor-
mation. Even if these first items in the lexicon are
of relatively low purity, often combining function
words and content words into one, the learner is
able to expand its lexicon by using these hypothe-
sized words to segment new input. As the learner
segments more, these hypotheses become more re-
liable, allowing the learner to build a lexicon of
good quality.

The subtraction approaches presented in this
work provide a basic algorithm for to handling
segmentation of incoming data in an online fash-
ion. The subtractive heuristics used here are of
course not guaranteed to result in a perfect seg-
mentation even with a perfect lexicon; they are
presented to show how a simple model of pro-
cessing incoming data can be paired with struc-
tural constraints on the hypothesis space to learn
word segmentation in a computationally efficient
and cognitively plausible online fashion.

8 Conclusions

The learner’s strong performance using minimal
computational resources and unreliable memory
suggest that simple learners can succeed in un-

95

supervised tasks as long as they take advantage
of domain-specific knowledge to constrain the hy-
pothesis space. Our results show that, even in ad-
versarial conditions, structural constraints remain
powerful tools for simple learning algorithms in
difficult tasks.

Future work in this area should focus on learn-
ers that can take advantage of the benefits of a
probabilistic lexicon and memory models suited
to them. Also, a more complex model of the type
of stress variation present in natural speech would
help better determine a learner that uses USC’s
ability to handle realistic variation in the input.
Our model of stress reduction is a worst-case sce-
nario for USC segmentation but is unlikely to be
an accurate model of real speech. Future work
should adopt a more naturalistic model to deter-
mine whether the robustness found in our results
holds true in more realistic stress permutations.

Acknowledgements

We thank Kyle Gorman, Josef Fruehwald, and
Dan Swingley for their helpful discussions regard-
ing this work. We are grateful to and Mitch Mar-
cus and Jana Beck for their feedback on earlier
versions of this paper.

References
J.R. Anderson, D. Bothell, C. Lebiere, and M. Matessa.

1998. An integrated theory of list memory. Journal
of Memory and Language, 38(4):341–380.

R. Bijeljac-Babic, J. Bertoncini, and J. Mehler. 1993.
How do 4-day-old infants categorize multisyllabic
utterances? Developmental Psychology, 29:711–
711.

M.R. Brent and T.A. Cartwright. 1996. Distributional
regularity and phonotactic constraints are useful for
segmentation. Cognition, 61(1-2):93–125.

M.R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation and word discov-
ery. Machine Learning, 34(1):71–105.

R. Brown. 1973. A First Language: The Early
Stages. Harvard Univ. Press, Cambridge, Mas-
sachusetts 02138.

J.L. Elman. 1993. Learning and development in neural
networks: The importance of starting small. Cogni-
tion, 48(1):71–99.

G. Gillund and R.M. Shiffrin. 1984. A retrieval model
for both recognition and recall. Psychological Re-
view, 91(1):1–67.

E.M. Gold. 1967. Language identification in the limit.
Information and control, 10(5):447–474.

S. Goldwater, T. Griffiths, and M. Johnson. 2006. In-
terpolating between types and tokens by estimating
power-law generators. Advances in Neural Informa-
tion Processing Systems, 18:459.

S. Goldwater, T.L. Griffiths, and M. Johnson. 2009.
A Bayesian framework for word segmentation: Ex-
ploring the effects of context. Cognition.

M. Halle and J.R. Vergnaud. 1987. An essay on stress.
MIT Press.

M. Johnson and S. Goldwater. 2009. Improving non-
parameteric Bayesian inference: experiments on un-
supervised word segmentation with adaptor gram-
mars. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 317–325. Association for
Computational Linguistics.

P.W. Jusczyk, D.M. Houston, and M. Newsome. 1999.
The Beginnings of Word Segmentation in English-
Learning Infants. Cognitive Psychology, 39(3-
4):159–207.

P.W. Jusczyk. 1999. How infants begin to extract
words from speech. Trends in Cognitive Sciences,
3(9):323–328.

M. Liberman and A. Prince. 1977. On stress and lin-
guistic rhythm. Linguistic Inquiry, 8(2):249–336.

B. MacWhinney. 2000. The CHILDES Project: Tools
for Analyzing Talk. Lawrence Erlbaum Associates.

G.F. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J.
Rosen, F. Xu, and H. Clahsen. 1992. Overregular-
ization in language acquisition. Monographs of the
Society for Research in Child Development, 57(4).

S.L. Mattys and P.W. Jusczyk. 2001. Phonotactic cues
for segmentation of fluent speech by infants. Cogni-
tion, 78(2):91–121.

K.H. Onishi, K.E. Chambers, and C. Fisher. 2002.
Learning phonotactic constraints from brief auditory
experience. Cognition, 83(1):B13–B23.

J.R. Saffran, R.N. Aslin, and E.L. Newport. 1996a.
Statistical Learning by 8-month-old Infants. Sci-
ence, 274(5294):1926.

J.R. Saffran, E.L. Newport, and R.N. Aslin. 1996b.
Word Segmentation: The Role of Distributional
Cues. Journal of Memory and Language,
35(4):606–621.

D. Swingley. 2005. Statistical clustering and the con-
tents of the infant vocabulary. Cognitive Psychol-
ogy, 50(1):86–132.

LG Valiant. 1984. A theory of the learnable. Commu-
nications of the ACM, 27(11):1142.

96

D. Van Kuijk and L. Boves. 1999. Acoustic char-
acteristics of lexical stress in continuous telephone
speech. Speech Communication, 27(2):95–111.

V.N. Vapnik. 2000. The nature of statistical learning
theory. Springer.

A. Venkataraman. 2001. A statistical model for word
discovery in transcribed speech. Computational
Linguistics, 27(3):351–372.

R.L. Weide. 1998. The Carnegie Mellon Pronouncing
Dictionary [cmudict. 0.6].

C.D. Yang. 2004. Universal Grammar, statistics or
both? Trends in Cognitive Sciences, 8(10):451–456.

97

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 98–106,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Computing Optimal Alignments for the IBM-3 Translation Model

Thomas Schoenemann
Centre for Mathematical Sciences

Lund University, Sweden

Abstract

Prior work on training the IBM-3 transla-
tion model is based on suboptimal meth-
ods for computing Viterbi alignments. In
this paper, we present the first method
guaranteed to produce globally optimal
alignments. This not only results in im-
proved alignments, it also gives us the op-
portunity to evaluate the quality of stan-
dard hillclimbing methods. Indeed, hill-
climbing works reasonably well in prac-
tice but still fails to find the global opti-
mum for between 2% and 12% of all sen-
tence pairs and the probabilities can be
several tens of orders of magnitude away
from the Viterbi alignment.

By reformulating the alignment problem
as an Integer Linear Program, we can
use standard machinery from global opti-
mization theory to compute the solutions.
We use the well-known branch-and-cut
method, but also show how it can be cus-
tomized to the specific problem discussed
in this paper. In fact, a large number of
alignments can be excluded from the start
without losing global optimality.

1 Introduction

Brown et al. (1993) proposed to approach the
problem of automatic natural language translation
from a statistical viewpoint and introduced five
probability models, known as IBM 1-5. Their
models weresingle word based, where each
source word could produce at most one target
word.

State-of-the-art statistical translation systems
follow the phrase basedapproach, e.g. (Och and
Ney, 2000; Marcu and Wong, 2002; Koehn, 2004;
Chiang, 2007; Hoang et al., 2007), and hence al-
low more general alignments. Yet, single word

based models (Brown et al., 1993; Brown et al.,
1995; Vogel et al., 1996) are still highly relevant:
many phrase based systems extract phrases from
the alignments found by training the single word
based models, and those that train phrases directly
usually underperform these systems (DeNero et
al., 2006).

Single word based models can be divided into
two classes. On the one hand, models like IBM-1,
IBM-2 and the HMM are computationally easy to
handle: both marginals and Viterbi alignments can
be computed by dynamic programming or even
simpler techniques.

On the other hand there are fertility based mod-
els, including IBM 3-5 and Model 6. These mod-
els have been shown to be of higher practical rel-
evance than the members of the first class (Och
and Ney, 2003) since they usually produce better
alignments. At the same time, computing Viterbi
alignments for these methods has been shown to
be NP-hard (Udupa and Maji, 2006), and comput-
ing marginals is no easier.

The standard way to handle these models – as
implemented in GIZA++ (Al-Onaizan et al., 1999;
Och and Ney, 2003) – is to use a hillclimbing al-
gorithm. Recently Udupa and Maji (2005) pro-
posed an interesting approximation based on solv-
ing sequences of exponentially large subproblems
by means of dynamic programming and also ad-
dressed the decoding problem. In both cases there
is no way to tell how far away the result is from
the Viterbi alignment.

In this paper we solve the problem of find-
ing IBM-3 Viterbi alignments by means of Inte-
ger Linear Programming (Schrijver, 1986). While
there is no polynomial run-time guarantee, in prac-
tice the applied branch-and-cut framework is fast
enough to find optimal solutions even for the large
Canadian Hansards task (restricted to sentences
with at most75 words), with a training time of6
hours on a2.4 GHz Core 2 Duo (single threaded).

98

Integer Linear Programming in the context of
machine translation first appeared in the work of
Germann et al. (2004), who addressed thetrans-
lation problem (often calleddecoding) in terms of
a travelings-salesman like formulation. Recently,
DeNero and Klein (2008) addressed the training
problem for phrase-based models by means of
integer linear programming, and proved that the
problem is NP-hard. The main difference to our
work is that they allow only consecutive words in
the phrases. In their formulation, allowing arbi-
trary phrases would require an exponential number
of variables. In contrast, our approach handles the
classical single word based model where any kind
of “phrases” in the source sentence are aligned to
one-word phrases in the target sentence.

Lacoste-Julien et al. (2006) propose an inte-
ger linear program for a symmetrized word-level
alignment model. Their approach also allows to
take the alignments of neighboring words into ac-
count. In contrast to our work, they only have a
very crude fertility model and they are consider-
ing a substantially different model. It should be
noted, however, that a subclass of their problems
can be solved in polynomial time - the problem is
closely related to bipartite graph matching. Less
general approaches based on matching have been
proposed in (Matusov et al., 2004) and (Taskar et
al., 2005).

Recently Bodrumlu et al. (2009) proposed a
very innovative cost function for jointly optimiz-
ing dictionary entries and alignments, which they
minimize using integer linear programming. They
also include a mechanism to derive N-best lists.
However, they mention rather long computation
times for rather small corpora. It is not clear if the
large Hansards tasks could be addressed by their
method.

An overview of integer linear programming ap-
proaches for natural language processing can be
found onhttp://ilpnlp.wikidot.com/.
To facilitate further research in this area, the
source code will be made publicly available.

Contribution The key contribution of our work
is a method to handle exact fertility models as aris-
ing in the IBM-3 model in a global optimization
framework. This is done by a linear number of
linear consistency constraints. Unlike all previ-
ous works on integer linear programming for ma-
chine translation, we do not solely use binary co-
efficients in the constraint matrix, hence showing

that the full potential of the method has so far not
been explored.

At the same time, our method allows us to give a
detailed analysis of the quality of hillclimbing ap-
proaches. Moreover, we give a more detailed de-
scription of how to obtain a fast problem-tailored
integer solver than in previous publications, and
include a mechanism to a priori exclude some vari-
ables without losing optimality.

2 The IBM-3 Translation Model

Given a source sentencefJ
1

, the statistical ap-
proach to machine translation is to assign each
possible target sentenceeI

1 a probability to be an
accurate translation. For convenience in the trans-
lation process, this probability is usually rewritten
as

P (eI
1|f

J
1) =

1

p(fJ
1
)
· p(eI

1) · p(fJ
1 |e

I
1) ,

and the training problem is to derive suitable pa-
rameters for the latter term from a bilingual cor-
pus. Here, the probability is expressed by sum-
ming over hidden variables calledalignments. The
common assumption in single word based models
is that each source positionj produces a single tar-
get positionaj ∈ {0, . . . , I}, where an artificial 0-
position has been introduced to mark words with-
out a correspondence in the target sentence. The
alignment of a source sentence is then a vectoraJ

1 ,
and the probability can now be written as

p(fJ
1 |e

I
1) =

∑

aJ
1

p(fJ
1 , aJ

1 |e
I
1) .

We will focus on training the IBM-3 model which
is based on the concept offertilities: given an
alignmentaJ

1 , the fertility Φi(a
J
1) =

∑

j:aj=i 1
of target wordi expresses the number of source
words aligned to it. Omitting the dependence on
aJ

1 (and definingp(j|0) = 1), the probability is
expressed as

p(fJ
1 , aJ

1 |e
I
1) = p(Φ0|J) ·

I
∏

i=1

[

Φi! p(Φi|ei)
]

·
∏

j

[

p(fj|eaj
) · p(j|aj)

]

. (1)

For the probabilityp(Φ0|J) of the fertility of the
empty word, we use the modification introduced in
(Och and Ney, 2003), see there for details. In sum-
mary, the model comprises a single word based

99

translation model, an inverted zero-order align-
ment model and a fertility model. We now discuss
how to find the optimal alignment for given prob-
abilities, i.e. to solve the problem

arg max
aJ
1

p(fJ
1 , aJ

1 |e
I
1) (2)

for each bilingual sentence pair in the training
set. This is a desirable step in the approximate
EM-algorithm that is commonly used to train the
model.

3 Finding IBM-3 Viterbi Alignments via
Integer Linear Programming

Instead of solving (2) directly we consider the
equivalent task of minimizing the negative loga-
rithm of the probability function. A significant
part of the arising cost function is already linear
in terms of the alignment variables, a first step for
the integer linear program (ILP) we will derive.

To model the problem as an ILP, we introduce
two sets of variables. Firstly, for any source po-
sition j ∈ {1, . . . , J} and any target position
i ∈ {0, . . . , I} we introduce an integer variable
xij ∈ {0, 1} which we want to be1 exactly if
aj = i and0 otherwise. Since each source posi-
tion must be aligned to exactly one target position,
we arrive at the set of linear constraints

∑

i

xij = 1 , j = 1, . . . , J . (3)

The negative logarithm of the bottom row of (1) is
now easily written as a linear function in terms of
the variablesxij :

∑

i,j

cx
ij · xij ,

cx
ij = − log

[

p(fj|ei) · p(j|i)
]

.

For the part of the cost depending on the fertilities,
we introduce another set of integer variablesyif ∈
{0, 1}. Herei ∈ {0, . . . , I} andf ranges from0 to
some pre-specified limit on the maximal fertility,
which we set tomax(15, J/2) in our experiments
(fertilities > J need not be considered). We want
yif to be1 if the fertility of i is f , 0 otherwise.
Hence, again these variables must sum to1:

∑

f

yif = 1 , i = 0, . . . , I . (4)

The associated part of the cost function is written
as

∑

i,f

cy
if · yif ,

cy
if = − log

[

f ! p(f |ei)
]

, i = 1, . . . , I

cy
0f = − log

[

p(Φ0 = f |J)
]

.

It remains to ensure that the variablesyif express-
ing the fertilities are consistent with the fertilities
induced by the alignment variablesxij. This is
done via the following set of linear constraints:

∑

j

xij =
∑

f

f · yif , i = 0, . . . , I . (5)

Problem (2) is now reduced to solving the integer
linear program

arg min
{xij},{yif}

∑

i,j

cx
ij xij +

∑

i,f

cy
if yif

subject to(3), (4), (5)

xij ∈ {0, 1}, yif ∈ {0, 1} , (6)

with roughly 2 I J variables and roughlyJ + 2I
constraints.

4 Solving the Integer Linear Program

To solve the arising integer linear programming
problem, we first relax the integrality constraints
on the variables to continuous ones:

xij ∈ [0, 1], yif ∈ [0, 1] ,

and obtain a lower bound on the problems by solv-
ing the arising linear programming relaxation via
the dual simplex method.

While in practice this can be done in a matter of
milli-seconds even for sentences withI, J > 50,
the result is frequently a fractional solution. Here
the alignment variables are usually integral but the
fertility variables are not.

In case the LP-relaxation does not produce an
integer solution, the found solution is used as the
initialization of a branch-and-cut framework. Here
one first tries to strengthen the LP-relaxation by
deriving additional inequalities that must be valid
for all integral solutions see e.g. (Schrijver, 1986;
Wolter, 2006) andwww.coin-or.org. These
inequalities are commonly calledcuts. Then one
applies a branch-and-bound scheme on the inte-
ger variables. In each step of this scheme, addi-
tional inequalities are derived. The process is fur-
ther sped-up by introducing a heuristic to derive an

100

upper bound on the cost function. Such bounds are
generally given by feasible integral solutions. We
use our own heuristic as a plug-in to the solver.
It generates solutions by thresholding the align-
ment variables (winner-take-all) and deriving the
induced fertility variables. An initial upper bound
is furthermore given by the alignment found by
hillclimbing.

We suspect that further speed-ups are possible
by using so-called follow-up nodes: e.g. if in the
branch-and-bound an alignment variablexij is set
to 1, one can conclude that the fertility variable
yi0 must be0. Also, sets of binary variables that
must sum to1 as in (3) and (4) are known asspe-
cial ordered sets of type Iand there are variants
of branch-and-cut that can exploit these proper-
ties. However, in our context they did not result
in speed-ups.

Our code is currently based on the open source
COIN-OR project1 and involves the linear pro-
gramming solver CLP, the integer programming
solver CBC, and the cut generator library CGL.
We have also tested two commercial solvers. For
the problem described in this paper, CBC per-
formed best. Tests on other integer programming
tasks showed however that the Gurobi solver out-
performs CBC on quite a number of problems.

5 Speed-ups by Deriving Bounds

It turns out that, depending on the cost function,
some variables may a priori be excluded from the
optimization problem without losing global opti-
mality. That is, they can be excluded evenbefore
the first LP-relaxation is solved.

The affected variables have relatively high cost
coefficients and they are identified by considering
lower bounds and an upper bound on the cost func-
tion. Starting from the lower bounds, one can then
identify variables that when included in a solution
would raise the cost beyond the upper bound.

An upper boundu on the problem is given by
any alignment. We use the one found by hillclimb-
ing. If during the branch-and-cut process tighter
upper bounds become available, the process could
be reapplied (as a so-calledcolumn cut generator).

For the lower bounds we use different ones to
exclude alignment variables and to exclude fertil-
ity variables.

1www.coin-or.org

5.1 Excluding Alignment Variables

To derive a lower bound for the alignment vari-
ables, we first observe that the costcx

ij for the
alignment variables are all positive, whereas the
costcy

if for the fertilities are frequently negative,
due to the factorial off . A rather tight lower
bound on the fertility cost can be derived by solv-
ing the problem

lF,1 = min
{Φi}

I
∑

i=0

cy
iΦi

s.t.
∑

i Φi = J , (7)

which is easily solved by dynamic programming
proceeding alongi. A lower bound on the align-
ment cost is given by

lA =
∑

j lA,j ,

where lA,j = min
i=0,...,I

cx
ij .

The lower bound is then given byl1 = lF,1 + lA,
and we can be certain that source wordj will not
be aligned to target wordi if

cx
ij > lA,j + (u− l1) .

5.2 Excluding Fertility Variables

Excluding fertility variables is more difficult as
cost can be negative and we have used a constraint
to derivelF,1 above.

At present we are using a two ways to gener-
ate a lower bound and apply the exclusion process
with each of them sequentially. Both bounds are
looser thanl1, but they immensely help to get the
computation times to an acceptable level.

The first bound builds uponl1 as derived above,
but using a looser boundlF,2 for the fertility cost:

lF,2 =
∑

i

min
Φi

cy
iΦi

.

This results in a boundl2 = lF,2 + lA, and fertility
variables can now be excluded in a similar manner
as above.

Our second bound is usually much tighter and
purely based on the fertility variables:

l3 =
∑

i

min
Φi

[

cy
iΦi

+ min
J⊆{1,...,J} : |J=Φi|

cx
i (J)

]

,

with cx
i (J) =

∑

j∈J

cx
ij ,

101

and where the cost of the empty set is defined as0.
Although this expression looks rather involved, it
is actually quite easy to compute by simply sorting
the respective cost entries. A fertility variableyif

can now be excluded if the difference betweency
if

and the contribution ofi to l3 exceedsu− l3.
We consider it likely that more variables can be

excluded by deriving bounds in the spirit of (7),
but with the additional constraint thatΦi = f for
somei andf . We leave this for future work.

6 Experiments

We have tested our method on three different tasks
involving a total of three different languages and
each in both directions. The first task is the well-
known Canadian Hansards2 task (senate debates)
for French and English. Because of the large
dataset we are currently only considering sentence
pairs where both sentences have at most75 words.
Longer sentences are usually not useful to derive
model parameters.

The other two datasets are released by the Eu-
ropean Corpus Initiative3. We choose the Union
Bank of Switzerland (UBS) corpus for English and
German and the Avalanche Bulletins, originally
released by SFISAR, for French and German. For
the latter task we have annotated alignments for
150 of the training sentences, where one annota-
tor specified sure and possible alignments. For de-
tails, also on the alignment error rate, see (Och and
Ney, 2003).

All corpora have been preprocessed with
language-specific rules; their statistics are given in
Table 1. We have integrated our method into the
standard toolkit GIZA++4 and are using the train-
ing scheme15H53545 for all tasks. While we fo-
cus on the IBM-3 stage, we also discuss the quality
of the resulting IBM-4 parameters and alignments.

Experiments were run on a2.4 GHz Core 2
Duo with4 GB memory. For most sentence pairs,
the memory consumption of our method is only
marginally more than in standard GIZA++ (600
MB). In the first iteration on the large Hansards
task, however, there are a few very difficult sen-
tence pairs where the solver needs up to90 min-
utes and1.5 GB . We observed this in both trans-
lation directions.

2www.isi.edu/natural-language/
download/hansard/

3The entire CD with many more corpora is available for
currently50 Euros.

4available atcode.google.com/p/giza-pp/ .

Avalanche Bulletin
French German

sentences 2989
max. sentence length 88 57
total words 64825 45629
vocabulary size 1707 2113

UBS
English German

sentences 2689
max. sentence length 92 91
total words 62617 53417
vocabulary size 5785 9127

Canadian Hansards (max. 75)
French English

sentences 180706
max. sentence length 75 75
total words 3730570 3329022
vocabulary size 48065 37633

Table 1:Corpus statistics for all employed (train-
ing) corpora, after preprocessing.

6.1 Evaluating Hillclimbing

In our first set of experiments, we compute Viterbi
alignments merely to evaluate the quality of the
standard training process. That is, the model
parameters are updated based on the alignments
found by hillclimbing. Table 2 reveals that, as
expected, hillclimbing does not always find the
global optimum: depending on the task and it-
eration number, between2 and12 percent of all
hillclimbing alignments are suboptimal. For short
sentences (i.e.I, J ≤ 20) hillclimbing usually
finds the global optimum.

Somewhat more surprisingly, even when a good
and hence quite focused initialization of the IBM-
3 model parameters is given (by training HMMs
first), the probability of the Viterbi alignment can
be up to a factor of1037 away from the optimum.
This factor occurred on the Hansards task for a
sentence pair with46 source and46 target words
and the fertility of the empty word changed from
9 (for hillclimbing) to 5.

6.2 Hillclimbing vs. Viterbi Alignments

We now turn to a training scheme where the
Viterbi alignments are used to actually update the
model parameters, and compare it to the standard
training scheme (based on hillclimbing).

102

Candian Hansards (max 75)

French→ English
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 10.7% 10.7% 10.8% 11.1% 11.4%

Maximal factor to Viterbi alignment 1.9 · 1037 9.1 · 1017 7.3 · 1014 3.3 · 1012 8.1 · 1014

English→ French
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 7.3% 7.5% 7.4% 7.4% 7.5%

Maximal factor to Viterbi alignment 5.6 · 1038 6.6 · 1020 7.6 · 1011 4.3 · 1010 8.3 · 1011

Avalanche Bulletins

French→ German
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 7.5% 5.6% 4.9% 4.9% 4.4%

Maximal factor to Viterbi alignment 6.1 · 105 877 368 2.5 · 104 429

German→ French
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 4.2% 2.7% 2.5% 2.3% 2.1%

Maximal factor to Viterbi alignment 40 302 44 3.3 · 104 9.2 · 104

Union Bank of Switzerland (UBS)

English→ German
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 5.0% 4.0% 3.5% 3.3% 3.2%

Maximal factor to Viterbi alignment 677 22 53 40 32

German→ English
Iteration # 1 2 3 4 5

suboptimal alignments in hillclimbing 5.5% 3.3% 2.5% 2.2% 2.3%

Maximal factor to Viterbi alignment 1.4 · 107 808 33 33 1.8 · 104

Table 2:Analysis of Hillclimbing on all considered tasks. All numbers are for the IBM-3 translation
model. Iteration 1 is the first iteration after the transfer from HMM, the final iteration is the transfer to
IBM4. The factors are w.r.t. the original formulation, not the negative logarithm of it and are defined as
the maximal ratio between the Viterbi probability and the hillclimbing probability.

103

une baisse de la température a en général stabilisé la couverture neigeuse .

ein Temperaturrückgang hat die Schneedecke im allgemeinen stabilisiert .

Standard training (hillclimbing).

une baisse de la température a en général stabilisé la couverture neigeuse .

ein Temperaturrückgang hat die Schneedecke im allgemeinen stabilisiert .

Proposed training (Viterbi alignments).

Figure 1:Comparison of training schemes. Shown are the alignments of the final IBM-3 iteration.

Indeed Table 3 demonstrates that with the new
training scheme, the perplexities of the final IBM-
3 iteration are consistently lower. Yet, this effect
does not carry over to IBM-4 training, where the
perplexities are consistently higher. Either this is
due to overfitting or it is better to use the same
method for alignment computation for both IBM-
3 and IBM-4. After all, both start from the HMM
Viterbi alignments.

Interestingly, the maximal factor between the
hillclimbing alignment and the Viterbi alignment
is now consistently higher on all tasks and in all
iterations. The extreme cases are a factor of1076

for the Canadian Hansards English→ French task
and1030 for the Bulletin French→ German task.

Table 4 demonstrates that the alignment error
rates of both schemes are comparable. Indeed, a
manual evaluation of the alignments showed that
most of the changes affect words like articles or
prepositions that are generally hard to translate.
In many cases neither the heuristic nor the Viterbi
alignment could be considered correct. An inter-
esting case where the proposed scheme produced
the better alignment is shown in Figure 1.

In summary, our results give a thorough justi-
fication for the commonly used heuristics. A test
with the original non-deficient empty word model
of the IBM-3 furthermore confirmed the impres-
sion of (Och and Ney, 2003) that overly many
words are aligned to the empty word: the tendency
is even stronger in the Viterbi alignments.

6.3 Optimizing Running Time

The possibilities to influence the run-times of the
branch-and-cut framework are vast: there are nu-

Union Bank (UBS) E → G
Final IBM-3 Final IBM-4

Standard train. 49.21 35.73

Proposed train. 49.00 35.76

Union Bank (UBS) G → E
Final IBM-3 Final IBM-4

Standard train. 62.38 47.39

Proposed train. 62.08 47.43

Avalanche F → G
Final IBM-3 Final IBM-4

Standard train. 35.44 21.99

Proposed train. 35.23 22.04

Avalanche G → F
Final IBM-3 Final IBM-4

Standard train. 34.60 22.78

Proposed train. 34.48 22.76

Canadian Hansards F → E
Final IBM-3 Final IBM-4

Standard train. 105.28 55.22

Proposed train. 92.09 55.35

Canadian Hansards E → F
Final IBM-3 Final IBM-4

Standard train. 70.58 37.64

Proposed train. 70.03 37.73

Table 3:Analysis of the perplexities in training.

104

French → German
Final IBM-3 Final IBM-4

Standard train. 24.31% 23.01%

Proposed train. 24.31% 23.24%

German → French
Final IBM-3 Final IBM-4

Standard train. 33.03% 33.44%

Proposed train. 33.00% 33.27%

Table 4:Alignment error rates on the Avalanche
bulletin task.

merous ways to generate cuts and several of them
can be used simultaneously. The CBC-package
also allows to specify how many rounds of cuts
to derive at each node. Then there is the question
of whether to use the bounds derived in Section
5 to a priori exclude variables. Finally, branch-
and-cut need not be done on all variables: since
solving LP-relaxations typically results in integral
alignments, it suffices to do branch-and-cut on the
fertility variables and only add the alignment vari-
ables in case non-integral values arise (this never
happened in our experiments5).

We could not possibly test all combinations
of the listed possibilities, and our primary focus
was to achieve acceptable run-times for the large
Hansards task. Still, in the end we have a quite
uniform picture: the lowest run-times are achieved
by using Gomory Cuts only. Moreover, including
all variables for branching was between1.5 and2
times faster than only including fertility variables.
Only by exploiting the bounds derived in Section
5 the run-times for the Hansards task in direction
from English to French became acceptable. We
believe that further speed-ups are possible by de-
riving tighter bounds, and are planning to investi-
gate this in the future.

We end up with roughly6 hours for the
Hansards task, roughly3 minutes for the UBS
task, and about2.5 minutes for the Avalanche task.
In all cases the run-times are much higher than
in the standard GIZA++ training. However, we
are now getting optimality guarantees where pre-
viously one could not even tell how far away one is
from the optimum. And the Viterbi alignments of
several sentence pairs can of course be computed
in parallel.

Lastly, we mention the possibility of setting a

5In fact, when fixing the fertility variables, the problem
reduces to the polynomial time solvable assignment problem.

limit on the branch-and-cut process, either on the
running time or on the number of nodes. There is
then no longer a guarantee for global optimality,
but at least one is getting a bound on the gap to the
optimum and one can be certain that the training
time will be sufficiently low.

7 Conclusion

We present the first method to compute IBM-3
Viterbi alignments with a guarantee of optimal-
ity. In contrast to other works on integer linear
programming for machine translation, our formu-
lation is able to include a precise and very gen-
eral fertility model. The resulting integer linear
program can be solved sufficiently fast in prac-
tice, and we have given many comments on how
problem-specific knowledge can be incorporated
into standard solvers.

The proposed method allows for the first time
to analyze the quality of hillclimbing approaches
for IBM-3 training. It was shown that they can be
very far from the optimum. At the same time, this
seems to happen mostly for difficult sentences that
are not suitable to derive good model parameters.

In future work we want to derive tighter bounds
to a priori exclude variables, combine the method
with the N-best list generation of (Bodrumlu et
al., 2009) and evaluate on a larger set of corpora.
Finally we are planning to test other integer pro-
gramming solvers.

Acknowledgments We thank Fredrik Kahl for
helpful comments and an anonymous reviewer for
pointing out freely available software packages.
This research was funded by the European Re-
search Council (GlobalVision grant no. 209480).

References

Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Laf-
ferty, I. D. Melamed, F. J. Och, D. Purdy, N. A.
Smith, and D. Yarowsky. 1999. Statistical ma-
chine translation, Final report, JHU workshop.
http://www.clsp.jhu.edu/ws99/.

Tugba Bodrumlu, Kevin Knight, and Sujith Ravi.
2009. A new objective function for word align-
ment. In Proceedings of the Workshop on Inte-
ger Linear Programming for Natural Langauge Pro-
cessing (ILP), Boulder, Colorado, June.

P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and
R.L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation.Compu-
tational Linguistics, 19(2):263–311, June.

105

P.F. Brown, J. Cocke, S.A. Della Pietra, V.J. Della
Pietra, F. Jelinek, J. Lai, and R.L. Mercer. 1995.
Method and system for natural language translation.
U.S. patent #5.477.451.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–228.

J. DeNero and D. Klein. 2008. The complexity
of phrase alignment problems. InAnnual Meet-
ing of the Association for Computational Linguistics
(ACL), Columbus, Ohio, June.

John DeNero, Dan Gillick, James Zhang, and Dan
Klein. 2006. Why generative phrase models under-
perform surface heuristics. InStatMT ’06: Proceed-
ings of the Workshop on Statistical Machine Trans-
lation, pages 31–38, Morristown, NJ, USA, June.

U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Ya-
mada. 2004. Fast decoding and optimal decod-
ing for machine translation.Artificial Intelligence,
154(1–2), April.

H. Hoang, A. Birch, C. Callison-Burch, R. Zens,
A. Constantin, M. Federico, N. Bertoldi, C. Dyer,
B. Cowan, W. Shen, C. Moran, and O. Bojar. 2007.
Moses: Open source toolkit for statistical machine
translation. InAnnual Meeting of the Association
for Computational Linguistics (ACL), pages 177–
180, Prague, Czech Republic, June.

P. Koehn. 2004. Pharaoh: A beam search decoder for
phrase-based statistical machine translation mod-
els. In Conference of the Association for Machine
Translation in the Americas (AMTA), pages 115–
124, Washington, D.C., October.

S. Lacoste-Julien, B. Taskar, D. Klein, and M. Jordan.
2006. Word alignment via quadratic assignment.
In Human Language Technology Conference of the
North American Chapter of the Association of Com-
putational Linguistics, New York, New York, June.

D. Marcu and W. Wong. 2002. A phrase-based,
joint probability model for statistical machine trans-
lation. InConference on Empirical Methods in Nat-
ural Language Processing (EMNLP), Philadelphia,
Pennsylvania, July.

E. Matusov, R. Zens, and H. Ney. 2004. Symmetric
word alignments for statistical machine translation.
In International Conference on Computational Lin-
guistics (COLING), Geneva, Switzerland, August.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. InAnnual Meeting
of the Association for Computational Linguistics
(ACL), pages 440–447, Hongkong, China, October.

F.J. Och and H. Ney. 2003. A systematic comparison
of various statistical alignment models.Computa-
tional Linguistics, 29(1):19–51.

A. Schrijver. 1986.Theory of Linear and Integer Pro-
gramming. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons.

B. Taskar, S. Lacoste-Julien, and D. Klein. 2005.
A discriminative matching approach to word align-
ment. InConference on Empirical Methods in Nat-
ural Language Processing (EMNLP), Vancouver,
Canada, October.

R. Udupa and H.K. Maji. 2005. Theory of align-
ment generators and applications to statistical ma-
chine translation. InThe International Joint Con-
ferences on Artificial Intelligence, Edinburgh, Scot-
land, August.

R. Udupa and H.K. Maji. 2006. Computational com-
plexity of statistical machine translation. InCon-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), Trento, Italy,
April.

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM-based
word alignment in statistical translation. InInter-
national Conference on Computational Linguistics
(COLING), pages 836–841, Copenhagen, Denmark,
August.

K. Wolter. 2006. Implementation of Cutting Plane
Separators for Mixed Integer Programs. Master’s
thesis, Technische Universität Berlin, Germany.

106

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 107–116,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Semi-Supervised Recognition of Sarcastic Sentences
in Twitter and Amazon

Dmitry Davidov
ICNC

The Hebrew University
Jerusalem, Israel

dmitry@alice.nc.huji.ac.il

Oren Tsur
Institute of Computer Science

The Hebrew University
Jerusalem, Israel

oren@cs.huji.ac.il

Ari Rappoport
Institute of Computer Science

The Hebrew University
Jerusalem, Israel

arir@cs.huji.ac.il

Abstract

Sarcasm is a form of speech act in which
the speakers convey their message in an
implicit way. The inherently ambiguous
nature of sarcasm sometimes makes it hard
even for humans to decide whether an ut-
terance is sarcastic or not. Recognition of
sarcasm can benefit many sentiment analy-
sis NLP applications, such as review sum-
marization, dialogue systems and review
ranking systems.

In this paper we experiment with semi-
supervised sarcasm identification on two
very different data sets: a collection of
5.9 million tweets collected from Twit-
ter, and a collection of 66000 product re-
views from Amazon. Using the Mechani-
cal Turk we created a gold standard sam-
ple in which each sentence was tagged by
3 annotators, obtaining F-scores of 0.78 on
the product reviews dataset and 0.83 on
the Twitter dataset. We discuss the dif-
ferences between the datasets and how the
algorithm uses them (e.g., for the Amazon
dataset the algorithm makes use of struc-
tured information). We also discuss the
utility of Twitter #sarcasm hashtags for the
task.

1 Introduction

Sarcasm (also known as verbal irony) is a sophis-
ticated form of speech act in which the speakers
convey their message in an implicit way. One in-
herent characteristic of the sarcastic speech act is
that it is sometimes hard to recognize. The dif-
ficulty in recognition of sarcasm causes misun-
derstanding in everyday communication and poses

problems to many NLP systems such as online
review summarization systems, dialogue systems
or brand monitoring systems due to the failure of
state of the art sentiment analysis systems to detect
sarcastic comments. In this paper we experiment
with a semi-supervised framework for automatic
identification of sarcastic sentences.

One definition for sarcasm is: the activity of
saying or writing the opposite of what you mean,
or of speaking in a way intended to make someone
else feel stupid or show them that you are angry
(Macmillan English Dictionary (2007)). Using the
former definition, sarcastic utterances appear in
many forms (Brown, 1980; Gibbs and O’Brien,
1991). It is best to present a number of examples
which show different facets of the phenomenon,
followed by a brief review of different aspects of
the sarcastic use. The sentences are all taken from
our experimental data sets:

1. “thank you Janet Jackson for yet another
year of Super Bowl classic rock!” (Twitter)

2. “He’s with his other woman: XBox 360. It’s
4:30 fool. Sure I can sleep through the gun-
fire” (Twitter)

3. “Wow GPRS data speeds are blazing fast.”
(Twitter)

4. “[I] Love The Cover” (book, amazon)

5. “Defective by design” (music player, ama-
zon)

Example (1) refers to the supposedly lame mu-
sic performance in super bowl 2010 and attributes
it to the aftermath of the scandalous performance
of Janet Jackson in the previous year. Note that the
previous year is not mentioned and the reader has
to guess the context (use universal knowledge).
The words yet and another might hint at sarcasm.

107

Example (2) is composed of three short sentences,
each of them sarcastic on its own. However, com-
bining them in one tweet brings the sarcasm to
its extreme. Example (3) is a factual statement
without explicit opinion. However, having a fast
connection is a positive thing. A possible sar-
casm emerges from the over exaggeration (‘wow’,
‘blazing-fast’).

Example (4) from Amazon, might be a genuine
compliment if it appears in the body of the review.
However, recalling the expression ‘don’t judge a
book by its cover’, choosing it as the title of the
review reveals its sarcastic nature. Although the
negative sentiment is very explicit in the iPod re-
view (5), the sarcastic effect emerges from the pun
that assumes the knowledge that the design is one
of the most celebrated features of Apple’s prod-
ucts. (None of the above reasoning was directly
introduced to our algorithm.)

Modeling the underlying patterns of sarcastic
utterances is interesting from the psychological
and cognitive perspectives and can benefit var-
ious NLP systems such as review summariza-
tion (Popescu and Etzioni, 2005; Pang and Lee,
2004; Wiebe et al., 2004; Hu and Liu, 2004) and
dialogue systems. Following the ‘brilliant-but-
cruel’ hypothesis (Danescu-Niculescu-Mizil et al.,
2009), it can help improve ranking and recommen-
dation systems (Tsur and Rappoport, 2009). All
systems currently fail to correctly classify the sen-
timent of sarcastic sentences.

In this paper we utilize the semi-supervised sar-
casm identification algorithm (SASI) of (Tsur et
al., 2010). The algorithm employs two modules:
semi supervised pattern acquisition for identify-
ing sarcastic patterns that serve as features for a
classifier, and a classification stage that classifies
each sentence to a sarcastic class. We experiment
with two radically different datasets: 5.9 million
tweets collected from Twitter, and 66000 Amazon
product reviews. Although for the Amazon dataset
the algorithm utilizes structured information, re-
sults for the Twitter dataset are higher. We discuss
the possible reasons for this, and also the utility
of Twitter #sarcasm hashtags for the task. Our al-
gorithm performed well in both domains, substan-
tially outperforming a strong baseline based on se-
mantic gap and user annotations. To further test its
robustness we also trained the algorithm in a cross
domain manner, achieving good results.

2 Data

The datasets we used are interesting in their own
right for many applications. In addition, our algo-
rithm utilizes some aspects that are unique to these
datasets. Hence, before describing the algorithm,
we describe the datasets in detail.

Twitter Dataset. Since Twitter is a relatively
new service, a somewhat lengthy description of
the medium and the data is appropriate.

Twitter is a very popular microblogging service.
It allows users to publish and read short messages
called tweets (also used as a verb: to tweet: the act
of publishing on Twitter). The tweet length is re-
stricted to 140 characters. A user who publishes a
tweet is referred to as a tweeter and the readers are
casual readers or followers if they are registered to
get all tweets by this tweeter.

Apart from simple text, tweets may contain ref-
erences to url addresses, references to other Twit-
ter users (these appear as @<user>) or a con-
tent tag (called hashtags) assigned by the tweeter
(#<tag>). An example of a tweet is: “listen-
ing to Andrew Ridgley by Black Box Recorder on
@Grooveshark: http://tinysong.com/cO6i #good-
music”, where ‘grooveshark’ is a Twitter user
name and #goodmusic is a tag that allows to
search for tweets with the same tag. Though fre-
quently used, these types of meta tags are optional.
In order to ignore specific references we substi-
tuted such occurrences with special tags: [LINK],
[USER] and [HASHTAG] thus we have “listen-
ing to Andrew Ridgley by Black Box Recorder on
[USER]: [LINK] [HASHTAG]”. It is important
to mention that hashtags are not formal and each
tweeter can define and use new tags as s/he likes.

The number of special tags in a tweet is only
subject to the 140 characters constraint. There is
no specific grammar that enforces the location of
special tags within a tweet.

The informal nature of the medium and the 140
characters length constraint encourages massive
use of slang, shortened lingo, ascii emoticons and
other tokens absent from formal lexicons.

These characteristics make Twitter a fascinat-
ing domain for NLP applications, although posing
great challenges due to the length constraint, the
complete freedom of style and the out of discourse
nature of tweets.

We used 5.9 million unique tweets in our
dataset: the average number of words is 14.2

108

words per tweet, 18.7% contain a url, 35.3% con-
tain reference to another tweeter and 6.9% contain
at least one hashtag1.

The #sarcasm hashtag One of the hashtags
used by Twitter users is dedicated to indicate sar-
castic tweets. An example of the use of the tag
is: ‘I guess you should expect a WONDERFUL
video tomorrow. #sarcasm’. The sarcastic hashtag
is added by the tweeter. This hashtag is used in-
frequently as most users are not aware of it, hence,
the majority of sarcastic tweets are not explicitly
tagged by the tweeters. We use tagged tweets as
a secondary gold standard. We discuss the use of
this tag in Section 5.

Amazon dataset. We used the same dataset
used by (Tsur et al., 2010), containing 66000 re-
views for 120 products from Amazon.com. The
corpus contained reviews for books from differ-
ent genres and various electronic products. Ama-
zon reviews are much longer than tweets (some
reach 2000 words, average length is 953 charac-
ters), they are more structured and grammatical
(good reviews are very structured) and they come
in a known context of a specific product. Reviews
are semi-structured as besides the body of the re-
view they all have the following fields: writer,
date, star rating (the overall satisfaction of the re-
view writer) and a one line summary.

Reviews refer to a specific product and rarely
address each other. Each review sentence is, there-
fore, part of a context – the specific product, the
star rating, the summary and other sentences in
that review. In that sense, sentences in the Ama-
zon dataset differ radically from the contextless
tweets. It is worth mentioning that the majority
of reviews are on the very positive side (star rating
average of 4.2 stars).

3 Classification Algorithm

Our algorithm is semi-supervised. The input is
a relatively small seed of labeled sentences. The
seed is annotated in a discrete range of 1 . . . 5
where 5 indicates a clearly sarcastic sentence and
1 indicates a clear absence of sarcasm. A 1 . . . 5
scale was used in order to allow some subjectiv-
ity and since some instances of sarcasm are more
explicit than others.

1The Twitter data was generously provided to us by Bren-
dan O’Connor.

Given the labeled sentences, we extracted a set
of features to be used in feature vectors. Two basic
feature types are utilized: syntactic and pattern-
based features. We constructed feature vectors for
each of the labeled examples in the training set and
used them to build a classifier model and assign
scores to unlabeled examples. We next provide a
description of the algorithmic framework of (Tsur
et al., 2010).

Data preprocessing A sarcastic utterance usu-
ally has a target. In the Amazon dataset these
targets can be exploited by a computational al-
gorithm, since each review targets a product, its
manufacturer or one of its features, and these are
explicitly represented or easily recognized. The
Twitter dataset is totally unstructured and lacks
textual context, so we did not attempt to identify
targets.

Our algorithmic methodology is based on
patterns. We could use patterns that include
the targets identified in the Amazon dataset.
However, in order to use less specific patterns,
we automatically replace each appearance
of a product, author, company, book name
(Amazon) and user, url and hashtag (Twitter)
with the corresponding generalized meta tags
‘[PRODUCT]’,‘[COMPANY]’,‘[TITLE]’ and
‘[AUTHOR]’ tags2 and ‘[USER]’,‘[LINK]’ and
‘[HASHTAG]’. We also removed all HTML tags
and special symbols from the review text.

Pattern extraction Our main feature type is
based on surface patterns. In order to extract such
patterns automatically, we followed the algorithm
given in (Davidov and Rappoport, 2006). We clas-
sified words into high-frequency words (HFWs)
and content words (CWs). A word whose cor-
pus frequency is more (less) than FH (FC) is con-
sidered to be a HFW (CW). Unlike in (Davidov
and Rappoport, 2006), we consider all punctuation
characters as HFWs. We also consider [product],
[company], [title], [author] tags as HFWs for pat-
tern extraction. We define a pattern as an ordered
sequence of high frequency words and slots for
content words. The FH and FC thresholds were
set to 1000 words per million (upper bound for
FC) and 100 words per million (lower bound for
FH)3.

2Appropriate names are provided with each review so this
replacement can be done automatically.

3Note that FH and FC set bounds that allow overlap be-
tween some HFWs and CWs.

109

The patterns allow 2-6 HFWs and 1-6 slots for
CWs. For each sentence it is possible to gener-
ate dozens of patterns that may overlap. For ex-
ample, given a sentence “Garmin apparently does
not care much about product quality or customer
support”, we have generated several patterns in-
cluding “[COMPANY] CW does not CW much”,
“does not CW much about CW CW or”, “not CW
much” and “about CW CW or CW CW.”. Note
that “[COMPANY]” and “.” are treated as high
frequency words.

Pattern selection The pattern extraction stage
provides us with hundreds of patterns. However,
some of them are either too general or too specific.
In order to reduce the feature space, we have used
two criteria to select useful patterns.

First, we removed all patterns which appear
only in sentences originating from a single prod-
uct/book (Amazon). Such patterns are usually
product-specific. Next we removed all patterns
which appear in the seed both in some example la-
beled 5 (clearly sarcastic) and in some other exam-
ple labeled 1 (obviously not sarcastic). This filters
out frequent generic and uninformative patterns.
Pattern selection was performed only on the Ama-
zon dataset as it exploits review’s meta data.

Pattern matching Once patterns are selected,
we have used each pattern to construct a single en-
try in the feature vectors. For each sentence we
calculated a feature value for each pattern as fol-
lows:

1 : Exact match – all the pattern components
appear in the sentence in correct
order without any additional words.

α : Sparse match – same as exact match
but additional non-matching words can be
inserted between pattern components.

γ ∗ n/N : Incomplete match – only n > 1 of N pattern
components appear in the sentence,
while some non-matching words can
be inserted in-between. At least one of the
appearing components should be a HFW.

0 : No match – nothing or only a single
pattern component appears in the sentence.

0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are parameters we use
to assign reduced scores for imperfect matches.
Since the patterns we use are relatively long, ex-
act matches are uncommon, and taking advantage
of partial matches allows us to significantly re-
duce the sparsity of the feature vectors. We used

α\γ 0.05 0.1 0.2
0.05 0.48 0.45 0.39
0.1 0.50 0.51 0.40
0.2 0.40 0.42 0.33

Table 1: Results (F-Score for ”no enrichment” mode) of
cross validation with various values for α and γ on Twit-
ter+Amazon data

α = γ = 0.1 in all experiments. Table 1 demon-
strates the results obtained with different values
for α and γ.

Thus, for the sentence “Garmin apparently does
not care much about product quality or customer
support”, the value for “[company] CW does not”
would be 1 (exact match); for “[company] CW
not” would be 0.1 (sparse match due to insertion
of ‘does’); and for “[company] CW CW does not”
would be 0.1 ∗ 4/5 = 0.08 (incomplete match
since the second CW is missing).

Punctuation-based features In addition to
pattern-based features we used the following
generic features: (1) Sentence length in words,
(2) Number of “!” characters in the sentence, (3)
Number of “?” characters in the sentence, (4)
Number of quotes in the sentence, and (5) Num-
ber of capitalized/all capitals words in the sen-
tence. All these features were normalized by di-
viding them by the (maximal observed value · av-
eraged maximal value of the other feature groups),
thus the maximal weight of each of these fea-
tures is equal to the averaged weight of a single
pattern/word/n-gram feature.

Data enrichment Since we start with only a
small annotated seed for training (particularly, the
number of clearly sarcastic sentences in the seed is
modest) and since annotation is noisy and expen-
sive, we would like to find more training examples
without requiring additional annotation effort.

To achieve this, we posited that sarcastic sen-
tences frequently co-appear in texts with other sar-
castic sentences (i.e. example (2) in Section 1).
We performed an automated web search using the
Yahoo! BOSS API4, where for each sentence s in
the training set (seed), we composed a search en-
gine query qs containing this sentence5. We col-
lected up to 50 search engine snippets for each
example and added the sentences found in these
snippets to the training set. The label (level of sar-

4http://developer.yahoo.com/search/boss.
5If the sentence contained more than 6 words, only the

first 6 words were included in the search engine query.

110

casm) Label(sq) of a newly extracted sentence sq

is similar to the label Label(s) of the seed sen-
tence s that was used for the query that acquired it.
The seed sentences together with newly acquired
sentences constitute the (enriched) training set.

Data enrichment was performed only for the
Amazon dataset where we have a manually tagged
seed and the sentence structure is closer to stan-
dard English grammar. We refer the reader to
(Tsur et al., 2010) for more details about the en-
richment process and for a short discussion about
the usefulness of web-based data enrichment in the
scope of sarcasm recognition.

Classification In order to assign a score to new
examples in the test set we use a k-nearest neigh-
bors (kNN)-like strategy. We construct feature
vectors for each example in the training and test
sets. We would like to calculate the score for each
example in the test set. For each feature vector v in
the test set, we compute the Euclidean distance to
each of the matching vectors in the extended train-
ing set, where matching vectors share at least one
pattern feature with v.

Let ti, i = 1..k be the k vectors with lowest
Euclidean distance to v6. Then v is classified with
a label l as follows:

Count(l) = Fraction of training vectors with label l

Label(v) =

[
1

k

∑
i

Count(Label(ti)) · Label(ti)∑
j Count(label(tj))

]
Thus the score is a weighted average of the k clos-
est training set vectors. If there are less than k
matching vectors for the given example then fewer
vectors are used in the computation. If there are
no matching vectors found for v, we assigned the
default value Label(v) = 1, since sarcastic sen-
tences are fewer in number than non-sarcastic ones
(this is a ‘most common tag’ strategy).

4 Evaluation Setup

Seed and extended training sets (Amazon). As
described in the previous section, SASI is semi su-
pervised, hence requires a small seed of annotated
data. We used the same seed of 80 positive (sar-
castic) examples and 505 negative examples de-
scribed at (Tsur et al., 2010).

After automatically expanding the training set,
our training data now contains 471 positive exam-
ples and 5020 negative examples. These ratios are

6We used k = 5 for all experiments.

to be expected, since non-sarcastic sentences out-
number sarcastic ones, definitely when most on-
line reviews are positive (Liu et al., 2007). This
generally positive tendency is also reflected in our
data – the average number of stars is 4.12.

Seed training set with #sarcasm (Twitter). We
used a sample of 1500 tweets marked with the
#sarcasm hashtag as a positive set that represents
sarcasm styles special to Twitter. However, this set
is very noisy (see discussion in Section 5).

Seed training set (cross domain). Results ob-
tained by training on the 1500 #sarcasm hash-
tagged tweets were not promising. Examination of
the #sarcasm tagged tweets shows that the annota-
tion is biased and noisy as we discuss in length
in Section 5. A better annotated set was needed
in order to properly train the algorithm. Sarcas-
tic tweets are sparse and hard to find and annotate
manually. In order to overcome sparsity we used
the positive seed annotated on the Amazon dataset.
The training set was completed by manually se-
lected negative example from the Twitter dataset.
Note that in this setting our training set is thus of
mixed domains.

4.1 Star-sentiment baseline
Many studies on sarcasm suggest that sarcasm
emerges from the gap between the expected utter-
ance and the actual utterance (see echoic mention,
allusion and pretense theories in Related Work
Section(6)). We implemented a baseline designed
to capture the notion of sarcasm as reflected by
these models, trying to meet the definition “saying
the opposite of what you mean in a way intended
to make someone else feel stupid or show you are
angry”.

We exploit the meta-data provided by Amazon,
namely the star rating each reviewer is obliged
to provide, in order to identify unhappy review-
ers. From this set of negative reviews, our base-
line classifies as sarcastic those sentences that ex-
hibit strong positive sentiment. The list of positive
sentiment words is predefined and captures words
typically found in reviews (for example, ‘great’,
‘excellent’, ‘best’, ‘top’, ‘exciting’, etc).

4.2 Evaluation procedure
We used two experimental frameworks to test
SASI’s accuracy. In the first experiment we eval-
uated the pattern acquisition process, how consis-
tent it is and to what extent it contributes to correct

111

classification. We did that by 5-fold cross valida-
tion over the seed data.

In the second experiment we evaluated SASI on
a test set of unseen sentences, comparing its out-
put to a gold standard annotated by a large number
of human annotators (using the Mechanical Turk).
This way we verify that there is no over-fitting and
that the algorithm is not biased by the notion of
sarcasm of a single seed annotator.

5-fold cross validation (Amazon). In this ex-
perimental setting, the seed data was divided to 5
parts and a 5-fold cross validation test is executed.
Each time, we use 4 parts of the seed as the train-
ing data and only this part is used for the feature
selection and data enrichment. This 5-fold pro-
cess was repeated ten times. This procedure was
repeated with different sets of optional features.

We used 5-fold cross validation and not the
standard 10-fold since the number of seed exam-
ples (especially positive) is relatively small hence
10-fold is too sensitive to the broad range of possi-
ble sarcastic patterns (see the examples in Section
1).

Classifying new sentences (Amazon & Twitter).
Evaluation of sarcasm is a hard task due to the
elusive nature of sarcasm, as discussed in Sec-
tion 1. In order to evaluate the quality of our al-
gorithm, we used SASI to classify all sentences
in both corpora (besides the small seed that was
pre-annotated and was used for the evaluation in
the 5-fold cross validation experiment). Since it
is impossible to created a gold standard classifica-
tion of each and every sentence in the corpus, we
created a small test set by sampling 90 sentences
which were classified as sarcastic (labels 3-5) and
90 sentences classified as not sarcastic (labels 1,2).
The sampling was performed on the whole corpus
leaving out only the seed data.

Again, the meta data available in the Amazon
dataset allows us a stricter evaluation. In order
to make the evaluation harder for our algorithm
and more relevant, we introduced two constraints
to the sampling process: i) we sampled only sen-
tences containing a named-entity or a reference to
a named entity. This constraint was introduced in
order to keep the evaluation set relevant, since sen-
tences that refer to the named entity (the target of
the review) are more likely to contain an explicit
or implicit sentiment. ii) we restricted the non-
sarcastic sentences to belong to negative reviews

(1-3 stars) so that all sentences in the evaluation
set are drawn from the same population, increas-
ing the chances they convey various levels of di-
rect or indirect negative sentiment7.

Experimenting with the Twitter dataset, we sim-
ply classified each tweet into one of 5 classes
(class 1: not sarcastic, class 5: clearly sarcastic)
according to the label given by the algorithm. Just
like the evaluation of the algorithm on the Amazon
dataset, we created a small evaluation set by sam-
pling 90 sentences which were classified as sarcas-
tic (labels 3-5) and 90 sentences classified as not
sarcastic (labels 1,2).

Procedure Each evaluation set was randomly
divided to 5 batches. Each batch contained 36 sen-
tences from the evaluation set and 4 anchor sen-
tences: two with sarcasm and two sheer neutral.
The anchor sentences were not part of the test set
and were the same in all five batches. The purpose
of the anchor sentences is to control the evaluation
procedure and verify that annotation is reasonable.
We ignored the anchor sentences when assessing
the algorithm’s accuracy.

We used Amazon’s Mechanical Turk8 service
in order to create a gold standard for the evalua-
tion. We employed 15 annotators for each eval-
uation set. We used a relatively large number of
annotators in order to overcome the possible bias
induced by subjectivity (Muecke, 1982). Each an-
notator was asked to assess the level of sarcasm of
each sentence of a set of 40 sentences on a scale of
1-5. In total, each sentence was annotated by three
different annotators.

Inter Annotator Agreement. To simplify the
assessment of inter-annotator agreement, the scal-
ing was reduced to a binary classification where 1
and 2 were marked as non-sarcastic and 3-5 as sar-
castic (recall that 3 indicates a hint of sarcasm and
5 indicates ‘clearly sarcastic’). We checked the
Fleiss’ κ statistic to measure agreement between
multiple annotators. The inter-annotator agree-
ment statistic was κ = 0.34 on the Amazon dataset
and κ = 0.41 on the Twitter dataset.

These agreement statistics indicates a fair
agreement. Given the fuzzy nature of the task at

7Note that the second constraint makes the problem less
easy. If taken from all reviews, many of the sentences would
be positive sentences which are clearly non-sarcastic. Doing
this would bias selection to positive vs. negative samples in-
stead of sarcastic-nonsarcastic samples.

8https://www.mturk.com/mturk/welcome

112

Prec. Recall Accuracy F-score
punctuation 0.256 0.312 0.821 0.281

patterns 0.743 0.788 0.943 0.765
pat+punct 0.868 0.763 0.945 0.812

enrich punct 0.4 0.390 0.832 0.395
enrich pat 0.762 0.777 0.937 0.769
all: SASI 0.912 0.756 0.947 0.827

Table 2: 5-fold cross validation results on the Amazon gold
standard using various feature types. punctuation: punctua-
tion mark;, patterns: patterns; enrich: after data enrichment;
enrich punct: data enrichment based on punctuation only; en-
rich pat: data enrichment based on patterns only; SASI: all
features combined.

hand, this κ value is certainly satisfactory. We at-
tribute the better agreement on the twitter data to
the fact that in twitter each sentence (tweet) is con-
text free, hence the sentiment in the sentence is ex-
pressed in a way that can be perceived more easily.
Sentences from product reviews come as part of a
full review, hence the the sarcasm sometimes re-
lies on other sentences in the review. In our evalu-
ation scheme, our annotators were presented with
individual sentences, making the agreement lower
for those sentences taken out of their original con-
text. The agreement on the control set (anchor sen-
tences) had κ = 0.53.

Using Twitter #sarcasm hashtag. In addition to
the gold standard annotated using the Mechanical
Turk, we collected 1500 tweets that were tagged
#sarcastic by their tweeters. We call this sample
the hash-gold standard. It was used to further eval-
uate recall. This set (along with the negative sam-
ple) was used for a 5-fold cross validation in the
same manner describe for Amazon.

5 Results and discussion

5-fold cross validation (Amazon). Results are
analyzed and discussed in detail in (Tsur et al.,
2010), however, we summarize it here (Table 2)
in order to facilitate comparison with the results
obtained on the Twitter dataset. SASI, including
all components, exhibits the best overall perfor-
mances with 91.2% precision and with F-Score
of 0.827. Interestingly, although data enrichment
brings SASI to the best performance in both preci-
sion and F-score, patterns+punctuations achieves
almost comparable results.

Newly introduced sentences (Amazon). In the
second experiment we evaluated SASI based on a
gold standard annotation created by 15 annotators.
Table 3 presents the results of our algorithm as
well as results of the heuristic baseline that makes

Prec. Recall FalsePos FalseNeg F Score
Star-sent. 0.5 0.16 0.05 0.44 0.242

SASI (AM) 0.766 0.813 0.11 0.12 0.788
SASI (TW) 0.794 0.863 0.094 0.15 0.827

Table 3: Evaluation on the Amazon (AM) and the Twitter
(TW) evaluation sets obtained by averaging on 3 human an-
notations per sentence. TW results were obtained with cross-
domain training.

Prec. Recall Accuracy F-score
punctuation 0.259 0.26 0.788 0.259

patterns 0.765 0.326 0.889 0.457
enrich punct 0.18 0.316 0.76 0.236

enrich pat 0.685 0.356 0.885 0.47
all no enrich 0.798 0.37 0.906 0.505

all SASI: 0.727 0.436 0.896 0.545

Table 4: 5-fold cross validation results on the Twitter hash-
gold standard using various feature types. punctuation: punc-
tuation marks; patterns: patterns; enrich: after data enrich-
ment; enrich punct: data enrichment based on punctuation
only; enrich pat: data enrichment based on patterns only;
SASI: all features combined.

use of meta-data, designed to capture the gap be-
tween an explicit negative sentiment (reflected by
the review’s star rating) and explicit positive senti-
ment words used in the review. Precision of SASI

is 0.766, a significant improvement over the base-
line with precision of 0.5.

The F-score shows more impressive improve-
ment as the baseline shows decent precision but a
very limited recall since it is incapable of recog-
nizing subtle sarcastic sentences. These results fit
the works of (Brown, 1980; Gibbs and O’Brien,
1991) claiming many sarcastic utterances do not
conform to the popular definition of “saying or
writing the opposite of what you mean”. Table 3
also presents the false positive and false negative
ratios. The low false negative ratio of the baseline
confirms that while recognizing a common type
of sarcasm, the naive definition of sarcasm cannot
capture many other types sarcasm.

Newly introduced sentences (Twitter). Results
on the Twitter dataset are even better than those
obtained on the Amazon dataset, with accuracy of
0.947 (see Table 3 for precision and recall).

Tweets are less structured and are context free,
hence one would expect SASI to perform poorly
on tweets. Moreover, the positive part of the seed
is taken from the Amazon corpus hence might
seem tailored to sarcasm type targeted at prod-
ucts and part of a harsh review. On top of that,
the positive seed introduces some patterns with
tags that never occur in the Twitter test set ([prod-
uct/company/title/author]).

113

Our explanation of the excellent results is three-
fold: i) SASI’s robustness is achieved by the sparse
match (α) and incomplete match (γ) that toler-
ate imperfect pattern matching and enable the use
of variations of the patterns in the learned feature
vector. α and γ allow the introduction of patterns
with components that are absent from the posi-
tive seed, and can perform even with patterns that
contain special tags that are not part of the test
set. ii) SASI learns a model which spans a feature
space with more than 300 dimensions. Only part
of the patterns consist of meta tags that are spe-
cial to product reviews, the rest are strong enough
to capture the structure of general sarcastic sen-
tences and not product-specific sarcastic sentences
only. iii) Finally, in many cases, it might be that
the contextless nature of Twitter forces tweeters to
express sarcasm in a way that is easy to understand
from individual sentence. Amazon sentences co-
appear with other sentences (in the same review)
thus the sarcastic meaning emerges from the con-
text. Our evaluation scheme presents the annota-
tors with single sentences therefore Amazon sen-
tences might be harder to agree on.

hash gold standard (Twitter). In order to fur-
ther test out algorithm we built a model consist-
ing of the positive sample of the Amazon training,
the #sarcasm hash-tagged tweets and a sample of
non sarcastic tweets as the negative training set.
We evaluated it in a 5-fold cross validation man-
ner (only against the hash-gold standard). While
precision is still high with 0.727, recall drops to
0.436 and the F-Score is 0.545.

Looking at the hash-gold standard set, we ob-
served three main uses for the #sarcasm hashtag.
Differences between the various uses can explain
the relatively low recall. i) The tag is used as a
search anchor. Tweeters add the hashtag to tweets
in order to make them retrievable when searching
for the tag. ii) The tag is often abused and added
to non sarcastic tweets, typically to clarify that a
previous tweet should have been read sarcastically,
e.g.: “@wrightfan05 it was #Sarcasm ”. iii) The
tag serves as a sarcasm marker in cases of a very
subtle sarcasm where the lack of context, the 140
length constraint and the sentence structure make
it impossible to get the sarcasm without the ex-
plicit marker. Typical examples are: “#sarcasm
not at all.” or “can’t wait to get home tonite #sar-
casm.”, which cannot be decided sarcastic without
the full context or the #sarcasm marker.

These three observations suggest that the hash-
gold standard is noisy (containing non-sarcastic
tweets) and is biased toward the hardest (insepa-
rable) forms of sarcasm where even humans get
it wrong without an explicit indication. Given
the noise and the bias, the recall is not as bad as
the raw numbers suggest and is actually in synch
with the results obtained on the Mechanical Turk
human-annotated gold standard. Table 4 presents
detailed results and the contribution of each type
of feature to the classification.

We note that the relative sparseness of sarcas-
tic utterances in everyday communication as well
as in these two datasets make it hard to accurately
estimate the recall value over these huge unanno-
tated data sets. Our experiment, however, indi-
cates that we achieve reasonable recall rates.

Punctuation Surprisingly, punctuation marks
serve as the weakest predictors, in contrast to Tep-
permann et al. (2006). An exception is three con-
secutive dots, which when combine with other fea-
tures constitute a strong predictor. Interestingly
though, while in the cross validation experiments
SASI performance varies greatly (due to the prob-
lematic use of the #sarcasm hashtag, described
previously), performance based only on punctua-
tion are similar (Table 2 and Table 4).

Tsur et al. (2010) presents some additional ex-
amples for the contribution of each type of feature
and their combinations.

6 Related Work

While the use of irony and sarcasm is well stud-
ied from its linguistic and psychologic aspects
(Muecke, 1982; Stingfellow, 1994; Gibbs and Col-
ston, 2007), automatic recognition of sarcasm is a
novel task, addressed only by few works. In the
context of opinion mining, sarcasm is mentioned
briefly as a hard nut that is yet to be cracked, see
comprehensive overview by (Pang and Lee, 2008).

Tepperman et al. (2006) identify sarcasm in
spoken dialogue systems, their work is restricted
to sarcastic utterances that contain the expres-
sion ‘yeah-right’ and it depends heavily on cues
in the spoken dialogue such as laughter, pauses
within the speech stream, the gender (recognized
by voice) of the speaker and prosodic features.

Burfoot and Baldwin (2009) use SVM to deter-
mine whether newswire articles are true or satir-
ical. They introduce the notion of validity which
models absurdity via a measure somewhat close to

114

PMI. Validity is relatively lower when a sentence
includes a made-up entity or when a sentence con-
tains unusual combinations of named entities such
as, for example, those in the satirical article be-
ginning “Missing Brazilian balloonist Padre spot-
ted straddling Pink Floyd flying pig”. We note
that while sarcasm can be based on exaggeration
or unusual collocations, this model covers only a
limited subset of the sarcastic utterances.

Tsur et al. (2010) propose a semi supervised
framework for recognition of sarcasm. The pro-
posed algorithm utilizes some features specific to
(Amazon) product reviews. This paper continues
this line, proposing SASI a robust algorithm that
successfully captures sarcastic sentences in other,
radically different, domains such as twitter.

Utsumi (1996; 2000) introduces the implicit dis-
play theory, a cognitive computational framework
that models the ironic environment. The complex
axiomatic system depends heavily on complex for-
malism representing world knowledge. While
comprehensive, it is currently impractical to im-
plement on a large scale or for an open domain.

Mihalcea and Strapparava (2005) and Mihalcea
and Pulman (2007) present a system that identi-
fies humorous one-liners. They classify sentences
using naive Bayes and SVM. They conclude that
the most frequently observed semantic features are
negative polarity and human-centeredness. These
features are also observed in some sarcastic utter-
ances.

Some philosophical, psychological and linguis-
tic theories of irony and sarcasm are worth refer-
encing as a theoretical framework: the constraints
satisfaction theory (Utsumi, 1996; Katz, 2005),
the role playing theory (Clark and Gerrig, 1984),
the echoic mention framework (Wilson and Sper-
ber, 1992) and the pretence framework (Gibbs,
1986). These are all based on violation of the max-
ims proposed by Grice (1975).

7 Conclusion

We used SASI, the first robust algorithm for recog-
nition of sarcasm, to experiment with a novel
Twitter dataset and compare performance with an
Amazon product reviews dataset. Evaluating in
various ways and with different parameters con-
figurations, we achieved high precision, recall and
F-Score on both datasets even for cross-domain
training and with no need for domain adaptation.

In the future we will test the contribution of

sarcasm recognition for review ranking and sum-
marization systems and for brand monitoring sys-
tems.

References

R. L. Brown. 1980. The pragmatics of verbal irony.
In R. W. Shuy and A. Snukal, editors, Language use
and the uses of language, pages 111–127. George-
town University Press.

Clint Burfoot and Timothy Baldwin. 2009. Automatic
satire detection: Are you having a laugh? In Pro-
ceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 161–164, Suntec, Singapore, August.
Association for Computational Linguistics.

H. Clark and R. Gerrig. 1984. On the pretence the-
ory of irony. Journal of Experimental Psychology:
General, 113:121–126.

Cristian Danescu-Niculescu-Mizil, Gueorgi Kossinets,
Jon Kleinberg, and Lillian Lee. 2009. How opinions
are received by online communities: A case study on
amazon.com helpfulness votes. Jun.

D. Davidov and A. Rappoport. 2006. Efficient
unsupervised discovery of word categories using
symmetric patterns and high frequency words. In
COLING-ACL.

Macmillan English Dictionary. 2007. Macmillan En-
glish Dictionary. Macmillan Education, 2 edition.

Raymond W Gibbs and Herbert L. Colston, editors.
2007. Irony in Language and Thought. Routledge
(Taylor and Francis), New York.

R. W. Gibbs and J. E. O’Brien. 1991. Psychological
aspects of irony understanding. Journal of Pragmat-
ics, 16:523–530.

R. Gibbs. 1986. On the psycholinguistics of sar-
casm. Journal of Experimental Psychology: Gen-
eral, 105:3–15.

H. P. Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax and se-
mantics, volume 3. New York: Academic Press.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In KDD ’04: Proceed-
ings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 168–177, New York, NY, USA. ACM.

A. Katz. 2005. Discourse and social-cultural factors
in understanding non literal language. In Colston H.
and Katz A., editors, Figurative language compre-
hension: Social and cultural influences, pages 183–
208. Lawrence Erlbaum Associates.

115

Jingjing Liu, Yunbo Cao, Chin-Yew Lin, Yalou Huang,
and Ming Zhou. 2007. Low-quality product re-
view detection in opinion summarization. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 334–342.

Rada Mihalcea and Stephen G. Pulman. 2007. Char-
acterizing humour: An exploration of features in hu-
morous texts. In CICLing, pages 337–347.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: Investigations in automatic humor
recognition. pages 531–538, Vancouver, Canada.

D.C. Muecke. 1982. Irony and the ironic. Methuen,
London, New York.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the ACL, pages 271–278.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Now Publishers Inc, July.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
HLT ’05: Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, pages 339–346,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Frank Jr. Stingfellow. 1994. The Meaning of Irony.
State University of NY, New York.

J. Tepperman, D. Traum, and S. Narayanan. 2006.
Yeah right: Sarcasm recognition for spoken dialogue
systems. In InterSpeech ICSLP, Pittsburgh, PA.

Oren Tsur and Ari Rappoport. 2009. Revrank: A fully
unsupervised algorithm for selecting the most help-
ful book reviews. In International AAAI Conference
on Weblogs and Social Media.

Oren Tsur, Dmitry Davidiv, and Ari Rappoport. 2010.
Icwsm – a great catchy name: Semi-supervised
recognition of sarcastic sentences in product re-
views. In International AAAI Conference on We-
blogs and Social Media.

Akira Utsumi. 1996. A unified theory of irony and
its computational formalization. In COLING, pages
962–967.

Akira Utsumi. 2000. Verbal irony as implicit dis-
play of ironic environment: Distinguishing ironic
utterances from nonirony. Journal of Pragmatics,
32(12):1777–1806.

Janyce Wiebe, Theresa Wilson, Rebecca Bruce,
Matthew Bell, and Melanie Martin. 2004. Learn-
ing subjective language. Computational Linguistics,
30(3):277– 308, January.

D. Wilson and D. Sperber. 1992. On verbal irony. Lin-
gua, 87:53–76.

116

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 117–125,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Learning Probabilistic Synchronous CFGs for Phrase-based Translation

Markos Mylonakis
ILLC

University of Amsterdam
m.mylonakis@uva.nl

Khalil Sima’an
ILLC

University of Amsterdam
k.simaan@uva.nl

Abstract

Probabilistic phrase-based synchronous
grammars are now considered promis-
ing devices for statistical machine transla-
tion because they can express reordering
phenomena between pairs of languages.
Learning these hierarchical, probabilistic
devices from parallel corpora constitutes a
major challenge, because of multiple la-
tent model variables as well as the risk
of data overfitting. This paper presents
an effective method for learning a family
of particular interest to MT, binary Syn-
chronous Context-Free Grammars with in-
verted/monotone orientation (a.k.a. Bi-
nary ITG). A second contribution con-
cerns devising a lexicalized phrase re-
ordering mechanism that has complimen-
tary strengths to Chiang’s model. The
latter conditions reordering decisions on
the surrounding lexical context of phrases,
whereas our mechanism works with the
lexical content of phrase pairs (akin to
standard phrase-based systems). Surpris-
ingly, our experiments on French-English
data show that our learning method ap-
plied to far simpler models exhibits per-
formance indistinguishable from the Hiero
system.

1 Introduction

A fundamental problem in phrase-based machine
translation concerns the learning of a probabilistic
synchronous context-free grammar (SCFG) over
phrase pairs from an input parallel corpus. Chi-
ang’s Hiero system (Chiang, 2007) exemplifies
the gains to be had by combining phrase-based
translation (Och and Ney, 2004) with the hierar-
chical reordering capabilities of SCFGs, particu-
larly originating from Binary Inversion Transduc-

tion Grammars (BITG) (Wu, 1997). Yet, exist-
ing empirical work is largely based on successful
heuristic techniques, and the learning of Hiero-like
BITG/SCFG remains an unsolved problem,

The difficulty of this problem stems from the
need for simultaneously learning of two kinds of
preferences (see Fig.1) (1) lexical translation prob-
abilities (P (〈e, f〉 | X)) of source (f) and target
(e) phrase pairs, and (2) phrase reordering prefer-
ences of a target string relative to a source string,
expressed in synchronous productions probabil-
ities (for monotone or switching productions).
Theoretically speaking, both kinds of preferences
may involve latent structure relative to the paral-
lel corpus. The mapping between source-target
sentence pairs can be expressed in terms of la-
tent phrase segmentations and latent word/phrase-
alignments, and the hierarchical phrase reorder-
ing can be expressed in terms of latent binary
synchronous hierarchical structures (cf. Fig. 1).
But each of these three kinds of latent structures
may be made explicit using external resources:
word-alignment could be considered solved us-
ing Giza++ (Och and Ney, 2003)), phrase pairs
can be obtained from these word-alignments (Och
and Ney, 2004), and the hierarchical synchronous
structure can be grown over source/target linguis-
tic syntactic trees output by an existing parser.

The Joint Phrase Translation Model (Marcu and
Wong, 2002) constitutes a specific case, albeit
without the hierarchical, synchronous reordering

Start S → X 1 / X 1 (1)

Monotone X → X 1 X 2 /X 1 X 2 (2)

Switching X → X 1 X 2 /X 2 X 1 (3)

Emission X → e / f (4)

Figure 1: A phrase-pair SCFG (BITG)

117

component. Other existing work, e.g. (Chiang,
2007), assumes the word-alignments are given in
the parallel corpus, but the problem of learning
phrase translation probabilities is usually avoided
by using surface counts of phrase pairs (Koehn et
al., 2003). The problem of learning the hierar-
chical, synchronous grammar reordering rules is
oftentimes addressed as a learning problem in its
own right assuming all the rest is given (Blunsom
et al., 2008b).

A small number of efforts has been dedicated
to the simultaneous learning of the probabilities
of phrase translation pairs as well as hierarchi-
cal reordering, e.g., (DeNero et al., 2008; Zhang
et al., 2008; Blunsom et al., 2009). Of these,
some concentrate on evaluating word-alignment,
directly such as (Zhang et al., 2008) or indirectly
by evaluating a heuristically trained hierarchical
translation system from sampled phrasal align-
ments (Blunsom et al., 2009). However, very
few evaluate on actual translation performance of
induced synchronous grammars (DeNero et al.,
2008). In the majority of cases, the Hiero system,
which constitutes the yardstick by which hierar-
chical systems are measured, remains superior in
translation performance, see e.g. (DeNero et al.,
2008).

This paper tackles the problem of learning gen-
erative BITG models as translation models assum-
ing latent segmentation and latent reordering: this
is the most similar setting to the training of Hiero.
Unlike all other work that heuristically selects a
subset of phrase pairs, we start out from an SCFG
that works with all phrase pairs in the training set
and concentrate on the aspects of learning. This
learning problem is fraught with the risks of over-
fitting and can easily result in inadequate reorder-
ing preferences (see e.g. (DeNero et al., 2006)).

Almost instantly, we find that the translation
performance of all-phrase probabilistic SCFGs
learned in this setting crucially depends on the in-
terplay between two aspects of learning:

• Defining a more constrained parameter
space, where the reordering productions
are phrase-lexicalised and made sensitive to
neighbouring reorderings, and

• Defining an objective function that effec-
tively smoothes the maximum-likelihood cri-
terion.

One contribution of this paper is in devis-

ing an effective, data-driven smoothed Maximum-
Likelihood that can cope with a model working
with all phrase pair SCFGs. This builds upon
our previous work on estimating parameters of a
”bag-of-phrases” model for Machine Translation
(Mylonakis and Sima’an, 2008). However, learn-
ing SCFGs poses significant novel challenges, the
core of which lies on the hierarchical nature of a
stochastic SCFG translation model and the rele-
vant additional layer of latent structure. We ad-
dress these issues in this work. Another important
contribution is in defining a lexicalised reorder-
ing component within BITG that captures order
divergences orthogonal to Chiang’s model (Chi-
ang, 2007) but somewhat akin to Phrase-Based
Statistical Machine Translation reordering models
(Koehn et al., 2003).

Our analysis shows that the learning difficul-
ties can be attributed to a rather weak generative
model. Yet, our best system exhibits Hiero-level
performance on French-English Europarl data us-
ing an SCFG-based decoder (Li et al., 2009). Our
findings should be insightful for others attempting
to make the leap from shallow phrase-based sys-
tems to hierarchical SCFG-based translation mod-
els using learning methods, as opposed to heuris-
tics.

The rest of the paper is structured as follows.
Section 2 briefly introduces the SCFG formalism
and discusses its adoption in the context of Statis-
tical Machine Translation (SMT). In section 3, we
consider some of the pitfalls of stochastic SCFG
grammar learning and address them by introduc-
ing a novel learning objective and algorithm. In
the section that follows we browse through latent
translation structure choices, while in section 5 we
present our empirical experiments on evaluating
the induced stochastic SCFGs on a translation task
and compare their performance with a hierarchical
translation baseline. We close with a comparison
of related work and a final discussion including fu-
ture research directions.

2 Synchronous Grammars for Machine
Translation

Synchronous Context Free Grammars (SCFGs)
provide an appealing formalism to describe the
translation process, which explains the generation
of parallel strings recursively and allows capturing
long-range reordering phenomena. Formally, an
SCFG G is defined as the tuple (N,E, F, R, S),

118

where N is the finite set of non-terminals with
S ∈ N the start symbol, F and E are finite sets
of words for the source and target language and R
is a finite set of rewrite rules. Every rule expands
a left-hand side non-terminal to a right-hand side
pair of strings, a source language string over the
vocabulary F∪N and a target language string over
E ∪ N . The number of non-terminals in the two
strings is equal and the rule is complemented with
a mapping between them.

String pairs in the language of the SCFG are
those with a valid derivation, consisting of a se-
quence of rule applications, starting from S and
recursively expanding the linked non-terminals at
the right-hand side of rules. Stochastic SCFGs
augment every rule in R with a probability, under
the constraint that probabilities of rules with the
same left-hand side sum up to one. The probabil-
ity of each derived string pair is then the product
of the probabilities of rules used in the derivation.
Unless otherwise stated, for the rest of the paper
when we refer to SCFGs we will be pointing to
their stochastic extension.

The rank of an SCFG is defined as the maxi-
mum number of non-terminals in a grammar’s rule
right-hand side. Contrary to monolingual Context
Free Grammars, there does not always exist a con-
version of an SCFG of a higher rank to one of a
lower rank with the same language of string pairs.
For this, most machine translation applications fo-
cus on SCFGs of rank two (binary SCFGs), or
binarisable ones witch can be converted to a bi-
nary SCFG, given that these seem to cover most
of the translation phenomena encountered in lan-
guage pairs (Wu, 1997) and the related processing
algorithms are less demanding computationally.

Although SCFGS were initially introduced for
machine translation as a stochastic word-based
translation process in the form of the Inversion-
Transduction Grammar (Wu, 1997), they were ac-
tually able to offer state-of-the-art performance in
their latter phrase-based implementation by Chi-
ang (Chiang, 2005). Chiang’s Hiero hierarchi-
cal translation system is based on a synchronous
grammar with a single non-terminal X covering
all learned phrase-pairs. Beginning from the start
symbol S, an initial phrase-span structure is con-
structed monotonically using a simple ‘glue gram-

mar’:

S →S 1 X 2 / S 1 X 2

S →X 1 / X 1

The true power of the system lies in expanding
these initial phrase-spans with a set of hierarchi-
cal translation rules, which allow conditioning re-
ordering decisions based on lexical context. For
the French to English language pair, some exam-
ples would be:

S → X 1 économiques / financial X 1

S → cette X 1 de X 2 / this X 1 X 2

S → politique X 1 commune de X 2 /

X 2
′ s common X 1 policy

Further work builds on the Hiero grammar to ex-
pand it with constituency syntax motivated non-
terminals (Zollmann and Venugopal, 2006).

3 Synchronous Grammar Learning

The learning of phrase-based stochastic SCFGs
with a Maximum Likelihood objective is exposed
to overfitting as other all-fragment models such as
Phrase-Based SMT (PBSMT) (Marcu and Wong,
2002; DeNero et al., 2006) and Data-Oriented
Parsing (DOP) (Bod et al., 2003; Zollmann and
Sima’an, 2006). Maximum Likelihood Estima-
tion (MLE) returns degenerate grammar estimates
that memorise well the parallel training corpus but
generalise poorly to unseen data.

The bias-variance decomposition of the gener-
alisation error Err sheds light on this learning
problem. For an estimator p̂ with training data D,
Err can be expressed as the expected Kullback-
Leibler (KL) divergence between the target distri-
bution q and that the estimate p̂. This error decom-
poses into bias and variance terms (Heskes, 1998):

Err =

bias︷ ︸︸ ︷
KL(q, p̄) +

variance︷ ︸︸ ︷
EDKL(p̄, p̂) (5)

Bias is the KL-divergence between q and the mean
estimate over all training data p̄ = EDp̂(D). Vari-
ance is the expected divergence between the av-
erage estimate and the estimator’s actual choice.
MLE estimators for all-fragment models are zero-
biased with zero divergence between the average
estimate and the true data distribution. In contrast,
their variance is unboundedly large, leading to un-
bounded generalisation error on unseen cases.

119

3.1 Cross Validated MLE

A well-known method for estimating generalisa-
tion error is k-fold Cross-Validation (CV) (Hastie
et al., 2001). By partitioning the training data D
into k parts Hk

1 , we estimate Err as the expected
error over all 1 ≤ i ≤ k, when testing on Hi with
a model trained by MLE on the rest of the data
D−i = ∪j 6=iHj .

Here we use CV to leverage the bias-variance
trade-off for learning stochastic all-phrase SCFGs.
Given an input all-phrase SCFG grammar with
phrase-pairs extracted from the training data, we
maximise training data likelihood (MLE) subject
to CV smoothing: for each data part Hi (1 ≤ i ≤
k), we consider only derivations which employ
grammar rules extracted from the rest of the data
D−i. Other work (Mylonakis and Sima’an, 2008)
has also explored MLE under CV for a “bag-of-
phrases model” that does not deal with reordering
preferences, does not employ latent hierarchical
structure and works with a non-hierarchical de-
coder, and partially considers the sparsity issues
that arise within CV training. The present paper
deals with these issues.

Because of the latent segmentation and hi-
erarchical variables, CV-smoothed MLE cannot
be solved analytically and we devise a CV in-
stance of the Expectation-Maximization (EM) al-
gorithm, with an implementation based on a syn-
chronous version of the Inside-Outside algorithm
(see Fig. 2). For each word-aligned sentence pair
in a partition Hi, the set of eligible derivations (de-
noted D−i) are those that can be built using only
phrase-pairs and productions found inD−i. An es-
sential part of the learning process involves defin-
ing the grammar extractor G(D), a function from
data to an all-phrase SCFG. We will discuss vari-
ous extractors in section 4.

Our CV-EM algorithm is an EM instance, guar-
anteeing convergence and a non-decreasing CV-
smoothed data likelihood after each iteration. The
running time remains O(n6), where n is input
length, but by considering only derivation spans
which do not cross word-alignment points, this
runs in reasonable times for relatively large cor-
pora.

3.2 Bayesian Aspects of CV-MLE

Beside being an estimator, the CV-MLE learning
algorithm has the added value of being a grammar
learner focusing on reducing generalisation error,

INPUT: Word-aligned parallel training data D
Grammar extractor G
The number of parts k to partition D

OUTPUT: SCFG G with rule probabilities p̂

Partition training data D into parts H1, . . . ,Hk.
For 1 ≤ i ≤ k do

Extract grammar rules set Gi = G(Hi)
Initialise G = ∪iGi, p̂0 uniform
Let j = 0
Repeat

Let j = j + 1
E-step:

For 1 ≤ i ≤ k do
Calculate expected counts given G, p̂j−1,

for derivations D−i of Hi

using rules from ∪k 6=iG(k)
M-step: set p̂j to ML estimate given

expected counts
Until convergence

Figure 2: The CV Expectation Maximization al-
gorithm

in the sense that probabilities of grammar produc-
tions should reflect the frequency with which these
productions are expected to be used for translating
future data. Additionally, since the CV criterion
prohibits for every data point derivations that use
rules only extracted from the same data part, such
rules are assigned zero probabilities in the final es-
timate and are effectively excluded from the gram-
mar. In this way, the algorithm ‘shapes’ the input
grammar, concentrating probability mass on pro-
ductions that are likely to be used with future data.

One view point of CV-MLE is that each par-
tition D−i and Hi induces a prior probability
Prior(π; D−i) on every parameter assignment π,
obtained from D−i. This prior assigns zero prob-
ability to all π parameter sets with non-zero prob-
abilities for rules not in G(D−i), and uniformly
distributes probability to the rest of the parameter
sets. In light of this, the CV-MLE objective can be
written as follows:

arg max
π

∏
i

Prior(π; D−i)× P (Hi | π) (6)

This data-driven prior aims to directly favour pa-
rameter sets which are expected to better gener-
alise according to the CV criterion, without rely-
ing on arbitrary constraints such as limiting the

120

length of phrase pairs in the right-hand side of
grammar rules. Furthermore, other frequently em-
ployed priors such as the Dirichlet distribution and
the Dirichlet Process promote better generalising
rule probability distributions based on externally
set hyperparameter values, whose selection is fre-
quently sensitive in terms of language pairs, or
even the training corpus itself. In contrast, the CV-
MLE prior aims for a data-driven Bayesian model,
focusing on getting information from the data, in-
stead of imposing external human knowledge on
them (see also (Mackay and Petoy, 1995)).

3.3 Smoothing the Model
One remaining wrinkle in the CV-EM scheme is
the treatment of boundary cases. There will often
be sentence-pairs in Hi, that cannot be fully de-
rived by the grammar extracted from the rest of the
data D−i either because of (1) ‘unknown’ words
(i.e. not appearing in other parts of the CV parti-
tion) or (2) complicated combinations of adjacent
word-alignments. We employ external smoothing
of the grammar, prior to learning.

Our solution is to extend the SCFG extracted
fromD−i with new emission productions deriving
the ‘unknown’ phrase-pairs (i.e., found in Hi but
not in D−i). Crucially, the probabilities of these
productions are drawn from a fixed smoothing dis-
tribution, i.e., they remain constant throughout es-
timation. Our smoothing distribution of phrase-
pairs for all pre-terminals considers source-target
phrase lengths drawn from a Poisson distribution
with unit mean, drawing subsequently the words
of each of the phrases uniformly from the vocab-
ulary of each language, similar to (Blunsom et al.,
2009).

psmooth(f/e) =
ppoisson(|f |; 1) ppoisson(|e|; 1)

V
|f |
f V

|e|
e

Since the smoothing distribution puts stronger
preference on shorter phrase-pairs and avoids
competing with the ‘known’ phrase-pairs, it leads
the learner to prefer using as little as possible such
smoothing rules, covering only the phrase-pairs
required to complete full derivations.

4 Parameter Spaces and Grammar
Extractors

A Grammar Extractor (GE) plays a major role in
our probabilistic SCFG learning pipeline. A GE is
a function from a word-aligned parallel corpus to a

probabilistic SCFG model. Together with the con-
straints that render a proper probabilistic SCFG1,
this defines the parameter space.

The extractors used in this paper create SCFGs
productions of two different kinds: (a) hierarchi-
cal synchronous productions that define the space
of possible derivations up to the level of the SCFG
pre-terminals, and (2) the phrase-pair emission
rules that expand the pre-terminals to phrase-pairs
of varying lengths. Given the word-alignments,
the set of phrase-pairs extracted is the set of all
translational equivalents (without length upper-
bound) under the word-alignment as defined in
(Och and Ney, 2004; Koehn et al., 2003).

Below we focus on the two grammar extrac-
tors employed in our experiments. We start out
from the most generic, BITG-like formulation,
and aim at incremental refinement of the hierar-
chical productions in order to capture relevant,
content-based phrase-pair reordering preferences
in the training data.

Single non-terminal SCFG This is a phrase-
based binary SCFG grammar employing a single
non-terminal X covering each extracted phrase-
pair. The other productions consist of monotone
and switching expansions of phrase-pair spans
covered by X . Finally, the whole sentence-pair is
considered to be covered by X . We will call this
‘plain SCFG’ extractor. See Fig. 1.

Lexicalised Reordering SCFG One weakness
of the plain SCFG is that the reordering deci-
sions in the derivations are made without reference
to lexical content of the phrases; this is because
all phrase-pairs are covered by the same non-
terminal. As a refinement, we propose a gram-
mar extractor that aims at modelling the reordering
behaviour of phrase-pairs by taking their content
into account. This time, the X non-terminal is re-
served for phrase-pairs and spans which will take
part in monotonic productions only. Two fresh
non-terminals, XSL and XSR, are used for cov-
ering phrase-pairs that participate in order switch-
ing with other, adjacent phrase-pairs. The non-
terminal XSL covers phrase-pairs which appear
first in the source language order, and the latter
those which follow them. The grammar rules pro-
duced by this GE, dubbed ‘switch grammar’, are
listed in Fig. 3.

1The sum of productions that have the same left-hand la-
bel must be one.

121

Start S → X 1 /X 1

Monotone Expansion
X → X 1 X 2 /X 1 X 2
XSL → X 1 X 2 / X 1 X 2
XSR → X 1 X 2 /X 1 X 2

Switching Expansion
X → XSL 1 XSR 2 /XSR 2 XSL 1
XSL → XSL 1 XSR 2 /XSR 2 XSL 1
XSR → XSL 1 XSR 2 /XSR 2 XSL 1

Phrase-Pair Emission
X → e/f
XSL → e / f
XSR → e / f

Figure 3: Lexicalised-Reordering SCFG

The reordering information captured by the
switch grammar is in a sense orthogonal to that
of Hiero-like systems utilising rules such as those
listed in section 2. Hiero rules encode hier-
archical reordering patterns based on surround-
ing context. In contrast, the switch grammar
models the reordering preferences of the phrase-
pairs themselves, similarly to the monotone-swap-
discontinuous reordering models of Phrase-based
SMT models (Koehn et al., 2003). Furthermore, it
strives to match pairs of such preferences, combin-
ing together phrase-pairs with compatible reorder-
ing preferences.

5 Experiments

In this section we proceed to integrate our esti-
mates within an SCFG-based decoder. We subse-
quently evaluate our performance in relation to a
state-of-the-art Hiero baseline on a French to En-
glish translation task.

5.1 Decoding

The joint model of bilingual string derivations pro-
vided by the learned SCFG grammar can be used
for translation given a input source sentence, since
arg maxe p(e|f) = arg maxe p(e, f). We use our
learned stochastic SCFG grammar with the decod-
ing component of the Joshua SCFG toolkit (Li
et al., 2009). The full translation model inter-
polates log-linearly the probability of a grammar
derivation together with the language model prob-
ability of the target string. The model is further
smoothed, similarly to phrase-based models and

the Hiero system, with smoothing features φi such
as the lexical translation scores of the phrase-pairs
involved and rule usage penalties. As usual with
statistical translation, we aim for retrieving the tar-
get sentence e corresponding to the most probable
derivation D

∗⇒ (f, e) with rules r, with:

p(D) ∝ p(e)λlmpscfg(e, f)λscfg
∏

i

∏
r∈D

φi(r)λi

The interpolation weights are tuned using Mini-
mum Error Rate Training (Och, 2003).

5.2 Results
We test empirically the learner’s output gram-
mars for translating from French to English, us-
ing k = 5 for the Cross Validation data partition-
ing. The training material is a GIZA++ word-
aligned corpus of 200K sentence-pairs from the
Europarl corpus (Koehn, 2005), with our devel-
opment and test parallel corpora of 2K sentence-
pairs stemming from the same source. Train-
ing the grammar parameters until convergence de-
mands around 6 hours on an 8-core 2.26 GHz Intel
Xeon system. Decoding employs a 4-gram lan-
guage model, trained on English Europarl data of
19.5M words, smoothed using modified Kneser-
Ney discounting (Chen and Goodman, 1998), and
lexical translation smoothing features based on the
GIZA++ alignments.

In a sense, the real baseline to which we might
compare against should be a system employing the
MLE estimate for the grammar extracted from the
whole training corpus. However, as we have al-
ready discussed, this assigns zero probability to all
sentence-pairs outside of the training data and is
subsequently bound to perform extremely poorly,
as decoding would then completely rely on the
smoothing features. Instead, we opt to compare
against a hierarchical translation baseline provided
by the Joshua toolkit, trained and tuned on the
same data as our learning algorithm. The grammar
used by the baseline is much richer than the ones
learned by our algorithm, also employing rules
which translate with context, as shown in section
2. Nevertheless, since it is not clear how the re-
ordering rules probabilities of a grammar similar
to the ones we use could be trained heuristically,
we choose to relate the performance of our learned
stochastic SCFG grammars to the particular, state-
of-the-art in SCFG-based translation, system.

Table 1 presents the translation performance re-
sults of our systems and the baseline. On first

122

System Lexical BLEUSmoothing
joshua-baseline No 27.79

plain scfg No 28.04
switch scfg No 28.48

joshua-baseline Yes 29.96
plain scfg Yes 29.75

switch scfg Yes 29.88

Table 1: Empirical results, with and without addi-
tional lexical translation smoothing features dur-
ing decoding

observation, it is evident that our learning algo-
rithm outputs stochastic SCFGs which manage to
generalise, avoiding the degenerate behaviour of
plain MLE training for these models. Given the
notoriety of the estimation process, this is note-
worthy on its own. Having a learning algorithm
at hand which realises in a reasonable extent the
potential of each stochastic grammar design (as
implemented in the relevant grammar extractors),
we can now compare between the two grammar
extractors used in our experiments. The results
table highlights the importance of conditioning
the reordering process on lexical grounds. The
plain grammar with the single phrase-pair non-
terminal cannot accomplish this and achieves a
lower BLEU score. On the other hand, the switch
SCFG allows such conditioning. The learner takes
advantage of this feature to output a grammar
which performs better in taking reordering deci-
sions, something that is reflected in both the actual
translations as well as the BLEU score achieved.

Furthermore, our results highlight the impor-
tance of the smoothing decoding features. The
unsmoothed baseline system itself scores consid-
erably less when employing solely the heuristic
translation score. Our unsmoothed switch gram-
mar decoding setup improves on the baseline by
a considerable difference of 0.7 BLEU. Subse-
quently, when adding the smoothing lexical trans-
lation features, both systems record a significant
increase in performance, reaching comparable lev-
els of performance.

The degenerate behaviour of MLE for SCFGs
can be greatly limited by constraining ourselves
to grammars employing minimal phrase-pairs
; phrase-pairs which cannot be further broken
down into smaller ones according to the word-
alignment. One could argue that it is enough to

perform plain MLE with such minimal phrase-pair
SCFGs, instead of using our more elaborate learn-
ing algorithm with phrase-pairs of all lengths. To
investigate this, for our final experiment we used
a plain MLE estimate of the switch grammar to
translate, limiting the grammar’s phrase-pair emis-
sion rules to only those which involve minimal
phrase-pairs. The very low score of 17.82 BLEU
(without lexical smoothing) not only highlights
the performance gains of using longer phrase-pairs
in hierarchical translation models, but most impor-
tantly provides a strong incentive to address the
overfitting behaviour of MLE estimators for such
models, instead of avoiding it.

6 Related work

Most learning of phrase-based models, e.g.,
(Marcu and Wong, 2002; DeNero et al., 2006;
Mylonakis and Sima’an, 2008), works without hi-
erarchical components (i.e., not based on the ex-
plicit learning of an SCFG/BITG). These learning
problems pose other kinds of learning challenges
than the ones posed by explicit learning of SCFGs.
Chiang’s original work (Chiang, 2007) is also re-
lated. Yet, the learning problem is not expressed in
terms of an explicit objective function because sur-
face heuristic counts are used. It has been very dif-
ficult to match the performance of Chiang’s model
without use of these heuristic counts.

A somewhat related work, (Blunsom et al.,
2008b), attempts learning new non-terminal labels
for synchronous productions in order to improve
translation. This work differs substantially from
our work because it employs a heuristic estimate
for the phrase pair probabilities, thereby concen-
trating on a different learning problem: that of re-
fining the grammar symbols. Our approach might
also benefit from such a refinement but we do not
attempt this problem here. In contrast, (Blunsom
et al., 2008a) works with the expanded phrase pair
set of (Chiang, 2005), formulating an exponential
model and concentrating on marginalising out the
latent segmentation variables. Again, the learning
problem is rather different from ours. Similarly,
the work in (Zhang et al., 2008) reports on a multi-
stage model, without a latent segmentation vari-
able, but with a strong prior preferring sparse esti-
mates embedded in a Variational Bayes (VB) esti-
mator. This work concentrates the efforts on prun-
ing both the space of phrase pairs and the space of
(ITG) analyses.

123

To the best of our knowledge, this work is the
first to attempt learning probabilistic phrase-based
BITGs as translation models in a setting where
both a phrase segmentation component and a hi-
erarchical reordering component are assumed la-
tent variables. Like this work, (Mylonakis and
Sima’an, 2008; DeNero et al., 2008) also employ
an all-phrases model. Our paper shows that it is
possible to train such huge grammars under itera-
tive schemes like CV-EM, without need for sam-
pling or pruning. At the surface of it, our CV-
EM estimator is also a kind of Bayesian learner,
but in reality it is a more specific form of regu-
larisation, similar to smoothing techniques used in
language modelling (Chen and Goodman, 1998;
Mackay and Petoy, 1995).

7 Discussion and Future Research

Phrase-based stochastic SCFGs provide a rich for-
malism to express translation phenomena, which
has been shown to offer competitive performance
in practice. Since learning SCFGs for machine
translation has proven notoriously difficult, most
successful SCFG models for SMT rely on rules ex-
tracted from word-alignment patterns and heuris-
tically computed rule scores, with the impact and
the limits imposed by these choices yet unknown.

Some of the reasons behind the challenges of
SCFG learning can be traced back to the introduc-
tion of latent variables at different, competing lev-
els: word and phrase-alignment as well as hier-
archical reordering structure, with larger phrase-
pairs reducing the need for extensive reordering
structure and vice versa. While imposing priors
such as the often used Dirichlet distribution or the
Dirichlet Process provides a method to overcome
these pitfalls, we believe that the data-driven reg-
ularisation employed in this work provides an ef-
fective alternative to them, focusing more on the
data instead of importing generic external human
knowledge.

We believe that this work makes a significant
step towards learning synchronous grammars for
SMT. This is an objective not only worthy be-
cause of promises of increased performance, but,
most importantly, also by increasing the depth of
our understanding on SCFGs as vehicles of latent
translation structures. Our usage of the induced
grammars directly for translation, instead of an in-
termediate task such as phrase-alignment, aims ex-
actly at this.

While the latent structures that we explored
in this paper were relatively simple in compar-
ison with Hiero-like SCFGs, they take a differ-
ent, content-driven approach on learning reorder-
ing preferences than the context-driven approach
of Hiero. We believe that these approaches are not
merely orthogonal, but could also prove comple-
mentary. Taking advantage of the possible syner-
gies between content and context-driven reorder-
ing learning is an appealing direction of future re-
search. This is particularly promising for other
language pairs, such as Chinese to English, where
Hiero-like grammars have been shown to perform
particularly well.

Acknowledgments: Both authors are supported
by a VIDI grant (nr. 639.022.604) from The
Netherlands Organization for Scientific Research
(NWO).

References
P. Blunsom, T. Cohn, and M. Osborne. 2008a. A dis-

criminative latent variable model for statistical ma-
chine translation. In Proceedings of ACL-08: HLT,
pages 200–208. Association for Computational Lin-
guistics.

Phil Blunsom, Trevor Cohn, and Miles Osborne.
2008b. Bayesian synchronous grammar induction.
In Advances in Neural Information Processing Sys-
tems 21, Vancouver, Canada, December.

Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles
Osborne. 2009. A gibbs sampler for phrasal syn-
chronous grammar induction. In Proceedings of the
47th Annual Meeting of the Association of Compu-
tational Linguistics, Singapore, August. Association
for Computational Linguistics.

R. Bod, R. Scha, and K. Sima’an, editors. 2003. Data
Oriented Parsing. CSLI Publications, Stanford Uni-
versity, Stanford, California, USA.

S. Chen and J. Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Tech-
nical Report TR-10-98, Harvard University, August.

D. Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL 2005, pages 263–270.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33.

J. DeNero, D. Gillick, J. Zhang, and D. Klein. 2006.
Why generative phrase models underperform sur-
face heuristics. In Proceedings on the Workshop on
Statistical Machine Translation, pages 31–38, New
York City. Association for Computational Linguis-
tics.

124

John DeNero, Alexandre Bouchard-Côté, and Dan
Klein. 2008. Sampling alignment structure un-
der a Bayesian translation model. In Proceedings
of the 2008 Conference on Empirical Methods in
Natural Language Processing, pages 314–323, Hon-
olulu, Hawaii, October. Association for Computa-
tional Linguistics.

T. Hastie, R. Tibshirani, and J. H. Friedman. 2001. The
Elements of Statistical Learning. Springer.

Tom Heskes. 1998. Bias/variance decompositions for
likelihood-based estimators. Neural Computation,
10:1425–1433.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In HLT-NAACL 2003.

P. Koehn. 2005. Europarl: A Parallel Corpus for Sta-
tistical Machine Translation. In MT Summit 2005.

Zhifei Li, Chris Callison-Burch, Chris Dyer, San-
jeev Khudanpur, Lane Schwartz, Wren Thornton,
Jonathan Weese, and Omar Zaidan. 2009. Joshua:
An open source toolkit for parsing-based machine
translation. In Proceedings of the Fourth Workshop
on Statistical Machine Translation, pages 135–139,
Athens, Greece, March. Association for Computa-
tional Linguistics.

David J. C. Mackay and Linda C. Bauman Petoy. 1995.
A hierarchical dirichlet language model. Natural
Language Engineering, 1:1–19.

D. Marcu and W. Wong. 2002. A phrase-based, joint
probability model for statistical machine translation.
In Proceedings of Empirical methods in natural lan-
guage processing, pages 133–139. Association for
Computational Linguistics.

Markos Mylonakis and Khalil Sima’an. 2008. Phrase
translation probabilities with itg priors and smooth-
ing as learning objective. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 630–639, Honolulu, USA,
October.

F. J. Och and H. Ney. 2003. A systematic comparison
of various statistical alignment models. Computa-
tional Linguistics, 29(1):19–51.

F. J. Och and H. Ney. 2004. The alignment template
approach to statistical machine translation. Compu-
tational Linguistics, 30(4):417–449.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan, July. Association for Computational
Linguistics.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–403.

H. Zhang, Ch. Quirk, R. C. Moore, and D. Gildea.
2008. Bayesian learning of non-compositional
phrases with synchronous parsing. In Proceedings
of ACL-08: HLT, pages 97–105, Columbus, Ohio,
June. Association for Computational Linguistics.

A. Zollmann and K. Sima’an. 2006. An efficient
and consistent estimator for data-oriented parsing.
Journal of Automata, Languages and Combinatorics
(JALC), 10 (2005) Number 2/3:367–388.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart parsing.
In Proceedings on the Workshop on Statistical Ma-
chine Translation, pages 138–141, New York City,
June. Association for Computational Linguistics.

125

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 126–134,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

A Semi-Supervised Batch-Mode Active Learning Strategy forImproved
Statistical Machine Translation

Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard and Prem Natarajan
BBN Technologies
10 Moulton Street

Cambridge, MA, U.S.A.
{sanantha,rprasad,stallard,prem}@bbn.com

Abstract

The availability of substantial, in-domain
parallel corpora is critical for the develop-
ment of high-performance statistical ma-
chine translation (SMT) systems. Such
corpora, however, are expensive to pro-
duce due to the labor intensive nature of
manual translation. We propose to al-
leviate this problem with a novel, semi-
supervised, batch-modeactive learning
strategy that attempts to maximize in-
domain coverage by selecting sentences,
which represent a balance between domain
match, translation difficulty, and batch di-
versity. Simulation experiments on an
English-to-Pashto translation task show
that the proposed strategy not only outper-
forms the random selection baseline, but
also traditional active learning techniques
based on dissimilarity to existing training
data. Our approach achieves a relative im-
provement of 45.9% in BLEU over the
seed baseline, while the closest competitor
gained only 24.8% with the same number
of selected sentences.

1 Introduction

Rapid development of statistical machine transla-
tion (SMT) systems for resource-poor language
pairs is a problem of significant interest to the
research community in academia, industry, and
government. Tight turn-around schedules, bud-
get restrictions, and scarcity of human translators
preclude the production of large parallel corpora,
which form the backbone of SMT systems.

Given these constraints, the focus is on making
the best possible use of available resources. This
usually involves some form of prioritized data col-
lection. In other words, one would like to con-
struct the smallest possible parallel training corpus

that achieves a desired level of performance on un-
seen test data.

Within an active learningframework, this can
be cast as a data selection problem. The goal is
to choose, for manual translation, the most infor-
mative instances from a largepool of source lan-
guage sentences. The resulting sentence pairs, in
combination with any existing in-domainseedpar-
allel corpus, are expected to provide a significantly
higher performance gain than a naı̈ve random se-
lection strategy. This process is repeated until a
certain level of performance is attained.

Previous work on active learning for SMT has
focused on unsupervised dissimilarity measures
for sentence selection. Eck et al. (2005) describe a
selection strategy that attempts to maximize cov-
erage by choosing sentences with the highest pro-
portion of previously unseenn-grams. However,
if the pool is not completely in-domain, this strat-
egy may select irrelevant sentences, whose trans-
lations are unlikely to improve performance on an
in-domain test set. They also propose a technique,
based on TF-IDF, to de-emphasize sentences sim-
ilar to those that have already been selected. How-
ever, this strategy is bootstrapped by random ini-
tial choices that do not necessarily favor sentences
that are difficult to translate. Finally, they work
exclusively with the source language and do not
use any SMT-derived features to guide selection.

Haffari et al. (2009) propose a number of fea-
tures, such as similarity to the seed corpus, trans-
lation probability, relative frequencies ofn-grams
and “phrases” in the seed vs. pool data, etc., for
active learning. While many of their experiments
use the above features independently to compare
their relative efficacy, one of their experiments
attempts to predict a rank, as a linear combina-
tion of these features, for each candidate sentence.
The top-ranked sentences are chosen for manual
translation. The latter strategy is particularly rel-
evant to this paper, because the goal of our active

126

learning strategy is not to compare features, but to
learn the trade-off between various characteristics
of the candidate sentences that potentially maxi-
mizes translation improvement.

The parameters of the linear ranking model pro-
posed by Haffari et al. (2009) are trained using
two held-out development setsD1 andD2 - the
model attempts to learn the ordering ofD1 that
incrementally maximizes translation performance
on D2. Besides the need for multiple parallel
corpora and the computationally intensive nature
of incrementally retraining an SMT system, their
approach suffers from another major deficiency.
It requires that the pool have the same distribu-
tional characteristics as the development sets used
to train the ranking model. Additionally, they se-
lect all sentences that constitute a batch in a single
operation following the ranking procedure. Since
similar or identical sentences in the pool will typ-
ically meet the selection criteria simultaneously,
this can have the undesired effect of choosing re-
dundant batches with low diversity. This results in
under-utilization of human translation resources.

In this paper, we propose a novel batch-mode
active learning strategy that ameliorates the above
issues. Our semi-supervised learning approach
combines a parallel ranking strategy with sev-
eral features, including domain representativeness,
translation confidence, and batch diversity. The
proposed approach includes a greedy, incremental
batch selection strategy, which encourages diver-
sity and reduces redundancy. The following sec-
tions detail our active learning approach, includ-
ing the experimental setup and simulation results
that clearly demonstrate its effectiveness.

2 Active Learning Paradigm

Active learning has been studied extensively in the
context of multi-class labeling problems, and the-
oretically optimal selection strategies have been
identified for simple classification tasks with met-
ric features (Freund et al., 1997). However, nat-
ural language applications such as SMT present a
significantly higher level of complexity. For in-
stance, SMT model parameters (translation rules,
language modeln-grams, etc.) are not fixed in
number or type, and vary depending on the train-
ing instances. This gives rise to the concept of
domain. Even large quantities of out-of-domain
training data usually do not improve translation
performance. As we will see, this causes simple

active selection techniques based on dissimilarity
or translation difficulty to be ineffective, because
they tend to favor out-of-domain sentences.

Our proposed active learning strategy is moti-
vated by the idea that the chosen sentences should
maximize coverage, and by extension, translation
performance on an unseen test set. It should
pick sentences that represent the target domain,
while simultaneously enriching the training data
with hitherto unseen, difficult-to-translate con-
structs that are likely to improve performance on a
test set. We refer to the former asrepresentative-
nessand to the latter asdifficulty.

Since it is computationally prohibitive to re-
train an SMT system for individual translation
pairs, a batch of sentences is usually selected at
each iteration. We desire that each batch be suffi-
ciently diverse; this increases the number of con-
cepts (phrase pairs, translation rules, etc.) that can
be learned from manual translations of a selected
batch. Thus, our active learning strategy attempts,
at each iteration, to select a batch of mutually di-
verse source sentences, which, while introducing
new concepts, shares at least some commonality
with the target domain. This is done in a com-
pletely statistical, data-driven fashion.

In designing this active learning paradigm, we
make the following assumptions.

• A small seed parallel corpusS is available
for training an initial SMT system. This may
range from a few hundred to a few thousand
sentence pairs.

• Sentences must be selected from a large pool
P. This may be an arbitrary collection of in-
and out-of-domain source language sentences.
Some measure of redundancy is permitted and
expected, i.e. some sentences may be identical
or very similar to others.

• A development setD is available to tune the
SMT system and train the selection algorithm.
An unseen test setT is used to evaluate it.

• The seed, development, and test sets are de-
rived from the target domain distribution.

To re-iterate, we do not assume or require the
pool to have the same domain distribution as the
seed, development, and test sets. This reflects a
real-world scenario, where the pool may be drawn
from multiple sources (e.g. targeted collections,
newswire text, web, etc.). This is a key departure
from existing work on active learning for SMT.

127

S e e d c o r p u s

S M T s y s t e m

M o n o l i n g u a l p o o l

P o o l t r a i n i n g D e v e l . s e t

D o m a i n m a t c h

T r a n s . d i f f i c u l t y

D i v e r s i t y

P r e f e r r e d o r d e r

C 1

C 2

Input features MLP Classifiers Classifier targets

Figure 1: Flow-diagram of the active learner.

3 Active Learning Architecture

Figure 1 illustrates the proposed active learning
architecture in the form of a high-level flow-
diagram. We begin by randomly sampling a small
fraction of the large monolingual poolP to cre-
ate apool training setPT, which is used to train
the learner. The remainder, which we call thepool
evaluation setPE, is set aside for active selection.
We also train an initial phrase-based SMT system
(Koehn et al., 2003) with the available seed cor-
pus. The pool training setPT, in conjunction with
the seed corpusS, initial SMT system, and held-
out development setD, is used to derive a number
of input features as well as target labels for train-
ing two parallel classifiers.

3.1 Preferred Ordering

The learner must be able to map input features
to an ordering of the pool sentences that attempts
to maximize coverage on an unseen test set. We
teach it to do this by providing it with an ordering
of PT that incrementally maximizes source cov-
erage onD. Thispreferred orderingalgorithm in-
crementally maps sentences inPT to a ordered set
OT by picking, at each iteration, the sentence with

the highestcoverage criterionwith respect toD,
and inserting it at the current position withinOT.
The coverage criterion is based on content-word
n-gram overlap withD, discounted by constructs
already observed inS and higher-ranked sentences
in OT, as illustrated in Algorithm 1. Our hypoth-
esis is that sentences, which maximally improve
coverage, likely lead to bigger gains in translation
performance as well.

TheO(|PT|
2) complexity of this algorithm is

one reason we restrictPT to a few thousand sen-
tences. Another reason not to order the entire pool
and simply select the top-ranked sentences, is that
batches thus constructed would overfit the devel-
opment set on which the ordering is based, and
not generalize well to an unseen test set.

3.2 Ranker Features

Each candidate sentence in the pool is represented
by a vector of features, which fall under one of
the three categories, viz. representativeness, dif-
ficulty, and diversity. We refer to the first two
ascontext-independent, because they can be com-
puted independently for each sentence. Diversity
is acontext-dependentfeature and must be evalu-
ated in the context of an ordering of sentences.

128

Algorithm 1 Preferred ordering
OT ← ()
Sg ← count(g) ∀g ∈ ngr(S)
Dg ← count(g) ∀g ∈ ngr(D)
for k = 1 to |PT| do

PU ← PT −OT

y∗ ← argmax
y∈PU

∑

g∈ngr(y)

yg ×Dg × n

Sg + 1

OT (k)← y∗

Sg ← Sg + y∗g ∀g ∈ ngr(y∗)
end for
return OT

3.2.1 Domain Representativeness

Domain representativeness features gauge the de-
gree of similarity between a candidate pool sen-
tence and the seed training data. We quantify this
using ann-gram overlap measure between candi-
date sentencex and the seed corpusS defined by
Equation 1.

sim(x,S) =

∑

g∈ngr(x)

xg ×
min(Sn

g , Cn)

Cn

∑

g∈ngr(x)

xg
(1)

xg is the number of timesn-gramg occurs inx,
Sg the number of times it occurs in the seed cor-
pus, n its length in words, andCn the count of
n-grams of lengthn in S. Longern-grams that
occur frequently in the seed receive high similar-
ity scores, and vice-versa. In evaluating this fea-
ture, we only considern-grams up to length five
that contain least one content word.

Another simple domain similarity feature we
use is sentence length. Sentences in conversational
domains are typically short, while those in web
and newswire domains run longer.

3.2.2 Translation Difficulty

All else being equal, the selection strategy should
favor sentences that the existing SMT system finds
difficult to translate. To this end, we estimate a
confidence score for each SMT hypothesis, using
a discriminative classification framework reminis-
cent of Blatz et al. (2004). Confidence estima-
tion is treated as a binary classification problem,
where each hypothesized word is labeled “cor-
rect” or “ incorrect”. Word-level reference labels
for training the classifier are obtained from Trans-
lation Edit Rate (TER) analysis, which produces

the lowest-cost alignment between the hypothe-
ses and the gold-standard references (Snover et
al., 2006). A hypothesized word is “correct” if
it aligns to itself in this alignment, and “incorrect”
otherwise.

We derive features for confidence estimation
from the phrase derivations used by the decoder in
generating the hypotheses. For each target word,
we look up the corresponding source phrase that
produced it, and use this information to compute
a number of features from the translation phrase
table and target language model (LM). These in-
clude the in-context LM probability of the target
word, the forward and reverse phrase translation
probabilities, the maximum forward and reverse
word-level lexical translation probabilities, num-
ber of competing target phrases in which the tar-
get word occurs, etc. In all, we use 11 word-level
features (independent of the active learning fea-
tures) to train the classifier in conjunction with the
abovementioned binary reference labels.

A logistic regression model is used to directly
estimate the posterior probability of the binary
word label. Thus, our confidence score is es-
sentially the probability of the word being “in-
correct”. Sentence-level confidence is computed
as the geometric average of word-level posteriors.
Confidence estimation models are trained on the
held-out development set.

We employ two additional measures of transla-
tion difficulty for active learning: (a) the number
of “unknown” words in target hypotheses caused
by untranslatable source words, and (b) the aver-
age length of source phrases in the1-best SMT
decoder derivations.

3.2.3 Batch Diversity

Batch diversity is evaluated in the context of an
explicit ordering of the candidate sentences. In
general, sentences that are substantially similar to
those above them in a ranked list have low diver-
sity, and vice-versa. We use content-wordn-gram
overlap to measure similarity with previous sen-
tences, per Equation 2.

d(b | B) = 1.0−

∑

g∈ngr(b)

n×Bg

∑

g∈ngr(b)

n×max(Bg, 1.0)
(2)

B represents the set of sentences ranked higher
than the candidateb, for which we wish to evalu-
ate diversity.Bg is the number of timesn-gramg

129

occurs inB. Longer, previously unseenn-grams
serve to boost diversity. The first sentence in a
given ordering is always assigned unit diversity.
The coverage criterion used by the preferred or-
dering algorithm in Section 3.1 ensures good cor-
respondence between the rank of a sentence and its
diversity, i.e. higher-ranked in-domain sentences
have higher diversity, and vice-versa.

3.3 Training the Learner

The active learner is trained on the pool training
setPT. The seed training corpusS serves as the
basis for extracting domain similarity features for
each sentence in this set. Translation difficulty fea-
tures are evaluated by decoding sentences inPT

with the seed SMT system. Finally, we compute
diversity for each sentence inPT based on its pre-
ferred orderOT according to Equation 2. Learn-
ing is semi-supervisedas it does not require trans-
lation references for eitherPT or D.

Traditional ranking algorithms such asPRank
(Crammer and Singer, 2001) work best when the
number of ranks is much smaller than the sample
size; more than one sample can be assigned the
same rank. In the active learning problem, how-
ever, each sample is associated with a unique rank.
Moreover, the dynamic range of ranks inOT is
significantly smaller than that inPE, to which the
ranking model is applied, resulting in a mismatch
between training and evaluation conditions.

We overcome these issues by re-casting the
ranking problem as a binary classification task.
The top 10% sentences inOT are assigned a “se-
lect” label, while the remaining are assigned a
contrary “do-not-select” label. The input features
are mapped to class posterior probabilities using
multi-layer perceptron (MLP) classifiers. The use
of posteriors allows us to assign a unique rank to
each candidate sentence. The best candidate sen-
tence is the one to which the classifier assigns the
highest posterior probability for the “select” la-
bel. We use one hidden layer with eight sigmoid-
activated nodes in this implementation.

Note that we actually train two MLP classi-
fiers with different sets of input features as shown
in Figure 1. ClassifierC1 is trained using only
the context-independent features, whereasC2 is
trained with the full set of features including batch
diversity. These classifiers are used to implement
an incremental, greedy selection algorithm with
parallel ranking, as explained below.

Algorithm 2 Incremental greedy selection
B← ()
for k = 1 toN do
Pci ← {x ∈ PE | d(x | B) = 1.0}
Pcd ← {x ∈ PE | d(x | B) < 1.0}
C← C1(fci(Pci)) ∪ C2(fcd(Pcd,B))
bk ← argmax

x∈PE

C(x)

PE ← PE − {bk}
end for
return B

4 Incremental Greedy Selection

Traditional rank-and-select batch construction ap-
proaches choose constituent sentences indepen-
dently, and therefore cannot ensure that the cho-
sen sentences are sufficiently diverse. Our strat-
egy implements a greedy selection algorithm that
constructs each batch iteratively; the decisionbk
(the sentence to fill thekth position in a batch)
depends on all previous decisionsb1, · · · , bk−1.
This allows de-emphasizing sentences similar to
those that have already been placed in the batch,
while favoring samples containing previously un-
seen constructs.

4.1 Parallel Ranking

We begin with an empty batchB, to which sen-
tences from the pool evaluation setPE must be
added. We then partition the sentences inPE in
two mutually-exclusive groupsPcd andPci. The
former contains candidates that share at least one
content-wordn-gram with any existing sentences
in B, while the latter consists of sentences that
do not share any overlap with them. Note that
B is empty to start with; thus,Pcd is empty and
Pci = PE at the beginning of the first iteration
of selection. The diversity feature is computed for
each sentence inPcd based on existing selections
in B, while the context-independent features are
evaluated for sentences in both partitions.

Next, we applyC1 to Pci andC2 to Pcd and in-
dependently obtain posterior probabilities for the
“select” label for both partitions. We take the
union of class posteriors from both partitions and
select the sentence with the highest probability of
the “select” label to fill the next slotbk, corre-
sponding to iterationk, in the batch. The selected
sentence is subsequently removed fromPE.

The aboveparallel ranking technique (Algo-
rithm 2) is applied iteratively until the batch

130

reaches a pre-determined sizeN . At itera-
tion k, the remaining sentences inPE are par-
titioned based on overlap with previous selec-
tions b1, · · · , bk−1 and ranked based on the union
of posterior probabilities generated by the corre-
sponding classifiers. This ensures that sentences
substantially similar to those that have already
been selected receive a low diversity score, and are
suitably de-emphasized. Depending on the char-
acteristics of the pool, batches constructed by this
algorithm are likely more diverse than a simple
rank-and-select approach.

5 Experimental Setup and Results

We demonstrate the effectiveness of the proposed
sentence selection algorithm by performing a set
of simulation experiments in the context of an
English-to-Pashto (E2P) translation task. We sim-
ulate a low-resource condition by using a very
small number of training sentence pairs, sampled
from the collection, to bootstrap a phrase-based
SMT system. The remainder of this parallel cor-
pus is set aside as the pool.

At each iteration, the selection algorithm picks a
fixed-size batch of source sentences from the pool.
The seed training data are augmented with the
chosen source sentences and their translations. A
new set of translation models is then estimated and
used to decode the test set. We track SMT perfor-
mance across several iterations and compare the
proposed algorithm to a random selection baseline
as well as other common selection strategies.

5.1 Data Configuration

Our English-Pashto data originates from a two-
way collection of spoken dialogues, and thus con-
sists of two parallel sub-corpora: a directional E2P
corpus and a directional Pashto-to-English (P2E)
corpus. Each sub-corpus has its own independent
training, development, and test partitions. The di-
rectional E2P training, development, and test sets
consist of 33.9k, 2.4k, and 1.1k sentence pairs, re-
spectively. The directional P2E training set con-
sists of 76.5k sentence pairs.

We obtain a seed training corpus for the simula-
tion experiments by randomly sampling 1,000 sen-
tence pairs from the directional E2P training par-
tition. The remainder of this set, and the entire re-
versed directional P2E training partition are com-
bined to create the pool (109.4k sentence pairs). In
the past, we have observed that the reversed direc-

tional P2E data gives very little performance gain
in the E2P direction even though its vocabulary is
similar, and can be considered “out-of-domain” as
far as the E2P translation task is concerned. Thus,
our pool consists of 30% in-domain and 70% out-
of-domain sentence pairs, making for a challeng-
ing active learning problem. A pool training set of
10k source sentences is sampled from this collec-
tion, leaving us with 99.4k candidate sentences.

5.2 Selection Strategies

We implement the following strategies for sen-
tence selection. In all cases, we use a fixed-size
batch of 200 sentences per iteration.

• Random selection, in which source sentences
are uniformly sampled fromPE.

• Similarity selection, where we choose sen-
tences that exhibit the highest content-wordn-
gram overlap withS.

• Dissimilarity selection, which selects sen-
tences having the lowest degree of content-
wordn-gram overlap withS.

• Active learningwith greedy incremental selec-
tion, using a learner to maximize coverage by
combining various input features.

We simulate a total of 30 iterations, with the
original 1,000 sample seed corpus growing to
7,000 sentence pairs.

5.3 Simulation Results

We track SMT performance at each iteration in
two ways. The first and most effective method is
to simply use an objective measure of translation
quality, such as BLEU (Papineni et al., 2001). Fig-
ure 2(a) illustrates the variation in BLEU scores
across iterations for each selection strategy. We
note that the proposed active learning strategy per-
forms significantly better at every iteration than
random, similarity, and dissimilarity-based selec-
tion. At the end of 30 iterations, the BLEU
score gained 2.46 points, a relative improvement
of 45.9%. By contrast, the nearest competitor was
the random selection baseline, whose performance
gained only 1.33 points in BLEU, a 24.8% im-
provement. Note that we tune the phrase-based
SMT feature weights using MERT (Och, 2003)
once in the beginning, and use the same weights
across all iterations. This allowed us to compare
selection methods without variations introduced
by fluctuation of the weights.

131

(a) Trajectory of BLEU

(b) Trajectory of untranslated word ratio

(c) Directionality match (d) Diversity/Uniqueness

Figure 2: Simulation results for data selection. Batch sizeat each iteration is 200 sentences.
132

The second method measures test set coverage
in terms of the proportion of untranslated words
in the SMT hypotheses, which arise due to the
absence of appropriate in-context phrase pairs in
the training data. Figure 2(b) shows the varia-
tion in this measure for the four selection tech-
niques. Again, the proposed active learning algo-
rithm outperforms its competitors across nearly all
iterations, with very large improvements in the ini-
tial stages. Overall, the proportion of untranslated
words dropped from 8.74% to 2.28% after 30 iter-
ations, while the closest competitor (dissimilarity
selection) dropped to 2.59%.

It is also instructive to compare the distribu-
tion of the 6,000 sentences selected by each strat-
egy at the end of the simulation to determine
whether they came from the “in-domain” E2P
set or the “out-of-domain” P2E collection. Fig-
ure 2(c) demonstrates that only 1.3% of sentences
were selected from the reversed P2E set by the
proposed active learning strategy. On the other
hand, 70.9% of the sentences selected by the
dissimilarity-based technique came from the P2E
collection, explaining its low BLEU scores on the
E2P test set. Surprisingly, similarity selection also
chose a large fraction of sentences from the P2E
collection; this was traced to a uniform distribu-
tion of very common sentences (e.g. “thank you”,
“okay”, etc.) across the E2P and P2E sets.

Figure 2(d) compares the uniqueness and over-
all n-gram diversity of the 6,000 sentences chosen
by each strategy. The similarity selector received
the lowest score on this scale, explaining the lack
of improvement in coverage as measured by the
proportion of untranslated words in the SMT hy-
potheses. Again, the proposed approach exhibits
the highest degree of uniqueness, underscoring its
value in lowering batch redundancy.

It is interesting to note that dissimilarity selec-
tion is closest to the proposed active learning strat-
egy in terms of coverage, and yet exhibits the
worst BLEU scores. This confirms that, while
there is overlap in their vocabularies, the E2P and
P2E sets differ significantly in terms of longer-
span constructs that influence SMT performance.

These results clearly demonstrate the power
of the proposed strategy in choosing diverse, in-
domain sentences that not only provide superior
performance in terms of BLEU, but also improve
coverage, leading to fewer untranslated concepts
in the SMT hypotheses.

6 Conclusion and Future Directions

Rapid development of SMT systems for resource-
poor language pairs requires judicious use of hu-
man translation capital. We described a novel ac-
tive learning strategy that automatically learns to
pick, from a large monolingual pool, sentences
that maximize in-domain coverage. In conjunc-
tion with their translations, they are expected to
improve SMT performance at a significantly faster
rate than existing selection techniques.

We introduced two key ideas that distinguish
our approach from previous work. First, we uti-
lize a sample of the candidate pool, rather than an
additional in-domain development set, to learn the
mapping between the features and the sentences
that maximize coverage. This removes the restric-
tion that the pool be derived from the target do-
main distribution; it can be an arbitrary collection
of in- and out-of-domain sentences.

Second, we construct batches using an incre-
mental, greedy selection strategy with parallel
ranking, instead of a traditional batch rank-and-
select approach. This reduces redundancy, allow-
ing more concepts to be covered in a given batch,
and making better use of available resources.

We showed through simulation experiments that
the proposed strategy selects diverse batches of
high-impact, in-domain sentences that result in a
much more rapid improvement in translation per-
formance than random and dissimilarity-based se-
lection. This is reflected in objective indicators of
translation quality (BLEU), and in terms of cover-
age as measured by the proportion of untranslated
words in SMT hypotheses. We plan to evaluate
the scalability of our approach by running simu-
lations on a number of additional language pairs,
domains, and corpus sizes.

An issue with iterative active learning in gen-
eral is the cost of re-training the SMT system for
each batch. Small batches provide for smooth per-
formance trajectories and better error recovery at
an increased computational cost. We are currently
investigating incremental approaches that allow
SMT models to be updated online with minimal
performance loss compared to full re-training.

Finally, there is no inherent limitation in the
proposed framework that ties it to a phrase-based
SMT system. With suitable modifications to the
input feature set, it can be adapted to work with
various SMT architectures, including hierarchical
and syntax-based systems.

133

References

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence es-
timation for machine translation. InCOLING ’04:
Proceedings of the 20th international conference on
Computational Linguistics, page 315, Morristown,
NJ, USA. Association for Computational Linguis-
tics.

Koby Crammer and Yoram Singer. 2001. Pranking
with ranking. InAdvances in Neural Information
Processing Systems 14, pages 641–647. MIT Press.

Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.
Low cost portability for statistical machine transla-
tion based in N-gram frequency and TF-IDF. In
Proceedings of IWSLT, Pittsburgh, PA, October.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naf-
tali Tishby. 1997. Selective sampling using the
query by committee algorithm.Machine Learning,
28(2-3):133–168.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. InNAACL ’09: Proceedings
of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 415–423, Morristown, NJ, USA. Association
for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
NAACL ’03: Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology, pages 48–54, Morristown, NJ, USA.
Association for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. InACL ’03:
Proceedings of the 41st Annual Meeting on Asso-
ciation for Computational Linguistics, pages 160–
167, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: A method for automatic
evaluation of machine translation. InACL ’02: Pro-
ceedings of the 40th Annual Meeting on Associa-
tion for Computational Linguistics, pages 311–318,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings AMTA, pages 223–231, August.

134

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 135–143,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Improving Word Alignment by Semi-supervised Ensemble

Shujian Huang1, Kangxi Li2, Xinyu Dai1, Jiajun Chen1

1State Key Laboratory for Novel Software Technology at Nanjing University
Nanjing 210093, P.R.China

{huangsj,daixy,chenjj}@nlp.nju.edu.cn
2School of Foreign Studies, Nanjing University

Nanjing 210093, P.R.China
richardlkx@126.com

Abstract
Supervised learning has been recently
used to improve the performance of word
alignment. However, due to the limited
amount of labeled data, the performance
of ”pure” supervised learning, which only
used labeled data, is limited. As a re-
sult, many existing methods employ fea-
tures learnt from a large amount of unla-
beled data to assist the task. In this pa-
per, we propose a semi-supervised ensem-
ble method to better incorporate both la-
beled and unlabeled data during learning.
Firstly, we employ an ensemble learning
framework, which effectively uses align-
ment results from different unsupervised
alignment models. We then propose to
use a semi-supervised learning method,
namely Tri-training, to train classifiers us-
ing both labeled and unlabeled data col-
laboratively and further improve the result.
Experimental results show that our meth-
ods can substantially improve the quality
of word alignment. The final translation
quality of a phrase-based translation sys-
tem is slightly improved, as well.

1 Introduction

Word alignment is the process of learning bilin-
gual word correspondences. Conventional word
alignment process is treated as an unsupervised
learning task, which automatically learns the cor-
respondences between bilingual words using an
EM style algorithm (Brown et al., 1993; Vogel
et al., 1996; Och and Ney, 2003). Recently, su-
pervised learning methods have been used to im-
prove the performance. They firstly re-formalize
word alignment as some kind of classification
task. Then the labeled data is used to train the
classification model, which is finally used to clas-
sify unseen test data (Liu et al., 2005; Taskar et

al., 2005; Moore, 2005; Cherry and Lin, 2006;
Haghighi et al., 2009).

It is well understood that the performance of
supervised learning relies heavily on the fea-
ture set. As more and more features are added
into the model, more data is needed for train-
ing. However, due to the expensive cost of la-
beling, we usually cannot get as much labeled
word alignment data as we want. This may limit
the performance of supervised methods (Wu et
al., 2006). One possible alternative is to use
features learnt in some unsupervised manner to
help the task. For example, Moore (2005) uses
statistics like log-likelihood-ratio and conditional-
likelihood-probability to measure word associa-
tions; Liu et al. (2005) and Taskar et al. (2005)
use results from IBM Model 3 and Model 4, re-
spectively.

Ayan and Dorr (2006) propose another way of
incorporating unlabeled data. They first train some
existing alignment models, e.g. IBM Model4 and
Hidden Markov Model, using unlabeled data. The
results of these models are then combined using a
maximum entropy classifier, which is trained us-
ing labeled data. This method is highly efficient
in training because it only makes decisions on
alignment links from existing models and avoids
searching the entire alignment space.

In this paper, we follow Ayan and Dorr (2006)’s
idea of combining multiple alignment results. And
we use more features, such as bi-lexical features,
which help capture more information from unla-
beled data. To further improve the decision mak-
ing during combination, we propose to use a semi-
supervised strategy, namely Tri-training (Zhou
and Li, 2005), which ensembles three classifiers
using both labeled and unlabeled data. More
specifically, Tri-training iteratively trains three
classifiers and labels all the unlabeled instances.
It then uses some instances among the unlabeled
ones to expand the labeled training set of each in-

135

dividual classifier. As word alignment task usually
faces a huge parallel corpus, which contains mil-
lions of unlabeled instances, we develop specific
algorithms to adapt Tri-training for this large scale
task.

The next section introduces the supervised
alignment combination framework; Section 3
presents our semi-supervised learning algorithm.
We show the experiments and results in Section
4; briefly overview related work in Section 5 and
conclude in the last section.

2 Word Alignment as a Classification
Task

2.1 Modeling
Given a sentence pair (e, f), where e =
e1, e2, . . . , eI and f = f1, f2, . . . , fJ , an align-
ment link ai,j indicates the translation correspon-
dence between words ei and fj . Word alignment
is to learn the correct alignment A between e and
f , which is a set of such alignment links.

As the number of possible alignment links
grows exponentially with the length of e and f , we
restrict the candidate set using results from several
existing alignment models. Note that, all the mod-
els we employ are unsupervised models. We will
refer to them as sub-models in the rest of this pa-
per.

Let A = {A1, A2, . . . , An} be a set of align-
ment results from sub-models; AI and AU be the
intersection and union of these results, respec-
tively. We define our learning task as: for each
alignment link ai,j in the candidate set AC =
AU−AI , deciding whether ai,j should be included
in the alignment result. We use a random variable
yi,j (or simply y) to indicate whether an alignment
link ai,j ∈ AC is correct. A Maximum Entropy
model is employed to directly model the distribu-
tion of y. The probability of y is defined in For-
mula 1, where hm(y, e, f ,A, i, j) is the mth fea-
ture function, and λm is the corresponding weight.

p(y|e, f ,A, i, j)

=
exp

∑M
m=1 λmhm(y, e, f ,A, i, j)∑

ŷ∈{0,1} exp
∑M

m=1 λmhm(ŷ, e, f ,A, i, j)

(1)

While Ayan and Dorr (Ayan and Dorr, 2006)
make decisions on each alignment link in AU , we
take a different strategy by assuming that all the

alignment links in AI are correct, which means
alignment links in AI are always included in the
combination result. One reason for using this
strategy is that it makes no sense to exclude an
alignment link, which all the sub-models vote for
including. Also, links in AI usually have a good
quality (In our experiment, AI can always achieve
an accuracy higher than 96%). On the other hand,
because AI is decided before the supervised learn-
ing starts, it will be able to provide evidence for
making decisions on candidate links.

Also note that, Formula 1 is based on the as-
sumption that given AI , the decision on each y is
independent of each other. This is the crucial point
that saves us from searching the whole alignment
space. We take this assumption so that the Tri-
training strategy can be easily applied.

2.2 Features
For ensemble, the most important features are the
decisions of sub-models. We also use some other
features, such as POS tags, neighborhood infor-
mation, etc. Details of the features for a given link
ai,j are listed below.

Decision of sub-models: Whether ai,j exists in
the result of kth sub-model Ak. Besides in-
dividual features for each model, we also in-
clude features describing the combination of
sub-models’ decisions. For example, if we
have 3 sub-models, there will be 8 features
indicating the decisions of all the sub-models
as 000, 001, 010, . . . , 111.

Part of speech tags: POS tags of previous, cur-
rent and next words in both languages. We
also include features describing the POS tag
pairs of previous, current and next word pairs
in the two languages.

Neighborhood: Whether each neighbor link ex-
ists in the intersection AI . Neighbor links re-
fer to links in a 3*3 window with (i, j) in the
center.

Fertilities: The number of words that ei (or fj) is
aligned to in AI .

Relative distance: The relative distance between
ei and fj , which is calculated as abs(i/I −
j/J).

Conditional Link Probability (CLP) : The con-
ditional link probability (Moore, 2005) of ei

136

and fj . CLP of word e and f is estimated on
an aligned parallel corpus using Formula 2,

CLPd(e, f) =
link(e, f)− d

cooc(e, f)
(2)

where link(e, f) is the number of times e and
f are linked in the aligned corpus; cooc(e, f)
is the number of times e and f appear in
the same sentence pair; d is a discount-
ing constant which is set to 0.4 following
Moore (2005). We estimate these counts on
our set of unlabeled data, with the union of
all sub-model results AU as the alignment.
Union is used in order to get a better link cov-
erage. Probabilities are computed only for
those words that occur at least twice in the
parallel corpus.

bi-lexical features: The lexical word pair ei-fj .

Lexical features have been proved to be useful in
tasks such as parsing and name entity recognition.
Taskar et al. (2005) also employ similar bi-lexical
features of the top 5 non-punctuation words for
word alignment. Using bi-lexicons for arbitrary
word pairs will capture more evidence from the
data; although it results in a huge feature set which
may suffer from data sparseness. In the next sec-
tion, we introduce a semi-supervised strategy will
may alleviate this problem and further improve the
learning procedure.

3 Semi-supervised methods

Semi-supervised methods aim at using unlabeled
instances to assist the supervised learning. One
of the prominent achievements in this area is
the Co-training paradigm proposed by Blum and
Mitchell (1998). Co-training applies when the fea-
tures of an instance can be naturally divided into
two sufficient and redundant subsets. Two weak
classifiers can be trained using each subset of fea-
tures and strengthened using unlabeled data. Blum
and Mitchell (1998) prove the effectiveness of this
algorithm, under the assumption that features in
one set is conditionally independent of features in
the other set. Intuitively speaking, if this condi-
tional independence assumption holds, the most
confident instance of one classifier will act as a
random instance for the other classifier. Thus it
can be safely used to expand the training set of the
other classifier.

The standard Co-training algorithm requires a
naturally splitting in the feature set, which is hard
to meet in most scenarios, including the task of
word alignment. Variations include using random
split feature sets or two different classification al-
gorithms. In this paper, we use the other Co-
training style algorithm called Tri-training, which
requires neither sufficient and redundant views nor
different classification algorithms.

3.1 Tri-training
Similar with Co-training, the basic idea of Tri-
training (Zhou and Li, 2005) is to iteratively ex-
pand the labeled training set for the next-round
training based on the decisions of the current clas-
sifiers. However, Tri-training employs three clas-
sifiers instead of two. To get diverse initial classi-
fiers, the training set of each classifier is initially
generated via bootstrap sampling from the origi-
nal labeled training set and updated separately. In
each round, these three classifiers are used to clas-
sify all the unlabeled instances. An unlabeled in-
stance is added to the training set of any classifier
if the other two classifiers agree on the labeling
of this example. So there is no need to explicitly
measure the confidence of any individual classi-
fier, which might be a problem for some learning
algorithms. Zhou and Li (2005) also give a termi-
nate criterion derived from PAC analysis. As the
algorithm goes, the number of labeled instances
increases, which may bring in more bi-lexical fea-
tures and alleviate the problem of data sparseness.

3.2 Tri-training for Word Alignment
One crucial problem for word alignment is the
huge amount of unlabeled instances. Typical par-
allel corpus for word alignment contains at least
hundreds of thousands of sentence pairs, with each
sentence pair containing tens of instances. That
makes a large set of millions of instances. There-
fore, we develop a modified version of Tri-training
algorithm using sampling techniques, which can
work well with such large scale data. A sketch of
our algorithm is shown in Figure 1.

The algorithm takes original labeled instance
set L, unlabeled sentence set SU , sub-model re-
sults As for each s in SU and a sampling ratio r as
input. Fk represents the kth classifier. Variables
with superscript i represent their values during the
ith iteration.

Line 2 initializes candidate instance set AC,s of
each sentence s to be the difference set between

137

Input: L, SU , As for each s and sampling ratio r.
1: for all sentence s in SU do
2: A0

C,s ← AU,s −AI,s //initializing candidate set
3: end for
4: for all l ∈ {1, 2, 3} do
5: L0

l ← Subsample(L, 0.33)
6: F 0

l ← Train(L0
l)

7: end for
8: repeat
9: for all l ∈ {1, 2, 3} do

10: Let m, n ∈ {1, 2, 3} and m ̸= n ̸= l; Li
l = ∅

11: for all sentence s in SU do
12: for all instance a in Ai−1

C,s do
13: if F i−1

m (a) = F i−1
n (a) then

14: Ai−1
C,s ← Ai−1

C,s − {(a, F i−1
m (a))}

15: Li
l ← Li

l ∪ {(a, F i−1
m (a))}

16: end if
17: end for
18: end for
19: end for
20: for all l ∈ {1, 2, 3} do
21: Li

l ← Subsampling(Li
l, r) ∪ Li−1

l

22: F i
l ← Train(Li

l)
23: Ai

C,s ← Ai−1
C,s

24: end for
25: until all Ai

C,s are unchanged or empty
Output: F (x)← arg maxy∈{0,1}

∑
l:Fl(x)=y 1

Figure 1: Modified Tri-training Algorithm

AU,s and AI,s. In line 5-6, sub-samplings are per-
formed on the original labeled set L and the ini-
tial classifier F 0

l is trained using the sampling re-
sults. In each iteration, the algorithm labels each
instance in the candidate set Ai

C,s for each clas-
sifier with the other two classifiers trained in last
iteration. Instances are removed from the candi-
date set and added to the labeled training set (Li

l)
of classifier l, if they are given the same label by
the other two classifiers (line 13-16).

A sub-sampling is performed before the labeled
training set is used for training (line 21), which
means all the instances in Li

l are accepted as cor-
rect, but only part of them are added into the train-
ing set. The sampling rate is controlled by a pa-
rameter r, which we empirically set to 0.01 in all
our experiments. The classifier is then re-trained
using the augmented training set Li

l (line 22). The
algorithm iterates until all instances in the candi-
date sets get labeled or the candidate sets do not
change since the last iteration (line 25). The result-
ing classifiers can be used to label new instances
via majority voting.

Our algorithm differs from Zhou and Li (2005)
in the following three aspects. First of all, com-
paring to the original bootstrap sampling initial-
ization, we use a more aggressive strategy, which

Source Usage Sent. Pairs Cand. Links
LDC Train 288111 8.8M

NIST’02 Train 200 5,849
NIST’02 Eval 291 7,797

Table 1: Data used in the experiment

actually divides the original labeled set into three
parts. This strategy ensures that initial classifiers
are trained using different sets of instances and
maximizes the diversity between classifiers. We
will compare these two initializations in the ex-
periments section. Secondly, we introduce sam-
pling techniques for the huge number of unlabeled
instances. Sampling is essential for maintain-
ing a reasonable growing speed of training data
and keeping the computation physically feasible.
Thirdly, because the original terminate criterion
requires an error estimation process in each iter-
ation, we adapt the much simpler terminate cri-
terion of standard Co-training into our algorithm,
which iterates until all the unlabeled data are fi-
nally labeled or the candidate sets do not change
since the last iteration. In other words, our algo-
rithm inherits both the benefits of using three clas-
sifiers and the simplicity of using Co-training style
termination criterion. Parallel computing tech-
niques are also used during the processing of un-
labeled data to speed up the computation.

4 Experiments and Results

4.1 Data and Evaluation Methodology

All our experiments are conducted on the lan-
guage pair of Chinese and English. For training
alignment systems, a parallel corpus coming from
LDC2005T10 and LDC2005T14 is used as un-
labeled training data. Labeled data comes from
NIST Open MT Eval’02, which has 491 labeled
sentence pairs. The first 200 labeled sentence pairs
are used as labeled training data and the rest are
used for evaluation (Table 1). The number of can-
didate alignment links in each data set is also listed
in Table 1. These candidate alignment links are
generated using the three sub-models described in
Section 4.2.

The quality of word alignment is evaluated in
terms of alignment error rate (AER) (Och and Ney,
2003), classifier’s accuracy and recall of correct
decisions. Formula 3 shows the definition of AER,
where P and S refer to the set of possible and sure
alignment links, respectively. In our experiments,

138

ModelName AER Dev AER Test Accuracy Recall F1

Model4C2E 0.4269 0.4196 0.4898 0.3114 0.3808
Model4E2C 0.3715 0.3592 0.5642 0.5368 0.5502
BerkeleyAl. 0.3075 0.2939 0.7064 0.6377 0.6703
Model4GDF 0.3328 0.3336 0.6059 0.6184 0.6121
Supervised 0.2291 0.2430 0.8124 0.7027 0.7536

Table 2: Experiments of Sub-models

ModelName AER Dev AER Test Accuracy Recall F1

Supervised 0.2291 0.2430 0.8124 0.7027 0.7536
BerkeleyAl. 0.3075 0.2939 0.7064 0.6377 0.6703

Tri-Bootstrap0 0.2301 0.2488 0.8030 0.6858 0.7398
Tri-Divide0 0.2458 0.2525 0.8002 0.6630 0.7251

Tri-Bootstrap 0.2264 0.2468 0.7934 0.7449 0.7684
Tri-Divide 0.2416 0.2494 0.7832 0.7605 0.7717

Table 3: Experiments of Semi-supervised Models

we treat all alignment links as sure links.

AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

(3)

We also define a F1 score to be the harmonic mean
of classifier’s accuracy and recall of correct deci-
sions (Formula 4).

F1 =
2 ∗ accuracy ∗ recall

accuracy + recall
(4)

We also evaluate the machine translation quality
using unlabeled data (in Table 1) and these align-
ment results as aligned training data. We use
multi-references data sets from NIST Open MT
Evaluation as development and test data. The En-
glish side of the parallel corpus is trained into
a language model using SRILM (Stolcke, 2002).
Moses (Koehn et al., 2003) is used for decoding.
Translation quality is measured by BLEU4 score
ignoring the case.

4.2 Experiments of Sub-models

We use the following three sub-models: bidi-
rectional results of Giza++ (Och and Ney,
2003) Model4, namely Model4C2E and
Model4E2C, and the joint training result of
BerkeleyAligner (Liang et al., 2006) (Berke-
leyAl.). To evaluate AER, all three data sets
listed in Table 1 are combined and used for the
unsupervised training of each sub-model.

Table 2 presents the alignment quality of those
sub-models, as well as a supervised ensemble of

them, as described in Section 2.1. We use the sym-
metrized IBM Model4 results by the grow-diag-
final-and heuristic as our baseline (Model4GDF).
Scores in Table 2 show the great improvement
of supervised learning, which reduce the align-
ment error rate significantly (more than 5% AER
points from the best sub-model, i.e. Berke-
leyAligner). This result is consistent with Ayan
and Dorr (2006)’s experiments. It is quite reason-
able that supervised model achieves a much higher
classification accuracy of 0.8124 than any unsu-
pervised sub-model. Besides, it also achieves the
highest recall of correct alignment links (0.7027).

4.3 Experiments of Semi-supervised Models

We present our experiment results on semi-
supervised models in Table 3. The two strategies
of generating initial classifiers are compared. Tri-
Bootstrap is the model using the original boot-
strap sampling initialization; and Tri-Divide is
the model using the dividing initialization as de-
scribed in Section 3.2. Items with superscripts 0
indicate models before the first iteration, i.e. ini-
tial models. The scores of BerkeleyAligner and
the supervised model are also included for com-
parison.

In general, all supervised and semi-supervised
models achieve better results than the best sub-
model, which proves the effectiveness of labeled
training data. It is also reasonable that initial mod-
els are not as good as the supervised model, be-
cause they only use part of the labeled data for
training. After the iterative training, both the two

139

0 1000 2000 3000 4000 5000 6000
0.4

0.5

0.6

0.7

0.8

0.9

Training Instances Number

S
co

re
s(

F
−

1,
 A

cc
ur

ac
y,

 R
ec

al
l)

F−1
Recall
Accuracy

(a)

0 0.5 1 1.5 2 2.5 3

x 10
5

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Number of sentences

F
−

1
sc

or
es

Tri−Divide
Supervised
Tri−Bootstrap

(b)

Figure 2: (a) Experiments on the Size of Labeled Training Data in Supervised Training; (b) Experiments
on the Size of Unlabeled Data in Tri-training

Tri-training models get a significant increase in
recall. We attribute this to the use of bi-lexical
features described in Section 2.2. Analysis of
the resulting model shows that the number of
bi-lexical features increases from around 300 to
nearly 7,800 after Tri-training. It demonstrates
that semi-supervised algorithms are able to learn
more bi-lexical features automatically from the
unlabeled data, which may help recognize more
translation equivalences. However, we also notice
that the accuracy drops a little after Tri-training.
This might also be caused by the large set of bi-
lexical features, which may contain some noises.

In the comparison of initialization strategies,
the dividing strategy achieves a much higher re-
call of 0.7605, which is also the highest among
all models. It also achieves the best F1 score of
0.7717, higher than the bootstrap sampling strat-
egy (0.7684). This result confirms that diversity of
initial classifiers is important for Co-training style
algorithms.

4.4 Experiments on the Size of Data

4.4.1 Size of Labeled Data

We design this experiment to see how the size of
labeled data affects the supervised training proce-
dure. Our labeled training set contains 5,800 train-
ing instances. We randomly sample different sets
of instances from the whole set and perform the
supervised training.

The alignment results are plotted in Figure 2a.
Basically, both accuracy and recall increase with
the size of labeled data. However, we also find that
the increase of all the scores gets slower when the

number of training instances exceeds 3,000. One
possible explanation for this is that the training
set itself is too small and contains redundant in-
stances, which may prevent further improvement.
We can see in the Section 4.4.2 that the scores can
be largely improved when more data is added.

4.4.2 Size of Unlabeled Data
For better understanding the effect of unlabeled
data, we run the Tri-training algorithm on unla-
beled corpus of different sizes. The original un-
labeled corpus contains about 288 thousand sen-
tence pairs. We create 12 sub-corpus of it with
different sizes by selecting certain amounts of sen-
tences from the beginning. Our smallest sub-
corpus consists of the first 5,000 sentence pairs of
the original corpus; while the largest sub-corpus
contains the first 275 thousand sentence pairs. The
alignment results on these different sub-corpus are
evaluated (See Figure 2b).

The result shows that as the size of unlabeled
data grows, the F1 score of Tri-Divide increases
from around 0.74 to 0.772. The F1 score of Tri-
Bootstrap also gets a similar increase. This proves
that adding unlabeled data does help the learning
process. The result also suggests that when the
size of unlabeled data is small, both Tri-Bootstrap
and Tri-Divide get lower scores than the super-
vised model. This is because the Tri-training mod-
els only use part of the labeled data for the training
of each individual classifier, while the supervised
model use the whole set. We can see that when
there are more than 50 thousand unlabeled sen-
tence pairs, both Tri-training models outperform
the supervised model significantly.

140

ModelName Dev04 Test05 Test06 Test08
Model4C2E 24.54 17.10 17.52 14.59
Model4E2C 26.54 19.00 20.18 16.56
BerkeleyAl. 26.19 20.08 19.65 16.70
Model4GDF 26.75 20.67 20.58 17.05
Supervised 27.07 20.00 19.47 16.13

Tri-Bootstrap 26.88 20.49 20.76 17.31
Tri-Divide 27.04 20.96 20.79 17.18

Table 4: Experiments on machine translation (BLEU4 scores in percentage)

Note that, both experiments on data size show
some unsteadiness during the learning process.
We attribute this mainly to the random sampling
we use in the algorithm. As there are, in all, about
8.8 million instances , it is highly possible that
some of these instances are redundant or noisy.
And because our random sampling does not dis-
tinguish different instances, the quality of result-
ing model may get affected if these redundant or
noisy instances are selected and added to the train-
ing set.

4.5 Experiments on Machine Translation

We compare the machine translation results of
each sub-models, supervised models and semi-
supervised models in Table 4. Among sub-models,
BerkeleyAligner gets better BLEU4 scores in al-
most all the data sets except TEST06, which
agrees with its highest F1 score among all sub-
models. The supervised method gets the highest
BLEU score of 27.07 on the dev set. However, its
performance on the test sets is a bit lower than that
of BerkeleyAligner.

As we expect, our two semi-supervised mod-
els achieve highest scores on almost all the data
sets, which are also higher than the commonly
used grow-diag-final-and symmetrization of IBM
Model 4. More specifically, Tri-Divide is the
best of all systems. It gets a dev score of 27.04,
which is comparable with the highest one (27.07).
Tri-Divide also gets the highest BLEU scores
on Test05 and Test06 (20.96 and 20.79, respec-
tively), which are nearly 1 point higher than all
sub-models. The other Tri-training model, Tri-
Bootstrap, gets the highest score on Test08, which
is also significantly better than those sub-models.

Despite the large improvement in F1 score, our
two Tri-training models only get slightly better
score than the well-known Model4GDF. This kind
of inconsistence between AER or F1 scores and

BLEU scores is a known issue in machine trans-
lation community (Fraser and Marcu, 2007). One
possible explanation is that both AER or F1 are
0-1 loss functions, which means missing one link
and adding one redundant link will get the same
penalty. And more importantly, every wrong link
receives the same penalty under these metrics.
However, these different errors may have different
effects on the machine translation quality. Thus,
improving alignment quality according to AER or
F1 may not directly lead to an increase of BLEU
scores. The relationship among these metrics are
still under investigation.

5 Related work

Previous work mainly focuses on supervised
learning of word alignment. Liu et al. (2005)
propose a log-linear model for the alignment be-
tween two sentences, in which different features
can be used to describe the alignment quality.
Moore (2005) proposes a similar framework, but
with more features and a different search method.
Other models such as SVM and CRF are also
used (Taskar et al., 2005; Cherry and Lin, 2006;
Haghighi et al., 2009). For alignment ensemble,
Wu and Wang (2005) introduce a boosting ap-
proach, in which the labeled data is used to cal-
culate the weight of each sub-model.

These researches all focus on the modeling of
alignment structure and employ some strategy to
search for the optimal alignment. Our main con-
tribution here is the use Co-training style semi-
supervised methods to assist the ensemble learn-
ing framework of Ayan and Dorr (2006). Although
we use a maximum entropy model in our experi-
ment, other models like SVM and CRF can also
be incorporated into our learning framework.

In the area of semi-supervised learning of word
alignment, Callison-Burch et al. (2004) compare
the results of interpolating statistical machine

141

translation models learnt from labeled and unla-
beled data, respectively. Wu et al. (2006) propose
a modified boosting algorithm, where two differ-
ent models are also trained using labeled and un-
labeled data respectively and interpolated. Fraser
and Marcu (2006) propose an EMD algorithm,
where labeled data is used for discriminative re-
ranking. It should be pointed out that these pieces
of work all use two separate processes for learn-
ing with labeled and unlabeled data. They either
train and interpolate two separate models or re-
rank previously learnt models with labeled data
only. Our proposed semi-supervised strategy is
able to incorporate both labeled and unlabeled data
in the same process, which is in a different line of
thinking.

6 Conclusions and Future Work

Semi-supervised techniques are useful when there
is a large amount of unlabeled data. In this
paper, we introduce a semi-supervised learning
method, called Tri-training, to improve the word
alignment combination task. Although experi-
ments have proved the effectiveness of our meth-
ods, there is one defect that should be mentioned.
As we previously assume that all the decisions
on alignment links are independent of each other
(in Section 2.1), our model are only able to cap-
ture link level evidence like bi-lexical features.
Some global features, such as final word fertil-
ity, cannot be integrated into the current frame-
work. In the future, we plan to apply our semi-
supervised strategy in more complicated learning
frameworks, which are able to capture those global
features.

Currently we use a random sampling to handle
the 8.8 million instances. We will also explore
better and more aggressive sampling techniques,
which may lead to more stable training results and
also enable us to process larger corpus.

Acknowledgments

The authors would like to thank Dr. Ming Li,
Mr. Junming Xu and the anonymous reviewers for
their valuable comments. This work is supported
by the National Fundamental Research Program
of China(2010CB327903) and the Scientific Re-
search Foundation of Graduate School of Nanjing
University(2008CL08).

References
Necip Fazil Ayan and Bonnie J. Dorr. 2006. A max-

imum entropy approach to combining word align-
ments. In Proceedings of the main conference
on Human Language Technology Conference of the
North American Chapter of the Association of Com-
putational Linguistics, pages 96–103, Morristown,
NJ, USA. Association for Computational Linguis-
tics.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the 11th Annual Conference on Com-
putational Learning Theory, pages 92–100. Morgan
Kaufmann Publishers.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathe-
matic of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Chris Callison-Burch, David Talbot, and Miles Os-
borne. 2004. Statistical machine translation with
word- and sentence-aligned parallel corpora. In ACL
’04: Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics, page 175,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Colin Cherry and Dekang Lin. 2006. Soft syntactic
constraints for word alignment through discrimina-
tive training. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages 105–112,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Alexander Fraser and Daniel Marcu. 2006. Semi-
supervised training for statistical word alignment.
In ACL-44: Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Com-
putational Linguistics, pages 769–776, Morristown,
NJ, USA. Association for Computational Linguis-
tics.

Alexander Fraser and Daniel Marcu. 2007. Measuring
word alignment quality for statistical machine trans-
lation. Comput. Linguist., 33(3):293–303.

Aria Haghighi, John Blitzer, and Dan Klein. 2009.
Better word alignments with supervised itg models.
In Association for Computational Linguistics, Sin-
gapore.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In HLT-
NAACL.

Percy Liang, Benjamin Taskar, and Dan Klein. 2006.
Alignment by agreement. In Robert C. Moore,
Jeff A. Bilmes, Jennifer Chu-Carroll, and Mark
Sanderson, editors, HLT-NAACL. The Association
for Computational Linguistics.

142

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-
linear models for word alignment. In ACL ’05:
Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 459–
466, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Robert C. Moore. 2005. A discriminative framework
for bilingual word alignment. In HLT ’05: Proceed-
ings of the conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, pages 81–88, Morristown, NJ, USA.
Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Comput. Linguist., 29(1):19–51.

A. Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In Proceedings of International
Conference on Spoken Language Processing, page
901 904.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein.
2005. A discriminative matching approach to word
alignment. In HLT ’05: Proceedings of the confer-
ence on Human Language Technology and Empiri-
cal Methods in Natural Language Processing, pages
73–80, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. Hmm-based word alignment in sta-
tistical translation. In Proceedings of the 16th Inter-
national Conference on Computational Linguistics,
pages 836–841.

Hua Wu and Haifeng Wang. 2005. Boosting statistical
word alignment. In Proceedings of MT SUMMIT X,
pages 364–371, Phuket Island, Thailand, September.

Hua Wu, Haifeng Wang, and Zhanyi Liu. 2006. Boost-
ing statistical word alignment using labeled and un-
labeled data. In Proceedings of the COLING/ACL
2006 Main Conference Poster Sessions, pages 913–
920, Sydney, Australia, July. Association for Com-
putational Linguistics.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Ex-
ploiting unlabeled data using three classifiers. vol-
ume 17, pages 1529–1541, Piscataway, NJ, USA.
IEEE Educational Activities Department.

143

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 144–152,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

A Comparative Study of Bayesian Models for Unsupervised Sentiment
Detection

Chenghua Lin
School of Engineering,

Computing and Mathematics
University of Exeter

Exeter, EX4 4QF, UK.
cl322@exeter.ac.uk

Yulan He
Knowledge Media Institute

The Open University
Milton Keynes
MK7 6AA, UK

Y.He@open.ac.uk

Richard Everson
School of Engineering,

Computing and Mathematics
University of Exeter

Exeter, EX4 4QF, UK.
R.E.Everson@exeter.ac.uk

Abstract

This paper presents a comparative study
of three closely related Bayesian mod-
els for unsupervised document level senti-
ment classification, namely, the latent sen-
timent model (LSM), the joint sentiment-
topic (JST) model, and the Reverse-JST
model. Extensive experiments have been
conducted on two corpora, the movie re-
view dataset and the multi-domain senti-
ment dataset. It has been found that while
all the three models achieve either bet-
ter or comparable performance on these
two corpora when compared to the exist-
ing unsupervised sentiment classification
approaches, both JST and Reverse-JST are
able to extract sentiment-oriented topics.
In addition, Reverse-JST always performs
worse than JST suggesting that the JST
model is more appropriate for joint senti-
ment topic detection.

1 Introduction

With the explosion of web 2.0, various types of
social media such as blogs, discussion forums and
peer-to-peer networks present a wealth of infor-
mation that can be very helpful in assessing the
general public’s sentiments and opinions towards
products and services. Recent surveys have re-
vealed that opinion-rich resources like online re-
views are having greater economic impact on both
consumers and companies compared to the tradi-
tional media (Pang and Lee, 2008). Driven by
the demand of gleaning insights of such great
amounts of user-generated data, work on new
methodologies for automated sentiment analysis
has bloomed splendidly.

Compared to the traditional topic-based text
classification, sentiment classification is deemed
to be more challenging as sentiment is often em-
bodied in subtle linguistic mechanisms such as

the use of sarcasm or incorporated with highly
domain-specific information. Although the task
of identifying the overall sentiment polarity of
a document has been well studied, most of the
work is highly domain dependent and favoured
in supervised learning (Pang et al., 2002; Pang
and Lee, 2004; Whitelaw et al., 2005; Kennedy
and Inkpen, 2006; McDonald et al., 2007), re-
quiring annotated corpora for every possible do-
main of interest, which is impractical for real
applications. Also, it is well-known that senti-
ment classifiers trained on one domain often fail
to produce satisfactory results when shifted to an-
other domain, since sentiment expression can be
quite different in different domains (Aue and Ga-
mon, 2005). Moreover, aside from the diversity
of genres and large-scale size of Web corpora,
user-generated contents evolve rapidly over time,
which demands much more efficient algorithms
for sentiment analysis than the current approaches
can offer. These observations have thus motivated
the problem of using unsupervised approaches for
domain-independent joint sentiment topic detec-
tion.

Some recent research efforts have been made to
adapt sentiment classifiers trained on one domain
to another domain (Aue and Gamon, 2005; Blitzer
et al., 2007; Li and Zong, 2008; Andreevskaia
and Bergler, 2008). However, the adaption perfor-
mance of these lines of work pretty much depends
on the distribution similarity between the source
and target domain, and considerable effort is still
required to obtain labelled data for training.

Intuitively, sentiment polarities are dependent
on contextual information, such as topics or do-
mains. In this regard, some recent work (Mei et
al., 2007; Titov and McDonald, 2008a) has tried to
model both sentiment and topics. However, these
two models either require postprocessing to calcu-
late the positive/negative coverage in a document
for polarity identification (Mei et al., 2007) or re-

144

quire some kind of supervised setting in which
review text should contain ratings for aspects of
interest (Titov and McDonald, 2008a). More re-
cently, Dasgupta and Ng (2009) proposed an unsu-
pervised sentiment classification algorithm by in-
tegrating user feedbacks into a spectral clustering
algorithm. Features induced for each dimension of
spectral clustering can be considered as sentiment-
oriented topics. Nevertheless, human judgement
of identifying the most important dimensions dur-
ing spectral clustering is required.

Lin and He (2009) proposed a joint sentiment-
topic (JST) model for unsupervised joint senti-
ment topic detection. They assumed that top-
ics are generated dependent on sentiment distri-
butions and then words are generated conditioned
on sentiment-topic pairs. While this is a reason-
able design choice, one may argue that the re-
verse is also true that sentiments may vary ac-
cording to topics. Thus in this paper, we studied
the reverse dependence of the JST model called
Reverse-JST, in which sentiments are generated
dependent on topic distributions in the modelling
process. We also note that, when the topic num-
ber is set to 1, both JST and reversed-JST es-
sentially become a simple latent Dirichlet alloca-
tion (LDA) model with only S (number of sen-
timent label) topics, each of which corresponds
to a sentiment label. We called it latent senti-
ment model (LSM) in this paper. Extensive ex-
periments have been conducted on the movie re-
view (MR)1 (Pang et al., 2002) and multi-domain
sentiment (MDS)2 (Blitzer et al., 2007) datasets
to compare the performance of LSM, JST and
Reverse-JST. Results show that all these three
models are able to give either better or compara-
ble performance compared to the existing unsu-
pervised sentiment classification approaches. In
addition, both JST and reverse-JST are able to ex-
tract sentiment-oriented topics. Furthermore, the
fact that reverse-JST always performs worse than
JST suggests that the JST model is more appropri-
ate for joint sentiment topic detection.

The rest of the paper is organized as follows.
Section 2 presents related work. Section 3 de-
scribes the LSM, JST and Reserver-JST models.
Experimental setup and results on the MR and
MDS datasets are discussed in Section 4 and 5 re-

1http://www.cs.cornell.edu/people/
pabo/movie-review-data

2http://www.cs.jhu.edu/ ˜ mdredze/
datasets/sentiment/index2.html

spectively. Finally, Section 6 concludes the paper
and outlines the future work.

2 Related Work

As opposed to the work (Pang et al., 2002; Pang
and Lee, 2004; Whitelaw et al., 2005; Kennedy
and Inkpen, 2006) that only focused on senti-
ment classification in one particular domain, re-
cent research attempts have been made to address
the problem of sentiment classification across do-
mains. Aue and Gamon (2005) explored vari-
ous strategies for customizing sentiment classifiers
to new domains, where the training is based on
a small number of labelled examples and large
amounts of unlabelled in-domain data. However,
their experiments achieved only limited success,
with most of the classification accuracy below
80%. In the same vein, some more recent work
focused on domain adaption for sentiment classi-
fiers. Blitzer et al. (2007) used the structural corre-
spondence learning (SCL) algorithm with mutual
information. Li and Zong (2008) combined multi-
ple single classifiers trained on individual domains
using SVMs. However, the adaption performance
in (Blitzer et al., 2007) depends on the selection of
pivot features that used to link the source and tar-
get domains; whereas the approach of Li and Zong
(2008) heavily relies on labelled data from all the
domains to train the integrated classifier and thus
lack the flexibility to adapt the trained classifier to
domains where label information is not available.

Recent years have also seen increasing interests
in modelling both sentiment and topics simultane-
ously. The topic-sentiment mixture (TSM) model
(Mei et al., 2007) can jointly model sentiment and
topics by constructing an extra background com-
ponent and two additional sentiment subtopics on
top of the probabilistic latent semantic indexing
(pLSI) (Hofmann, 1999). However, TSM may
suffer from the problem of overfitting the data
which is known as a deficiency of pLSI, and post-
processing is also required in order to calculate
the sentiment prediction for a document. The
multi-aspect sentiment (MAS) model (Titov and
McDonald, 2008a), which is extended from the
multi-grain latent Dirichlet allocation (MG-LDA)
model (Titov and McDonald, 2008b), allows sen-
timent text aggregation for sentiment summary of
each rating aspect extracted from MG-LDA. One
drawback of MAS is that it requires that every as-
pect is rated at least in some documents, which

145

is practically infeasible. More recently, Dasgupta
and Ng (2009) proposed an unsupervised sen-
timent classification algorithm where user feed-
backs are provided on the spectral clustering pro-
cess in an interactive manner to ensure that text are
clustered along the sentiment dimension. Features
induced for each dimension of spectral cluster-
ing can be considered as sentiment-oriented top-
ics. Nevertheless, human judgement of identify-
ing the most important dimensions during spectral
clustering is required.

Among various efforts for improving senti-
ment detection accuracy, one direction is to in-
corporate prior information or subjectivity lexi-
con (i.e., words bearing positive or negative sen-
timent) into the sentiment model. Such sen-
timent lexicons can be acquired from domain-
independent sources in many different ways, from
manually built appraisal groups (Whitelaw et
al., 2005), to semi-automatically (Abbasi et al.,
2008) and fully automatically (Kaji and Kitsure-
gawa, 2006) constructed lexicons. When incor-
porating lexical knowledge as prior information
into a sentiment-topic model, Andreevskaia and
Bergler (2008) integrated the lexicon-based and
corpus-based approaches for sentence-level sen-
timent annotation across different domains; Li et
al. (2009) employed lexical prior knowledge for
semi-supervised sentiment classification based on
non-negative matrix tri-factorization, where the
domain-independent prior knowledge was incor-
porated in conjunction with domain-dependent un-
labelled data and a few labelled documents. How-
ever, this approach performed worse than the JST
model on the movie review data even with 40%
labelled documents as will be shown in Section 5.

3 Latent Sentiment-Topic Models

This section describes three closely related
Bayesian models for unsupervised sentiment clas-
sification, the latent sentiment model (LSM), the
joint sentiment-topic (JST) model, and the joint
topic sentiment model by reversing the generative
process of sentiment and topics in the JST model,
called Reverse-JST.

3.1 Latent Sentiment Model (LSM)

The LSM model, as shown in Figure 1(a), can be
treated as a special case of LDA where a mixture
of only three sentiment labels are modelled, i.e.
positive, negative and neutral.

Assuming that we have a total number ofS sen-
timent labels3; a corpus with a collection ofD
documents is denoted byC = {d1, d2, ..., dD};
each document in the corpus is a sequence ofNd

words denoted byd = (w1, w2, ..., wNd
), and

each word in the document is an item from a vo-
cabulary index withV distinct terms denoted by
{1, 2, ..., V }. The procedure of generating a word
in LSM starts by firstly choosing a distribution
over three sentiment labels for a document. Fol-
lowing that, one picks up a sentiment label from
the sentiment label distribution and finally draws a
word according to the sentiment label-word distri-
bution.

The joint probability of words and sentiment la-
bel assignment in LSM can be factored into two
terms:

P (w, l) = P (w|l)P (l|d). (1)

Letting the superscript−t denote a quantity that
excludes data from thetth position, the conditional
posterior forlt by marginalizing out the random
variablesϕ andπ is

P (lt = k|w, l−t, β,γ) ∝

N−t
wt,k

+ β

N−t
k + V β

·
N−t

k,d + γk

N−t
d +

∑
k γk

, (2)

whereNwt,k is the number of times wordwt has
associated with sentiment labelk; Nk is the the
number of times words in the corpus assigned to
sentiment labelk; Nk,d is the number of times
sentiment labelk has been assigned to some word
tokens in documentd; Nd is the total number of
words in the document collection.

Gibbs sampling is used to estimate the poste-
rior distribution of LSM, as well as the JST and
Reverse-JST models that will be discussed in the
following two sections.

3.2 Joint Sentiment-Topic Model (JST)

In contrast to LSM that only models document
sentiment, the JST model (Lin and He, 2009)
can detect sentiment and topic simultaneously, by
modelling each document withS (number of sen-
timent labels) topic-document distributions. It
should be noted that when the topic number is
set to 1, JST effectively becomes the LSM model
with only three topics corresponding to each of the

3For all the three models, i.e., LSM, JST and Reverse-
JST, we set the sentiment label numberS to 3 representing
the positive, negative and neutral polarities, respectively.

146

w
�

�
�

l� N d DS
(a)

w

�
�
�

z� l N d D
S

S * T
(b)

w� l� z N d D
T

T * S
$ %

& '
(c)

Figure 1: (a) LSM model; (b) JST model; (c) Reverse-JST model.

three sentiment labels. LetT be the total num-
ber of topics, the procedure of generating a word
wi according to the graphical model shown in Fig-
ure 1(b) is:

• For each documentd, choose a distribution
πd ∼ Dir(γ).

• For each sentiment labell of documentd,
choose a distributionθd,l ∼ Dir(α).

• For each wordwi in documentd

– choose a sentiment labelli ∼
Multinomial(πd),

– choose a topiczi ∼ Multinomial(θd,li),
– choose a wordwi from ϕli

zi
, a Multi-

nomial distribution over words condi-
tioned on topiczi and sentiment labelli.

In JST, the joint probability of words and topic-
sentiment label assignments can be factored into
three terms:

P (w, z, l) = P (w|z, l)P (z|l, d)P (l|d). (3)

The conditional posterior forzt and lt can be ob-
tained by marginalizing out the random variables
ϕ, θ, andπ:

P (zt = j, lt = k|w, z−t, l−t, α, β,γ) ∝

N−t
wt,j,k

+ β

N−t
j,k + V β

·
N−t

j,k,d
+ α

N−t
k,d + Tα

·
N−t

k,d
+ γk

N−t
d +

∑
k γk

, (4)

whereNwt,j,k is the number of times wordwt ap-
peared in topicj and with sentiment labelk; Nj,k

is the number of times words assigned to topic
j and sentiment labelk, Nk,j,d is the number of
times a word from documentd has been associ-
ated with topicj and sentiment labelk; Nk,d is
the number of times sentiment labelk has been
assigned to some word tokens in documentd.

3.3 Reverse Joint Sentiment-Topic Model
(Reverse-JST)

We also studied a variant of the JST model,
called Reverse-JST. As opposed to JST in which
topic generation is conditioned on sentiment la-
bels, sentiment label generation in Reverse-JST is
dependent on topics. As shown in Figure 1(c),
Reverse-JST is effectively a four-layer hierarchi-
cal Bayesian model, where topics are associated
with documents, under which sentiment labels are
associated with topics and words are associated
with both topics and sentiment labels.

The procedure of generating a wordwi in
Reverse-JST is shown below:

• For each documentd, choose a distribution
θd ∼ Dir(α).

• For each topicz of documentd, choose a dis-
tribution πd,z ∼ Dir(γ).

• For each wordwi in documentd

– choose a topiczi ∼ Multinomial(θd),

– choose a sentiment labelli ∼
Multinomial(πd,zi

),

– choose a wordwi from ϕli
zi

, a multi-
nomial distribution over words condi-
tioned on the topiczi and sentiment la-
bel li.

Analogy to JST, in Reverse-JST the joint prob-
ability of words and the topic-sentiment label as-
signments can be factored into the following three
terms:

P (w, l, z) = P (w|l, z)P (l|z, d)P (z|d), (5)

and the conditional posterior forzt and lt can be
derived by integrating out the random variablesϕ,

147

θ, andπ, yielding

P (zt = j, lt = k|w, z
−t, l−t, α, β,γ) ∝

N−t
wt,j,k

+ β

N−t
j,k

+ V β
·

N−t
k,j,d + γk

N−t
j,d

+
∑

k γk

·
N−t

j,d + α

N−t
d

+ Tα
. (6)

It it noted that most of the terms in the Reverse-
JST posterior is identical to the posterior of JST in
Equation 4, except thatNj,d is the number of times
topic j has been assigned to some word tokens in
documentd.

As we do not have a direct sentiment label-
document distribution in Reverse-JST, a distribu-
tion over sentiment label for documentP (l|d) is
calculated asP (l|d) =

∑
z P (l|z, d)P (z|d). For

all the three models, the probabilityP (l|d) will
be used to determine document sentiment polar-
ity. We define that a documentd is classified
as a positive-sentiment document if its probabil-
ity of positive sentiment label given document
P (lpos|d), is greater than its probability of neg-
ative sentiment label given documentP (lneg|d),
and vice versa.

4 Experimental Setup

4.1 Dataset Description

Two publicly available datasets, the MR and MDS
datasets, were used in our experiments. The MR
dataset (also known as the polarity dataset) has
become a benchmark for many studies since the
work of Pang et al. (2002). The version 2.0 used in
our experiment consists of 1000 positive and 1000
negative movie reviews drawn from the IMDB
movie archive, with an average of 30 sentences in
each document. We also experimented with an-
other dataset, namelysubjective MR, by removing
the sentences that do not bear opinion information
from the MR dataset, following the approach of
Pang and Lee (2004). The resulting dataset still
contains 2000 documents with a total of 334,336
words and 18,013 distinct terms, about half the
size of the original MR dataset without perform-
ing subjectivity detection.

First used by Blitzer et al. (2007), the MDS
dataset contains 4 different types of product re-
views taken from Amazon.com including books,
DVDs, electronics and kitchen appliances, with
1000 positive and 1000 negative examples for each
domain4.

4We did not perform subjectivity detection on the MDS
dataset since its average document length is much shorter

Preprocessing was performed on both of the
datasets. Firstly, punctuation, numbers, non-
alphabet characters and stop words were removed.
Secondly, standard stemming was performed in
order to reduce the vocabulary size and address the
issue of data sparseness. Summary statistics of the
datasets before and after preprocessing are shown
in Table 1.

4.2 Defining Model Priors

In the experiments, two subjectivity lexicons,
namely the MPQA5 and the appraisal lexicon6,
were combined and incorporated as prior infor-
mation into the model learning. These two lexi-
cons contain lexical words whose polarity orien-
tation have been fully specified. We extracted the
words with strong positive and negative orienta-
tion and performed stemming in the preprocess-
ing. In addition, words whose polarity changed af-
ter stemming were removed automatically, result-
ing in 1584 positive and 2612 negative words, re-
spectively. It is worth noting that the lexicons used
here are fully domain-independent and do not bear
any supervised information specifically to the MR,
subjMR and MDS datasets. Finally, the prior in-
formation was produced by retaining all words in
the MPQA and appraisal lexicons that occurred in
the experimental datasets. The prior information
statistics for each dataset is listed in the last row of
Table 1.

In contrast to Lin and He (2009) that only uti-
lized prior information during the initialization of
the posterior distributions, we use the prior infor-
mation in the Gibbs sampling inference step and
argue that this is a more appropriate experimental
setting. For the Gibbs sampling step of JST and
Reverse-JST, if the currently observed word token
matches a word in the sentiment lexicon, a cor-
responding sentiment label will be assigned and
only a new topic will be sampled. Otherwise, a
new sentiment-topic pair will be sampled for that
word token. For LSM, if the current word token
matches a word in the sentiment lexicon, a corre-
sponding sentiment label will be assigned and skip
the Gibbs sampling procedure. Otherwise, a new
sentiment label will be sampled.

than that of the MR dataset, with some documents even hav-
ing one sentence only.

5http://www.cs.pitt.edu/mpqa/
6http://lingcog.iit.edu/arc/appraisal_

lexicon_2007b.tar.gz

148

Table 1: Dataset and sentiment lexicon statistics. (Note:†denotes before preprocessing and * denotes
after preprocessing.)

Dataset
of words

MR subjMR MDS
Book DVD Electronic Kitchen

Corpus size† 1,331,252 812,250 352,020 341,234 221,331 186,122
Corpus size* 627,317 334,336 157,441 153,422 95,441 79,654
Vocabulary† 38,906 34,559 22,028 21,424 10,669 9,525
Vocabulary* 25,166 18,013 14,459 14,806 7,063 6,252
of lexicon 1248/1877 1150/1667 1000/1352 979/1307 574/552 582/504
(pos./neg.)*

Table 2: LSM sentiment classification results.
Aaccuracy (%)

MDS
MR subjMR Book DVD Electronic Kitchen MDS overall

LSM (without prior info.) 61.7 57.9 51.6 53.5 58.4 56.8 55.1
LSM (with prior info.) 74.1 76.1 64.2 66.3 72.5 74.1 69.3
Dasgupta and Ng (2009) 70.9 N/A 69.5 70.8 65.8 69.7 68.9
Li et al.(2009) with 10% doc. label 60 N/A

N/A
62

Li et al.(2009) with 40% doc. label 73.5 N/A 73

5 Experimental Results

5.1 LSM Sentiment Classification Results

In this section, we discuss the sentiment classifica-
tion results of LSM at document level by incorpo-
rating prior information extracted from the MPQA
and appraisal lexicon. The symmetry Dirichlet
prior β was set to 0.01, and the asymmetric Dirich-
let sentiment priorγ was set to 0.01 and 0.9 for
the positive and negative sentiment label, respec-
tively. Classification accuracies were averaged
over 5 runs for each dataset with 2000 Gibbs sam-
pling iterations.

As can be observed from Table 2, the perfor-
mance of LSM is only mediocre for all the 6
datasets when no prior information was incorpo-
rated. A significant improvement, with an aver-
age of more than 13%, is observed after incor-
porating prior information, especially notable for
subjMR and kitchen with 18.2% and 17.3% im-
provement, respectively. It is also noted that LSM
with subjMR dataset achieved 2% improvement
over the original MR dataset, implying that the
subjMR dataset has better representation of sub-
jective information than the original dataset by fil-
tering out the objective contents. For the MDS
dataset, LSM achieved 72.5% and 74.1% accu-
racy on electronic and kitchen domain respec-
tively, which is much better than the book and
DVD domain with only around 65% accuracy.
Manually analysing the MDS dataset reveals that
the book and DVD reviews often contain a lot
of descriptions of book contents or movie plots,

which make the reviews from these two domains
difficult to classify; whereas in the electronic and
kitchen domain, comments on the product are of-
ten expressed in a straightforward manner.

When compared to the recently proposed un-
supervised approach based on a spectral cluster-
ing algorithm (Dasgupta and Ng, 2009), except
for the book and DVD domain, LSM achieved
better performance in all the other domains with
more than 5% overall improvement. Neverthe-
less, the approach proposed by Dasgupta and Ng
(2009) requires users to specify which dimensions
(defined by the eigenvectors in spectral cluster-
ing) are most closely related to sentiment by in-
specting a set of features derived from the re-
views for each dimension, and clustering is per-
formed again on the data to derive the final re-
sults. In all the Bayesian models studied here, no
human judgement is required. Another recently
proposed non-negative matrix tri-factorization ap-
proach (Li et al., 2009) also employed lexical prior
knowledge for semi-supervised sentiment classi-
fication. However, when incorporating 10% of
labelled documents for training, the non-negative
matrix tri-factorization approach performed much
worse than LSM, with only around 60% accu-
racy achieved for all the datasets. Even with 40%
labelled documents, it still performs worse than
LSM on the MR dataset and slightly outperforms
LSM on the MDS dataset. It is worth noting that
no labelled documents were used in the LSM re-
sults reported here.

149

7 0 . 2 7 3 . 4 6 6 . 1 6 9 . 1 7 1 . 2 6 5 . 36 9 . 3 7 2 . 7 6 5 . 9 6 8 . 3 7 0 . 9 6 4 . 76 8 . 1 7 1 . 9
6 4 . 8 6 7 7 0 . 1 6 3 . 96 06 26 46 66 87 07 27 47 6

M R s u b j M R M D S M R s u b j M R M D S
A ccuracy

T 3 0 T 5 0 T 1 0 0
Figure 2: JST and Reverse-JST sentiment classification results with multiple topics.

5.2 JST and Reverse-JST Results with
Multiple Topics

As both JST and Reverse-JST model document
level sentiment and mixture of topic simulta-
neously, it is worth to explore how the senti-
ment classification and topic extraction tasks af-
fect/benifit each other. With this in mind, we
conducted a set of experiments on both JST and
Reverse-JST, with topic number varying from 30,
50 to 100. The symmetry Dirichlet priorα andβ
were set to50/T and 0.01 respectively for both
models. The asymmetry sentiment priorγ was
empirically set to (0.01, 1.8) for JST and (0.01,
0.012) for Reverse-JST, corresponding to positive
and negative sentiment prior, respectively. Results
were averaged over 5 runs with 2000 Gibbs sam-
pling iterations.

As can be seen from Figure 2 that, for both mod-
els, the sentiment classification accuracy based on
the subjMR dataset still outperformed the results
based on the original MR dataset, where an over-
all improvement of 3% is observed for JST and
about 2% for Reverse-JST. When comparing JST
and Reverse-JST, it can be observed that Reverse-
JST performed slightly worse than JST for all sets
of experiments with about 1% to 2% drop in ac-
curacy. By closely examining the posterior of JST
and Reverse-JST (c.f. Equation 4 and 6), we no-
ticed that the countNj,d (number of times topicj
associated with some word tokens in documentd)
in the Reverse-JST posterior would be relatively
small due to the factor of large topic number set-

ting. On the contrary, the countNk,d (number of
times sentiment labelk assigned to some word to-
kens in documentd) in the JST posterior would be
relatively large ask is only defined over 3 differ-
ent sentiment labels. This essentially makes JST
less sensitive to the data sparseness problem and
the perturbation of hyperparameter setting. In ad-
dition, JST encodes an assumption that there is ap-
proximately a single sentiment for the entire docu-
ment, i.e. the documents are usually either mostly
positive or mostly negative. This assumption is
important as it allows the model to cluster different
terms which share similar sentiment. In Reverse-
JST, this assumption is not enforced unless only
one topic for each sentiment is defined. Therefore,
JST appears to be a more appropriate model de-
sign for joint sentiment topic detection.

In addition, it is observed that the sentiment
classification accuracy of both JST and Reverse-
JST drops slightly when the topic number in-
creases from 30 to 100, with the changes of 2%
(MR) and 1.5% (subjMR and MDS overall re-
sult) being observed for both models. This is
likely due to the fact that when the topic number
increases, the probability mass attracted under a
sentiment-topic pair would become smaller, which
essentially creates data sparseness problem. When
comparing with LSM, we notice that the differ-
ence in sentiment classification accuracy is only
marginal by additionally modelling a mixture of
topics. But both JST and Reverse-JST are able to
extract sentiment-oriented topics apart from docu-
ment level sentiment detection.

150

Table 3: Topic examples extracted by JST under different sentiment labels.
Book DVD Electronic Kitchen

pos. neg. pos. neg. pos. neg. pos. neg.
recip war action murder mous drive color fan
food militari good killer hand fail beauti room
cook armi fight crime logitech data plate cool

cookbook soldier right cop comfort complet durabl air
beauti govern scene crime scroll manufactur qualiti loud
simpl thing chase case wheel failur fiestawar nois
eat evid hit prison smooth lose blue live

famili led art detect feel backup finger annoi
ic iraq martial investig accur poorli white blow

kitchen polici stunt mysteri track error dinnerwar vornado
varieti destruct chan commit touch storag bright bedroom
good critic brilliant thriller click gb purpl inferior
pictur inspect hero attornei conveni flash scarlet window
tast invas style suspect month disast dark vibrat

cream court chines shock mice recogn eleg power

5.3 Topic Extraction

We also evaluated the effectiveness of topic sen-
timent captured. In contrast to LDA in which a
word is drawn from the topic-word distribution,
in JST or Reverse-JST, a word is drawn from the
distribution over words conditioned on both topic
and sentiment label. As an illustration, Table 3
shows eight topic examples extracted from the
MDS dataset by JST, where each topic was drawn
from a particular product domain under positive or
negative sentiment label.

As can be seen from Table 3, the eight extracted
topics are quite informative and coherent, and each
of the topics represents a certain product review
from the corresponding domain. For example,
the positive book topic probably discusses a good
cookbook; the positive DVD topic is apparently
about a popular action movie by Jackie Chan; the
negative electronic topic is likely to be complains
regarding data lose due to the flash drive failure,
and the negative kitchen topic is probably the dis-
satisfaction of the high noise level of theVornado
brand fan. In terms of topic sentiment, by examin-
ing through the topics in the table, it is evident that
topics under the positive and negative sentiment
label indeed bear positive and negative sentiment
respectively. The above analysis reveals the effec-
tiveness of JST in extracting topics and capturing
topic sentiment from text.

6 Conclusions and Future Work

In this paper, we studied three closed related
Bayesian models for unsupervised sentiment de-
tection, namely LSM, JST and Reverse-JST. As
opposing to most of the existing approaches to

sentiment classification which favour in super-
vised learning, these three models detect senti-
ment in a fully unsupervised manner. While all the
three models gives either better or comparable per-
formance compared to the existing approaches on
unsupervised sentiment classification on the MR
and MDS datasets, JST and Reverse-JST can also
model a mixture of topics and the sentiment as-
sociated with each topic. Moreover, extensive ex-
periments conducted on the datasets from differ-
ent domains reveal that JST always outperformed
Reverse-JST, suggesting JST being a more appro-
priate model design for joint sentiment topic de-
tection.

There are several directions we plan to inves-
tigate in the future. One is incremental learn-
ing of the JST parameters when facing with new
data. Another one is semi-supervised learning
of the JST model with some supervised informa-
tion being incorporating into the model parameter
estimation procedure such as some known topic
knowledge for certain product reviews or the doc-
ument labels derived automatically from the user-
supplied review ratings.

References

Ahmed Abbasi, Hsinchun Chen, and Arab Salem.
2008. Sentiment analysis in multiple languages:
Feature selection for opinion classification in web
forums.ACM Trans. Inf. Syst., 26(3):1–34.

Alina Andreevskaia and Sabine Bergler. 2008. When
specialists and generalists work together: Overcom-
ing domain dependence in sentiment tagging. In
Proceedings of (ACL-HLT), pages 290–298.

A. Aue and M. Gamon. 2005. Customizing sentiment

151

classifiers to new domains: a case study. InPro-
ceedings of Recent Advances in Natural Language
Processing (RANLP).

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. InProceedings of the Association for Com-
putational Linguistics (ACL), pages 440–447.

S. Dasgupta and V. Ng. 2009. Topic-wise, Sentiment-
wise, or Otherwise? Identifying the Hidden Dimen-
sion for Unsupervised Text Classification. InPro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 580–
589.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. InProceedings of the ACM Special Inter-
est Group on Information Retrieval (SIGIR), pages
50–57.

Nobuhiro Kaji and Masaru Kitsuregawa. 2006. Au-
tomatic construction of polarity-tagged corpus from
html documents. InProceedings of the COL-
ING/ACL on Main conference poster sessions, pages
452–459.

A. Kennedy and D. Inkpen. 2006. Sentiment classi-
fication of movie reviews using contextual valence
shifters. Computational Intelligence, 22(2):110–
125.

Shoushan Li and Chengqing Zong. 2008. Multi-
domain sentiment classification. InProceedings of
the Association for Computational Linguistics and
the Human Language Technology Conference (ACL-
HLT), Short Papers, pages 257–260.

Tao Li, Yi Zhang, and Vikas Sindhwani. 2009. A non-
negative matrix tri-factorization approach to senti-
ment classification with lexical prior knowledge. In
Proceedings of (ACL-IJCNLP), pages 244–252.

Chenghua Lin and Yulan He. 2009. Joint senti-
ment/topic model for sentiment analysis. InPro-
ceedings of the ACM international conference on In-
formation and knowledge management (CIKM).

Ryan McDonald, Kerry Hannan, Tyler Neylon, Mike
Wells, and Jeff Reynar. 2007. Structured models for
fine-to-coarse sentiment analysis. InProceedings of
the Annual Meeting of the Association of Computa-
tional Linguistics (ACL), pages 432–439.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su,
and ChengXiang Zhai. 2007. Topic sentiment mix-
ture: modeling facets and opinions in weblogs. In
Proceedings of the conference on World Wide Web
(WWW), pages 171–180.

Bo Pang and Lillian Lee. 2004. A sentimental ed-
ucation: sentiment analysis using subjectivity sum-
marization based on minimum cuts. InProceedings
of the Annual Meeting on Association for Computa-
tional Linguistics (ACL), page 271.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis.Found. Trends Inf. Retr., 2(1-
2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. InProceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 79–86.

Ivan Titov and Ryan McDonald. 2008a. A joint model
of text and aspect ratings for sentiment summariza-
tion. In Proceedings of the Aunal Meeting on Asso-
ciation for Computational Linguistics and the Hu-
man Language Technology Conference (ACL-HLT),
pages 308–316.

Ivan Titov and Ryan McDonald. 2008b. Modeling on-
line reviews with multi-grain topic models. InPro-
ceeding of the International Conference on World
Wide Web (WWW 08’), pages 111–120.

Casey Whitelaw, Navendu Garg, and Shlomo Arga-
mon. 2005. Using appraisal groups for sentiment
analysis. InProceedings of the ACM international
conference on Information and Knowledge Manage-
ment (CIKM), pages 625–631.

152

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 153–161,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

A Hybrid Approach to Emotional Sentence Polarity and
Intensity Classification

Jorge Carrillo de Albornoz, Laura Plaza, Pablo Gervás
Universidad Complutense de Madrid

Madrid, Spain
{jcalbornoz,lplazam}@fdi.ucm.es, pgervas@sip.ucm.es

Abstract

In this paper, the authors present a new ap-
proach to sentence level sentiment analysis.
The aim is to determine whether a sentence
expresses a positive, negative or neutral sen-
timent, as well as its intensity. The method
performs WSD over the words in the sentence
in order to work with concepts rather than
terms, and makes use of the knowledge in an
affective lexicon to label these concepts with
emotional categories. It also deals with the ef-
fect of negations and quantifiers on polarity
and intensity analysis. An extensive evaluation
in two different domains is performed in order
to determine how the method behaves in 2-
classes (positive and negative), 3-classes (posi-
tive, negative and neutral) and 5-classes
(strongly negative, weakly negative, neutral,
weakly positive and strongly positive) classifi-
cation tasks. The results obtained compare fa-
vorably with those achieved by other systems
addressing similar evaluations.

1 Introduction

Sentiment analysis has gained much attention
from the research community in recent years. It
is concerned with the problem of discovering
emotional meanings in text, and most common
tasks usually include emotion labeling (assigning
a text its main emotion), polarity recognition
(classifying a statement into positive or negative)
and subjectivity identification (determining
whether a text is subjective or objective). The
growing research interest is mainly due to the
practical applications of sentiment analysis.
Companies and organizations are interested in
finding out costumer sentiments and opinions,
while individuals are interested in others’ opi-
nions when purchasing a product or deciding
whether or not watching a movie.

Many approaches have dealt with sentiment
analysis as the problem of classifying product or
service reviews (Pang et al., 2002; Turney,
2002), while others have attempted to classify
news items (Devitt and Ahmad, 2007). The task
is usually addressed as a 2-classes classification
problem (positive vs. negative). Recent works
have included the neutral class, trying to detect
not only the polarity but also the absence of emo-
tional meaning (Wilson et al., 2005; Esuli and
Sebastiani, 2006). However, few approaches try
to face a more fine-grained prediction of the in-
tensity (e.g. classifying the polarity into strongly
negative, weakly negative, neutral, weakly posi-
tive and strongly positive).

Another important problem of most of these
approximations is that they usually work with
terms, and so disregard the contextual meaning
of those terms in the sentence (Martineau and
Finin, 2009; Moilanen and Pulman, 2007). The
use of word disambiguation is not usual in this
task, due to the fact that most approaches use
lexical resources created to work with terms.
However, it is essential to correctly capture the
meaning of these terms within the text.

In this paper, we present a hybrid approach
based on machine learning techniques and lexical
rules to classify sentences according to their po-
larity and intensity. Thus, given an input text, the
method is able to determine the polarity of each
sentence (i.e. if it is negative or positive), as well
as its intensity. The system tackles the effect of
negations and quantifiers in sentiment analysis,
and addresses the problem of word ambiguity,
taken into account the contextual meaning of the
terms in the text by using a word sense disam-
biguation algorithm.

The paper is organized as follows. Section 2
exposes some background and related work on
sentiment analysis. Section 3 presents the lexical
resources and corpora used by the system. Sec-

153

tion 4 describes the method proposed for polarity
and intensity classification. Section 5 presents
the evaluation framework and discusses the ex-
perimental results. Finally, section 6 provides
concluding remarks and future lines of work.

2 Related work

The sentiment analysis discipline in computa-
tional linguistic is mainly focused on identify-
ing/classifying different emotional contents with-
in a phrase, sentence or document. This field
usually encloses tasks such as emotion identifica-
tion, subjectivity classification and polarity rec-
ognition. Sentiment analysis has obtained great
popularity in the last years mostly due to its suc-
cessful application to different business domains,
such as the evaluation of products and services,
where the goal is to discern whether the opinion
expressed by a user about a product or service is
favorable or unfavorable.

Focusing on polarity recognition, the aim of
this task is the classification of texts into positive
or negative according to their emotional mean-
ing. Most of the approaches rely on machine
learning techniques or rule based methods. Sta-
tistical approaches based on term frequencies and
bags of words are frequently used in machine
learning approximations. Pang et al. (2002)
present a comparison between three different
machine learning algorithms trained with bags of
features computed over term frequencies, and
conclude that SVM classifiers can be efficiently
used in polarity identification. Martineau and
Finin (2009) use a similar approach where the
words are scored using a Delta TF-IDF function
before classifying the documents. On the other
hand, Meena and Prabhakar (2007) study the ef-
fect of conjuncts in polarity recognition using
rule based methods over the syntax tree of the
sentence. Whitelaw et al. (2005) introduce the
concept of “appraisal groups” which are com-
bined with bags of word features to automatical-
ly classify movie reviews. To this aim, they use a
semi-automated method to generate a lexicon of
appraising adjectives and modifiers.

During the past few years, the problem of po-
larity recognition has been usually faced as a step
beyond the identification of the subjectivity or
objectivity of texts (Wiebe et al., 1999). Differ-
ent approximations have been proposed to deal
with this problem. Pang and Lee (2004) propose
a graph-based method which finds minimum cuts
in a document graph to classify the sentences
into subjective or objective. After that, they use a

bag of words approximation to classify the sub-
jective sentences into positive or negative. Kim
and Hovy (2004) also introduce a previous step
to identify the subjectivity of sentences regarding
a certain topic, and later classify these sentences
into positives or negatives.

Most recent approaches do not only deal with
the 2-classes classification problem, but also in-
troduce a new class representing neutrality. Thus,
the aim of these works is to classify the text into
positive, negative or neutral. Wilson et al. (2005)
present a double subjectivity classifier based on
features such as syntactic classes and sentence
position, and more semantic features such as ad-
jective graduation. The first classifier determines
the subjectivity or neutrality of the phrases in the
text, while the second determines its polarity (in-
cluding neutrality). Esuli and Sebastiani (2006)
also address this problem testing three different
variants of a semi-supervised method, and classi-
fy the input into positive, negative or neutral.
The method proposed yields good results in the
2-classes polarity classification, while the results
decrease when dealing with 3-classes. A more
ambitious classification task is proposed by
Brooke (2009), where the goal is to measure the
intensity of polarity. To this aim, the author clas-
sifies the input into 3-classes (strongly-negative,
ambivalent, and strongly-positive), 4 classes
(strongly-negative, weakly-negative, weakly-
positive and strongly-positive) and 5-classes
(strongly-negative, weakly-negative, ambivalent,
weakly-positive and strongly-positive). The re-
sults decrease considerably with the number of
classes, from 62% of accuracy for 3-classes to
38% of accuracy for 5-classes.

3 Corpora and resources

The evaluation of the system has been carried out
using two corpora from two very distinct do-
mains: the Sentence Polarity Movie Review Da-
taset1 and the one used in the SemEval 2007 Af-
fective Text task 2

1 http://www.cs.cornell.edu/People/pabo/movie-
review-data/

. The first one consists of
10.662 sentences selected from different movie
review websites. These sentences are labeled as
positive or negative depending on whether they
express a positive or negative opinion within the
movie review. The second one consists of a
training set and a test set of 250 and 1000 news
headlines respectively, extracted from different
news sites. Each sentence is labeled with a value

2 http://www.cse.unt.edu/~rada/affectivetext/

154

between -100 and 100, where -100 means highly
negative emotional intensity, 100 means highly
positive and 0 means neutral. To the purpose of
this work, the test set from the SemEval corpus
and 1000 sentences randomly extracted from the
Sentence Polarity Movie Review corpus (500
positive and 500 negative) were used as evalua-
tion datasets.

In order to identify the emotional categories
associated to the concepts in the sentences, an
affective lexical database based on semantic
senses, instead of terms, is needed. To this aim,
the authors have tested different resources and
finally selected the WordNet Affect affective
database (Strapparava and Valitutti, 2004). This
affective lexicon has the particularity of assign-
ing emotional categories to synsets of the Word-
Net lexical database (Miller et al., 1990), allow-
ing the system to correctly disambiguate the
terms using one of the many WordNet-based
word sense disambiguation algorithms. The emo-
tional categories in WordNet Affect are orga-
nized hierarchically, and its first level distin-
guishes between positive-emotion, negative-
emotion, neutral-emotion and ambiguous-
emotion. The second level encloses the emotion-
al categories themselves, and consists of a set of
32 categories. For this work, a subset of 16 emo-
tional categories from this level has been se-
lected, since the hierarchy proposed in WordNet
Affect is considerably broader than those com-
monly used in sentiment analysis. On the other
hand, the first level of emotional categories may
be useful to predict the polarity, but it is clearly
not enough to predict the intensity of this polari-
ty. To be precise, the subset of emotional catego-
ries used in this work is: {joy, love, liking, calm-
ness, positive-expectation, hope, fear, sadness,
dislike, shame, compassion, despair, anxiety,
surprise, ambiguous-agitation and ambiguous-
expectation}. The authors consider this subset to
be a good representation of the human feeling.

Since the WordNet Affect hierarchy does not
provide an antonym relationship, the authors has
created that relation for the previous set of emo-
tional categories. Only relationships between
emotional categories with a strongly opposite
meaning are created, such as liking-disliking and
joy-sadness. The purpose of this antonym rela-
tionship is twofold: first, it contributes to handle
negation forms; and second, it can be used to
automatically expand the affective lexicon. Both
issues are discussed in detail later in the docu-
ment.

On the other hand, since a good amount of
words with a highly emotional meaning, such as
dead, cancer and violent, are not labeled in
WordNet Affect, these words have been manual-
ly labeled by the authors and have been later ex-
tended with their synonyms, antonyms and de-
rived adjectives using the corresponding seman-
tic and lexical relations in WordNet. This process
has been done in two steps in order to measure
the effect of the number of synsets labeled on the
classification accuracy, as described in section 5.

The WordNet Affect 1.1 lexicon consists of a
set of 911 synsets. However, the authors have
detected that a good number of these synsets
have been labeled more than once, and with dif-
ferent emotional categories (e.g. the synset
“a#00117872 {angered, enraged, furious, infu-
riated, maddened}” is labeled with three different
categories: anger, fury and infuriation). Thus,
after removing these synsets and those labeled
with an emotional category not included in the
16-categories subset used in this work, the affec-
tive lexicon presents 798 synsets. After the first
step of semi-automatic labeling, the affective
lexicon increased the number of synsets in 372,
of which 100 synsets were manually labeled, and
272 were automatically derived throughout the
WordNet relations. The second and last step of
semi-automatic labeling added 603 synsets to the
lexicon, of which 200 synsets were manually
labeled, and 403 were automatically derived.
The final lexicon presents 1773 synsets and 4521
words labeled with an emotional category. Table
1 shows the distribution of the affective lexicon
in grammatical categories.

Grammatical

Category
WNAffect

WNAffect +

1st step
WNAffect +

 2nd step
Nouns 280 440 699
Verbs 122 200 309
Adjectives 273 394 600
Adverbs 123 136 165

Table 1: Distribution in grammatical categories of the syn-

sets in the affective lexicon.

4 The method

In this section, the method for automatically
labeling sentences with an emotional intensity
and polarity is presented. The problem is faced
as a text classification task, which is accomplish-
es throughout four steps. Each step is explained
in detail in the following subsections.

155

4.1 Pre-processing: POS tagging and con-
cept identification

In order to determine the appropriate emotional
category for each word in its context, a pre-
processing step is accomplished to translate each
term in the sentence to its adequate sense in
WordNet. To this aim, the system analyzes the
text, splits it into sentences and tags the tokens
with their part of speech. The Gate architecture3
and the Stanford Parser4

Once the sentences have been split and tagged,
the method maps each word of each sentence
into its sense in WordNet according to its con-
text. To this end, the lesk WSD algorithm im-
plemented in the WordNet Sense-Relate perl
package is used (Patwardhan et al., 2005). The
disambiguation is carried out only over the
words belonging to the grammatical categories
noun, verb, adjective and adverb, as only these
categories can present an emotional meaning. As
a result, we get the stem and sense in WordNet
of each word, and this information is used to re-
trieve its synset.

 were selected to carry
out this process. In particular the Annie English
Tokeniser, Hash Gazetter, RegEx Sentence Split-
ter and the Stanford Parser modules in Gate are
used to analyze the input. In this step also the
syntax tree and dependencies are retrieved from
the Stanford Parser. These features will be used
in the post-processing step in order to identify
the negations and the quantifiers, as well as their
scope.

A good example of the importance of perform-
ing word disambiguation can be shown in the
sentence “Test to predict breast cancer relapse is
approved” from the SemEval news corpus. The
noun cancer has five possible entries in WordNet
and only one refers to a “malignant growth or
tumor”, while the others are related with “astrol-
ogy” and the “cancer zodiacal constellation”.
Obviously, without a WSD algorithm, the wrong
synset will be considered, and a wrong emotion
will be assigned to the concept.

Besides, to enrich the emotion identification
step, the hypernyms of each concept are also re-
trieved from WordNet.

4.2 Emotion identification

The aim of the emotion identification step is to
map the WordNet concepts previously identified
to those present in the affective lexicon, as well

3 http://gate.ac.uk/
4 http://nlp.stanford.edu/software/lex-parser.shtml

as to retrieve from this lexicon the corresponding
emotional category of each concept.

We hypothesize that the hypernyms of a con-
cept entail the same emotions than the concept
itself, but the intensity of such emotions decreas-
es as we move up the hierarchy (i.e. the more
general the hypernym becomes, the less its emo-
tional intensity is). Following this hypothesis,
when no entry is found in the affective lexicon
for a given concept, the emotional category asso-
ciated to its nearest hypernym, if any, is used to
label the concept. However, only a certain level
of hypernymy is accepted, since an excessive
generalization introduces some noise in the emo-
tion identification. This parameter has been em-
pirically set to 3 (Carrillo de Albornoz et al.,
2010). Previous experiments have shown that,
upper this level, the working hypothesis becomes
unreliable.

The sentence “Siesta cuts risk of heart disease
death study finds” clearly illustrates the process
described above. In this sentence, the concepts
risk, death and disease are labeled with an emo-
tional category: in particular, the categories as-
signed to them are fear, fear and dislike respec-
tively. However, while the two firsts are re-
trieved from the affective lexicon by their own
synsets, the last one is labeled through its hyper-
nym: since no matching is found for disease in
the lexicon, the analysis over its hypernyms de-
tects the category dislike assigned to the synset
of its first hypernym, which contains words such
as illness and sickness, and the same emotion
(dislike) is assigned to disease.

It must be noted that, to perform this analysis,
a previous mapping between 2.1 and 1.6 Word-
Net versions was needed, since the method and
the affective lexicon work on different versions
of the database.

4.3 Post-processing: Negation and quantifi-
ers detection

Once the concepts of the sentence have been la-
beled with their emotional categories, the next
step aims to detect and solve the effect of the
negations and the quantifiers on the emotional
categories identified in the previous step.

The effect of negation has been broadly stu-
died in NLP (Morante and Daelemans, 2009) and
sentiment analysis (Jia et al., 2009). Two main
considerations must be taken into account when
dealing with negation. First, the negation scope
may affect only a word (no reason), a proposi-
tion (Beckham does not want to play again for
Real) or even a subject (No one would like to do

156

this). Different approximations have been pro-
posed to delimit the scope of negation. Some
assume the scope to be those words between the
negation token and the first punctuation mark
(Pang et al., 2002), others consider a fixed num-
ber of words after the negation token (Hu and
Liu, 2004). Second, the impact of negation is
usually neutralized by reversing the polarity of
the sentence (Polanyi and Zaenen, 2006) or using
contextual valence shifters which increase or
dismiss the final value of negativity or positivity
of the sentence (Kennedy and Inkpen, 2006).

In this work, the negation scope is detected us-
ing the syntax tree and dependencies generated
by the Stanford Parser. The dependency neg al-
lows us to easily determine the presence of sev-
eral simple types of negation, such as those pre-
ceded by don’t, didn’t, not, never, etc. Other
words not identified with this dependency, but
also with a negation meaning, such as no, none¸
nor or nobody, are identified using a negation
token list. To determine the negation scope, we
find in the syntax tree the first common ancestor
that encloses the negation token and the word
immediately after it, and assume all descendant
leaf nodes to be affected by the negation.

For each concept in the sentence that falls into
the scope of a negation, the system retrieves its
antonym emotional category, if any, and assigns
this category to the concept. If no antonym emo-
tion is obtained, the concept is labeled with no
emotion, according to the premise that the nega-
tion may change or neutralize the emotional po-
larity. An example of this process can be shown
in the sentence “Children and adults enamored
of all things pokemon won't be disappointed”. In
this sentence, the Stanford Parser discovers a
negation and the system, through the syntax tree,
determines that the scope of the negation enclos-
es the words “won’t be disappointed”. As the
synset of “disappointed” has been labeled with
the emotional category despair, its antonym is
retrieved, and the emotional category of the an-
tonym, hope, is used to label the concept.

On the other hand, the quantifiers are words
considered in sentiment analysis as amplifiers or
downtoners (Quirk et al., 1985). That is to say,
the word very in the sentence “That is a very
good idea” amplifies the intensity of the emo-
tional meaning and the positivity of the sentence,
while the word less in the sentence “It is less
handsome than I was expecting” dismisses its
intensity and polarity. The most common ap-
proach to identify quantifiers is the use of lists of
words which play specific grammatical roles in

the sentence. These lists normally contain a fixed
value for all positive words and another value for
all negative words (Polanyi and Zaenen, 2006).
By contrast, Brooke (2009) proposes a novel ap-
proach where each quantifier is assigned its own
polarity and weight.

The quantifiers are usually represented as sen-
tence modifiers, assuming their scope to be the
whole sentence and modifying its overall polari-
ty. However, when dealing with sentences like
“The house is really nice and the neighborhood
is not bad”, these approaches assume that the
quantifier really amplifies the intensity of both
conjunctives, when it only should amplify the
intensity of the first one. By contrast, our ap-
proach determines the scope of the quantifiers by
the syntax tree and the dependencies over them.
Thus, when a quantifier is detected in a sentence,
the dependencies are checked and only those that
play certain roles, such as adverbial or adjectival
modifiers, are considered. All concepts affected
by a quantifier are marked with the weight cor-
responding to that quantifier, which will serve to
amplify/dismiss the emotions of these concepts
in the classification step. The quantifier list used
here is the one proposed in Brooke (2009).

The sentence “Stale first act, scrooge story,
blatant product placement, some very good com-
edic songs” illustrates the analysis of the quan-
tifiers. The system detects two tokens which are
in the quantifier list and play the appropriate
grammatical roles. The first quantifier some af-
fects to the words “very good comedic songs”,
while the second quantifier very only affects to
“good”. So these concepts are marked with the
specific weight of each quantifier. Note that the
concept “good” is marked twice.

4.4 Sentence classification

Up to this point, the sentence has been labeled
with a set of emotional categories, negations and
their scope have been detected and the quantifi-
ers and the concepts affected by them have been
identified. In this step, this information is used to
translate the sentence into a Vector of Emotional
Occurrences (VEO), which will be the input to
the machine learning classification algorithm.
Thus, each sentence is represented as a vector of
16 values, each of one representing an emotional
category. The VEO vector is generated as fol-
lows:

• If the concept has been labeled with an
emotional category, the position of the
vector for this category is increased in 1.

157

• If no emotional category has been found
for the concept, then the category of its
first hypernym labeled is used. As the
hypernym generalizes the meaning of the
concept, the value assigned to the position
of the emotional category in the VEO is
weighted as follows:

[] []
1.

1
+

+=
DepthHyper

iVEOiVEO

• If a negation scope encloses the concept,
then the antonym emotion is used, as de-
scribed in the previous step. The emotion-
al category position of this antonym in the
VEO is increased in 0.9. Different tests
have been carried out to set this parameter,
and the 0.9 value got the best results. The
reason for using a lower value for the
emotional categories derived from nega-
tions is that the authors consider that a ne-
gation changes the emotional meaning of a
concept but usually in a lower percentage.
For example, the sentence “The neighbor-
hood is not bad” does not necessarily
mean that it is a good neighborhood, but it
is a quite acceptable one.

• If a concept is affected by a quantifier,
then the weight of that quantifier is added
to the position in the VEO of the emotion-
al category assigned to the concept.

Thus, a sentence like “This movie…. isn’t
worth the energy it takes to describe how really
bad it is” will be represented by the VEO [1.0, 0,
0.0, 0, 0, 0.0, 0, 0, 2.95, 0, 0, 0, 0, 0, 0, 0]. In
this sentence, the concept movie is labeled with
the emotional category joy, the concept worth is
labeled with positive-expectation, the concept
energy is labeled with liking, and the concept
bad is labeled with dislike. Since the concepts
worth and energy fall into the negation scope,
they both change their emotional category to dis-
like. Besides, since the concept bad is amplified
by the quantifier really, the weight of this con-
cept in the VEO is increased in 0.15.

5 Evaluation framework and results

In this work, two different corpora have been
used for evaluation (see Section 3): a movie re-
view corpus containing 1000 sentences labeled
with either a positive or negative polarity; and a
news headlines corpus composed of 1000 sen-
tences labeled with an emotional intensity value
between -100 and 100.

To determine the best machine learning algo-
rithm for the task, 20 classifiers currently imple-
mented in Weka5

5.1 Evaluating polarity classification

 were compared. We only show
the results of the best performance classifiers: a
logistic regression model (Logistic), a C4.5 deci-
sion tree (J48Graph) and a support vector ma-
chine (LibSVM). The best outcomes for the three
algorithms were reported when using their de-
fault parameters, except for J48Graph, where the
confidence factor was set to 0.2. The evaluation
is accomplishes using 10-fold cross validation.
Therefore, 100 instances of each dataset are held
back for testing in each fold, and the additional
900 instances are used for training.

We first analyze the effect of expanding the cov-
erage of the emotional lexicon by semi-
automatically adding to WordNet Affect more
synsets labeled with emotional categories, as ex-
plained in Section 3. To this end, we compare the
results of the method using three different affec-
tive lexical databases: WordNet Affect and
WordNet Affect extended with 372 and 603 syn-
sets, respectively. For the sake of comparing the
results in both corpora, the news dataset has been
mapped to a -100/100 classification (-100 = [-
100, 0), 100 = [0,100]).

Table 2 shows the results as average precision
and accuracy of these experiments. Note that, as
the weight of mislabeling for both classes is the
same and the classes are balanced, accuracy is
equal to recall in all cases. Labeling 975 new
synsets significantly improves the performance
of our system in both datasets and for all ML
techniques. In particular, the best improvement is
achieved by the Logistic classifier: from 52.7%
to 72.4% of accuracy in the news dataset, and
from 50.5% to 61.5% of accuracy in the movies
dataset.

Emotional

Lexicon Method News Corpus Movie Reviews
Pr. Ac. Pr. Ac.

WNAffect
Logistic 52.8 52.7 51.3 50.5

J48Graph 27.7 52.6 50 50
LibSVM 27.7 52.6 53.2 50.6

WNAffect +
372 synsets

Logistic 69.9 65.2 53.9 53.8
J48Graph 70.1 64.8 55.3 55.1
LibSVM 68.9 63.9 52 51.8

WNAffect +
603 synsets

Logistic 73.8 72.4 61.6 61.5
J48Graph 73.6 70.9 60.9 60.9
LibSVM 71.6 70.3 62.5 59.4

Table 2: Precision and accuracy percentages achieved by

our system using different affective databases.

5 http://www.cs.waikato.ac.nz/ml/weka/

158

We have observed that, especially in the news
dataset, an important number of sentences that
are labeled with a low positive or negative emo-
tional intensity could be perfectly considered as
neutral. The intensity of these sentences highly
depends on the previous knowledge and particu-
lar interpretation of the reader. For instance, the
sentence “Looking beyond the iPhone” does not
express any emotion itself, unless you are fan or
detractor of Apple. However, this sentence is
labeled in the corpus with a 15 intensity value. It
is likely that these kinds of sentences introduce
noise into the dataset. In order to estimate the
influence of such sentences in the experimental
results, we conducted a test removing from the
news dataset those instances with an intensity
value in the range [-25, 25]. As expected, the
accuracy of the method increases substantially,
i.e. from 72.4% to 76.3% for logistic regression.

The second group of experiments is directed to
evaluate if dealing with negations and quantifiers
improves the performance of the method. To this
end, the approach described in Section 4.3 was
applied to both datasets. Table 3 shows that
processing negations consistently improves the
accuracy of all algorithms in both datasets; while
the effect of the quantifiers is not straightforward.
Even if we expected that using quantifiers would
lead to better results, the performance in both
datasets decreases in 2 out of the 3 ML algo-
rithms. However, combining both features im-
proves the results in both datasets. The reason
seems to be that, when no previous negation de-
tection is performed, if the emotional category
assigned to certain concepts are wrong (because
these concepts are affected by negations), the
quantifiers will be weighting the wrong emotions.

Features Method News Corpus Movie Reviews
Pr. Ac. Pr. Ac.

Negations
Logistic 74.2 72.5 61.7 61.6

J48Graph 74.1 71.2 62.8 62.6
LibSVM 72.7 71.1 62.4 60.1

Quantifiers
Logistic 73.7 72.2 61.9 61.9

J48Graph 73.6 70.9 59.5 59.5
LibSVM 72.1 70.6 61.1 59

Negations +
Quantifiers

Logistic 74.4 72.7 62.4 62.4
J48Graph 74.1 71.2 62.5 62.1
LibSVM 72.8 71.2 62.6 60.5

Table 3: Precision and accuracy of the system improved

with negation and quantifier detection.

The comparison with related work is difficult
due to the different datasets and methods used in
the evaluations. For instance, Pang et al. (2002)
use the Movie Review Polarity Dataset, achiev-
ing an accuracy of 82.9% training a SVM over a

bag of words. However, their aim was to deter-
mine the polarity of documents (i.e. the whole
movie reviews) instead of sentences. When
working at the sentence level, the information
from the context is missed, and the results are
expected to be considerably lower. As a matter
of fact, it happens that many sentences in the
Sentence Polarity Movie Review Dataset are la-
beled as positive or negative, but do not express
any polarity when taken out of the context of the
overall movie review. This conclusion is also
drawn by Meena and Prabhakar (2007), who
achieve an accuracy of 39% over a movie review
corpus (not specified) working at the sentence
level, using a rule based method to analyze the
effect of conjuncts. This accuracy is well below
that of our method (62.6%).

Molianen and Pulman (2007) present a senti-
ment composition model where the polarity of a
sentence is calculated as a complex function of
the polarity of its parts. They evaluate their sys-
tem over the SemEval 2007 news corpus, and
achieve an accuracy of 65.6%, under our same
experimental conditions, which is also signifi-
cantly lower than the accuracy obtained by our
method.

5.2 Evaluating intensity classification

Apart from identifying of polarity, we also want
to examine the ability of our system to determine
the emotional intensity in the sentences. To this
aim, we define two intensity distributions: the 3-
classes and the 5-classes distribution. For the
first distribution, we map the news dataset to 3-
classes: negative [-100, -50), neutral [-50, 50)
and positive [50, 100]. For the second distribu-
tion, we map the dataset to 5-classes: strongly
negative [-100, -60), negative [-60, -20), neutral
[-20, 20), positive [20, 60) and strongly positive
[60, 100]. We can see in Table 4 that, as the
number of intensity classes increases, the results
are progressively worse, since the task is pro-
gressively more difficult.

Intensity
classes Method News Corpus

Pr. Ac.

2-classes
Logistic 74.4 72.7

J48Graph 74.1 71.2
LibSVM 72.8 71.2

3-classes
Logistic 60.2 63.8

J48Graph 66 64.8
LibSVM 54.8 64.6

5-classes
Logistic 48.3 55.4

J48Graph 47.3 54.8
LibSVM 43.1 53.1

Table 4: Precision and accuracy in three different intensity

classification tasks.

159

The 3-classes distribution coincides exactly
with that used in one of the SemEval 2007 Af-
fective task, so that we can easily compare our
results with those of the systems that participated
in the task. The CLaC and CLaC-NB systems
(Andreevskaia and Bergler, 2007) achieved, re-
spectively, the best precision and recall. CLaC
reported a precision of 61.42 % and a recall of
9.20%; while CLaC-NB reported a precision of
31.18% and a recall of 66.38%. Our method
clearly outperforms both systems in precision,
while provides a recall (which is equal to the ac-
curacy) near to that of the best system. Besides,
our results for both metrics are well-balanced,
which does not occur in the other systems.

Regarding the 5-classes distribution evalua-
tion, to the authors’ knowledge no other work
has been evaluated under these conditions. How-
ever, our system reports promising results: using
5 classes it achieves better results than other par-
ticipant in the SemEval task using just 3 classes
(Chaumartin, 2007; Katz et al., 2007).

5.3 Evaluating the effect of word ambiguity
on sentiment analysis

A further test has been conducted to examine the
effect of word ambiguity on the classification
results. To this aim, we repeated the experiments
above without using WSD. First, we simply as-
signed to each word its first sense in WordNet.
Second, we selected these senses randomly. The
results are presented in Table 5. We only show
those of the best algorithm for each intensity dis-
tribution.

Intensity classes Method News Corpus
Pr. Ac.

2-classes (Logistic)
WSD 74.4 72.6
1st Sense 71.6 69.3
Random Sense 69.1 64.1

3-classes (J48Graph)
WSD 66 64.8
1st Sense 59 62.9
Random Sense 50.8 61

5-classes (Logistic)
WSD 48.3 55.4
1st Sense 43.7 53.8
Random Sense 46.8 51.6

Table 5: Precision and accuracy for three different word

disambiguation strategies.

It can be observed that, even though the use of

word disambiguation improves the classification
precision and accuracy, the improvement with
respect to the first sense heuristic is less than ex-
pected. This may be due to the fact that the
senses of the words in WordNet are ranked ac-
cording to their frequency, and so the first sense

of a word is also the most frequent one. Besides,
the Most Frequent Sense (MFS) heuristic in
WSD is usually regarded as a difficult competi-
tor. On the contrary, the improvement with re-
spect to the random sense heuristic is quite re-
markable.

6 Conclusions and future work

In this paper, a novel approach to sentence level
sentiment analysis has been described. The sys-
tem has resulted in a good method for sentence
polarity classification, as well as for intensity
identification. The results obtained outperform
those achieved by other systems which aim to
solve the same task.

Nonetheless, some considerations must be
noted. Even with the extended affective lexicon,
around 1 in 4 sentences of each corpus has not
been assigned any emotional category, some-
times because their concepts are not labeled in
the lexicon, but mostly because their concepts do
not have any emotional meaning per se. A test on
the news corpus removing those sentences not
labeled with any emotional meaning has been
performed for the 2-classes classification prob-
lem, allowing the method to obtain an accuracy
of 81.7%. However, to correctly classify these
sentences, it would be necessary to have addi-
tional information about their contexts (i.e. the
body of the news item, its section in the newspa-
per, etc.).

Finally, the authors plan to extend the method
to deal with modal and conditional operators,
which will allow us to distinguish among situa-
tions that have happened, situations that are hap-
pening, situations that could, might or possibly
happen or will happen, situations that are wished
to happen, etc.

Acknowledgments
This research is funded by the Spanish Ministry
of Science and Innovation (TIN2009-14659-
C03-01), the Comunidad Autonoma de Madrid
and the European Social Fund through the IV
PRICIT program, and the Spanish Ministry of
Education through the FPU program.

References
Julian Brooke. 2009. A Semantic Approach to Auto-

mated Text Sentiment Analysis. Simon Fraser
University. Ph. D. Thesis.

Jorge Carrillo de Albornoz, Laura Plaza and Pablo
Gervás. 2010. Improving Emotional Intensity Clas-

160

sification using Word Sense Disambiguation. Re-
search in Computing Science 46 :131-142.

François-Régis Chaumartin. 2007. UPAR7: A Know-
ledge-based System for Headline Sentiment Tag-
ging. In Proceedings of the 4th Workshop on Se-
mantic Evaluations (SemEval 2007), pages 422-
425.

Ann Devitt and Khurshid Ahmad. 2007. Sentiment
Polarity Identification in Financial News: A Cohe-
sion-based Approach. In Proceedings of the 45th
Annual Meeting of the ACL, pages 984-991.

Andrea Esuli and Fabrizio Sebastiani. 2006. Deter-
mining Term Subjectivity and Term Orientation for
Opinion Mining. In Proceedings of the 11th Confe-
rence of the EACL, pages 193-200.

Minging Hu and Bing Liu. 2004. Mining and Summa-
rizing Customer Reviews. In Proceedings of the
10th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 168-177.

Lifeng Jia, Clement Yu and Weiji Meng. 2009. The
Effect of Negation on Sentiment Analysis and Re-
trieval Effectiveness. In Proceeding of the 18th
ACM Conference on Information and Knowledge
Management, pages 1827-1830.

Phil Katz, Matthew Singleton and Richard Wicen-
towski. 2007. SWAT-MP: the SemEval-2007 Sys-
tems for Task 5 and Task 14. In Proceedings of the
4th Workshop on Semantic Evaluations (SemEval
2007), pages 308-313.

Alistair Kennedy and Diana Inkpen. 2006. Sentiment
Classification of Movie Reviews Using Contextual
Valence Shifters. Computational Intelligence
22(2): 110-125.

Soo-Min Kim and Eduard Hovy. 2004. Determining
the Sentiment of Opinions. In Proceedings of COL-
ING 2004, pages 1367-1373.

Justin Martineau and Tim Finin. 2009. Delta TFIDF:
An Improved Feature Space for Sentiment Analy-
sis. In Proceedings of the 3rd AAAI International
Conference on Weblogs and Social Media.

Arun Meena and T.V. Prabhakar. 2007. Sentence
Level Sentiment Analysis in the Presence of Con-
juncts Using Linguistic Analysis. In Proceedings
of ECIR 2007, pages 573-580.

George A. Miller, Richard Beckwith, Christiane Fell-
baum Derek Gross and Katherine Miller. 1990. In-
troduction to WordNet: An On-Line Lexical Data-
base. International Journal of Lexicography
3(4):235-244.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
Composition. In Proceedings of RANLP 2007,
pages 378-382.

Roser Morante and Walter Daelemans. 2009. A Meta-
learning Approach to Processing the Scope of Ne-

gation. In Proceedings of the CONLL 2009, pages
21-29.

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In Proceedings of
CoRR 2002.

Bo Pang and Lillian Lee. 2004. A Sentimental Educa-
tion: Sentiment Analysis using Subjectivity Sum-
marization based on Minimum Cuts. In Proceed-
ings of the 42nd Annual Meeting of the ACL, pages
271-278.

Siddharth Patwardhan, Satanjeev Banerjee and Ted
Pedersen. 2005. SenseRelate::TargetWord - A Ge-
neralized Framework for Word Sense Disambigua-
tion. In Proceedings of the ACL 2005 on Interac-
tive Poster and Demonstration Sessions, pages 73-
76.

Livia Polanyi and Annie Zaenen. 2006. Contextual
Valence Shifters. Computing Attitude and Affect in
Text: Theory and Applications. In The Information
Retrieval Series 20, pages 1-10.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech
and Jan Svartvik. 1985. A Comprehensive Gram-
mar of the English Language. Longman.

Carlo Strapparava and Alessandro Valitutti. 2004.
Wordnet-Affect: an Affective Extension of Word-
Net. In Proceedings of the LREC 2004, pages
1083-1086.

Peter D. Turney. 2002. Thumbs up or Thumbs
down?: Semantic Orientation applied to Unsuper-
vised Classification of Reviews. In Proceedings of
the 40th Annual Meeting of the ACL, pages 417-
424.

Casey Whitelaw, Navendu Garg and Shlomo Arga-
mon. 2005. Using Appraisal Groups for Sentiment
Analysis. In Proceedings of the 14th ACM Confe-
rence on Information and Knowledge Manage-
ment, pages 625-631.

Janyce M. Wiebe, Rebecca F. Bruce and Thomas P.
O’Hara. 1999. Development and Use of a Gold-
standard Data Set for Subjectivity Classification. In
Proceedings of the 37th Annual Meeting of the
ACL, pages 246-253.

Theresa Wilson, Janyce Wiebe and Paul Hoffman.
2005. Recognizing Contextual Polarity in Phrase-
level Sentiment Analysis. In Proceedings of the
HLT-EMNLP 2005, pages 347-354.

161

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 162–171,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Cross-caption coreference resolution for automatic image understanding

Micah Hodosh Peter Young Cyrus Rashtchian Julia Hockenmaier
Department of Computer Science

University of Illinois at Urbana-Champaign
{mhodosh2, pyoung2, crashtc2, juliahmr}@illinois.edu

Abstract
Recent work in computer vision has aimed
to associate image regions with keywords
describing the depicted entities, but ac-
tual image ‘understanding’ would also re-
quire identifying their attributes, relations
and activities. Since this information can-
not be conveyed by simple keywords, we
have collected a corpus of “action” photos
each associated with five descriptive cap-
tions. In order to obtain a consistent se-
mantic representation for each image, we
need to first identify which NPs refer to
the same entities. We present three hierar-
chical Bayesian models for cross-caption
coreference resolution. We have also cre-
ated a simple ontology of entity classes
that appear in images and evaluate how
well these can be recovered.

1 Introduction

Many photos capture a moment in time, telling a
brief story of people, animals and objects, their at-
tributes, and their relationship to each other. Al-
though different people may give different inter-
pretations to the same picture, people can read-
ily interpret photos and describe the entities and
events they perceive in complex sentences. This
level of image understanding still remains an elu-
sive goal for computer vision: although current
methods may be able to identify the overall scene
(Quattoni and Torralba, 2009) or some specific
classes of entities (Felzenszwalb et al., 2008), they
are only starting to be able to identify attributes
of entities (Farhadi et al., 2009), and are far from
recovering a complete semantic interpretation of
the depicted situation. Like natural language pro-
cessing, computer vision requires suitable training
data, and there are currently no publicly available
data sets that would enable the development of
such systems.

Photo sharing sites such as Flickr allow users
to annotate images with keywords and other de-
scriptions, and vision researchers have access to
large collections of images annotated with key-
words (e.g. the Corel collection). A lot of recent
work in computer vision has been aimed at pre-
dicting these keywords (Blei et al., 2003; Barnard
et al., 2003; Feng and Lapata, 2008; Deschacht
and Moens, 2007; Jeon et al., 2003). But key-
words alone are not expressive enough to capture
relations between entities. Some research has used
the text that surrounds an image in a news arti-
cle as a proxy (Feng and Lapata, 2008; Deschacht
and Moens, 2007). However, in many cases, the
surrounding text or a user-provided caption does
not simply describe what is depicted in the image
(since this is usually obvious to the human reader
for which this text is intended), but provides ad-
ditional information. We have collected a corpus
of 8108 images associated with several simple de-
scriptive captions. In contrast to the text near an
image on the web, the captions in our corpus pro-
vide direct, if partial and slightly noisy, descrip-
tions of the image content. Our data set differs
from paraphrase corpora (Barzilay and McKeown,
2001; Dolan et al., 2004) in that the different cap-
tions of an image are produced independently by
different writers. There are many ways of describ-
ing the same image, because it is often possible
to focus on different aspects of the depicted situ-
ation, and because certain aspects of the situation
may be unclear to the human viewer.

One of our goals is to use these captions to
obtain a semantic representation of each image
that is consistent with all of its captions. In or-
der to obtain such a representation, it is neces-
sary to identify the entities that appear in the im-
age, and to perform cross-caption coreference res-
olution, i.e. to identify all mentions of the same
entity in the five captions associated with an im-
age. In this paper, we compare different meth-

162

A golden retriever (ANIMAL) is playing with a smaller black and brown dog(ANIMAL) in a pink collar (CLOTHING).
A smaller black dog (ANIMAL) is fighting with a larger brown dog (ANIMAL) in a forest (NAT_BACKGROUND).
A smaller black and brown dog (ANIMAL) is jumping on a large orange dog (ANIMAL).
Brown dog (ANIMAL) with mouth (BODY_PART) open near head(BODY_PART) of black and tan dog (ANIMAL).
Two dogs (ANIMAL) playing near the woods (NAT_BACKGROUND).

Figure 1: An image with five captions from our corpus. Coreference chains and ontological classes are
indicated in color.

ods of cross-caption coreference resolution on our
corpus. In order to facilitate further computer vi-
sion research, we have also defined a set of coarse-
grained ontological classes that we use to automat-
ically categorize the entities in our data set.

2 A corpus of action images and captions

Image collection and sentence annotation We
have constructed a corpus consisting of 8108 pho-
tographs from Flickr.com, each paired with five
one-sentence descriptive captions written by Ama-
zon’s Mechanical Turk1 workers. We downloaded
a few thousand images from each of six selected
Flickr groups2. To facilitate future computer vi-
sion research on our data, we filtered out images in
black-and-white or sepia, as well as images with
watermarks, signatures, borders or other obvious
editing. Since our collection focuses on images
depicting actions, we then filtered out images of
scenery, portraits, and mood photography. This
was done independently by two members of our
group and adjudicated by a third.

We paid Turk workers $0.10 to write one de-
scriptive sentence for each of five distinct and ran-
domly chosen images that were displayed one at
a time. We required a small qualification test
that examined the workers’ English grammar and
spelling and we restricted the task to U.S. work-
ers (see Rashtchian et al. (2010) for more details).
Our final corpus contains five sentences for each
of our 8108 images, totaling 478,317 word tokens,
and an average sentence length of 11.8 words.
We first spell-checked3 these sentences, and used
OpenNLP4 to POS-tag them. We identified NPs
using OpenNLP’s chunker, followed by a semi-

1https://www.mturk.com
2The groups:“strangers!”, “Wild-Child (Kids in Action)”,

“Dogs in Action (Read the Rules)”, “Outdoor Activities”,
“Action Photography”, “Flickr-Social (two or more people in
the photo)”.

3We used Unix’s aspell to generate possible correc-
tions and chose between them based on corpus frequencies.

4http://opennlp.sourceforge.net

automatic procedure to correct for a number of
systematic chunking errors that could easily be
corrected. We randomly selected 200 images for
further manual annotation, to be used as test and
development data in our experiments.

Gold standard coreference annotation We
manually annotated NP chunks, ontological
classes, and cross-caption coreference chains for
each of the 200 images in our test and development
data. Each image was annotated independently by
two annotators and adjudicated by a third.5 The
development set contains 1604 mentions. On av-
erage, each caption has 3.2 mentions, and each im-
age has 5.9 coreference chains (distinct entities).

Ontological annotation of entities In order to
understand the role entities mentioned in the sen-
tences play in the image, we have defined a simple
ontology of entity classes (Table 1). We distin-
guish entities that constitute the background of an
image from those that appear in the foreground.
These entities can be animate (people or animals)
or inanimate. For inanimate objects, we distin-
guish static objects from “movable” objects. We
also distinguish man-made from natural objects
and backgrounds, since this matters for computer
vision algorithms. We have labeled the entity
mentions in our test and development data with
classes from this ontology. Again, two of us an-
notated each image’s mentions, and adjudication
was performed by a single person. Our ontology
is similar to, but smaller than the one proposed
by Hollink and Worring (2005) for video retrieval,
which in turn is based on Hoogs et al. (2003) and
Hunter (2001).

3 Predicting image entities from captions

Figure 1 shows an image from our corpus. Dif-
ferent captions use different words to refer to the

5We used MMAX2 (Müller and Strube, 2006) both for
annotation and adjudication.

163

Ontological Class Examples
animal dog, horse, cow
background man-made street, pool, carpet
background natural ocean, field, air
body part hair, mouth, arms
clothing shirt, hat, sunglasses
event trick, sunset, game
fixed object man-made furniture, statue, ramp
fixed object natural rock, puddle, bush
image attribute camera, picture, closeup
material man-made paint, frosting
material natural water, snow, dirt
movable man-made ball, toy, bowl
movable natural leaves, snowball
nondepictable something, Batman
orientation front, top, [the] distance
part of edge, side, top, tires
person family, skateboarder
property of shadow, shade, theme
vehicle surfboard, bike, boat
writing graffiti, map

Table 1: Our ontology for entities in images.

same entity, or even seemingly contradictory mod-
ifiers (“orange” vs. “brown” dog). In order to
predict what entities appear in an image from its
captions, we need to identify how many entities
each sentence describes, and what role these enti-
ties play in the image (e.g. person, animal, back-
ground). Because we have five sentences asso-
ciated with each image, we also need to identify
which noun phrases in the different captions of
the same image refer to the same entity. Because
the captions were generated independently, there
are no discourse cues such as anaphora to identify
coreference. This creates problems for standard
coreference resolution systems trained on regular
text. Our data also differs from standard corefer-
ence data sets in that entities are rarely referred to
by proper nouns.

Our first task is to identify which noun phrases
may refer to the same entity. We do this by identi-
fying the set of entity types that each NP may refer
to. We use WordNet (Fellbaum, 1998) to iden-
tify the possible entity types (WordNet synsets) of
each head noun. Since the salient entities in each
image are likely to be mentioned by more than one
caption writer, we then aim to restrict those types
to those that may be shared by some head nouns in
the other captions of the same image. This gives
us an inventory of entity types for each mention,
which we use to identify coreferences, restricted
by the constraint that all coreferent mentions refer
to an entity of the same type.

4 Using WordNet to identify entity types

WordNet (Fellbaum, 1998) provides a rich ontol-
ogy of entity types that facilitates our coreference
task.6 We use WordNet to obtain a lexicon of pos-
sible entity types for each mention (based on their
lexical heads, assumed to be the last word with a
nominal POS tag7). We first generate a set of can-
didate synsets based solely on the lexical heads,
and then generate lexicon entries based on rela-
tions between the candidates.

WordNet synsets provide us with synonyms,
and hypernym/hyponym relations. For each men-
tion, we generate a list of candidate synsets.
We require that the candidates are one of the
first four synsets reported and that their fre-
quency is to be at least one-tenth of the most
frequent synset. We limit candidates to ones
with “physical entity#n#1”, “event#n#1”, or “vi-
sual property#n#1” as a hypernym, in order to en-
sure that the synset describes something that is de-
pictable. To avoid word senses that refer to a per-
son in a metaphorical fashion, (e.g. pig meaning
slovenly person or red meaning communist), we
ignore synsets that refer to people if the word has
a synset that is an animal or color.8

In general, we would like for mentions to be
able to take on more specific word senses. For ex-
ample, we would like to be able to identify that
“woman” and “person” may refer to the same
entity, whereas “man” and “woman” typically
would not. However, we also do not want a type
inventory that is too large or too fine-grained.

Once the candidate synsets are generated, we
consider all pairs of nouns (n1, n2) that occur in
different captions of the same image and exam-
ine all corresponding pairs of candidate synsets
(s1, s2). If s2 is a synonym or hypernym of s1, it
is possible that two captions have different words
describing the same entity, so we add s1 and s29

to the lexicon of n1. Adding s2 to n1’s lexicon al-
lows it to act as an umbrella sense covering other
nouns describing the same entity.10 We add s2 to

6For the prediction of ontological classes, we use our own
ontology because WordNet is too fine-grained for this pur-
pose.

7If there are two NP chunks that form a “[NP ... group] of
[NP...]” construction, we only use the second NP chunk.

8An exception list handles cases (diver, blonde), where the
human sense is more likely than the animal or color sense.

9We don’t add s2 if it is “object#n#1” or “clothing#n#1”.
10This is needed when captions use different aspects of

the entity to describe it (for example, “skier” and “a skiing
man”).

164

the lexicon of n2 (since if n1 is using the sense s1,
then n2 must be using the sense s2) and if n1 oc-
curs at least five times in the corpus, we add s1 to
the lexicon of n2.

5 A heuristic coreference algorithm

Based on WordNet candidate synsets, we define
a heuristic algorithm that finds the optimal entity
assignment for the mentions associated with each
image. This algorithm is based on the principles
driving our generative model described below, and
on the observation that salient entities will be men-
tioned in many captions and that captions tend to
use similar words to describe the same entity.

Simple heuristic algorithm:

1. For each noun, choose the synset that appears
in the most number of captions of an image,
and break ties by choosing the synset that
covers the fewest distinct lemmatized nouns.

2. Group all of the noun phrase chunks that
share a synset into a single coreference chain.

6 Bayesian coreference models

Since we cannot afford to manually annotate our
entire data set with coreference information, we
follow Haghighi and Klein (2007)’s work on un-
supervised coreference resolution, and develop a
series of generative Bayesian models for our task.

6.1 Model 0: Simple Mixture Model

In our first model, based on Haghighi and Klein’s
baseline Dirichlet Process model, each image i
corresponds to the set of observed mentions wi

from across its captions. Image i has a hidden
global topic Ti, drawn from a distribution with a
GEM prior with hyperparameter γ as explained by
Teh et al. (2006). In a Dirichlet process, the GEM
distribution is an infinite analog of the Dirich-
let distribution, allowing for a potentially infinite
number of mixture components. P (Ti = t) is pro-
portional to γ if t is a new component, or to the
number of times t has been drawn before other-
wise. Given a topic choice Ti = t, entity type
assignments Zj for all mentions wj in image i
are in turn drawn from a topic-specific multino-
mial θt over all possible entity types E that was
drawn from a Dirichlet prior with hyperparameter
β. Similarly, given an entity type Zi = z, each
corresponding (observed) head word wj is drawn

from an entity type-specific multinomial φz over
all possible words V, drawn from a finite Dirich-
let prior with hyperparameter α. The set of all im-
ages belonging to the same topic is analogous to
an individual document in Haghighi and Klein’s
baseline model.11 All headwords of the same en-
tity type are assumed to be coreferent, similar to
Haghighi and Klein’s model. As described in sec-
tion 4, we use WordNet to identify the subset of
types that can actually produce the given words.
Therefore, similar to the way Andrzejewski and
Zhu (2009) handled a priori knowledge of topics,
we will define an indicator variable δij that is 1
iff the WordNet information allows word i to be
produced from entity set j and 0 otherwise.

6.1.1 Sampling Model 0
We find argmaxZ,TP (Z,T|X) with Gibbs sam-
pling. Here, Z and T are the collection of type
and topic assignments, with Z−j = Z− {Zj} and
T−i = T − {Ti}. This style of notation will be
extended analogously to other variables. Let ne,x

represent the number of times word x is produced
from entity e across all topics and let pj be the
number of images assigned to topic j. Let mt,e

represent the number of times entity type e is
generated by topic t. Each iteration consists of
two steps: first, each Zi is resampled, fixing T;
and then each Ti is resampled based on Z12.

1. Sampling Zj:

P (Zj =e|wj ∈ wi,Z−j ,T) ∝ P (wj |Zj=e)P (Zj =e|Ti)

P (wj = x|Zj = e) ∝
„

n−j
e,x + αP

x′ n
−j
e,x′ + α

«
δxe

P (Zj = e|Ti = t) =
m−j

t,e + βP
e′ m

−j
t,e′ + β

2. Sampling Ti:

P (Ti =j|w,Z,T−i) ∝ P (Ti =j|T−i)P (Z|Ti =j,T−i)

∝ P (Ti = j|T−i)
Y

k∈wi

P (Zk|Ti = j)

= P (Ti = j|T−i)
Y

k∈wi

m−i
j,Zk

+ βP
e′ m

−i
j,e′ + β

P (Ti = j|T−i) ∝

(
γ, If its a new topic
pj Otherwise

11Since we do not have multiple images of the same well-
known people or places, referred to by their names, we do not
perform any cross-image coreference

12Sampling on the exponentiated posterior to find the mode
as Haghighi and Klein (2007) did was found to not signifi-
cantly affect results on our tasks

165

Caption 1: {x21,1:a golden retriever; x21,2 :a smaller black and brown dog; x21,3:a pink collar}
Caption 2: {x21,4:a smaller black dog; x21,5:a larger brown dog; x21,6:a forest}
Caption 3: {x21,7:small black and brown dog; x21,8:a large orange dog}
Caption 4: {x21,9:brown dog; x21,10:mouth; x21,11:head; x21,12:black and tan dog}
Caption 5: {x21,13:two dogs; x21,14:the woods}

DOG
attr:5

DOG
attr:3

CLOTHING
attr:2

FOREST
attr:8

Image 21:

x21,1
x21,5

x21,8
x21,9

MOUTH
attr:0 ...

x21,2
x21,4

x21,7

x21,12

x21,3 x21,6

x21,14

x21,10 Restaurant 211

Figure 2: Models 1 and 2 as Chinese restaurant franchises: each image topic is a franchise, each image
is a restaurant, each entity is a table, each mention is a customer. Model 2 adds attributes (in italics).

6.2 Model 1: Explicit Entities

Model 0 does not have an explicit representation
of entities beyond their type and thus cannot dis-
tinguish multiple entities of the same type in an
image. Although Model 1 also represents men-
tions only by their head words (and thus cannot
distinguish black dog from brown dog), it creates
explicit entities based on the Chinese restaurant
franchise interpretation of the hierarchical Dirich-
let Process model (Teh et al., 2006). Figure 2 (ig-
noring the modifiers / attributes for now) illustrates
the Chinese restaurant franchise interpretation of
our model. Using this metaphor, there are a se-
ries of restaurants (= images), each consisting of
a potentially infinite number of tables (= entities),
that are frequented by customers (= entity men-
tions) who will be seated at the tables. Restau-
rants belong to franchises (= image topics). Each
table is served one dish (= entity type, e.g. DOG,
CLOTHING) shared by all the customers. The head
word of a mention xi,j is generated in the follow-
ing manner: customer j enters restaurant i (be-
longing to franchise Ti) and sits down at one of
the existing tables with probability proportional to
the number of other customers there, or sits at a
new table with probability proportional to a con-
stant. A dish eia (DOG) from a potentially infinite
menu is served to each new table a, with probabil-
ity proportional to the total number of tables it is
served at in the franchise Ti (or to a constant if it
is a new dish). The (observed) head word of the
mention xj,i (dog, retriever) is then drawn from
the multinomial distribution over words defined by
the entity type (DOG) at the table. The menu (set
of dishes) available to each restaurant and table is
restricted by our lexicon of WordNet synsets for
each mention. More formally, each image topic
t defines a distribution over entities drawn from a
global GEM prior with hyperparameter κ. There-

fore, the probability of an entity a is proportional
to the number of its existing mentions in images of
the same topic, or to κ, if it is previoulsy unmen-
tioned. The type of each entity, ea, is drawn from
a topic-dependent multinomial with global Dirich-
let prior. The head words of mentions are gener-
ated by their entity type as in Model 0. Mentions
assigned to the same entity are considered to be
coreferent. Based on the nature of our corpus, we
again assume that two words cannot be coreferent
within a sentence, restrict the distribution to not
allow inter-sentence coreference and renormalize
the values accordingly.

6.2.1 Sampling Model 1
There are three parts to our resampling procedure:
resampling the entity assignment for each word,
resampling the entity type for each entity, and re-
sampling the topic of each image. The kth word
of image i, sentence j, will now be wi

j,k; eia is the
entity type of entity a in image i; ai

j,k is the en-
tity that word k of sentence j is produced from in
image i, and Zi

j,k represents that entity’s type. a
is the set of all current entity assignments and e
are the type assignments for entities. m is now de-
fined as the number of entities of a certain type be-
ing drawn for an image, n is defined as before and
ci,a is the number of times entity a is expressed in
image i. Topics are resampled as in Model 0.

Entity Assignment Resampling Entity assign-
ments for words are resampled one sentence at a
time in the order the headwords appear in the sen-
tence. For each word in the sentence, entity as-
signments are defined by the distribution of Fig-
ure 3. The headword is assigned to an existing
entity with probability proportional to the number
of entities already assigned to that entity and the
probability that the entity emits that word. The
word is assigned to a new entity with a newly

166

Model 1:

P (ei
a =e|a,w, Ti = t, e−i,a) ∝ (m−ei,a

t,e + β)
Q
{wi

j,k
=x|ai

j,k
=a}

n−ei,a

e,x + αP
y(n−ei,a

e,y + α)
δx,e

P (ai
j,k =a|a−(i,j,k′|k′≥k), e,T) ∝

(
c−j,k′

i,a P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k))ρi

j,a, if a is not new
κP (ei

a|e−i,a, Ti)P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k)), o/w

With:

P (wi
j,k =x|Zi

j,k =e,a−(i,j,k′|k′≥k)) ∝ n
−(i,j,k′|k′≥k)
e,x + αP

y(n
−(i,j,k′|k′≥k)
e,y + α)

δx,e

P (ei
a =e|e−i,a, Ti = t) ∝

m−ei,a

t,e + βP
e′(m

−ei,a

t,e′ + β)
Model 2:

P (ai
j,k =a|a−(i,j,k′|k′≥k), e,T,b) ∝

(
c−j,k′

i,a P (wi
j,k|Zi

j,k = ei
a,a
−(i,j,k′|k′≥k))ρi

j,aP (di
j,k|bia), if a is not new

κP (ei
a|e−i,a, Ti)P (wi

j,k|Zi
j,k = ei

a,a
−(i,j,k′|k′≥k))P (bia)P (di

a|bia), o/w

P (bia =b|Di
a,b
−i,a)∝P (bia =b|b−i,a)

Q
d∈Di

a

(s−i,a
b,d + ζ)P

d′(s
−i,a
b,d′ + ζ)

Figure 3: Sampling equations for Models 1 and 2

drawn entity type with probability proportional κ,
the probability that the entity type is for an im-
age of the given topic (normalized over WordNet’s
possible entities for the word), and the probability
the drawn type produces the word. ρi

j,a = 1 iff
entity a of image i does not appear in sentence j
and ρi

j,a = 0 otherwise. a−(i,j,k′|k′≥k) represents
removing the kth or later words in sentence j of
image i

Entity Type Resampling Fixing the assign-
ments, the type of each entity is redrawn based
on the distribution in Figure 3. It is proportional
to the probability that a certain entity type is in an
image of a given topic and, independently for each
of the words, the probability that the given word
expresses the type. n−ei,a

e,x is the number of times
entity type e is expressed as word x not counting
the words attached to the currently entity being re-
sampled and m−ei,a

t,e is the number of times an en-
tity of type e appears in an image of topic t not
counting the current entity being resampled. The
probability of a given image belonging to a topic is
proportional the number of images already in the
topic (or γ) followed by the probability that each
of the entities in the image were drawn from that
topic.

6.3 Model 2: Explicit Entities and Modifiers
Certain entities cannot be distinguished simply by
head word alone, such in the example in Figure 2.
Model 2 augments Model 1 with the ability to gen-
erate modifiers. In addition to an entity type, each
entity draws an attribute from a global distribution
drawn from a GEM distribution with hyperparam-

eter η. An attribute is a multinomial distribution,
on possible modifier words, drawn from a Dirich-
let prior with parameter ζ. From the attribute, each
modifier word is drawn independently. There-
fore given an attribute b and a set of modifiers d:
P (d|b) ∝

∏
d∈d(sd + ζ) where sd is number of

times modifier d is produced by attribute b. In ad-
dition, the probability of a certain attribute b given
all other assignments is given by:

P (bia = b|b−i,a) ∝

(
η, If its a new attribute
rb, Otherwise

where rb is the number of entities with at-
tribute b. As in Model 1, mentions assigned to
the same entity are considered coreferent. Con-
sider the “smaller black dog” mention in Figure 2.
When the mention is being resampled, the at-
tribute choice for each table will bias the probabil-
ity distribution towards the table whose attribute
is more likely to produce “smaller” and “black”.
Therefore, the model can now better distinguish
the two dogs in the image.

6.3.1 Sampling Model 2
The addition of modifiers only directly effects the
distribution when resampling entity assignments
since attributes are independent of entity types,
image topics, and headwords of noun phrases. The
sampling distribution are again shown in Figure 3.
In a separate sampling step, it is now necessary to
resample the attribute assigned to each entity: The
probability of drawing a certain attribute is illus-
trated in Figure 3 with Di

a as the set of all the mod-
ifiers of all the noun phrases currently assigned to

167

entity a of image i, and s−i,a
b,d as the number of

times attribute b produces modifier d without the
current assignment of entity a of image i.

6.4 Implementation
The topic assignments for each image are initial-
ized to correspond to the Flickr groups the images
were taken from. Each mention was initialized as
its own entity with type and attribute sampled from
a uniform distribution.

As our training is unsupervised, each of the
models were ran on the entire dataset. For Model
0, after burn-in, 20 samples of Z were taken
spaced 200 iterations apart, while for Model 1
samples were taken spaced 100 apart, and 25 apart
for Model 2. The implementation of Model 2 ran
too slow to effectively judge when burn in oc-
curred, impacting the results.

The values of parameters α, β, γ, κ, η, ζ, and
the number of initial attributes were hand-tuned
based on the average performance on our anno-
tated development subset of 100 images.13

7 Evaluation of coreference resolution

We evaluate each of the generative models and the
heuristic coreference algorithm on the annotated
test subset of our corpus consisting of 100 images
with both the OpenNLP chunking and the gold
standard chunking. We report our scores based
on the MUC evaluation metric. The results are
reported in Table 2 as the average scores across
all the samples of two independent runs of each
model. We also present results on Model 0 with-
out using WordNet where every word can be an
expression of one of 200 fake entity sets. The
same table also shows the performance of a base-
line model and the upper bound on performance
imposed by WordNet.

A baseline model: In our baseline model, two
noun phrases in captions of the same image are
coreferent if they share the same head noun.

Upper bound on performance: Although
WordNet synsets provide a good indication of
whether two mentions can refer to the same
entity or not, they may also be overly restrictive
in other cases. We measure the upper bound
on performance that our reliance on WordNet
imposes by finding the best-scoring coreference
assignment that is consistent with our lexicon.

13(0.1, 0.1, 100, 0.001875, 100, 0.0002, 20) respectively.

This achieves an F-score of 90.2 on the test data
with gold chunks.

Performance increases in each subsequent
model. The heuristic beats each of the models, but
in some sense it is an extreme version of Model
1. Both it and Model 1 attempt to produce en-
tity sets that cover as many captions as possible,
while minimizing the number of distinct words in-
volved. The heuristic locally forces this case, at
the expense of no longer being a generative model.

8 Ontological Class Prediction

As a further step towards understanding the se-
mantics of images, we develop a model that labels
each entity with one of the ontological classes de-
fined in section 2. The immediate difficulty of this
task is that our ontology includes not only seman-
tic distinctions, but also spatial and visual ones.
While it may be easy to tell which words are an-
imals and which are people, there is only a fine
distinction at the language level whether an object
is movable, fixed, or part of the background.14

8.1 Model and Features

We define our task as a classification problem,
where each entity must be assigned to one of
twenty classes defined by our ontology. We use a
Maximum Entropy classifier, implemented in the
MALLET toolkit (McCallum, 2002), and define
the following text features:

NP Chunk: We include all the words in the NP
chunk, unfiltered.

WordNet Synsets and Hypernyms: The most
likely synset is either the first one that appears in
WordNet or one of the ones predicted by our coref-
erence system. For each of these possibilities, we
include all of that synset’s hypernyms.

Syntactic Role: We parsed our captions with the
C&C parser (Clark and Curran, 2007), and record
whether the word appears as a direct object of a
verb, as the object of a preposition, as the subject
of the sentence, or as a modifier. If it is a modi-
fier, we also add the head word of the phrase being
modified.

14For example, we deem bowls and silverware to be mov-
able objects; furniture, fixed; and carpets, background. More-
over, in all three cases, we must correctly distinguish that
these objects are man-made and not found in nature.

168

Model OpenNLP chunks Gold chunks
Rec. Prec. F1 Rec. Prec. F1

Baseline 57.3 89.5 69.9 64.1 96.2 77.0
Upper bound 82.1 100 90.2
WN Heuristic 70.6 84.8 77.0 80.4 90.6 85.2
Model 0 w/o WN 79.7 59.8 68.4 85.1 62.7 72.2
Model 0 66.8 83.1 74.1 75.9 90.3 82.5
Model 1 69.6 83.8 76.0 78.0 90.8 83.9
Model 2 69.2 84.4 76.1 77.9 91.5 84.1

Table 2: Coreference resolution results (MUC scores; Models 0-2 are averaged over all samples)

8.2 Experiments
We use two baselines. The naive baseline catego-
rizes words by selecting the most frequent class
of the word. If no instances of the word have oc-
curred, it uses the overall most frequent class. The
WordNet baseline works by finding the most fre-
quent class amongst the most relevant synsets for
a word. It calculates the class frequency for each
synset by assuming each word has the sense of its
first synset and incrementing the frequency of the
first synset and its hypernyms. When categorizing
a word, it finds the set of closest hypernyms of the
word that have a non-zero frequency, and chooses
the class with the greatest sum of frequency counts
amongst those hypernyms.

We train the MaxEnt classifier using semi-
supervised learning. Initially, we train a classifier
using the 500 sentence gold standard development
set. For each class, we use the top 5%15 of the la-
bels to label the unlabeled data and provide addi-
tional training data. We then retrain the classifier
on the newly labeled examples and the develop-
ment set, and run it on the test set. For each coref-
erence chain in the test set, we relabel all of the
mentions in the chain to use the majority class, if
a clear majority exists. If no such majority exists,
we leave the labels as is. The MaxEnt classifier
experiments were conducted by varying the source
of the synset assigned to each word. For each of
our coreference systems, we report two scores (Ta-
ble 3). The first is the average accuracy when us-
ing the output from two runs of each model with
about 20 samples per run, and the second uses the
output that performs best on the coreference task
when scored on the development data.

Discussion Although we use WordNet to clas-
sify our entity mentions, we designed our ontology
by considering only the images and their captions,
with no particular mapping to WordNet in mind.

15This was tuned using 10-fold cross-validation of the de-
velopment set.

Classifier (synset prediction) Accuracy (gold chunks)
Naive Baseline 72.0
WordNet Baseline 81.0
MaxEnt (1st-synset) 84.4
MaxEnt (WN heuristic) 82.7

Avg. σ Best-Coref
MaxEnt (Model 1) 83.9 0.5 84.5
MaxEnt (Model 2) 84.1 0.4 85.3

Table 3: Prediction of ontological classes

Therefore, these experiments provide of a proof of
concept for the semi-supervised labeling of a cor-
pus using any semantic/visual ontology.

Overall, Model 2 had the best performance for
this task. This demonstrates that the additional
features of Model 2 force synset selections that are
consistent across the entire corpus, and are sen-
sitive to the modifiers appearing with them. The
WordNet heuristic selects synsets in a fairly ar-
bitrary manner - all other things being equal, the
synsets are chosen without reference to what other
synsets are chosen by similar clusters of nouns.

9 Evaluating entity prediction

Together, the coreference resolution algorithm and
ontology classification model provide us with a set
of distinct, ontologically-categorized entities ap-
pearing in each image. We perform a final experi-
ment to evaluate how well our models can recover
the mentioned entities and their ontological types
for each image. We now represent each entity as a
tuple (L, c), where L is its coreference chain, and
c is the ontological class of these mentions. 16

We compute the precision and recall between
the predicted and gold standard tuples for each im-
age. We consider a tuple (L′, c′) correctly pre-
dicted only when a copy of (L′, c′) occurs both
in the set of predicted tuples and the set of gold
standard tuples.17 Then, as usual, for precision we

16Note that for each image, the tuples of all entities corre-
spond to a partition of the set of the head-word mentions in
an image.

17We assign no partial credit because incorrect typing or

169

Model Recall Precision F-score
Baseline 28.4 20.6 23.9

WordNet Heuristic 48.3 43.9 46.0
Model 1 (avg) 51.7 42.8 46.8

Model 1 (best-coref) 50.9 45.4 48.0
Model 2 (avg) 52.2 42.7 47.0

Model 2 (best-coref) 52.3 46.0 49.0

Table 4: Overall entity recovery. We measure
how many entities we identify correctly (requiring
complete recovery of their coreference chains and
correct prediction of their ontological class.

normalize the number of overlapping tuples by the
number of predicted tuples, and for recall, by the
number of gold standard tuples. We report average
precision and recall over all images in our test set.

We report scores for four different pairs of on-
tological class and coreference chain predictions.
As a baseline, we use the ontological classes pre-
dicted by the our naive baseline and the chains pre-
dicted by the “same-words-are-coreferent” coref-
erence resolution baseline.

We also report results using the classes and
chains predicted by Model 1, Model 2, and the
WordNet Heuristic Algorithm. The influence of
the different coreference algorithms comes from
the entity types that are used to determine corefer-
ence chains, and that also correspond to WordNet
candidate synsets. In other words, although the
final coreference chain may be predicted by two
different models, the synsets they use to do so may
differ, affecting the synset and hypernym features
used for ontological prediction. We present results
in Table 4 for these four different set-ups.

The synsets chosen by the different corefer-
ence algorithms clearly have different applicabil-
ity when it comes to ontological class prediction.
Although Model 2 performs comparably to Model
1 and does worse than the WordNet heuristic al-
gorithm for coreference chain prediction, it cer-
tainly does better on this task. Since our end goal
is creating a unified semantic representation, this
final task judges the effectiveness of our models to
capture the most detailed entity information. The
success of Model 2 means that the incorporation
of adjectives informs the proper choice of synsets
that are useful in predicting ontological classes.

10 Conclusion

As a first step towards automatic image under-
standing, we have collected a corpus of images as-

incomplete coreference chaining both completely change the
semantics of an image.

sociated with several simple descriptive captions,
which provide more detailed information about
the image than simple keywords. We plan to make
this data set available for further research in com-
puter vision and natural language processing. In
order to enable the creation of a semantic repre-
sentation of the image content that is consistent
with the captions in our data set, we use Word-
Net and a series of Bayesian models to perform
cross-caption coreference resolution. Similar to
Haghighi and Klein (2009), who find that linguis-
tic heuristics can provide very strong baselines for
standard coreference resultion, relatively simple
heuristics based on WordNet alone perform sur-
prisingly well on our task, although they are out-
performed by our Bayesian models for overall en-
tity prediction. Since our generative models are
based on Dirichlet Process priors, they are de-
signed to favor a small number of unique entities
per image. In the heuristic algorithm, this bias
is built in explicitly, resulting in slightly higher
performance on the coreference resolution task.
However, while the generative models can use
global information to learn what entity type each
word is likely to represent, the heuristic is unable
to capture any non-local information about the en-
tities, and thus provides less useful input for the
prediction of ontological classes.

Future work will aim to improve on these re-
sults by overcoming the upper bound on perfor-
mance imposed by WordNet, and through a more
sophisticated model of modifiers. We will also in-
vestigate how image features can be incorporated
into our model to improve performance on entity
detection. Ultimately, identifying the depicted en-
tities from multiple image captions will require
novel ways to correctly handle the semantics of
plural NPs (i.e. that one caption’s “two dogs” con-
sist of another’s “golden retreiver” and “smaller
black dog”). We foresee similar challenges when
dealing with verbs and events.

The creation of an actual semantic representa-
tion of the image content is a challenging problem
in itself, since the different captions often focus
on different aspects of the depicted situation, or
provide different interpretation of ambiguous sit-
uations. We believe that this poses many inter-
esting challenges for natural language processing,
and will ultimately require ways to integrate the
information conveyed in the caption with visual
features extracted from the image.

170

Acknowledgements

This research was funded by NSF grant IIS 08-
03603 INT2-Medium: Understanding the Mean-
ing of Images. We are grateful for David Forsyth
and Dan Roth’s advice, and for Alex Sorokins sup-
port with MTurk.

References
David Andrzejewski and Xiaojin Zhu. 2009. Latent

Dirichlet allocation with topic-in-set knowledge. In
NAACL HLT 2009 Workshop on Semi-Supervised
Learning for Natural Language Processing, pages
43–48.

Kobus Barnard, Pinar Duygulu, David Forsyth,
Nando De Freitas, David M. Blei, and Michael I.
Jordan. 2003. Matching words and pictures. Jour-
nal of Machine Learning Research, 3:1107–1135.

Regina Barzilay and Kathleen R. McKeown. 2001.
Extracting paraphrases from a parallel corpus. In
Proceedings of the 39th annual meeting of the Asso-
ciation for Computational Linguistics, pages 50–57,
Toulouse, France, July.

David M. Blei, Michael I, David M. Blei, and Michael
I. 2003. Modeling annotated data. In Proceedings
of the 26th International ACM SIGIR Conference,
pages 127–134.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

Koen Deschacht and Marie-Francine Moens. 2007.
Text analysis for automatic image annotation. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
In Proceedings of Coling 2004, pages 350–356,
Geneva, Switzerland, August. COLING.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. 2009.
Describing objects by their attributes. In IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 1778–1785, June.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cam-
bridge, MA ; London, May.

P. Felzenszwalb, D. McAllester, and D. Ramanan.
2008. A discriminatively trained, multiscale, de-
formable part model. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1–8,
June.

Yansong Feng and Mirella Lapata. 2008. Automatic
image annotation using auxiliary text information.
In Proceedings of ACL-08: HLT, pages 272–280,
Columbus, Ohio, June.

Aria Haghighi and Dan Klein. 2007. Unsupervised
coreference resolution in a nonparametric Bayesian
model. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 848–855, Prague, Czech Republic.

Aria Haghighi and Dan Klein. 2009. Simple coref-
erence resolution with rich syntactic and semantic
features. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1152–1161, Singapore, August. Associ-
ation for Computational Linguistics.

L. Hollink and M. Worring. 2005. Building a vi-
sual ontology for video retrieval. In MULTIMEDIA
’05: Proceedings of the 13th annual ACM interna-
tional conference on Multimedia, pages 479–482,
New York, NY, USA. ACM.

A. Hoogs, J. Rittscher, G. Stein, and J. Schmiederer.
2003. Video content annotation using visual anal-
ysis and a large semantic knowledgebase. In IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, volume 2, pages II–327 –
II–334 vol.2, June.

Jane Hunter. 2001. Adding multimedia to the semantic
web - building an mpeg-7 ontology. In In Interna-
tional Semantic Web Working Symposium (SWWS,
pages 261–281.

Lavrenko Manmatha Jeon, V. Lavrenko, R. Manmatha,
and J. Jeon. 2003. A model for learning the seman-
tics of pictures. In Seventeenth Annual Conference
on Neural Information Processing Systems (NIPS).
MIT Press.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Christoph Müller and Michael Strube. 2006. Multi-
level annotation of linguistic data with MMAX2. In
Sabine Braun et al, editor, Corpus Technology and
Language Pedagogy, pages 197–214. Peter Lang,
Frankfurt a.M., Germany.

Ariadna Quattoni and Antonio B. Torralba. 2009.
Recognizing indoor scenes. In IEEE Conference
on Computer Vision and Pattern Recognition, pages
413–420. IEEE.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and
Julia Hockenmaier. 2010. Collecting image anno-
tations using amazons mechanical turk. In NAACL
Workshop Creating Speech and Language Data With
Amazons Mechanical Turk.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and
David M Blei. 2006. Hierarchical dirichlet pro-
cesses. Journal of the American Statistical Associa-
tion, 101(476):1566–1581.

171

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 172–181,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Improved Natural Language Learning via
Variance-Regularization Support Vector Machines

Shane Bergsma
University of Alberta
sbergsma@ualberta.ca

Dekang Lin
Google, Inc.

lindek@google.com

Dale Schuurmans
University of Alberta
dale@cs.ualberta.ca

Abstract

We present a simple technique for learn-
ing better SVMs using fewer training ex-
amples. Rather than using the standard
SVM regularization, we regularize toward
low weight-variance. Our new SVM ob-
jective remains a convex quadratic func-
tion of the weights, and is therefore com-
putationally no harder to optimize than a
standard SVM. Variance regularization is
shown to enable dramatic improvements
in the learning rates of SVMs on three lex-
ical disambiguation tasks.

1 Introduction

Discriminative training is commonly used in NLP
and speech to scale the contribution of different
models or systems in a combined predictor. For
example, discriminative training can be used to
scale the contribution of the language model and
translation model in machine translation (Och and
Ney, 2002). Without training data, it is often rea-
sonable to weight the different models equally. We
propose a simple technique that exploits this intu-
ition for better learning with fewer training exam-
ples. We regularize the feature weights in a Sup-
port Vector Machine (Cortes and Vapnik, 1995) to-
ward a low-variance solution. Since the new SVM
quadratic program is convex, it is no harder to op-
timize than the standard SVM objective.

When training data is generated through hu-
man effort, faster learning saves time and money.
When examples are labeled automatically, through
user feedback (Joachims, 2002) or from tex-
tual pseudo-examples (Smith and Eisner, 2005;
Okanohara and Tsujii, 2007), faster learning can
reduce the lag before a new system is useful.

We demonstrate faster learning on lexical dis-
ambiguation tasks. For these tasks, a system pre-
dicts a label for a word in text, based on the

word’s context. Possible labels include part-of-
speech tags, named-entity types, and word senses.
A number of disambiguation systems make pre-
dictions with the help of N-gram counts from a
web-scale auxiliary corpus, typically via a search-
engine (Lapata and Keller, 2005) or N-gram cor-
pus (Bergsma et al., 2009). When discriminative
training is used to weigh the counts for classifi-
cation, many of the learned feature weights have
similar values. Good weights have low variance.

For example, consider the task of preposition
selection. A system selects the most likely prepo-
sition given the context, and flags a possible error
if it disagrees with the user’s choice:

• I worked in Russiafrom 1997 to 2001.

• I worked in Russia *during 1997 to 2001.

Bergsma et al. (2009) use a variety of web counts
to predict the correct preposition. They have fea-
tures for COUNT(in Russia from), COUNT(Russia
from 1997), COUNT(from 1997 to), etc. If these are
high, from is predicted. Similarly, they have fea-
tures forCOUNT(in Russiaduring), COUNT(Russia
during 1997), COUNT(during 1997 to). These fea-
tures predictduring . All counts are in the log
domain. The task has thirty-four different prepo-
sitions to choose from. A 34-way classifier is
trained on examples of correct preposition usage;
it learns which context positions and sizes are most
reliable and assigns feature weights accordingly.

A very strong unsupervised baseline, however,
is to simply weight all the count features equally.
In fact, in Bergsma et al. (2009), the supervised
approach requires over 30,000 training examples
before it outperforms this baseline. In contrast,
we show that by regularizing a classifier toward
equal weights, a supervised predictor outperforms
the unsupervised approach after only ten exam-
ples, and does as well with 1000 examples as the
standard classifier does with 100,000.

172

Section 2 first describes a general multi-class
SVM. We call the base vector of information
used by the SVM theattributes. A standard
multi-class SVM creates features for the cross-
product of attributes and classes. E.g., the attribute
COUNT(Russiaduring 1997) is not only a feature
for predicting the prepositionduring , but also for
predicting the 33 other prepositions. The SVM
must therefore learn to disregard many irrelevant
features. We observe that this is not necessary,
and develop an SVM that only uses the relevant
attributes in the score for each class. Building on
this efficient framework, we incorporate variance
regularization into the SVM’s quadratic program.

We apply our algorithms to three tasks: prepo-
sition selection, context-sensitive spelling correc-
tion, and non-referential pronoun detection (Sec-
tion 4). We reproduce Bergsma et al. (2009)’s
results using a multi-class SVM. Our new mod-
els achieve much better accuracy with fewer train-
ing examples. We also exceed the accuracy of a
reasonable alternative technique for increasing the
learning rate: including the output of the unsuper-
vised system as a feature in the SVM.

Variance regularization is an elegant addition to
the suite of methods in NLP that improve perfor-
mance when access to labeled data is limited. Sec-
tion 5 discusses some related approaches. While
we motivate our algorithm as a way to learn better
weights when the features are counts from an aux-
iliary corpus, there are other potential uses of our
method. We outline some of these in Section 6,
and note other directions for future research.

2 Three Multi-Class SVM Models

We describe three max-margin multi-class classi-
fiers and their corresponding quadratic programs.
Although we describe linear SVMs, they can be
extended to nonlinear cases in the standard way
by writing the optimal function as a linear combi-
nation of kernel functions over the input examples.

In each case, after providing the general tech-
nique, we relate the approach to our motivating
application: learning weights for count features in
a discriminative web-scale N-gram model.

2.1 Standard Multi-Class SVM

We define aK-class SVM following Crammer and
Singer (2001). This is a generalization of binary
SVMs (Cortes and Vapnik, 1995). We have a set
{(x̄1, y1), ..., (x̄M , yM)} of M training examples.

Eachx̄ is anN -dimensional attribute vector, and
y ∈ {1, ...,K} are classes. A classifier,H, maps
an attribute vector,̄x, to a class,y. H is parame-
terized by aK-by-N matrix of weights,W:

HW(x̄) =
K

argmax
r=1

{W̄r · x̄} (1)

whereW̄r is therth row of W. That is, the pre-
dicted label is the index of the row ofW that has
the highest inner-product with the attributes,x̄.

We seek weights such that the classifier makes
few errors on training data and generalizes well
to unseen data. There areKN weights to learn,
for the cross-product of attributes and classes.
The most common approach is to trainK sep-
arate one-versus-all binary SVMs, one for each
class. The weights learned for therth SVM pro-
vide the weightsW̄r in (1). We call this approach
OvA-SVM . Note in some settings various one-
versus-one strategies may be more effective than
one-versus-all (Hsu and Lin, 2002).

The weights can also be found using a single
constrained optimization (Vapnik, 1998; Weston
and Watkins, 1998). Following the soft-margin
version in Crammer and Singer (2001):

min
W,ξ1,...,ξM

1

2

K∑

i=1

||W̄i||
2 + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, W̄yi · x̄i − W̄r · x̄
i ≥1 − ξi (2)

The constraints require the correct class to be
scored higher than other classes by a certain mar-
gin, with slack for non-separable cases. Minimiz-
ing the weights is a form of regularization. Tuning
theC-parameter controls the emphasis on regular-
ization versus separation of training examples.

We call this theK -SVM . The K-SVM out-
performed theOvA-SVM in Crammer and Singer
(2001), but see Rifkin and Klautau (2004). The
popularity ofK-SVM is partly due to convenience;
it is included in popular SVM software likeSVM-
multiclass1 andLIBLINEAR (Fan et al., 2008).

Note that with two classes,K-SVM is less effi-
cient than a standard binary SVM. A binary classi-
fier outputs class 1 if (̄w · x̄ > 0) and class 2 other-
wise. TheK-SVM encodes a binary classifier using
W̄1 = w̄ andW̄2 = −w̄, therefore requiring twice
the memory of a binary SVM. However, both bi-
nary and 2-class formulations have the same solu-
tion (Weston and Watkins, 1998).

1
http://svmlight.joachims.org/svm multiclass.html

173

2.1.1 Web-Scale N-gramK -SVM

K-SVM was used with N-gram models in Bergsma
et al. (2009). For preposition selection, attributes
were web counts of patterns filled with 34 preposi-
tions, corresponding to the 34 classes. Each prepo-
sition serves as thefiller of eachcontext pattern.
Fourteen patterns were used for each filler: all five
5-grams, four 4-grams, three 3-grams, and two 2-
grams spanning the position to be predicted. There
areN = 14∗34 = 476 total attributes, and therefore
KN = 476 ∗ 34 = 16184 weights inW.

This K-SVM classifier can potentially exploit
very subtle information. LetW̄in and W̄before

be weights for the classesin andbefore. Notice
some of the attributes weighted in the inner prod-
uctsW̄before · x̄ andW̄in · x̄ will be for counts of
the prepositionafter. Relatively high counts for a
context withafter should deter us from choosing
in more than from choosingbefore. These cor-
relations can be encoded in the classifier via the
corresponding weights onafter-counts inW̄in and
W̄before. How useful are these correlations and
how much training data is needed before they can
be learned and exploited effectively?

We next develop a model that, for each class,
only scores those attributes deemed to be directly
relevant to the class. Our experiments thus empir-
ically address these questions for different tasks.

2.2 SVM with Class-Specific Attributes

Suppose we can partition our attribute vectors into
sub-vectors that only include attributes that we de-
clare as relevant to the corresponding class:x̄ =
(x̄1, ..., x̄K). We develop a classifier that only
uses the class-specific attributes in the score for
each class. The classifier uses anN -dimensional
weight vector,w̄, which follows the attribute par-
tition, w̄ = (w̄1, ..., w̄K). The classifier is:

Hw̄(x̄) =
K

argmax
r=1

{w̄r · x̄r} (3)

We call this classifier theCS-SVM (an SVM with
Class-Specific attributes).

The weights can be determined using the follow
(soft-margin) optimization:

min
w̄,ξ1,...,ξm

1

2
w̄T w̄ + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, w̄yi · x̄i
yi − w̄r · x̄

i
r ≥1 − ξi (4)

There are several advantages to this formula-
tion. Foremost, rather than havingKN weights,
it can have onlyN . For linear classifiers, the
number of examples needed to reach optimum
performance is at most linear in the number of
weights (Vapnik, 1998; Ng and Jordan, 2002). In
fact, both the total number and number ofactive
features per example decrease byK. Thus this re-
duction saves far more memory than what could
be obtained by an equal reduction in dimensional-
ity via pruning infrequent attributes.

Also, note that unlike theK-SVM (Section 2.1),
in the binary case theCS-SVM is completely equiv-
alent (thus equally efficient) to a standard SVM.

We will not alwaysa priori know the class as-
sociated with each attribute. Also, some attributes
may be predictive of multiple classes. In such
cases, we can include ambiguous attributes in ev-
ery sub-vector (needingN+D(K-1) total weights
if D attributes are duplicated). In the degenerate
case where every attribute is duplicated,CS-SVM

is equivalent toK-SVM; both haveKN weights.

2.2.1 Optimization as a Binary SVM

We could solve the optimization problem in (4)
directly using a quadratic programming solver.
However, through an equivalent transformation
into a binary SVM, we can take advantage of effi-
cient, custom SVM optimization algorithms.

We follow Har-Peled et al. (2003) in transform-
ing a multi-class example into a set of binary
examples, each specifying a constraint from (4).
We extend the attribute sub-vector corresponding
to each class to beN -dimensional. We do this
by substituting zero-vectors for all the other sub-
vectors in the partition. The attribute vector for the
rth class is then̄zr = (0̄, ..., 0̄, x̄r, 0̄, ..., 0̄). This is
known as Kesler’s Construction and has a long his-
tory in classification (Duda and Hart, 1973; Cram-
mer and Singer, 2003). We then create binary rank
constraints for a ranking SVM (Joachims, 2002)
(ranking SVMs reduce to standard binary SVMs).
We createK instances for each multi-class exam-
ple (x̄i, yi), with the transformed vector of the true
class,̄zyi , assigned a higher-rank than all the other,
equally-ranked classes,̄z{r 6=yi}. Training a rank-
ing SVM using these constraints gives the same
weights as solving (4), but allows us to use effi-
cient, custom SVM software.2 Note theK-SVM

2One subtlety is whether to use a single slack,ξi, for all
K-1 constraints per examplei (Crammer and Singer, 2001),
or a different slack for each constraint (Joachims, 2002). Us-

174

can also be trained this way, by including every
attribute in every sub-vector, as described earlier.

2.2.2 Web-Scale N-gramCS-SVM

Returning to our preposition selection example, an
obvious attribute partition for theCS-SVM is to
include as attributes for predicting prepositionr

only those counts for patterns filled with preposi-
tion r. Thusx̄in will only include counts for con-
text patterns filled within and x̄before will only
include counts for context patterns filled withbe-
fore. With 34 sub-vectors and 14 attributes in each,
there are only14 ∗ 34 = 476 total weights. In con-
trast,K-SVM had16184 weights to learn.

It is instructive to compare theCS-SVM in (3) to
the unsupervised SUMLM approach in Bergsma et
al. (2009). That approach can be written as:

H(x̄) =
K

argmax
r=1

{1̄ · x̄r} (5)

where1̄ is anN -dimensional vector of ones. This
is CS-SVM with all weights set to unity. The
counts for each preposition are simply summed,
and whichever one scores the highest is taken as
the output (actually only a subset of the counts are
used, see Section 4.1). As mentioned earlier, this
system performs remarkably well on several tasks.

2.3 Variance Regularization SVMs

Suppose we choose our attribute partition well and
train theCS-SVM on a sufficient number of exam-
ples to achieve good performance. It is a reason-
able hypothesis that the learned weights will be
predominantly positive. This is because each sub-
vector x̄r was chosen to only include attributes
that are predictive of classr. Unlike the classifier
in (1) which weighs positive and negative evidence
together for each class, inCS-SVM, negative evi-
dence only plays a roll as it contributes to the score
of competing classes.

If all the attributes are equally important, the
weights should be equal, as in the unsupervised
approach in (5). If some are more important than
others, the training examples should reflect this
and the learner can adjust the weights accord-
ingly.3 In the absence of this training evidence, it
is reasonable to bias the classifier toward an equal-
weight solution.

ing the former may be better as it results in a tighter bound
on empirical risk (Tsochantaridis et al., 2005).

3E.g., the true preposition might be better predicted by the
counts of patterns that tend to include the preposition’s gram-
matical object, i.e., patterns that include more right-context.

Rather than the standard SVM regularization
that minimizes the norm of the weights as in (4),
we therefore regularize toward weights that have
low variance. More formally, we can regard the
set of weights,w1, ..., wN , as the distribution of a
discrete random variable,W . We can calculate the
mean and variance of this variable from its distri-
bution. We seek a variable that has low variance.

We begin with a more general objective and
then explain how a specific choice of covariance
matrix,C, minimizes the variance of the weights.
We propose the regularizer:

min
w̄,ξ1,...,ξm

1

2
w̄T

Cw̄ + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, w̄yi · x̄i
yi − w̄r · x̄

i
r ≥1− ξi (6)

whereC is a normalized covariance matrix such
that

∑
i,j Ci,j = 0. This ensures uniform weight

vectors receive zero regularization penalty. Since
all covariance matrices are positive semi-definite,
the quadratic program (QP) remains convex inw̄,
and thus amenable to general purpose QP-solvers.

Since the unsupervised system in (5) has zero
weight variance, the SVM learned in (6) should do
as least as well as (5) as we tune theC-parameter
on development data. That is, asC approaches
zero, variance minimization becomes the sole ob-
jective of (6), and uniform weights are produced.

We use covariance matrices of the form:

C = diag(p̄) − p̄p̄T (7)

wherediag(p̄) is the matrix constructed by putting
p̄ on the main diagonal. Here,̄p is an arbitrary
N -dimensional weighting vector, such thatp ≥
0 and

∑
i pi = 1. p̄ dictates the contribution of

eachwi to the mean and variance of the weights
in w̄. It is easy to see that

∑
i,j Ci,j =

∑
i pi −∑

i

∑
j pipj = 0.

We now show thatw̄T (diag(p̄) − p̄p̄T)w̄ ex-
presses the variance of the weights inw̄ with re-
spect to the probability weightinḡp. The variance
of a random variable with meanE[W] = µ is:

Var[W] = E[(W − µ)2] = E[W 2] − E[W]2

The mean of the weights using probability weight-
ing p̄ is E[W] = w̄T p̄ = p̄w̄. Also, E[W 2] =
w̄T diag(p̄)w̄. Thus:

Var[W] = w̄T diag(p̄)w̄ − (w̄T p̄)(p̄w̄)

= w̄T (diag(p̄) − p̄p̄)w̄

175

In our experiments, we deem each weight to be
equally important to the variance calculation, and
setpi = 1

N
,∀i = 1, . . . , N .

The goal of the regularization in (6) usingC
from (7) can be regarded as directing the SVM to-
ward a good unsupervised system, regardless of
the constraints (training examples). In some un-
supervised systems, however, only a subset of the
attributes are used. In other cases, distinct subsets
of weights should have low variance, rather than
minimizing the variance across all weights. There
are examples of these situations in Section 4.

We can account for these cases in our QP. We
provide separate terms in our quadratic function
for the subsets of̄w that should have low vari-
ance. Suppose we createL subsets of̄w: ω̃1, ...ω̃L,
whereω̃j is w̄ with elements set to zero that are not
in subsetj. We then minimize1

2
(ω̃T

1 C1ω̃1 + ... +
ω̃T

LCLω̃L). If the terms in subsetj have low vari-
ance,Cj = C from (7) is used. If the subset corre-
sponds to attributes that are nota priori known to
be useful, an identity matrix can instead be used,
Cj = I, and these weights will be regularized to-
ward zero as in a standard SVM.4

Variance regularization therefore exploits extra
knowledge by the system designer. The designer
decides which weights should have similar values,
and the SVM is biased to prefer this solution.

One consequence of being able to regularize
different subsets of weights is that we can also ap-
ply variance regularization to the standard multi-
class SVM (Section 2.1). We can use an identity
Ci matrix for all irrelevant weights, i.e., weights
that correspond to class-attribute pairs where the
attribute is not directly relevant to the class. In our
experiments, however, we apply variance regular-
ization to the more efficientCS-SVM.

We refer to aCS-SVM trained using the variance
minimization quadratic program as theVAR-SVM.

2.3.1 Web-Scale N-gram VAR-SVM

If variance regularization is applied to all weights,
attributesCOUNT(in Russiaduring), COUNT(Russia
during 1997), andCOUNT(during 1997 to) will be
encouraged to have similar weights in the score for
classduring . Furthermore, these will be weighted
similarly to other patterns, filled with other prepo-
sitions, used in the scores for other classes.

4Weights must appear in≥1 subsets (possibly only in the
Cj = I subset). Each occurs in at most one in our experi-
ments. Note it is straightforward to express this as a single
covariance matrix regularizer over̄w; we omit the details.

Alternatively, we could minimize the variance
separately over all 5-gram patterns, then over all
4-gram patterns, etc., or over all patterns with a
filler in the same position. In our experiments, we
took a very simple approach: we minimized the
variance of all attributes that are weighted equally
in the unsupervised baselines. If a feature is not in-
cluded in a baseline, it is regularized toward zero.

3 Experimental Details

We use the data sets from Bergsma et al. (2009).
These are the three tasks where web-scale N-gram
counts were previously used as features in a stan-
dardK-SVM. In each case a classifier makes a de-
cision for a particular word based on the word’s
surrounding context. The attributes of the classi-
fier are the log counts of different fillers occurring
in the context patterns. We retrieve counts from
the web-scale Google Web 5-gram Corpus (Brants
and Franz, 2006), which includes N-grams of
length one to five. We apply add-one smoothing
to all counts. Every classifier also has bias fea-
tures (for every class). We simply include, where
appropriate, attributes that are always unity.

We useLIBLINEAR (Fan et al., 2008) to train
K-SVM and OvA-SVM, and SVMrank (Joachims,
2006) to trainCS-SVM. For VAR-SVM, we solve
the primal form of the quadratic program directly
in CPLEX (2005), a general optimization package.

We vary the number of training examples for
each classifier. TheC-parameters of all SVMs are
tuned on development data. We evaluate usingac-
curacy: the percentage of test examples that are
classified correctly. We also provide the accuracy
of the majority-class baseline and best unsuper-
vised system, as defined in Bergsma et al. (2009).

As an alternative way to increase the learning
rate, we augment a classifier’s features using the
output of the unsupervised system: For each class,
we include one feature for the sum of all counts (in
the unsupervised system) that predict that class.
We denote these augmented systems with a+ as
in K-SVM+ andCS-SVM+.

4 Applications

4.1 Preposition Selection

Preposition errors are common among new En-
glish speakers (Chodorow et al., 2007). Systems
that can reliably identify these errors are needed
in word processing and educational software.

176

Training Examples
System 10 100 1K 10K 100K
OvA-SVM 16.0 50.6 66.1 71.1 73.5
K-SVM 13.7 50.0 65.8 72.0 74.7
K-SVM+ 22.2 56.8 70.5 73.7 75.2
CS-SVM 27.1 58.8 69.0 73.5 74.2
CS-SVM+ 39.6 64.8 71.5 74.0 74.4
VAR-SVM 73.8 74.2 74.7 74.9 74.9

Table 1: Accuracy (%) of preposition-selection
SVMs. Unsupervised accuracy is 73.7%.

In our experiments, a classifier must choose the
correct preposition among 34 candidates, using
counts for filled 2-to-5-gram patterns. We use
100K training, 10K development, and 10K test
examples. The unsupervised approach sums the
counts of all 3-to-5-gram patterns for each prepo-
sition. We therefore regularize the variance of the
3-to-5-gram weights in VAR-SVM, and simultane-
ously minimize the norm of the 2-gram weights.

4.1.1 Results

The majority-class is the prepositionof; it occurs
in 20.3% of test examples. The unsupervised sys-
tem scores 73.7%. For further perspective on these
results, note Chodorow et al. (2007) achieved 69%
with 7M training examples, while Tetreault and
Chodorow (2008) found the human performance
was around 75%. However, these results are not
directly comparable as they are on different data.

Table 1 gives the accuracy for different amounts
of training data. Here, as in the other tasks,K-SVM

mirrors the learning rate in Bergsma et al. (2009).
There are several distinct phases among the rela-
tive ranking of the systems. For smaller amounts
of training data (≤1000 examples)K-SVM per-
forms worst, while VAR-SVM is statistically sig-
nificantly better than all other systems, and al-
ways exceeds the performance of the unsupervised
approach.5 Augmenting the attributes with sum
counts (the+ systems) strongly helps with fewer
examples, especially in conjunction with the more
efficient CS-SVM. However, VAR-SVM clearly
helps more. We noted earlier that VAR-SVM is
guaranteed to do as well as the unsupervised sys-
tem on the development data, but here we confirm
that it can also exploit even small amounts of train-
ing data to further improve accuracy.

CS-SVM outperformsK-SVM except with 100K

5Significance is calculated using aχ2 test over the test set
correct/incorrect contingency table.

Training Examples
System 10 100 1K 10K 100K
CS-SVM 86.0 93.5 95.1 95.7 95.7
CS-SVM+ 91.0 94.9 95.3 95.7 95.7
VAR-SVM 94.9 95.3 95.6 95.7 95.8

Table 2: Accuracy (%) of spell-correction SVMs.
Unsupervised accuracy is 94.8%.

examples, whileOvA-SVM is better thanK-SVM

for small amounts of data.6 K-SVM performs best
with all the data; it uses the most expressive repre-
sentation, but needs 100K examples to make use
of it. On the other hand, feature augmentation
and variance regularization provide diminishing
returns as the amount of training data increases.

4.2 Context-Sensitive Spelling Correction

Context-sensitive spelling correction, or real-word
error/malapropism detection (Golding and Roth,
1999; Hirst and Budanitsky, 2005), is the task of
identifying errors when a misspelling results in a
real word in the lexicon, e.g., usingsitewhensight
or citewas intended. Contextual spell checkers are
among the most widely-used NLP technology, as
they are included in commercial word processing
software (Church et al., 2007).

For every occurrence of a word in a pre-defined
confusion set (e.g.{cite, sight, cite}), the clas-
sifier selects the most likely word from the set.
We use the five confusion sets from Bergsma et al.
(2009); four are binary and one is a 3-way classi-
fication. We use 100K training, 10K development,
and 10K test examples for each, and average ac-
curacy across the sets. All 2-to-5 gram counts are
used in the unsupervised system, so the variance
of all weights is regularized in VAR-SVM.

4.2.1 Results

On this task, the majority-class baseline is much
higher, 66.9%, and so is the accuracy of the top un-
supervised system: 94.8%. Since four of the five
sets are binary classifications, whereK-SVM and
CS-SVM are equivalent, we only give the accuracy
of the CS-SVM (it does perform better on the one
3-way set). VAR-SVM again exceeds the unsuper-
vised accuracy for all training sizes, and generally

6Rifkin and Klautau (2004) argueOvA-SVM is as good
asK-SVM, but this is “predicated on the assumption that the
classes are ‘independent’,” i.e., that examples from class0
are no closer to class 1 than to class 2. This is not true of this
task (e.g.̄xbefore is closer tox̄after thanx̄in, etc.).

177

Training Examples
System 10 100 1K
CS-SVM 59.0 71.0 84.3
CS-SVM+ 59.4 74.9 84.5
VAR-SVM 70.2 76.2 84.5
VAR-SVM+FreeB 64.2 80.3 84.5

Table 3: Accuracy (%) of non-referential detection
SVMs. Unsupervised accuracy is 80.1%.

performs as well as the augmentedCS-SVM+ us-
ing an order of magnitude less training data (Ta-
ble 2). Differences from≤1K are significant.

4.3 Non-Referential Pronoun Detection

Non-referential detection predicts whether the En-
glish pronounit refers to a preceding noun (“it
lost money”) or is used as a grammatical place-
holder (“it is important to...”). This binary clas-
sification is a necessary but often neglected step
for noun phrase coreference resolution (Paice and
Husk, 1987; Bergsma et al., 2008; Ng, 2009).

Bergsma et al. (2008) use features for the counts
of various fillers in the pronoun’s context patterns.
If it is the most common filler, the pronoun is
likely non-referential. If other fillers are common
(like theyor he), it is likely a referential instance.
For example, “he lost money” is common on the
web, but “he is important to” is not. We use the
same fillers as in previous work, and preprocess
the N-gram corpus in the same way.

The unsupervised system picks non-referential
if the difference between the summed count of
it fillers and the summed count ofthey fillers is
above a threshold (note this no longer fits (5),
with consequences discussed below). We thus
separately minimize the variance of theit pattern
weights and thetheypattern weights. We use 1K
training, 533 development, and 534 test examples.

4.3.1 Results

The most common class isreferential, occurring
in 59.4% of test examples. The unsupervised sys-
tem again does much better, at 80.1%.

Annotated training examples are much harder
to obtain for this task and we experiment with a
smaller range of training sizes (Table 3). The per-
formance of VAR-SVM exceeds the performance
of K-SVM across all training sizes (bold accura-
cies are significantly better than eitherCS-SVM for
≤100 examples). However, the gains were not
as large as we had hoped, and accuracy remains

worse than the unsupervised system when not us-
ing all the training data. When using all the data,
a fairly large C-parameter performs best on devel-
opment data, so regularization plays less of a role.

After development experiments, we speculated
that the poor performance relative to the unsuper-
vised approach was related to class bias. In the
other tasks, the unsupervised system chooses the
highest summed score. Here, the difference init
andtheycounts is compared to athreshold. Since
the bias feature is regularized toward zero, then,
unlike the other tasks, using a lowC-parameter
does not produce the unsupervised system, so per-
formance can begin below the unsupervised level.

Since we wanted the system to learn this thresh-
old, even when highly regularized, we removed
the regularization penalty from the bias weight,
letting the optimization freely set the weight to
minimize training error. With more freedom, the
new classifier (VAR-SVM+FreeB) performs worse
with 10 examples, but exceeds the unsupervised
approach with 100 training points. Although
this was somewhat successful, developing better
strategies for bias remains useful future work.

5 Related Work

There is a large body of work on regularization in
machine learning, including work that uses posi-
tive semi-definite matrices in the SVM quadratic
program. The graph Laplacian has been used to
encourage geometrically-similar feature vectors to
be classified similarly (Belkin et al., 2006). An ap-
pealing property of these approaches is that they
incorporate information from unlabeled examples.
Wang et al. (2006) use Laplacian regularization
for the task of dependency parsing. They regular-
ize such that features for distributionally-similar
words have similar weights. Rather than penal-
ize pairwise differences proportional to a similar-
ity function, we simply penalize weight variance.

In the field of computer vision, Tefas et al.
(2001) (binary) and Kotsia et al. (2009) (multi-
class) also regularize weights with respect to a co-
variance matrix. They use labeled data to find the
sum of the sample covariance matrices from each
class, similar to linear discriminant analysis. We
propose the idea in general, and instantiate with
a differentC matrix: a variance regularizer over
w̄. Most importantly, our instantiated covariance
matrix does not require labeled data to generate.

In a Bayesian setting, Raina et al. (2006) model

178

feature correlations in a logistic regression clas-
sifier. They propose a method to construct a co-
variance matrix for a multivariate Gaussian prior
on the classifier’s weights. Labeled data for other,
related tasks is used to infer potentially correlated
features on the target task. Like in our results, they
found that the gains from modeling dependencies
diminish as more training data is available.

We also mention two related online learning ap-
proaches. Similar to our goal of regularizing to-
ward a good unsupervised system, Crammer et al.
(2006) regularizēw toward a (different) target vec-
tor at each update, rather than strictly minimizing
||w̄||2. The target vector is the vector learned from
the cumulative effect of previous updates. Dredze
et al. (2008) maintain the variance of each weight
and use this to guide the online updates. However,
covariance between weights is not considered.

We believe new SVM regularizations in gen-
eral, and variance regularization in particular, will
increasingly be used in combination with related
NLP strategies that learn better when labeled data
is scarce. These may include: using more-general
features, e.g. ones generated from raw text (Miller
et al., 2004; Koo et al., 2008), leveraging out-of-
domain examples to improve in-domain classifi-
cation (Blitzer et al., 2007; Daumé III, 2007), ac-
tive learning (Cohn et al., 1994; Tong and Koller,
2002), and approaches that treat unlabeled data as
labeled, such as bootstrapping (Yarowsky, 1995),
co-training (Blum and Mitchell, 1998), and self-
training (McClosky et al., 2006).

6 Future Work

The primary direction of future research will be
to apply the VAR-SVM to new problems and tasks.
There are many situations where a system designer
has an intuition about the role a feature will play in
prediction; the feature was perhaps added with this
role in mind. By biasing the SVM to use features
as intended, VAR-SVM may learn better with fewer
training examples. The relationship between at-
tributes and classes may be explicit when, e.g.,
a rule-based system is optimized via discrimina-
tive learning, or annotators justify their decisions
by indicating the relevant attributes (Zaidan et al.,
2007). Also, if features area priori thought to
have different predictive worth, the attributeval-
uescould be scaled such that variance regulariza-
tion, as we formulated it, has the desired effect.

Other avenues of future work will be to extend

the VAR-SVM in three directions: efficiency, rep-
resentational power, and problem domain.

While we optimized the VAR-SVM objective in
CPLEX, general purpose QP-solvers “do not ex-
ploit the special structure of [the SVM optimiza-
tion] problem,” and consequently often train in
time super-linear with the number of training ex-
amples (Joachims et al., 2009). It would be useful
to fit our optimization problem to efficient SVM
training methods, especially for linear classifiers.

VAR-SVM’s representational power could be ex-
tended by using non-linear SVMs. Kernels can
be used with a covariance regularizer (Kotsia et
al., 2009). SinceC is positive semi-definite, the
square root of its inverse is defined. We can there-
fore map the input examples using(C− 1

2 x̄), and
write an equivalent objective function in terms of
kernel functions over the transformed examples.

Also, since structured-prediction SVMs build
on the multi-class framework (Tsochantaridis et
al., 2005), variance regularization can be incor-
porated naturally into more complex prediction
tasks, such as parsers, taggers, and aligners.

VAR-SVM may also help in new domains where
annotated data is lacking. VAR-SVM should be
stronger cross-domain thanK-SVM; regulariza-
tion with domain-neutral prior-knowledge can off-
set domain-specific biases. Learned weight vec-
tors from other domains may also provide cross-
domain regularization guidance.

7 Conclusion

We presented variance-regularization SVMs, an
approach to learning that creates better classi-
fiers using fewer training examples. Variance reg-
ularization incorporates a bias for known good
weights into the SVM’s quadratic program. The
VAR-SVM can therefore exploit extra knowledge
by the system designer. Since the objective re-
mains a convex quadratic function of the weights,
the program is computationally no harder to opti-
mize than a standard SVM. We also demonstrated
how to design multi-class SVMs using only class-
specific attributes, and compared the performance
of this approach to standard multi-class SVMs on
the task of preposition selection.

While variance regularization is most helpful on
tasks with many classes and features, like prepo-
sition selection, it achieved gains on all our tasks
when training with smaller sample sizes. It should
be useful on a variety of other NLP problems.

179

References

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani.
2006. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled exam-
ples.JMLR, 7:2399–2434.

Shane Bergsma, Dekang Lin, and Randy Goebel.
2008. Distributional identification of non-referential
pronouns. InACL-08: HLT.

Shane Bergsma, Dekang Lin, and Randy Goebel.
2009. Web-scale N-gram models for lexical disam-
biguation. InIJCAI.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. InACL.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. InCOLT.

Thorsten Brants and Alex Franz. 2006. The Google
Web 1T 5-gram Corpus Version 1.1. LDC2006T13.

Martin Chodorow, Joel R. Tetreault, and Na-Rae Han.
2007. Detection of grammatical errors involving
prepositions. InACL-SIGSEM Workshop on Prepo-
sitions.

Kenneth Church, Ted Hart, and Jianfeng Gao. 2007.
Compressing trigram language models with Golomb
coding. InEMNLP-CoNLL.

David Cohn, Les Atlas, and Richard Ladner. 1994. Im-
proving generalization with active learning.Mach.
Learn., 15(2):201–221.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks.Mach. Learn., 20(3):273–297.

CPLEX. 2005. IBM ILOG CPLEX 9.1.www.ilog.
com/products/cplex/.

Koby Crammer and Yoram Singer. 2001. On the algo-
rithmic implementation of multiclass kernel-based
vector machines.JMLR, 2:265–292.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
JMLR, 3:951–991.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms.JMLR, 7:551–585.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. InACL.

Mark Dredze, Koby Crammer, and Fernando Pereira.
2008. Confidence-weighted linear classification. In
ICML.

Richard O. Duda and Peter E. Hart. 1973.Pattern
Classification and Scene Analysis. John Wiley &
Sons.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLIN-
EAR: A library for large linear classification.JMLR,
9:1871–1874.

Andrew R. Golding and Dan Roth. 1999. A Winnow-
based approach to context-sensitive spelling correc-
tion. Mach. Learn., 34(1-3):107–130.

Sariel Har-Peled, Dan Roth, and Dav Zimak. 2003.
Constraint classification for multiclass classification
and ranking. InNIPS.

Graeme Hirst and Alexander Budanitsky. 2005. Cor-
recting real-word spelling errors by restoring lexical
cohesion.Nat. Lang. Eng., 11(1):87–111.

Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison
of methods for multiclass support vector machines.
IEEE Trans. Neur. Networks, 13(2):415–425.

Thorsten Joachims, Thomas Finley, and Chun-
Nam John Yu. 2009. Cutting-plane training of
structural SVMs.Mach. Learn., 77(1):27–59.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. InKDD.

Thorsten Joachims. 2006. Training linear SVMs in
linear time. InKDD.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In ACL-08: HLT.

Irene Kotsia, Stefanos Zafeiriou, and Ioannis Pitas.
2009. Novel multiclass classifiers based on the min-
imization of the within-class variance.IEEE Trans.
Neur. Networks, 20(1):14–34.

Mirella Lapata and Frank Keller. 2005. Web-based
models for natural language processing.ACM
Trans. Speech and Language Processing, 2(1):1–31.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
HLT-NAACL.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and discrim-
inative training. InHLT-NAACL.

Andrew Y. Ng and Michael I. Jordan. 2002. Discrim-
inative vs. generative classifiers: A comparison of
logistic regression and naive bayes. InNIPS.

Vincent Ng. 2009. Graph-cut-based anaphoricity de-
termination for coreference resolution. InNAACL-
HLT.

Franz J. Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statistical
machine translation. InACL.

Daisuke Okanohara and Jun’ichi Tsujii. 2007. A dis-
criminative language model with pseudo-negative
samples. InACL.

180

Chris D. Paice and Gareth D. Husk. 1987. Towards the
automatic recognition of anaphoric features in En-
glish text: the impersonal pronoun “it”.Computer
Speech and Language, 2:109–132.

Rajat Raina, Andrew Y. Ng, and Daphne Koller. 2006.
Constructing informative priors using transfer learn-
ing. In ICML.

Ryan Rifkin and Aldebaro Klautau. 2004. In defense
of one-vs-all classification.JMLR, 5:101–141.

Noah A. Smith and Jason Eisner. 2005. Contrastive
estimation: training log-linear models on unlabeled
data. InACL.

Anastasios Tefas, Constantine Kotropoulos, and Ioan-
nis Pitas. 2001. Using support vector machines to
enhance the performance of elastic graph matching
for frontal face authentication.IEEE Trans. Pattern
Anal. Machine Intell., 23:735–746.

Joel R. Tetreault and Martin Chodorow. 2008. The
ups and downs of preposition error detection in ESL
writing. In COLING.

Simon Tong and Daphne Koller. 2002. Support vec-
tor machine active learning with applications to text
classification.JMLR, 2:45–66.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large mar-
gin methods for structured and interdependent out-
put variables.JMLR, 6:1453–1484.

Vladimir N. Vapnik. 1998. Statistical Learning The-
ory. John Wiley & Sons.

Qin Iris Wang, Colin Cherry, Dan Lizotte, and Dale
Schuurmans. 2006. Improved large margin depen-
dency parsing via local constraints and Laplacian
regularization. InCoNLL.

Jason Weston and Chris Watkins. 1998. Multi-class
support vector machines. Technical Report CSD-
TR-98-04, Department of Computer Science, Royal
Holloway, University of London.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. InACL.

Omar Zaidan, Jason Eisner, and Christine Piatko.
2007. Using “annotator rationales” to improve ma-
chine learning for text categorization. InNAACL-
HLT.

181

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 182–191,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Online Entropy-based Model of Lexical Category Acquisition

Grzegorz Chrupała
Saarland University

gchrupala@lsv.uni-saarland.de

Afra Alishahi
Saarland University

afra@coli.uni-saarland.de

Abstract

Children learn a robust representation of
lexical categories at a young age. We pro-
pose an incremental model of this process
which efficiently groups words into lexi-
cal categories based on their local context
using an information-theoretic criterion.
We train our model on a corpus of child-
directed speech from CHILDES and show
that the model learns a fine-grained set
of intuitive word categories. Furthermore,
we propose a novel evaluation approach
by comparing the efficiency of our induced
categories against other category sets (in-
cluding traditional part of speech tags) in
a variety of language tasks. We show the
categories induced by our model typically
outperform the other category sets.

1 The Acquisition of Lexical Categories

Psycholinguistic studies suggest that early on chil-
dren acquire robust knowledge of the abstract lex-
ical categories such as nouns, verbs and deter-
miners (e.g., Gelman & Taylor, 1984; Kemp et
al., 2005). Children’s grouping of words into
categories might be based on various cues, in-
cluding phonological and morphological proper-
ties of a word, the distributional information about
its surrounding context, and its semantic features.
Among these, the distributional properties of the
local context of a word have been thoroughly stud-
ied. It has been shown that child-directed speech
provides informative co-occurrence cues, which
can be reliably used to form lexical categories
(Redington et al., 1998; Mintz, 2003).

The process of learning lexical categories by
children is necessarily incremental. Human lan-
guage acquisition is bounded by memory and pro-
cessing limitations, and it is implausible that hu-
mans process large volumes of text at once and

induce an optimum set of categories. Efficient on-
line computational models are needed to investi-
gate whether distributional information is equally
useful in an online process of word categoriza-
tion. However, the few incremental models of
category acquisition which have been proposed
so far are generally inefficient and over-sensitive
to the properties of the input data (Cartwright &
Brent, 1997; Parisien et al., 2008). Moreover, the
unsupervised nature of these models makes their
assessment a challenge, and the evaluation tech-
niques proposed in the literature are limited.

The main contributions of our research are
twofold. First, we propose an incremental en-
tropy model for efficiently clustering words into
categories given their local context. We train our
model on a corpus of child-directed speech from
CHILDES (MacWhinney, 2000) and show that the
model learns a fine-grained set of intuitive word
categories. Second, we propose a novel evalua-
tion approach by comparing the efficiency of our
induced categories against other category sets, in-
cluding the traditional part of speech tags, in a va-
riety of language tasks. We evaluate our model on
word prediction (where a missing word is guessed
based on its sentential context), semantic inference
(where the semantic properties of a novel word are
predicted based on the context), and grammatical-
ity judgment (where the syntactic well-formedness
of a sentence is assessed based on the category la-
bels assigned to its words). The results show that
the categories induced by our model can be suc-
cessfully used in a variety of tasks and typically
perform better than other category sets.

1.1 Unsupervised Models of Category
Induction

Several computational models have used distri-
butional information for categorizing words (e.g.
Brown et al., 1992; Redington et al., 1998; Clark,
2000; Mintz, 2002). The majority of these mod-

182

els partition the vocabulary into a set of optimum
clusters (e.g., Brown et al., 1992; Clark, 2000).
The generated clusters are intuitive, and can be
used in different tasks such as word prediction
and parsing. Moreover, these models confirm the
learnability of abstract word categories, and show
that distributional cues are a useful source of in-
formation for this purpose. However, (i) they cat-
egorize word types rather than word tokens, and
as such provide no account of words belonging to
more than one category, and (ii) the batch algo-
rithms used by these systems make them implau-
sible for modeling human category induction. Un-
supervised models of PoS tagging such as Gold-
water & Griffiths (2007) do assign labels to word-
tokens, but they still typically use batch process-
ing, and what is even more problematic, they hard-
wire important aspects of the model, such as the
final number of categories.

Only few previously proposed models process
data incrementally, categorize word-tokens and do
not pre-specify a fixed category set. The model
of Cartwright & Brent (1997) uses an algorithm
which incrementally merges word clusters so that
a Minimum Description Length criterion for a
template grammar is optimized. The model treats
whole sentences as contextual units, which sacri-
fices a degree of incrementality, as well as making
it less robust to noise in the input.

Parisien et al. (2008) propose a Bayesian clus-
tering model which copes with ambiguity and ex-
hibits the developmental trends observed in chil-
dren (e.g. the order of acquisition of different cat-
egories). However, their model is overly sen-
sitive to context variability, which results in the
creation of sparse categories. To remedy this is-
sue they introduce a “bootstrapping” component
where the categories assigned to context words are
use to determine the category of the current target
word. They also perform periodical cluster reorga-
nization. These mechanisms improve the overall
performance of the model when trained on large
amounts of training data, but they complicate the
model with ad-hoc extensions and add to the (al-
ready considerable) computational load.

What is lacking is an incremental model of lex-
ical category which can efficiently process natu-
ralistic input data and gradually build robust cate-
gories with little training data.

1.2 Evaluation of the Induced Categories

There is no standard and straightforward method
for evaluating the unsupervised models of cate-
gory learning (see Clark, 2003, for discussion).
Many unsupervised models of lexical category ac-
quisition treat the traditional part of speech (PoS)
tags as the gold standard, and measure the accu-
racy and completeness of their induced categories
based on how closely they resemble the PoS cate-
gories (e.g. Redington et al., 1998; Mintz, 2003;
Parisien et al., 2008). However, it is not at all
clear whether humans form the same types of cate-
gories. In fact, many language tasks might benefit
from finer-grained categories than the traditional
PoS tags used for corpus annotation.

Frank et al. (2009) propose a different, automat-
ically generated set of gold standard categories for
evaluating an unsupervised categorization model.
The gold-standard categories are formed accord-
ing to “substitutability”: if one word can be re-
placed by another and the resulting sentence is still
grammatical, then there is a good chance that the
two words belong to the same category. They ex-
tract 3-word frames from the training data, and
form the gold standard categories based on the
words that appear in the same frame. They em-
phasize that in order to provide some degree of
generalization, different data sets must be used for
forming the gold-standard categories and perform-
ing the evaluation. However, the resulting cate-
gories are bound to be incomplete, and using them
as gold standard inevitably favors categorization
models which use a similar frame-based principle.

All in all, using any set of gold standard cate-
gories for evaluating an unsupervised categoriza-
tion model has the disadvantage of favoring one
set of principles and intuitions over another; that
is, assuming that there is a correct set of cate-
gories which the model should converge to. Al-
ternatively, automatically induced categories can
be evaluated based on how useful they are in per-
forming different tasks. This approach is taken by
Clark (2000), where the perplexity of a finite-state
model is used to compare different category sets.

We build on this idea and propose a more gen-
eral usage-based approach to evaluating the auto-
matically induced categories from a data set, em-
phasizing that the ultimate goal of a category in-
duction model is to form categories that can be ef-
ficiently used in a variety of language tasks. We
argue that for such tasks, a finer-grained set of cat-

183

egories might be more appropriate than the coarse-
grained PoS categories. Therefore, we propose a
number of tasks for which we compare the perfor-
mance based on various category sets, including
those induced by our model.

2 An Incremental Entropy-based Model
of Category Induction

A model of human category acquisition should
possess two key features:
• It should process input as it arrives, and incre-

mentally update the current set of clusters.
• The set of clusters should not be fixed in ad-

vance, but rather determined by the charac-
teristics of the input data.

We propose a simple algorithm which fulfills those
two conditions.

Our goal is to categorize word usages based on
the similarity of their form (the content) and their
surrounding words (the context). While grouping
word usages into categories, we attempt to trade
off two conflicting criteria. First, the categories
should be informative about the properties of their
members. Second, the number and distribution of
the categories should be parsimonious. An appro-
priate tool for formalizing both informativeness
and parsimony is information-theoretic entropy.

The parsimony criterion can be formalized as
the entropy of the random variable (Y) represent-
ing the cluster assignments:

H(Y) = −
NX

i=1

P (Y = yi) log2(P (Y = yi)) (1)

where N is the number of clusters and P (Y = yi)
stands for the relative size of the ith cluster.

The informativeness criterion can be formalized
as the conditional entropy of training examples
(X) given the cluster assignments:

H(X|Y) =
NX

i=1

P (Y = yi)H(X|Y = yi) (2)

and H(X|Y = yi) is calculated as

H(X|Y = yi) = −
TX

j=1

[P (X = xj |Y = yi)

× log2(P (X = xj |Y = yi)] (3)

where T is the number of word usages in the train-
ing set.

The two criteria presented by Equations 1 and
2 can be combined together as the joint entropy of
the two random variables X and Y :

H(X,Y) = H(X|Y) +H(Y) (4)

For a random variableX corresponding to a sin-
gle feature, minimizing the joint entropyH(X,Y)
will trade off our two desired criteria.

The joint entropy will be minimal if each dis-
tinct value of variable X is assigned the same cat-
egory (i.e. same value of Y). There are many
assignments which satisfy this condition. They
range from putting all values of X in a single cat-
egory, to having a unique category for each unique
value of X . We favor the latter solution algorith-
mically by creating a new category in case of ties.

Finally, since our training examples contain a
bundle of categorical features, we minimize the
joint entropy simultaneously for all the features.
We consider our training examples to be vectors
of random variables (Xj)M

j=1, where each random
variable corresponds to one feature. For an incom-
ing example we will choose the cluster assignment
which leads to the least increase in the joint en-
tropy H(Xj , Y), summed over all the features j:

MX
j=1

H(Xj , Y) =

MX
j=1

ˆ
H(Xj |Y) +H(Y)

˜
(5)

=

MX
j=1

ˆ
H(Xj |Y)

˜
+M ×H(Y)

In the next section, we present an incremental
algorithm which uses this criterion for inducing
categories from a sequence of input data.

The Incremental Algorithm. For each word us-
age that the model processes at time t, we need to
find the best category among the ones that have
been formed so far, as well as a potential new cat-
egory. The decision is made based on the change
in the function

∑M
j=1H(Xj , Y) (Equation 5) from

point t − 1 to point t, as a result of assigning the
current input xt to a category y:

∆Ht
y =

MX
j=1

ˆ
Ht

y(Xj , Y)−Ht−1(Xj , Y)
˜

(6)

whereHt
y(X,Y) is the joint entropy of the assign-

ment Y for the input X = {x1, . . . , xt}, after the
last input item xt is assigned to the category y.
The winning category ŷ is the one that leads to the
smallest increase. Ties are broken by preferring a
new category.

ŷ =

(
argminy∈{y}Ni=1

∆Ht
y if ∃yn[∆Ht

yn
< ∆Ht

yN+1]

yN+1 otherwise
(7)

184

where N is the number of categories created up to
point t, and yN+1 represents a new category.

Efficiency. We maintain the relative size P t(y)
and the entropy H(Xj |Y = y) for each category
y over time. When performing an assignment of xt

to a category yi, we only need to update the condi-
tional entropies H(Xj |Y = yi) for all features Xj

for this particular category, since other categories
have not changed. For a feature Xj at point t, the
change in the conditional entropy for the selected
category yi is given by:

∆Ht
yi

(Xj |Y) = Ht
yi

(Xj |Y)−Ht−1(Xj |Y)

=
X

yk 6=yi

ˆ
P (Y = yk)Ht−1(Xj |Y = yi)

˜
− P t−1(Y = yi)H

t−1(X|Y = yi)

− P t(Y = yi)H
t(Xj |Y = yi)

where only the last term depends on the current
time index t. Therefore, the entropy H(Xj |Y) at
each step can be efficiently updated by calculating
this term for the modified category at that step.

A number of previous studies have considered
entropy-based criteria for clustering (e.g. Barbará
et al., 2002; Li et al., 2004). The main contri-
bution of our proposed model is the emphasis on
rarely explored combination of the two character-
istics we consider crucial for modeling human cat-
egory acquisition, incrementality and an open set
of clusters.

3 Experimental Setup

We evaluate the categories formed by our model
through three different tasks. The first task is word
prediction, where a target word is predicted based
on the sentential context it appears in. The second
task is to infer the semantic properties of a novel
word based on its context. The third task is to as-
sess the grammaticality of a sentence tagged with
category labels. We run our model on a corpus of
child-directed speech, and use the categories that it
induces from that corpus in the above-mentioned
tasks. For each task, we compare the performance
using our induced categories against the perfor-
mance using other category sets. In the follow-
ing sections, we describe the properties of the data
sets used for training and testing the model, and
the formation of other category sets against which
we compare our model.

Data Set Sessions #Sentences #Words
Training 26–28 22, 491 125, 339
Development 29–30 15, 193 85, 361
Test 32–33 14, 940 84, 130

Table 1: Experimental data

3.1 Input Data

We use the Manchester corpus (Theakston et al.,
2001) from CHILDES database (MacWhinney,
2000) as experimental data. The Manchester cor-
pus consists of conversations with 12 children be-
tween the ages of eighteen months to three years
old. The corpus is manually tagged using 60 PoS
labels. We use the mother’s speech from tran-
scripts of 6 children, remove punctuation, and con-
catenate the corresponding sessions.

We used data from three sessions as the training
set, two sessions as the development set, and two
sessions as the test set. We discarded all one-word
sentences from the data sets, as they do not pro-
vide any context for our evaluation tasks. Table 1
summarizes the properties of each data set.

3.2 Category Sets

We define each word usage in the training or test
data set as a vector of three categorical features:
the content feature (i.e., the focus word in a us-
age), and two context features (i.e. the preceding
and following bigrams). We ran our clustering al-
gorithm on the training set, which resulted in a
set of 944 categories (of which 442 have only one
member). Table 3 shows two sample categories
from the training set, and Figure 1 shows the size
distribution of the categories.

For each evaluation task, we use the following
category sets to label the test set:

∆H. The categories induced by our entropy-
based model from the training set, as de-
scribed above.

PoS. The part-of-speech tags the Manchester cor-
pus is annotated with.

Words. The set of all the word types in the data
set (i.e. assuming that all the usages of the
same word form are grouped together).

Parisien. The induced categories by the model of
Parisien et al. (2008) from the training set.

185

Gold PoS Words Parisien ∆H
VI (0.000) 5.294 5.983 4.806
ARI (1.000) 0.139 0.099 0.168

Table 2: Comparison against gold PoS tags using
Variation of Information (VI) and Adjusted Rand
Index (ARI).

Sample Cluster 1
going (928)
doing (190)
back (150)
coming (80)
looking (76)
making (64)
playing (55)
taking (45)
. . .

Sample Cluster 2
than (45)
more (20)
silly (10)
bigger (9)
frightened (5)
dark (4)
harder (4)
funny (3)
. . .

Table 3: Sample categories induced from the train-
ing data. The frequency of each word in the cate-
gory is shown in parentheses.

For the first two tasks (word prediction and se-
mantic inference), we do not use the content fea-
ture in labeling the test set, since the assumption
underlying both tasks is that we do not have ac-
cess to the form of the target word. Therefore,
we do not measure the performance of these tasks
on the Words category set. However, we do use
the content feature in labeling the test examples in
grammaticality judgment.

For completeness, in Table 2 we report the
results of evaluation against Gold PoS tags us-
ing two metrics, Variation of Information (Meila,
2003) and Adjusted Rand Index (Hubert & Arabie,
1985).

4 Word Prediction

Humans can predict a word based on the context it
is used in with remarkable accuracy (e.g. Lesher et
al., 2002). Different versions of this task such as
Cloze Test (Taylor, 1953) are used for the assess-
ment of native and second language learning.

We simulate this task, where a missing word is
predicted based on its context. We use each of the
category sets introduced in Section 3.2 to label a
word usage in the test set, without using the word
form itself as a feature. That is, we assume that
the target word is unknown, and find the best cat-
egory for it based only on its surrounding context.

5 50 500 5000

1
2

5
10

20
50

10
0

Category size frequencies

Size

F
re

qu
en

cy

Figure 1: The distribution of the induced cate-
gories based on their size

We then output a ranked list of the content feature
values of the selected category as the prediction
of the model for the target word. To evaluate this
prediction, we use the reciprocal rank of the target
word in the predicted list.

The third row of Table 4 shows the Mean Re-
ciprocal Rank (MRR) over all the word usages in
the test data across different category sets. The re-
sults show that the category labels predicted by our
model (∆H) perform much better than those of
Parisien, but still not as good as the gold-standard
part of speech categories. The fact that PoS tags
are better here does not necessarily mean that the
PoS category set is better for word prediction as
such, since they are manually assigned and thus
noise-free, unlike the automatic category labels
predicted by the two models. In the second set
of experiments described below we try to factor in
the uncertainty about category assignment inher-
ent in automatic labeling.

Using only the best category output by the
model to produce word predictions is simple and
neutral; however, it discards part of the informa-
tion learned by the model. We can predict words
more accurately by combining information from
the whole ranked list of category labels.

We use the ∆H model to rank the values of the
content feature in the following fashion: for the
current test usage, we rank each cluster assign-
ment y by the change in the ∆Ht

yi
function that

it causes. For each of the assignments, we com-
pute the relative frequencies P (w|yi) of each pos-
sible focus word. The final rank of the word w in
context h is determined by the sum of the cluster-

186

Gold PoS Words Parisien ∆H
Word Prediction (MRR) 0.354 - 0.212 0.309
Semantic Inference (MAP) 0.351 - 0.213 0.366
Grammaticality Judgment (Accuracy) 0.728 0.685 0.683 0.715

Table 4: The performance in each of the three tasks using different category sets.

dependent relative frequencies weighted by the
normalized reciprocal ranks of the clusters:

P (w|h) =

NX
i=1

P (w|yi)
R(yi|h)−1PN

i=1 R(yi|h)−1
(8)

where R(yi|h)−1 is the reciprocal rank of cluster
yi for context h according to the model.

We compare the performance of the ∆H model
with this word-prediction method to that of an
n-gram language model, which is an established
technique for assigning probabilities to words
based on their context. For the language model
we use several n-gram orders (n = 1 . . . 5), and
smooth the n-gram counts using absolute dis-
counting (Zhai & Lafferty, 2004). The probability
of the word w given the context h is given by the
following model of order n:

Pn(w|h) = max
`
0,

c(h,w)− d
c(h)

´
+ α(h)Pn−1(w|h) (9)

where d is the discount parameter, c(·) is the fre-
quency count function, Pn−1 is the lower-order
back-off distribution, and α is the normalization
factor:

α(h) =

(
1 if r(h) = 0

dr(h) 1
c(h)

otherwise
(10)

and r(h) is the number of distinct words that fol-
low context h in the training corpus.

In addition to the ∆H model and the n-gram
language models, we also report how well words
can be predicted from their manually assigned PoS
tags from CHILDES: for each token we predict the
most likely word given the token’s true PoS tag
based on frequencies in the training data.

Table 4 summarizes the evaluation results. The
∆H model can predict missing words better than
any of the n-gram language models, and even
slightly better than the true POS tags. Given the
simplicity of our clustering model, this is a very
encouraging result. Simple n-gram language mod-
els are known for providing quite a strong base-
line for word prediction; for example, Brown et
al. (1992)’s class-based language model failed to

Model MRR
LM n = 1 0.1253
LM n = 2 0.2884
LM n = 3 0.3278
LM n = 4 0.3305
LM n = 5 0.3297
∆H 0.3591
Gold POS 0.3540

Table 5: Mean reciprocal rank on the word predic-
tion task on the test set

improve test-set perplexity over a word-based tri-
gram model.

5 Semantic Inference

Several experimental studies have shown that chil-
dren and adults can infer (some aspects of) the se-
mantic properties of a novel word based on the
context it appears in (e.g. Landau & Gleitman,
1985; Gleitman, 1990; Naigles & Hoff-Ginsberg,
1995). For example, in an experimental study by
Fisher et al. (2006), two-year-olds watched as a
hand placed a duck on a box, and pointed to it as a
new word was uttered. Half of the children heard
the word presented as a noun (This is a corp!),
while half heard it as a preposition (This is acorp
my box!). After training, children heard a test sen-
tence (What else is acorp (my box)?) while watch-
ing two test events: one showed another duck be-
side the box, and the other showed a different ob-
ject on the box. Looking-preferences revealed ef-
fects of sentence context: subjects in the preposi-
tion condition interpreted the novel word as a lo-
cation, whereas those in the noun condition inter-
preted it as an object.

To study a similar effect in our model, we as-
sociate each word with a set of semantic features.
For nouns, we extract the semantic features from
WordNet 3.0 (Fellbaum, 1998) as follows: We
take all the hypernyms of the first sense of the
word, and the first word in the synset of each
hypernym to the set of the semantic features of

187

ball
→ GAME EQUIPMENT#1
→ EQUIPMENT#1
→ INSTRUMENTALITY#3, INSTRUMENTATION#1
→ ARTIFACT#1, ARTEFACT#1
→ WHOLE#2, UNIT#6
→ OBJECT#1, PHYSICAL OBJECT#1
→ PHYSICAL ENTITY#1
→ ENTITY#1

ball: { GAME EQUIPMENT#1,EQUIPMENT#1,
INSTRUMENTALITY#3,ARTIFACT#1, ... }

Figure 2: Semantic features of ball, as extracted
from WordNet.

the target word (see Figure 2 for an example).
For verbs, we additionally extract features from
a verb-specific resource, VerbNet 2.3 (Schuler,
2005). Due to lack of proper resources for other
lexical categories, we limit our evaluation to nouns
and verbs.

The semantic features of words are not used in
the formation of lexical categories. However, at
each point of time in learning, we can associate
a semantic profile to a category as the aggregated
set of the semantic features of its members: each
feature in the set is assigned a count that indicates
the number of the category members which have
that semantic property. This is done for each of
the category sets described in Section 3.2.

As in the word-prediction task, we use differ-
ent category sets to label each word usage in a test
set based only on the context features of the word.
When the model encounters a novel word, it can
use the semantic profile of the word’s labeled cat-
egory as a prediction of the semantic properties of
that word. We can evaluate the quality of this pre-
diction by comparing the true meaning represen-
tation of the target word (i.e., its set of semantic
features according to the lexicon) against the se-
mantic profile of the selected category. We use the
Mean Average Precision (MAP) (Manning et al.,
2008) for comparing the ranked list of semantic
features predicted by the model with the flat set
of semantic features extracted from WordNet and
VerbNet. Average Precision for a ranked list F
with respect to a set R of correct features is:

APR(F) =
1

|R|

|F |X
r=1

P (r)× 1R(Fr) (11)

where P (r) is precision at rank r and 1R is the
indicator function of set R.

The middle row of Table 4 shows the MAP

scores over all the noun or verb usages in the
test set, based on four different category sets. As
can be seen, the categories induced by our model
(∆H) outperform all the other category sets. The
word-type categories are particularly unsuitable
for this task, since they provide the least degree
of generalization over the semantic properties of
a group of words. The categories of Parisien
et al. (2008) result in a better performance than
word types, but they are still too sparse for this
task. However, the average score gained by part of
speech tags is also lower than the one by our cat-
egories. This suggests that too broad categories
are also unsuitable for this task, since they can
only provide predictions about the most general
semantic properties, such as ENTITY for nouns,
and ACTION for verbs. These findings again con-
firm our hypothesis that a finer-grained set of cat-
egories that are extracted directly from the input
data provide the highest predictive power in a nat-
uralistic language task such as semantic inference.

6 Grammaticality Judgment

Speakers of a natural language have a general
agreement on the grammaticality of different sen-
tences. Grammaticality judgment has been viewed
as one of the main criteria for measuring how
well a language is learned by a human learner.
Experimental studies have shown that children as
young as five years old can judge the grammati-
cality of the sentences that they hear, and that both
children’s and adults’ grammaticality judgments
are influenced by the distributional properties of
words and their context (e.g., Theakston, 2004).

Several methods have been proposed for auto-
matically distinguishing between grammatical and
ungrammatical usages (e.g., Wagner et al., 2007).
The ‘shallow’ methods are mainly based on n-
gram frequencies of words or categories in a cor-
pus, whereas the ‘deep’ methods treat a parsing
failure as an indication of a grammatical error.
Since our focus is on evaluating our category set,
we use trigram probabilities as a measure of gram-
maticality, using Equation 9 with n = 3.

As before, we label each test sentence using dif-
ferent category sets, and calculate the probability
for each trigram in that sentence. We define the
overall grammaticality score of a sentence as the
minimum of the probabilities of all the trigrams in
that sentence. Note that, unlike the previous tasks,
here we do use the content word as a feature in

188

labeling a test word usage. The actual word form
affects the grammaticality of its usage, and this in-
formation is available to the human subjects who
evaluate the grammaticality of a sentence.

Since we know of no publicly available corpus
of ungrammatical sentences, we artificially con-
struct one: for each sentence in our test data set,
we randomly move one word to another position.1

We define the accuracy of this task as the propor-
tion of the test usages for which the model calcu-
lates a higher grammaticality score for the original
sentence than for its ungrammatical version.

The last row of Table 4 shows the accuracy of
the grammaticality judgment task across different
category sets. As can be seen, the highest accu-
racy in choosing the grammatical sentence over
the ungrammatical one is achieved by using the
PoS categories (0.728), followed by the categories
induced by our model (0.715). These levels of ac-
curacy are rather good considering that some of
the automatically generated errors are also gram-
matical (e.g., there you are vs. you are there, or
can you reach it vs. you can reach it). The results
by the other two category sets are lower and very
close to each other.

These results suggest that, unlike the semantic
inference task, the grammaticality judgment task
might require a coarser-grained set of categories
which provide a higher level of abstraction. How-
ever, taking into account that the PoS categories
are manually assigned to the test usages, the dif-
ference in their performance might be due to lack
of noise in the labeling procedure. We plan to in-
vestigate this matter in future by improving our
categorization model (as discussed in Section 7).
Also, we intend to implement more accurate ways
of estimating grammaticality, using an approach
similar to that described for word prediction task
in Section 4.

7 Discussion

We have proposed an incremental model of lexi-
cal category acquisition based on the distributional
properties of words. Our model uses an informa-
tion theoretic clustering algorithm which attempts
to optimize the category assignments of the in-
coming word usages at each point in time. The
model can efficiently process the training data, and
induce an intuitive set of categories from child-
directed speech. However, due to the incremen-

1We used the software of Foster & Andersen (2009).

tal nature of the clustering algorithm, it does not
revise its previous decisions according to the data
that it later receives. A potential remedy would be
to consider merging the clusters that have recently
been updated, in order to allow for recovery from
early mistakes the model has made.

We used the categories induced by our model
in word prediction, inferring the semantic prop-
erties of novel words, and grammaticality judg-
ment. Our experimental results show that the per-
formance in these tasks using our categories is
comparable or better than the performance based
on the manually assigned part of speech tags in
our experimental data. Furthermore, in all these
tasks the performance using our categories im-
proves over a previous incremental categorization
model (Parisien et al., 2008). However, the model
of Parisien employs a number of cluster reorgani-
zation techniques which improve the overall qual-
ity of the clusters after processing a substantial
amount of input data. In future we plan to increase
the size of our training data, and perform a more
extensive comparison with the model of Parisien
et al. (2008).

The promising results of our experiments sug-
gest that an information-theoretic approach is a
plausible one for modeling the induction of lexi-
cal categories from distributional data. Our results
imply that in many language tasks, a fine-grained
set of categories which are formed in response to
the properties of the input are more appropriate
than the coarser-grained part of speech categories.
Therefore, the ubiquitous approach of using PoS
categories as the gold standard in evaluating un-
supervised category induction models needs to be
reevaluated. To further investigate this claim, in
future we plan to collect experimental data from
human subjects performing our suggested tasks,
and measure the correlation between their perfor-
mance and that of our model.

Acknowledgments

We would like to thank Nicolas Stroppa for
insightful comments on our paper, and Chris
Parisien for sharing the implementation of his
model. Grzegorz Chrupała was funded by the
BMBF project NL-Search under contract number
01IS08020B. Afra Alishahi was funded by IRTG
715 “Language Technology and Cognitive Sys-
tems” provided by the German Research Founda-
tion (DFG).

189

References

Barbará, D., Li, Y., & Couto, J. (2002). COOL-
CAT: an entropy-based algorithm for categori-
cal clustering. In Proceedings of the Eleventh
International Conference on Information and
Knowledge Management (pp. 582–589).

Brown, P., Mercer, R., Della Pietra, V., & Lai,
J. (1992). Class-based n-gram models of natu-
ral language. Computational linguistics, 18(4),
467–479.

Cartwright, T., & Brent, M. (1997). Syntac-
tic categorization in early language acquisition:
Formalizing the role of distributional analysis.
Cognition, 63(2), 121–170.

Clark, A. (2000). Inducing syntactic categories by
context distribution clustering. In Proceedings
of the 2nd workshop on Learning Language in
Logic and the 4th conference on Computational
Natural Language Learning (pp. 91–94).

Clark, A. (2003). Combining distributional and
morphological information for part of speech
induction. In Proceedings of the 10th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (pp. 59–66).

Fellbaum, C. (Ed.). (1998). WordNet, an elec-
tronic lexical database. MIT Press.

Fisher, C., Klingler, S., & Song, H. (2006). What
does syntax say about space? 2-year-olds use
sentence structure to learn new prepositions.
Cognition, 101(1), 19–29.

Foster, J., & Andersen, Ø. (2009). GenERRate:
generating errors for use in grammatical error
detection. In Proceedings of the fourth work-
shop on innovative use of nlp for building edu-
cational applications (pp. 82–90).

Frank, S., Goldwater, S., & Keller, F.(2009). Eval-
uating models of syntactic category acquisition
without using a gold standard. In Proceedings
of the 31st Annual Meeting of the Cognitive Sci-
ence Society.

Gelman, S., & Taylor, M. (1984). How two-
year-old children interpret proper and common
names for unfamiliar objects. Child Develop-
ment, 1535–1540.

Gleitman, L.(1990). The structural sources of verb
meanings. Language acquisition, 1(1), 3–55.

Goldwater, S., & Griffiths, T. (2007). A fully
Bayesian approach to unsupervised part-of-

speech tagging. In Proceedings of the 45th An-
nual Meeting of the Association for Computa-
tional Linguistics (Vol. 45, p. 744).

Hubert, L., & Arabie, P. (1985). Comparing parti-
tions. Journal of classification, 2(1), 193–218.

Kemp, N., Lieven, E., & Tomasello, M. (2005).
Young Children’s Knowledge of the” Deter-
miner” and” Adjective” Categories. Journal
of Speech, Language and Hearing Research,
48(3), 592–609.

Landau, B., & Gleitman, L.(1985). Language and
experience: Evidence from the blind child. Har-
vard University Press Cambridge, Mass.

Lesher, G., Moulton, B., Higginbotham, D., & Al-
sofrom, B. (2002). Limits of human word pre-
diction performance. Proceedings of the CSUN
2002.

Li, T., Ma, S., & Ogihara, M. (2004). Entropy-
based criterion in categorical clustering. In Pro-
ceedings of the 21st International Conference
on Machine Learning (p. 68).

MacWhinney, B. (2000). The CHILDES project:
Tools for analyzing talk. Lawrence Erlbaum As-
sociates Inc, US.

Manning, C., Raghavan, P., & Schtze, H. (2008).
Introduction to Information Retrieval. Cam-
bridge University Press New York, NY, USA.

Meila, M. (2003). Comparing Clusterings by the
Variation of Information. In Learning theory
and kernel machines (pp. 173–187). Springer.

Mintz, T. (2002). Category induction from distri-
butional cues in an artificial language. Memory
and Cognition, 30(5), 678–686.

Mintz, T. (2003). Frequent frames as a cue for
grammatical categories in child directed speech.
Cognition, 90(1), 91–117.

Naigles, L., & Hoff-Ginsberg, E. (1995). Input to
Verb Learning: Evidence for the Plausibility of
Syntactic Bootstrapping. Developmental Psy-
chology, 31(5), 827–37.

Parisien, C., Fazly, A., & Stevenson, S. (2008).
An incremental bayesian model for learning
syntactic categories. In Proceedings of the
Twelfth Conference on Computational Natural
Language Learning.

Redington, M., Crater, N., & Finch, S.(1998). Dis-
tributional information: A powerful cue for ac-

190

quiring syntactic categories. Cognitive Science:
A Multidisciplinary Journal, 22(4), 425–469.

Schuler, K. (2005). VerbNet: A broad-coverage,
comprehensive verb lexicon. Unpublished doc-
toral dissertation, University of Pennsylvania.

Taylor, W. (1953). Cloze procedure: A new tool
for measuring readability. Journalism Quar-
terly, 30(4), 415–433.

Theakston, A.(2004). The role of entrenchment in
childrens and adults performance on grammati-
cality judgment tasks. Cognitive Development,
19(1), 15–34.

Theakston, A., Lieven, E., Pine, J., & Rowland, C.
(2001). The role of performance limitations in
the acquisition of verb-argument structure: An
alternative account. Journal of Child Language,
28(01), 127–152.

Wagner, J., Foster, J., & van Genabith, J.(2007). A
comparative evaluation of deep and shallow ap-
proaches to the automatic detection of common
grammatical errors. Proceedings of EMNLP-
CoNLL-2007.

Zhai, C., & Lafferty, J.(2004). A study of smooth-
ing methods for language models applied to in-
formation retrieval. ACM Transactions on In-
formation Systems (TOIS), 22(2), 214.

191

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 192–202,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Tagging and Linking Web Forum Posts

Su Nam Kim, Li Wang and Timothy Baldwin

Dept of Computer Science and Software Engineering

University of Melbourne, Australia

sunamkim@gmail.com, li.wang.d@gmail.com, tb@ldwin.net

Abstract

We propose a method for annotating post-

to-post discourse structure in online user

forum data, in the hopes of improving

troubleshooting-oriented information ac-

cess. We introduce the tasks of: (1) post

classification, based on a novel dialogue

act tag set; and (2) link classification. We

also introduce three feature sets (structural

features, post context features and seman-

tic features) and experiment with three dis-

criminative learners (maximum entropy,

SVM-HMM and CRF). We achieve above-

baseline results for both dialogue act and

link classification, with interesting diver-

gences in which feature sets perform well

over the two sub-tasks, and go on to per-

form preliminary investigation of the inter-

action between post tagging and linking.

1 Introduction

With the advent of Web 2.0, there has been an ex-

plosion of web authorship from individuals of all

walks of life. Notably, social networks, blogs and

web user forums have entered the mainstream of

modern-day society, creating both new opportuni-

ties and challenges for organisations seeking to en-

gage with clients or users of any description. One

area of particular interest is web-based user sup-

port, e.g. to aid a user in purchasing a gift for a

friend, or advising a customer on how to config-

ure a newly-acquired wireless router. While such

interactions traditionally took place on an indi-

vidual basis, leading to considerable redundancy

for frequently-arising requests or problems, user

forums support near-real-time user interaction in

the form of a targeted thread made up of individ-

ual user posts. Additionally, they have the poten-

tial for perpetual logging to allow other users to

benefit from them. This in turn facilitates “sup-

port sharing”—i.e. the ability for users to look

over the logs of past support interactions to deter-

mine whether there is a documented, immediately-

applicable solution to their current problem—on a

scale previously unimaginable. This research is

targeted at this task of enhanced support sharing,

in the form of text mining over troubleshooting-

oriented web user forum data (Baldwin et al., to

appear).

One facet of our proposed strategy for enhanc-

ing information access to troubleshooting-oriented

web user forum data is to preprocess threads to

uncover the “content structure” of the thread, in

the form of its post-to-post discourse structure.

Specifically, we identify which earlier post(s) a

given post responds to (linking) and in what man-

ner (tagging), in an amalgam of dialogue act tag-

ging (Stolcke et al., 2000) and coherence-based

discourse analysis (Carlson et al., 2001; Wolf and

Gibson, 2005). The reason we do this is gauge

the relative role/import of individual posts, to in-

dex and weight component terms accordingly, ul-

timately in an attempt to enhance information ac-

cess. Evidence to suggest that this structure can

enhance information retrieval effectiveness comes

from Xi et al. (2004) and Seo et al. (2009) (see

Section 2).

To illustrate the task, consider the thread from

the CNET forum shown in Figure 1, made up of

5 posts (Post 1, ..., Post 5) with 4 distinct partici-

pants (A, B, C, D). In the first post, A initiates the

thread by requesting assistance in creating a web

form. In response, B proposes a Javascript-based

solution (i.e. responds to the first post with a pro-

posed solution), and C proposes an independent

solution based on .NET (i.e. also responds to the

first post with a proposed solution). Next, A re-

sponds to C’s post asking for details of how to in-

clude this in a web page (i.e. responds to the third

post asking for clarification), and in the final post,

D proposes a different solution again (i.e. responds

to the first post with a different solution again).

192

HTML Input Code - CNET Coding & scripting Forums

User A HTML Input Code
Post 1 . . . Please can someone tell me how to create an

input box that asks the user to enter their ID,
and then allows them to press go. It will then
redirect to the page . . .

User B Re: html input code
Post 2 Part 1: create a form with a text field. See

. . . Part 2: give it a Javascript action . . .

User C asp.net c# video
Post 3 Ive prepared for you video.link click . . .

User A Thank You!
Post 4 Thanks a lot for that . . . I have Microsoft Vi-

sual Studio 6, what program should I do this
in? Lastly, how do I actually include this in my
site?. . .

User D A little more help
Post 5 . . . You would simply do it this way: . . . You

could also just . . . An example of this is:. . .

Figure 1: Snippeted posts in a CNET thread

������

������

������

�����	

�����A

�������������

�������������

�������������

��������	A�BCDAEBF�

����EBF������EBF�

Figure 2: Post links and dialogue act labels for the

example thread in Figure 1

In this, we therefore end up with a tree-based de-

pendency link structure, with each post (other than

the initial post) relating back to a unique preced-

ing post via a range of link types, as indicated in

Figure 2. Note, however, that more generally, it

is possible for a post to link to multiple preced-

ing posts (e.g. refuting one proposed solution, and

proposing a different solution to the problem in the

initial post).

Our primary contributions in this paper are: (1)

a novel post label set for post structure in web

forum data, and associated dataset; and (2) a se-

ries of results for post dependency linking and la-

belling, which achieve strong results for the re-

spective tasks.

2 Related Work

Related work exists in the broad fields of dialogue

processing, discourse analysis and information re-

trieval, and can be broken down into the following

tasks: (1) dialogue act tagging; (2) discourse “dis-

entanglement”; (3) community question answer-

ing; and (4) newsgroup/user forum search.

Dialogue act (DA) tagging is a means of cap-

turing the function of a given utterance relative

to an encompassing discourse, and has been pro-

posed variously as a means of enhancing dialogue

summarisation (Murray et al., 2006), and track-

ing commitments and promises in email (Cohen

et al., 2004; Lampert et al., 2008), as well as be-

ing shown to improve speech recognition accu-

racy (Stolcke et al., 2000). A wide range of DA

tag sets have been proposed, usually customised

to a particular medium such as speech dialogue

(Stolcke et al., 2000; Shriberg et al., 2004), task-

focused email (Cohen et al., 2004; Wang et al.,

2007; Lampert et al., 2008) or instant messag-

ing (Ivanovic, 2008). The most immediately rel-

evant DA-based work we are aware of is that of

Xi et al. (2004), who proposed a 5-way classifi-

cation for newsgroup data (including QUESTION

and AGREEMENT/AMMENDMENT), but did not

present any results based on the tagset.

A range of supervised models have been applied

to DA classification, including graphical mod-

els (Ji and Bilmes, 2005), kernel methods (Wang

et al., 2007), dependency networks (Carvalho

and Cohen, 2005), transformation-based learning

(Samuel et al., 1998), maxent models (Ang et

al., 2005) and HMMs (Ivanovic, 2008). There is

some contention about the import of context in DA

classification, with the prevailing view being that

context aids classification (Carvalho and Cohen,

2005; Ang et al., 2005; Ji and Bilmes, 2005), but

also evidence to suggest that strictly local mod-

elling is superior (Ries, 1999; Serafin and Di Eu-

genio, 2004).

In this work, we draw on existing work (esp.

Xi et al. (2004)) in proposing a novel DA tag

set customised to the analysis of troubleshooting-

oriented web user forums (Section 3), and com-

pare a range of text classification and structured

classification methods for post-level DA classifi-

cation.

Discourse disentanglement is the process of

automatically identifying coherent sub-discourses

in a single thread (in the context of user fo-

rums/mailing lists), chat session (in the context of

IRC chat data: Elsner and Charniak (2008)), sys-

tem interaction (in the context of HCI: Lemon et

al. (2002)) or document (Wolf and Gibson, 2005).

The exact definition of what constitutes a sub-

discourse varies across domains, but for our pur-

poses, entails an attempt to resolve the informa-

193

tion need of the initiator by a particular approach;

if there are competing approaches proposed in a

single thread, multiple sub-discourses will neces-

sarily arise. The data structure used to represent

the disentangled discourse varies from a simple

connected sub-graph (Elsner and Charniak, 2008),

to a stack/tree (Grosz and Sidner, 1986; Lemon

et al., 2002; Seo et al., 2009), to a full directed

acyclic graph (DAG: Rosé et al. (1995), Wolf and

Gibson (2005), Schuth et al. (2007)). Disentan-

glement has been carried out via analysis of di-

rect citation/user name references (Schuth et al.,

2007; Seo et al., 2009), topic modelling (Lin et al.,

2009), and clustering over content-based features

for pairs of posts, optionally incorporating various

constraints on post recency (Elsner and Charniak,

2008; Wang et al., 2008; Seo et al., 2009).

In this work, we follow Rosé et al. (1995) and

Wolf and Gibson (2005) in adopting a DAG repre-

sentation of discourse structure, and draw on the

wide set of features used in discourse entangle-

ment to model coherence.

Community question answering (cQA) is the

task of identifying question–answer pairs in a

given thread, e.g. for the purposes of thread sum-

marisation (Shrestha and McKeown, 2004) or au-

tomated compilation of resources akin to Yahoo!

Answers. cQA has been applied to both mail-

ing list and user forum threads, conventionally

based on question classification, followed by rank-

ing of candidate answers relative to each question

(Shrestha and McKeown, 2004; Ding et al., 2008;

Cong et al., 2008; Cao et al., 2009). The task is

somewhat peripheral to our work, but relevant in

that it involves the implicit tagging of certain posts

as containing questions/answers, as well as link-

ing the posts together. Once again, we draw on the

features used in cQA in this research.

There has been a spike of recent interest in

newsgroup/user forum search. Xi et al. (2004)

proposed a structured information retrieval (IR)

model for newsgroup search, based on author fea-

tures, thread structure (based on the tree defined by

the reply-to structure), thread “topology” features

and content-based features, and used a supervised

ranking method to improve over a baseline IR sys-

tem. Elsas and Carbonell (2009) — building on

earlier work on blog search (Elsas et al., 2008) —

proposed a probabilistic IR approach which ranks

user forum threads relative to selected posts in the

overall thread, and again demonstrated the superi-

ority of this method over a model which ignores

thread structure. Finally, Seo et al. (2009) auto-

matically derived thread structure from user forum

threads, and demonstrated that the IR effectiveness

over the “threaded” structure was superior to that

using a monolithic document representation.

The observations and results of Xi et al. (2004)

and Seo et al. (2009) that threading information

(or in our case “disentangled” DAG structure) en-

hances IR effectiveness is a core motivator for this

research.

3 Post Label Set

Our post label set contains 12 categories, intended

to capture the typical interactions that take place in

troubleshooting-oriented threads on technical fo-

rums. There are 2 super-categories (QUESTION,

ANSWER) and 3 singleton classes (RESOLUTION,

REPRODUCTION, and OTHER). QUESTION, in

turn, contains 4 sub-classes (QUESTION, ADD,

CONFIRMATION, CORRECTION), while ANSWER

contains 5 sub-classes (ANSWER, ADD, CONFIR-

MATION, CORRECTION, and OBJECTION), par-

tially mirroring the sub-structure of QUESTION.

We represent the amalgam of a super- and sub-

class as QUESTION-ADD, for example.

All tags other than QUESTION-QUESTION and

OTHER are relational, i.e. relate a given post to a

unique earlier post. A given post can potentially

be labelled with multiple tags (e.g. confirm details

of a proposed solution, in addition to providing ex-

tra details of the problem), although, based on the

strictly chronological ordering of posts in threads,

a post can only link to posts earlier in the thread

(and can also not cross thread boundaries). Addi-

tionally, the link structure is assumed to be tran-

sitive, in that if post A links to post B and post B

to post C, post A is implicitly linked to post C. As

such, an explicit link from post A to post C should

exist only in the case that the link between them is

not inferrable transitively.

Detailed definitions of each post tag are given

below. Note that initiator refers to the user who

started the thread with the first post.

QUESTION-QUESTION (Q-Q): the post con-

tains a new question, independent of the

thread context that precedes it. In general,

QUESTION-QUESTION is reserved for the

first post in a given thread.

QUESTION-ADD (Q-ADD): the post supple-

194

ments a question by providing additional

information, or asking a follow-up question.

QUESTION-CONFIRMATION (Q-CONF): the

post points out error(s) in a question without

correcting them, or confirms details of the

question.

QUESTION-CORRECTION (Q-CORR): the post

corrects error(s) in a question.

ANSWER-ANSWER (A-A): the post proposes an

answer to a question.

ANSWER-ADD (A-ADD): the post supplements

an answer by providing additional informa-

tion.

ANSWER-CONFIRMATION (A-CONF): the

post points out error(s) in an answer without

correcting them, or confirms details of the

answer.

ANSWER-CORRECTION (A-CORR): the post

corrects error(s) in an answer.

ANSWER-OBJECTION (A-OBJ): the post ob-

jects to an answer on experiential or theoreti-

cal grounds (e.g. It won’t work.).

RESOLUTION (RES): the post confirms that an

answer works, on the basis of implementing

it.

REPRODUCTION (REP): the post either: (1)

confirms that the same problem is being ex-

perienced (by a non-initiator, e.g. I’m seeing

the same thing.); or (2) confirms that the an-

swer should work.

OTHER (OTHER): the post does not belong to

any of the above classes.

4 Feature Description

In this section, we describe our post feature repre-

sentation, in the form of four feature types.

4.1 Lexical features

As our first feature type, we use simple lexical fea-

tures, in the form of unigram and bigram tokens

contained within a given post (without stopping).

We also POS tagged and lemmatised the posts,

postfixing the lemmatised token with its POS tag

(using Lingua::EN::Tagger and morpha (Min-

nen et al., 2001)). Finally, we bin together the

counts for each token, and represent it via its raw

frequency.

4.2 Structural features

The identity of the post author, and position of the

post within the thread, can be indicators of the

post/link structure of a given post. We represent

the post author as a simple binary feature indicat-

ing whether s/he is the thread initiator, and the post

position via its relative position in the thread (as a

ratio, relative to the total number of posts).

4.3 Post context features

As mentioned in Section 2, post context has gen-

erally (but not always) been shown to enhance the

classification accuracy of DA tagging tasks, in the

form of Markov features providing predicted post

labels for previous posts, or more simply, post-to-

post similarity. We experiment with a range of

post context features, all of which are compatible

with features both from the same label set as that

being classified (e.g. link features for link classifi-

cation), as well as features from a second label set

(e.g. DA label features for link classification).

Previous Post: There is a strong prior for posts

to link to their immediately preceding post (as ob-

served for 79.9% of the data in our dataset), and

also strong sequentiality in our post label set (e.g.

a post following a Q-Q is most likely to be an A-

A). As such, we represent the predicted post label

of the immediately preceding post, as a first-order

Markov feature, as well as a binary feature to in-

dicate whether the author of the previous post also

authored the current post.

Previous Post from Same Author: A given

user tends to author posts of the same basic type

(e.g. QUESTION or ANSWER) in a given thread,

and pairings such as A-A and A-CONF from a

given author are very rare. To capture this obser-

vation, we look to see if the author of the current

post has posted earlier in the thread, and if so, in-

clude the label and relative location (in posts) of

their most recent previous post.

Full History: As a final option, we include the

predictions for all posts P1, ..., Pi−1 preceding the

current post Pi.

4.4 Semantic features

We tested four semantic features based on post

content and title.

195

Title Similarity: For forums such as CNET

which include titles for individual posts (as rep-

resented in Figure 1), a post having the same or

similar title as a previous post is often a strong

indicator that it responds to that post. This both

provides a strong indicator of which post a given

post responds (links) to, and can aid in DA tag-

ging. We use simple cosine similarity to find the

post with the most-similar title, and represent its

relative location to the current post.

Post Similarity: Posts of the same general type

tend to have similar content and be linked. For

example, A-A and A-ADD posts tend to share

content. We capture this by identifying the post

with most-similar content based on cosine similar-

ity, and represent its relative location to the current

post.

Post Characteristics: We separately represent

the number of question marks, exclamation marks

and URLs in the current post. In general, ques-

tion marks occur in QUESTION and CONFIRMA-

TION posts, exclamation marks occur in RES and

OBJECTION posts, and URLs occur in A-A and

A-ADD posts.

User Profile: Some authors tend to answer ques-

tions more, while others tend to ask more ques-

tions. We capture the class priors for the author of

the current post by the distribution of post labels

in their posts in the training data.

5 Experimental Setup

As our dataset, we collected 320 threads contain-

ing a total of 1,332 posts from the Operating Sys-

tem, Software, Hardware, and Web Development

sub-forums of CNET.1

The annotation of post labels and links was car-

ried by two annotators in a custom-built web inter-

face which supported multiple labels and links for

a given post. For posts with multilabels, we used

a modified version of Cohen’s Kappa, which re-

turned κ values of 0.59 and 0.78 for the post label

and link annotations, respectively. Any disagree-

ments in labelling were resolved through adjudi-

cation.

Of the 1332 posts, 65 posts have multiple labels

(which possibly link to a common post) and 22

posts link to two different links. The majority post

label in the dataset is A-A (40.30%).

1http://forums.cnet.com/?tag=

TOCleftColumn.0

We built machine learners using a conven-

tional Maximum Entropy (ME) learner,2 as well as

two structural learners, namely: (1) SVM-HMMs

(Joachims et al., 2009), as implemented in SVM-

struct3, with a linear kernel; and (2) conditional

random fields (CRFs) using CRF++.4 SVM-

HMMs and CRFs have been successfully applied

to a range of sequential tagging tasks such as

syllabification (Bartlett et al., 2009), chunk pars-

ing (Sha and Pereira, 2003) and word segmen-

tation (Zhao et al., 2006). Both are discrimina-

tive models which capture structural dependen-

cies, which is highly desirable in terms of mod-

elling sequential preferences between post labels

(e.g. A-CONF typically following a A-A). SVM-

HMM has the additional advantage of scaling to

large numbers of features (namely the lexical fea-

tures). As such, we only experiment with lexical

features for SVM-HMM and ME.

All of our evaluation is based on stratified 10-

fold cross-validation, stratifying at the thread level

to ensure that if a given post is contained in the

test data for a given iteration, all other posts in

that same thread are also in the test data (or more

pertinently, not in the training data). We evalu-

ate using micro-averaged precision, recall and F-

score (β = 1). We test the statistical significance

of all above-baseline results using randomised es-

timation (p < 0.05; Yeh (2000)), and present all

such results in bold in our results tables.

In our experiments, we first look at the post

classification task in isolation (i.e. we predict

which labels to associate with each post, under-

specifying which posts those labels relate to). We

then move on to look at the link classification task,

again in isolation (i.e. we predict which previous

posts each post links to, underspecifying the na-

ture of the link). Finally, we perform preliminary

investigation of the joint task of DA and link clas-

sification, by incorporating DA class features into

the link classification task.

6 DA Classification Results

Our first experiment is based on post-level dia-

logue act (DA) classification, ignoring link struc-

ture in the first instance. That is, we predict the

labels on edges emanating from each post in the

DAG representation of the post structure, without

2http://maxent.sourceforge.net/
3http://www.cs.cornell.edu/People/tj/

svm_light/svm_hmm.html
4http://crfpp.sourceforge.net/

196

Features CRF SVM-HMM ME

Lexical — .566 .410

Structural .742 .638 .723

Table 1: DA classification F-score with lexical and

structural features (above-baseline results in bold)

specifying the edge destination. Returning to our

example in Figure 2, e.g., the gold-standard clas-

sification for Post 1 would be Q-Q, Post 2 would

be A-A, etc.

As a baseline for DA classification, simple ma-

jority voting attains an F-score of 0.403, based on

the A-A class. A more realistic baseline, how-

ever, is a position-conditioned variant, where the

first post is always classified as Q-Q, and all sub-

sequent posts are classified as A-A, achieving an

F-score of 0.641.

6.1 Lexical and structural features

First, we experiment with lexical and structural

features (recalling that we are unable to scale the

CRF model to full lexical features). Lexical fea-

tures produce below-baseline performance, while

simple structural features immediately lead to an

improvement over the baseline for CRF and ME.

The reason for the poor performance with lex-

ical features is that our dataset contains only

around 1300 posts, each of which is less than 100

words in length on average. The models are sim-

ply unable to generalise over this small amount of

data, and in the case of SVM-HMM, the presence

of lexical features, if anything, appears to obscure

the structured nature of the labelling task (i.e. the

classifier is unable to learn the simple heuristic

used by the modified majority class baseline).

The success of the structural features, on the

other hand, points to the presence of predictable

sequences of post labels in the data. That SVM-

HMM is unable to achieve baseline performance

with structural features is slightly troubling.

6.2 Post context features

Next, we test the two post context features: Previ-

ous Post (P) and Previous Post from Same Author

(A). Given the success of structural features, we

retain these in our experiments. Note that the la-

bels used in the post context are those which are

interactively learned by that model for the previ-

ous posts.

Table 2 presents the results for structural fea-

Features CRF SVM-HMM ME

Struct+R .740 .640 .632

Struct+A .742 .676 .693

Struct+F .744 .641 .577

Struct+RA .397 .636 .665

Struct+AF .405 .642 .586

Table 2: DA classification F-score with structural

and DA-based post context features (R = “Previ-

ous Post”, A = “Previous Post from Same Author”,

and F = “Full History”; above-baseline results in

bold)

tures combined with DA-based post context; we

do not present any combinations of Previous Post

and Full History, as Full History includes the Pre-

vious Post.

Comparing back to the original results using

only the structural results, we can observe that Pre-

vious Post from Same Author and Full History (A

and F, resp., in the table) lead to a slight incre-

ment in F-score for both CRF and SVM-HMM,

but degrade the performance of ME. Previous Post

leads to either a marginal improvement, or a drop

in results, most noticeably for ME. It is slightly

surprising that the CRF should benefit from con-

text features at all, given that it is optimising over

the full tag sequence, but the impact is relatively

localised, and when all sets of context features

are used, the combined weight of noisy features

appears to swamp the learner, leading to a sharp

degradation in F-score.

6.3 Semantic features

We next investigate the relative impact of the se-

mantic features, once again including structural

features in all experiments. Table 3 presents the F-

score using the different combinations of semantic

features.

Similarly to the post context features, the se-

mantic features produced slight increments over

the structural features in isolation, especially for

CRF and ME. For the first time, SVM-HMM

achieved above-baseline results, when incorporat-

ing title similarity and post characteristics. Of the

individual semantic features, title and post simi-

larity appear to be the best performers. Slightly

disappointingly, the combination of semantic fea-

tures generally led to a degradation in F-score, al-

most certainly due to data sparseness. The best

overall result was achieved with CRF, incorporat-

197

Features CRF SVM-HMM ME

Struct+T .751 .636 .660

Struct+P .747 .636 .662

Struct+C .738 .587 .630

Struct+U .722 .564 .620

Struct+TP .740 .627 .720

Struct+TC .744 .646 .589

Struct+TU .738 .600 .609

Struct+PC .745 .630 .583

Struct+PU .736 .626 .605

Struct+CU .730 .599 .619

Struct+TPC .739 .622 .580

Struct+TPU .729 .613 .6120

Struct+TCU .750 .611 .6120

Struct+PCU .738 .616 .614

Struct+TPCU .737 .619 .605

Table 3: DA classification F-score with semantic

features (T = “Title Similarity”, P = “Post Simi-

larity”, C = “Post Characteristics”, and U = “User

Profile”; above-baseline results in bold)

ing structural features and title similarity, at an F-

score of 0.751.

To further explore the interaction between post

context and semantic features, we built CRF clas-

sifiers for different combinations of post context

and semantic features, and present the results in

Table 4.5 We achieved moderate gains in F-score,

with all post context features, in combination with

structural features, post similarity and post char-

acteristics achieving an F-score of 0.753, slightly

higher than the best result achieved for just struc-

tural and post context features.

It is important to refer back to the results for

lexical features (comparable to what would have

been achieved with a standard text categorisation

approach to the task), and observe that we have

achieved far higher F-scores using features cus-

tomised to user forum data. It is also important

to reflect that post context (in terms of the features

and the structured classification results of CRF)

appears to markedly improve our results, contrast-

ing with the results of Ries (1999) and Serafin and

Di Eugenio (2004).

5We omit the results for Full History post context for rea-
sons of space, but there is relatively little deviation from the
numbers presented.

Features R A RA

Struct+T .649 .649 .649

Struct+P .737 .736 .742

Struct+C .741 .741 .742

Struct+U .745 .742 .737

Struct+TP .645 .656 .658

Struct+TC .383 .402 .408

Struct+TU .650 .652 .652

Struct+PC .730 .743 .753

Struct+PU .232 .232 .286

Struct+CU .719 .471 .710

Struct+TPC .498 .469 .579

Struct+TPU .248 .232 .248

Struct+TCU .388 .377 .380

Struct+PCU .231 .231 .261

Struct+TPCU .231 .231 .231

Table 4: DA classification F-score for CRF with

different combinations of post context features and

semantic features (R = “Previous Post”, and A

= “Previous Post from Same Author”; T = “Ti-

tle Similarity”, P = “Post Similarity”, C = “Post

Characteristics”, and U = “User Profile”; above-

baseline results in bold)

7 Link Classification Results

Our second experiment is based on link classifi-

cation in isolation. Here, we predict unlabelled

edges, e.g. in Figure 2, the gold-standard classifi-

cation for Post 1 would be NULL, Post 2 would be

Post 1, Post 3 would be Post 1, etc.

Note that the initial post cannot link to any other

post, and also that the second post always links

to the first post. As this is a hard constraint on

the data, and these posts simply act to inflate the

overall numbers, we exclude all first and second

posts from our evaluation of link classification.

We experimented with a range of baselines as

presented in Table 5, but found that the best per-

former by far was the simple heuristic of linking

each post (except for the initial post) to its imme-

diately preceding post. This leads to an F-score of

0.631, comparable to that for the post classifica-

tion task.

7.1 Lexical and structural features

Once again, we started by exploring the effective-

ness of lexical and structural features using the

three learners, as detailed in Table 6.

Similarly to the results for post classification,

198

Baseline Prec Rec F-score

Previous post .641 .622 .631

First post .278 .269 .274

Title similarity .311 .301 .306

Post similarity .255 .247 .251

Table 5: Baselines for link classification

Features CRF SVM-HMM ME

Lexical — .154 .274

Structural .446 .220 .478

Table 6: Link classification F-score with lexical

and structural features (above-baseline results in

bold)

structural features are more effective than lexical

features for link classification, but this time, nei-

ther feature set approaches the baseline F-score

for any of the learners. Once again, the results for

SVM-HMM are well below those for the other two

learners.

7.2 Post context features

Next, we experiment with link-based post con-

text features, in combination with the structural

features, as the results were found to be consis-

tently better when combined with the structural

features (despite the below-baseline performance

of the structural features in this case). The link-

based post context features in all cases are gener-

ated using the CRF with structural features from

Table 6. As before, we do not present any combi-

nations of Previous Post and Full History, as Full

History includes the Previous Post

As seen in Table 9, here, for the first time, we

achieve an above-baseline result for link classifi-

cation, for SVM and ME based on Previous Post

from Same Author in isolation, and also some-

times in combination with the other feature sets.

The results for CRF also improve, but not to a

level of statistical significance over the baseline.

Similarly to the results for DA classification, the

results for CRF drop appreciably when we com-

bine feature sets.

7.3 Semantic features

Finally, we experiment with semantic features,

once again in combination with structural features.

The results are presented in Table 8.

The results for semantic features largely mir-

Features CRF SVM-HMM ME

Struct+R .234 .605 .618

Struct+A .365 .665 .665

Struct+F .624 .648 .615

Struct+RA .230 .615 .661

Struct+AF .359 .663 .621

Table 7: Link classification F-score with structural

and link-based post context features (R = “Previ-

ous Post”, A = “Previous Post from Same Author”,

and F = “Full History”; above-baseline results in

bold)

Features CRF SVM-HMM ME

Struct+T .464 .223 .477

Struct+P .433 .198 .453

Struct+C .438 .213 .419

Struct+U .407 .160 .376

Struct+TP .459 .194 .491

Struct+TC .449 .229 .404

Struct+TU .456 .174 .353

Struct+PC .422 .152 .387

Struct+PU .439 .166 .349

Struct+CU .397 .178 .366

Struct+TPC .449 .185 .418

Struct+TPU .449 .160 .365

Struct+TCU .459 .185 .358

Struct+PCU .439 .161 .358

Struct+TPCU .443 .163 .365

Table 8: Link classification F-score with semantic

features (T = “Title Similarity”, P = “Post Simi-

larity”, C = “Post Characteristics”, and U = “User

Profile”; above-baseline results in bold)

ror those for post classification: small improve-

ments are observed for title similarity with CRF,

but otherwise, the results degrade across the board,

and the combination of different feature sets com-

pounds this effect.

The best overall result achieved for link classifi-

cation is thus the 0.743 for CRF with the structural

and post context features.

We additionally experimented with combina-

tions of features as for post classification, but were

unable to improve on this result.

7.4 Link Classification using DA Features

Ultimately, we require both DA and link classifica-

tion of each post, which is possible by combining

the outputs of the component classifiers described

199

Features CRF SVM-HMM ME

Struct+R .586 .352 .430

Struct+A .591 .278 .568

Struct+F .704 .477 .546

Struct+RA .637 .384 .551

Struct+AF .743 .527 .603

Table 9: Link classification F-score with structural

and post-based post context features (R = “Previ-

ous Post”, A = “Previous Post from Same Author”,

and F = “Full History”; above-baseline results in

bold)

above, by rolling the two tasks into a single clas-

sification task, or alternatively by looking to joint

modelling methods. As a preliminary step in this

direction, and means of exploring the interaction

between the two tasks, we repeat the experiment

based on post context features from above (see

Section 7.2), but rather than using link-based post

context, we use DA-based post context.

As can be seen in Table 9, the results for SVM-

HMM and ME drop appreciably as compared to

the results using link-based post context in Table 9,

while the results for CRF jump to the highest level

achieved for the task for all three learners. The

effect can be ascribed to the ability of CRF to

natively model the (bidirectional) link classifica-

tion history in the process of performing structured

learning, and the newly-introduced post features

complementing the link classification task.

8 Discussion and Future Work

Ultimately, we require both DA and link classifica-

tion of each post, which is possible in (at least) the

following three ways: (1) by combining the out-

puts of the component classifiers described above;

(2) by rolling the two tasks into a single classifi-

cation task; or (3) by looking to joint modelling

methods. Our results in Section 7.4 are suggestive

of the empirical potential of performing the two

tasks jointly, which we hope to explore in future

work.

One puzzling effect observed in our experi-

ments was the generally poor results for SVM. Er-

ror analysis indicates that the classifier was heav-

ily biased towards the high-frequency classes, e.g.

classifying all posts as either Q-Q or A-A for DA

classification. The classifications for the other two

learners were much more evenly spread across the

different classes.

CRF was limited in that it was unable to cap-

ture lexical features, but ultimately, lexical fea-

tures were found to be considerably less effec-

tive than structural and post context features for

both tasks, and the ability of the CRF to opti-

mise the post labelling over the full sequence of

posts in a thread more than compensated for this

shortcoming. Having said this, there is more work

to be done exploring synergies between the dif-

ferent feature sets, especially for DA classifica-

tion where all feature sets were found to produce

above-baseline results.

Another possible direction for future research is

to explore the impact of inter-post time on link

structure, based on the observation that follow-

up posts from the initiator tend to be tempo-

rally adjacent to posts they respond to with rela-

tively short time intervals, while posts from non-

initiators which are well spaced out tend not to re-

spond to one another. Combining this with pro-

filing of the cross-thread behaviour of individual

forum participants (Weimer et al., 2007; Lui and

Baldwin, 2009), and formal modelling of “forum

behaviour” is also a promising line of research,

taking the lead from the work of Götz et al. (2009),

inter alia.

9 Conclusion

In this work, we have proposed a method for

analysing post-to-post discourse structure in on-

line user forum data, in the form of post link-

ing and dialogue act tagging. We introduced

three feature sets: structural features, post con-

text features and semantic features. We exper-

imented with three learners (maximum entropy,

SVM-HMM and CRF), and established that CRF

is the superior approach to the task, achieving

above-baseline results for both post and link clas-

sification. We also demonstrated the complemen-

tarity of the proposed feature sets, especially for

the post classification task, and carried out a pre-

liminary exploration of the interaction between the

linking and dialogue act tagging tasks.

Acknowledgements

This research was supported in part by funding

from Microsoft Research Asia.

References

Jeremy Ang, Yang Liu, and Elizabeth Shriberg. 2005.
Automatic dialog act segmentation and classifica-

200

tion in multiparty meetings. In Proceedings of
the 2005 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2005),
pages 1061–1064, Philadelphia, USA.

Timothy Baldwin, David Martinez, Richard Penman,
Su Nam Kim, Marco Lui, Li Wang, and Andrew
MacKinlay. to appear. Intelligent Linux informa-
tion access by data mining: the ILIAD project. In
Proceedings of the NAACL 2010 Workshop on Com-
putational Linguistics in a World of Social Media:
#SocialMedia, Los Angeles, USA.

Susan Bartlett, Grzegorz Kondrak, and Colin Cherry.
2009. On the syllabification of phonemes. In Pro-
ceedings of the North American Chapter of the As-
sociation for Computational Linguistics – Human
Language Technologies 2009 (NAACL HLT 2009),
pages 308–316, Boulder, USA.

Xin Cao, Gao Cong, Bin Cui, Christian S. Jensen, and
Ce Zhang. 2009. The use of categorization infor-
mation in language models for question retrieval. In
Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management (CIKM 2009),
pages 265–274, Hong Kong, China.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged
corpus in the framework of rhetorical structure the-
ory. In Proceedings of the Second SIGdial Work-
shop on Discourse and Dialogue, pages 1–10, Aal-
borg, Denmark. Association for Computational Lin-
guistics Morristown, NJ, USA.

Vitor R. Carvalho and William W. Cohen. 2005. On
the collective classification of email ”speech acts”.
In Proceedings of 28th International ACM-SIGIR
Conference on Research and Development in Infor-
mation Retrieval (SIGIR 2005), pages 345–352.

William W. Cohen, Vitor R. Carvalho, and Tom M.
Mitchell. 2004. Learning to classify email into
“speech acts”. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2004), pages 309–316,
Barcelona, Spain.

Gao Cong, Long Wang, Chin-Yew Lin, Young-In
Song, and Yueheng Sun. 2008. Finding question-
answer pairs from online forums. In Proceedings of
31st International ACM-SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR’08), pages 467–474, Singapore.

Shilin Ding, Gao Cong, Chin-Yew Lin, and Xiaoyan
Zhu. 2008. Using conditional random fields to ex-
tract context and answers of questions from online
forums. In Proceedings of the 46th Annual Meet-
ing of the ACL: HLT (ACL 2008), pages 710–718,
Columbus, USA.

Jonathan L. Elsas and Jaime G. Carbonell. 2009. It
pays to be picky: An evaluation of thread retrieval
in online forums. In Proceedings of 32nd Inter-
national ACM-SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’09),
pages 714–715, Boston, USA.

Jonathan L. Elsas, Jaime Arguello, Jamie Callan, and
Jaime G. Carbonell. 2008. Retrieval and feed-
back models for blog feed search. In Proceedings of
31st International ACM-SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR’08), pages 347–354, Singapore.

Micha Elsner and Eugene Charniak. 2008. You talk-
ing to me? a corpus and algorithm for conversation
disentanglement. In Proceedings of the 46th Annual
Meeting of the ACL: HLT (ACL 2008), pages 834–
842, Columbus, USA.

Michaela Götz, Jure Leskovec, Mary McGlohon, and
Christos Faloutsos. 2009. Modeling blog dynamics.
In Proceedings of the Third International Confer-
ence on Weblogs and Social Media (ICWSM 2009),
pages 26–33, San Jose, USA.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intention and the structure of discourse. Com-
putational Linguistics, 12(3):175–204.

Edward Ivanovic. 2008. Automatic instant messaging
dialogue using statistical models and dialogue acts.
Master’s thesis, University of Melbourne.

Gang Ji and Jeff Bilmes. 2005. Dialog act tag-
ging using graphical models. In Proceedings of
the 2005 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2005),
pages 33–36, Philadelphia, USA.

Thorsten Joachims, Thomas Finley, and Chun-
Nam John Yu. 2009. Cutting-plane training of
structural SVMs. Machine Learning, 77(1):27–59.

Andrew Lampert, Robert Dale, and Cécile Paris.
2008. The nature of requests and commitments in
email messages. In Proceedings of the AAAI 2008
Workshop on Enhanced Messaging, pages 42–47,
Chicago, USA.

Oliver Lemon, Alex Gruenstein, and Stanley Pe-
ters. 2002. Collaborative activities and multi-
tasking in dialogue systems. Traitement Automa-
tique des Langues (TAL), Special Issue on Dialogue,
43(2):131–154.

Chen Lin, Jiang-Ming Yang, Rui Cai, Xin-Jing Wang,
Wei Wang, and Lei Zhang. 2009. Modeling se-
mantics and structure of discussion threads. In Pro-
ceedings of the 18th International Conference on the
World Wide Web (WWW 2009), pages 1103–1104,
Madrid, Spain.

Marco Lui and Timothy Baldwin. 2009. You are what
you post: User-level features in threaded discourse.
In Proceedings of the Fourteenth Australasian Doc-
ument Computing Symposium (ADCS 2009), Syd-
ney, Australia.

201

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English. Nat-
ural Language Engineering, 7(3):207–223.

Gabriel Murray, Steve Renals, Jean Carletta, and Jo-
hanna Moore. 2006. Incorporating speaker and dis-
course features into speech summarization. In Pro-
ceedings of the Main Conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, pages 367–374.

Klaus Ries. 1999. HMM and neural network
based speech act detection. In Proceedings of the
1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP-99), pages
497–500, Phoenix, USA.

Carolyn Penstein Rosé, Barbara Di Eugenio, Lori S.
Levin, and Carol Van Ess-Dykema. 1995.
Discourse processing of dialogues with multiple
threads. In Proceedings of the 33rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 31–38, Cambridge, USA.

Ken Samuel, Carbeery Sandra Carberry, and K. Vijay-
Shanker. 1998. Dialogue act tagging with
transformation-based learning. In Proceedings of
the 36th Annual Meeting of the ACL and 17th In-
ternational Conference on Computational Linguis-
tics (COLING/ACL-98), pages 1150–1156, Mon-
treal, Canada.

Anne Schuth, Maarten Marx, and Maarten de Rijke.
2007. Extracting the discussion structure in com-
ments on news-articles. In Proceedings of the 9th
Annual ACM International Workshop on Web Infor-
mation and Data Management, pages 97–104, Lis-
boa, Portugal.

Jangwon Seo, W. Bruce Croft, and David A. Smith.
2009. Online community search using thread struc-
ture. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management (CIKM
2009), pages 1907–1910, Hong Kong, China.

Riccardo Serafin and Barbara Di Eugenio. 2004.
FLSA: Extending latent semantic analysis with fea-
tures for dialogue act classification. In Proceedings
of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL 2004), pages 692–
699, Barcelona, Spain.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings
of the 3rd International Conference on Human Lan-
guage Technology Research and 4th Annual Meeting
of the NAACL (HLT-NAACL 2003), pages 213–220,
Edmonton, Canada.

Lokesh Shrestha and Kathleen McKeown. 2004. De-
tection of question-answer pairs in email conver-
sations. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING
2004), pages 889–895, Geneva, Switzerland.

Elinzabeth Shriberg, Raj Dhillon, Sonali Bhagat,
Jeremy Ang, and Hannah Carvey. 2004. The ICSI
meeting recorder dialog act (MRDA) corpus. In
Proceedings of the 5th SIGdial Workshop on Dis-
course and Dialogue, pages 97–100, Cambridge,
USA.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliz-
abeth Shriberg, Rebecca Bates, Daniel Jurafsky,
Pail Taylor, Rachel Martin, Carol Van Ess-Dykema,
and Marie Meteer. 2000. Dialogue Act Mod-
eling for Automatic Tagging and Recognition of
Conversational Speech. Computational Linguistics,
26(3):339–373.

Yi-Chia Wang, Mahesh Joshi, and Carolyn Rosé. 2007.
A feature based approach to leveraging context for
classifying newsgroup style discussion segments. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions (ACL 2007), pages 73–76, Prague, Czech Re-
public.

Yi-Chia Wang, Mahesh Joshi, William W. Cohen, and
Carolyn Rosé. 2008. Recovering implicit thread
structure in newsgroup style conversations. In Pro-
ceedings of the Second International Conference on
Weblogs and Social Media (ICWSM 2008), pages
152–160, Seattle, USA.

Markus Weimer, Iryna Gurevych, and Max
Mühlhäuser. 2007. Automatically assessing
the post quality in online discussions on software.
In Proceedings of the 45th Annual Meeting of
the ACL: Interactive Poster and Demonstration
Sessions, pages 125–128, Prague, Czech Republic.

Florian Wolf and Edward Gibson. 2005. Representing
discourse coherence: A corpus-based study. Com-
putational Linguistics, 31(2):249–287.

Wensi Xi, Jesper Lind, and Eric Brill. 2004. Learning
effective ranking functions for newsgroup search.
In Proceedings of 27th International ACM-SIGIR
Conference on Research and Development in In-
formation Retrieval (SIGIR 2004), pages 394–401.
Sheffield, UK.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Pro-
ceedings of the 18th International Conference on
Computational Linguistics (COLING 2000), pages
947–953, Saarbrücken, Germany.

Hai Zhao, Chang-Ning Huang, and Mu Li. 2006. An
improved Chinese word segmentation system with
conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Process-
ing, pages 162–165. Sydney, Australia.

202

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 203–212,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Joint Entity and Relation Extraction using Card-Pyramid Parsing

Rohit J. Kate and Raymond J. Mooney

Department of Computer Science

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

{rjkate,mooney}@cs.utexas.edu

Abstract

Both entity and relation extraction can

benefit from being performed jointly, al-

lowing each task to correct the errors of

the other. We present a new method for

joint entity and relation extraction using

a graph we call a “card-pyramid.” This

graph compactly encodes all possible en-

tities and relations in a sentence, reducing

the task of their joint extraction to jointly

labeling its nodes. We give an efficient la-

beling algorithm that is analogous to pars-

ing using dynamic programming. Exper-

imental results show improved results for

our joint extraction method compared to a

pipelined approach.

1 Introduction

Information extraction (IE) is the task of extract-

ing structured information from text. The two

most common sub-tasks of IE are extracting enti-

ties (like Person, Location and Organization) and

extracting relations between them (like Work For

which relates a Person and an Organization, Org-

Based In which relates an Organization and a Lo-

cation etc.). Figure 1 shows a sample sentence an-

notated with entities and relations. The applica-

tion domain and requirements of the downstream

tasks usually dictate the type of entities and rela-

tions that an IE system needs to extract.

Most work in IE has concentrated on entity ex-

traction alone (Tjong Kim Sang, 2002; Sang and

Meulder, 2003) or on relation extraction assum-

ing entities are either given or previously extracted

(Bunescu et al., 2005; Zhang et al., 2006; Giuliano

et al., 2007; Qian et al., 2008). However, these

tasks are very closely inter-related. While iden-

tifying correct entities is essential for identifying

relations between them, identifying correct rela-

tions can in turn improve identification of entities.

For example, if the relation Work For is identified

with high confidence by a relation extractor, then

it can enforce identifying its arguments as Person

and Organization, about which the entity extractor

might not have been confident.

A brute force algorithm for finding the most

probable joint extraction will soon become in-

tractable as the number of entities in a sentence

grows. If there are n entities in a sentence, then

there are O(n2) possible relations between them

and if each relation can take l labels then there are

O(ln
2

) total possibilities, which is intractable even

for small l and n. Hence, an efficient inference

mechanism is needed for joint entity and relation

extraction.

The only work we are aware of for jointly ex-

tracting entities and relations is by Roth & Yih

(2004; 2007). Their method first identifies the pos-

sible entities and relations in a sentence using sep-

arate classifiers which are applied independently

and then computes a most probable consistent

global set of entities and relations using linear pro-

gramming. In this paper, we present a different ap-

proach to joint extraction using a “card-pyramid”

graph. The labeled nodes in this graph compactly

encode the possible entities and relations in a sen-

tence. The task of joint extraction then reduces

to finding the most probable joint assignment to

the nodes in the card-pyramid. We give an ef-

ficient dynamic-programming algorithm for this

task which resembles CYK parsing for context-

free grammars (Jurafsky and Martin, 2008). The

algorithm does a beam search and gives an approx-

imate solution for a finite beam size. A natural

advantage of this approach is that extraction from

a part of the sentence is influenced by extraction

from its subparts and vice-versa, thus leading to a

joint extraction. During extraction from a part of

the sentence it also allows use of features based on

the extraction from its sub-parts, thus leading to a

more integrated extraction. We use Roth & Yih’s

203

John lives in Los Angeles , California and works there for an American company called ABC Inc .
Person Location Location

Live_In
Located_In

Work_For

OrgBased_In

OrgBased_In

Other Organization

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Live_In

Figure 1: A sentence shown with entities and relations.

Figure 2: A pyramid built out of playing-cards.

(2004; 2007) dataset in our experiments and show

that card-pyramid parsing improves accuracy over

both their approach and a pipelined extractor.

2 Card-Pyramid Parsing for Joint

Extraction

In this section, we first introduce the card-pyramid

structure and describe how it represents entities

and their relations in a sentence. We then describe

an efficient algorithm for doing joint extraction us-

ing this structure.

2.1 Card-Pyramid Structure

We define a binary directed graph we call a card-

pyramid because it looks like a pyramid built out

of playing-cards as shown in Figure 2. A card-

pyramid is a “tree-like” graph with one root, in-

ternal nodes, and leaves, such that if there are

n leaves, then there are exactly n levels with a

decreasing number of nodes from bottom to top,

leaves are at the lowest level (0) and the root is

at the highest level (n − 1) (see Figure 3 for an

example). In addition, every non-leaf node at po-

Live_In

Live_In NR OrgBased_In

NR OrgBased_In

Work_For

Location Location Other Organization

Located_In NRNRLevel 1

Level 2

Level 3

Level 4

Person

0

2

10

0 1

0 1 3

(0−0) (3−4) (6−6) (12−12) (15−16)

0 1 2 3 4

2

Level 0

Figure 3: The card-pyramid for the sentence shown in Fig-

ure 1. Levels are shown by the horizontal lines under which

the positions of its nodes are indicated.

sition i in level l is the parent of exactly two nodes

at positions i and i + 1 at level l − 1. Note that

a card-pyramid is not a tree because many of its

nodes have two parents. A useful property of a

card-pyramid is that a non-leaf node at position i

in level l is always the lowest common ancestor of

the leaves at positions i and l + i.

We now describe how entities and relations in a

sentence are easily represented in a card-pyramid.

We assume that in addition to the given entity

types, there is an extra type, Other, indicating that

the entity is of none of the given types. Similarly,

there is an extra relation type, NR, indicating that

its two entity arguments are not related.

Figure 3 shows the card-pyramid corresponding

to the annotated sentence shown in figure 1. To ob-

tain it, first, all entities present in the sentence are

made leaves of the card-pyramid in the same order

as they appear in the sentence. The label of a leaf

is the type of the corresponding entity. The leaf

also stores the range of the indices of its entity’s

words in the sentence. Note that although there is

no overlap between entities in the given example

(nor in the dataset we used for our experiments),

204

overlapping entities do not pose a problem. Over-

lapping entities can still be ordered and supplied as

the leaves of the card-pyramid. Next, the relation

between every two entities (leaves) is encoded as

the label of their lowest common ancestor. If two

entities are not related, then the label of their low-

est common ancestor is NR. This way, every non-

leaf node relates exactly two entities: the left-most

and right-most leaves beneath it.

2.2 Card-Pyramid Parsing

The task of jointly extracting entities and rela-

tions from a sentence reduces to jointly label-

ing the nodes of a card-pyramid which has all

the candidate entities (i.e. entity boundaries) of

the sentence as its leaves. We call this process

card-pyramid parsing. We assume that all candi-

date entities are given up-front. If needed, candi-

date entities can be either obtained automatically

(Punyakanok and Roth, 2001) or generated using

a simple heuristic, like including all noun-phrase

chunks as candidate entities. Or, in the worst case,

each substring of words in the sentence can be

given as a candidate entity. Liberally including

candidate entities is possible since they can sim-

ply be given the label Other if they are none of the

given types.

In this section we describe our card-pyramid

parsing algorithm whose pseudo-code is shown

in Figure 4. While the process is analogous to

context-free grammar (CFG) parsing, particularly

CYK bottom-up parsing, there are several major

differences. Firstly, in card-pyramid parsing the

structure is already known and the only task is

labeling the nodes, whereas in CFG parsing the

structure is not known in advance. This fact sim-

plifies some aspects of card-pyramid parsing. Sec-

ondly, in CFG parsing the subtrees under a node

do not overlap which simplifies parsing. How-

ever, in card-pyramid parsing there is significant

overlap between the two sub-card-pyramids under

a given node and this overlap needs to be consis-

tently labeled. This could have potentially com-

plicated parsing, but there turns out to be a simple

constant-time method for checking consistency of

the overlap. Thirdly, while CFG parsing parses the

words in a sentence, here we are parsing candi-

date entities. Finally, as described below, in card-

pyramid parsing, a production at a non-leaf node

relates the left-most and right-most leaves beneath

it, while in CFG parsing a production at a non-leaf

node relates its immediate children which could be

other non-leaf nodes.

Parsing requires specifying a grammar for the

card-pyramid. The productions in this grammar

are of two types. For leaf nodes, the produc-

tions are of the form entityLabel → ce where ce,

which stands for candidate entity, is the only ter-

minal symbol in the grammar. We call these pro-

ductions entity productions. For non-leaf nodes,

the productions are of the form relationLabel →
entityLabel1 entityLabel2. We call these produc-

tions relation productions. Note that their right-

hand-side (RHS) non-terminals are entity labels

and not other relation labels. From a training

set of labeled sentences, the corresponding card-

pyramids can be constructed using the procedure

described in the previous section. From these

card-pyramids, the entity productions are obtained

by simply reading off the labels of the leaves. A

relation productions is obtained from each non-

leaf node by making the node’s label the produc-

tion’s left-hand-side (LHS) non-terminal and mak-

ing the labels of its left-most and right-most leaves

the production’s RHS non-terminals. For the ex-

ample shown in Figure 3, some of the productions

are Work For→ Person Organization, NR→ Per-

son Other, OrgBased In→ Loc Org, Person→ ce,

Location → ce etc. Note that there could be two

separate productions like Work For → Person Or-

ganization and Work For → Organization Person

based on the order in which the entities are found

in a sentence. For the relations which take argu-

ments of the same type, like Kill(Person,Person),

two productions are used with different LHS non-

terminals (Kill and Kill reverse) to distinguish be-

tween the argument order of the entities.

The parsing algorithm needs a classifier for ev-

ery entity production which gives the probabil-

ity of a candidate entity being of the type given

in the production’s LHS. In the pseudo-code,

this classifier is given by the function: entity-

classifier(production, sentence, range). The func-

tion range(r) represents the boundaries or the

range of the word indices for the rth candidate

entity. Similarly, we assume that a classifier is

given for every relation production which gives

the probability that its two RHS entities are re-

lated by its LHS relation. In the pseudo-code it is

the function: relation-classifier(production, sen-

tence, range1, range2, sub-card-pyramid1, sub-

card-pyramid2), where range1 and range2 are the

205

ranges of the word indices of the two entities

and sub-card-pyramid1 and sub-card-pyramid2

are the sub-card-pyramids rooted at its two chil-

dren. Thus, along with the two entities and the

words in the sentence, information from these sub-

card-pyramids is also used in deciding the relation

at a node. In the next section, we further spec-

ify these entity and relation classifiers and explain

how they are trained. We note that this use of

multiple classifiers to determine the most probable

parse is similar to the method used in the KRISP

semantic parser (Kate and Mooney, 2006).

Given the candidate entities in a sentence, the

grammar, and the entity and relation classifiers,

the card-pyramid parsing algorithm tries to find

the most probable joint-labeling of all of its nodes,

and thus jointly extracts entities and their rela-

tions. The parsing algorithm does a beam search

and maintains a beam at each node of the card-

pyramid. A node is represented by l[i][j] in the

pseudo-code which stands for the node in the jth

position in the ith level. Note that at level i, the

nodes range from l[i][0] to l[i][n− i− 1], where n

is the number of leaves. The beam at each node is

a queue of items we call beam elements. At leaf

nodes, a beam element simply stores a possible

entity label with its corresponding probability. At

non-leaf nodes, a beam element contains a possi-

ble joint assignment of labels to all the nodes in

the sub-card-pyramid rooted at that node with its

probability. This is efficiently maintained through

indices to the beam elements of its children nodes.

The parsing proceeds as follows. First, the en-

tity classifiers are used to fill the beams at the leaf

nodes. The add(beam, beam-element) function

adds the beam element to the beam while main-

taining its maximum beam-width size and sorted

order based on the probabilities. Next, the beams

of the non-leaf nodes are filled in a bottom-up

manner. At any node, the beams of its children

nodes are considered and every combination of

their beam elements are tried. To be considered

further, the two possible sub-card-pyramids en-

coded by the two beam elements must have a con-

sistent overlap. This is easily enforced by check-

ing that its left child’s right child’s beam element

is same as its right child’s left child’s beam ele-

ment. If this condition is satisfied, then those re-

lation productions are considered which have the

left-most leaf of the left child and right-most leaf

of the right child as its RHS non-terminals.1 For

every such production in the grammar, 2 the prob-

ability of the relation is determined using the re-

lation classifier. This probability is then multi-

plied by the probabilities of the children sub-card-

pyramids. But, because of the overlap between the

two children, a probability mass gets multiplied

twice. Hence the probability of the overlap sub-

card-pyramid is then suitably divided. Finally, the

estimated most-probable labeling is obtained from

the top beam element of the root node.

We note that this algorithm may not find the

optimal solution but only an approximate solu-

tion owing to a limited beam size, this is unlike

probabilistic CFG parsing algorithms in which the

optimal solution is found. A limitless beam size

will find the optimal solution but will reduce the

algorithm to a computationally intractable brute

force search. The parsing algorithm with a fi-

nite beam size keeps the search computationally

tractable while allowing a joint labelling.

3 Classifiers for Entity and Relation

Extraction

The card-pyramid parsing described in the previ-

ous section requires classifiers for each of the en-

tity and relation productions. In this section, we

describe the classifiers we used in our experiments

and how they were trained.

We use a support vector machine (SVM) (Cris-

tianini and Shawe-Taylor, 2000) classifier for each

of the entity productions in the grammar. An entity

classifier gets as input a sentence and a candidate

entity indicated by the range of the indices of its

words. It outputs the probability that the candi-

date entity is of the respective entity type. Prob-

abilities for the SVM outputs are computed using

the method by Platt (1999). We use all possible

word subsequences of the candidate entity words

as implicit features using a word-subsequence ker-

nel (Lodhi et al., 2002). In addition, we use

the following standard entity extraction features:

the part-of-speech (POS) tag sequence of the can-

didate entity words, two words before and after

the candidate entity and their POS tags, whether

any or all candidate entity words are capitalized,

1These are stored in the beam elements.
2Note that this step enforces the consistency constraint of

Roth and Yih (Roth and Yih, 2004; Roth and Yih, 2007) that
a relation can only be between the entities of specific types.
The grammar in our approach inherently enforces this con-
straint.

206

function Card-Pyramid-Parsing(Sentence,Grammar,entity-classifiers,relation-classifiers)

n = number of candidate entities in S

// Let range(r) represent the range of the indices of the words for the rth candidate entity.

// Let l[i][j] represent the jth node at ith level in the card-pyramid.

// For leaves

// A beam element at a leaf node is (label,probability).

for j = 0 to n // for every leaf

for each entityLabel → candidate entity ∈ Grammar

prob = entity-classifier(entityLabel → candidate entity, S, range(j))

add(l[0][j].beam, (entityLabel,prob))

// For non-leaf nodes

// A beam element at a non-leaf node is (label,probability,leftIndex,rightIndex,leftMostLeaf,rightMostLeaf)

// where leftIndex and rightIndex are the indices in the beams of the left and right children respectively.

for i = 1 to n // for every level above the leaves

for j = 0 to n− i− 1 // for every position at a level

// for each combination of beam elements of the two children

for each f ∈ l[i− 1][j].beam and g ∈ l[i− 1][j + 1].beam

// the overlapped part must be same (overlap happens for i > 1)

if (i == 1||f.rightIndex == g.leftIndex)
for each relationLabel → f.leftMostLeaf g.rightMostLeaf ∈ Grammar

// probability of that relation between the left-most and right-most leaf under the node

prob = relation-classifier(relationLabel → f.leftMostLeaf g.rightMostLeaf , S, range(i), range(i + j), f , g);

prob *= f.probability ∗ g.probability // multiply probabilities of the children sub-card-pyramids

// divide by the common probability that got multiplied twice

if (i > 1) prob /= l[i− 2][j + 1].beam[f.rightIndex].probability

add(l[i][j].beam, (relationLabel, prob, index of f , index of g, f.leftMostLeaf , g.rightMostLeaf)

return the labels starting from the first beam element of the root i.e. l[n][0].beam[0]

Figure 4: Card-Pyramid Parsing Algorithm.

whether any or all words are found in a list of en-

tity names, whether any word has sufffix “ment”

or “ing”, and finally the alphanumeric pattern of

characters (Collins, 2002) of the last candidate

entity word obtained by replacing each charac-

ter by its character type (lowercase, uppercase or

numeric) and collapsing any consecutive repeti-

tion (for example, the alphanumeric pattern for

CoNLL2010 will be AaA0). The full kernel is

computed by adding the word-subsequence kernel

and the dot-product of all these features, exploit-

ing the convolution property of kernels.

We also use an SVM classifier for each of the

relation productions in the grammar which out-

puts the probability that the relation holds between

the two entities. A relation classifier is applied

at an internal node of a card-pyramid. It takes

the input in two parts. The first part is the sen-

tence and the range of the word indices of its two

entities l and r which are the left-most and the

right-most leaves under it respectively. The sec-

ond part consists of the sub-card-pyramids rooted

at the node’s two children which represent a pos-

sible entity and relation labeling for all the nodes

underneath. In general, any information from the

sub-card-pyramids could be used in the classifier.

We use the following information: pairs of rela-

tions that exist between l and b and between b and

r for every entity (leaf) b that exists between the

two entities l and r. For example, in figure 3,

the relation classifier at the root node which re-

lates Person(0-0) and Organization (15-16) will

take three pairs of relations as the information

from the two sub-card-pyramids of its children:

“Live In—OrgBased In” (with Location(3-4) as

the in-between entity), “Live In—OrgBased In”

(with Location(6-6) as the in-between entity) and

“NR—NR” (with Other(12-12) as the in-between

entity). This information tells how the two enti-

ties are related to the entities present in between

them. This can affect the relation between the two

entities, for example, if the sentence mentions that

a person lives at a location and also mentions that

an organization is based at that location then that

person is likely to work at that organization. Note

that this information can not be incorporated in a

pipelined approach in which each relation is de-

termined independently. It is also not possible to

incorporate this in the linear programming method

presented in (Roth and Yih, 2004; Roth and Yih,

2007) because that method computes the probabil-

ities of all the relations independently before find-

ing the optimal solution through linear program-

ming. It would also not help to add hard con-

straints to their linear program relating the rela-

tions because they need not always hold.

We add the kernels for each part of the input to

compute the final kernel for the SVM classifiers.

The kernel for the second part of the input is com-

puted by simply counting the number of common

207

pairs of relations between two examples thus im-

plicitly considering every pair of relation (as de-

scribed in the last paragraph) as a feature. For the

first part of the input, we use word-subsequence

kernels which have shown to be effective for re-

lation extraction (Bunescu and Mooney, 2005b).

We compute the kernel as the sum of the word-

subsequence kernels between: the words between

the two entities (between pattern), k (a parame-

ter) words before the first entity (before pattern),

k words after the second entity (after pattern) and

the words from the beginning of the first entity to

the end of the second entity (between-and-entity

pattern). The before, between and after patterns

have been found useful in previous work (Bunescu

and Mooney, 2005b; Giuliano et al., 2007). Some-

times the words of the entities can indicate the re-

lations they are in, hence we also use the between-

and-entity pattern. When a relation classifier is

used at a node, the labels of the leaves beneath it

are already known, so we replace candidate entity

words that are in the between and between-and-

entity3 patterns by their entity labels. This pro-

vides useful information to the relation classifier

and also makes these patterns less sparse for train-

ing.

Given training data of sentences annotated with

entities and relations, the positive and negative ex-

amples for training the entity and relation clas-

sifiers are collected in the following way. First,

the corresponding card-pyramids are obtained for

each of the training sentences as described in sec-

tion 2.1. For every entity production in a card-

pyramid, a positive example is collected for its

corresponding classifier as the sentence and the

range of the entity’s word indices. Similarly, for

every relation production in a card-pyramid, a pos-

itive example is collected for its corresponding

classifier as the sentence, the ranges of the two

entities’ word indices and the sub-card-pyramids

rooted at its two children. The positive examples

of a production become the negative examples for

all those productions which have the same right-

hand-sides but different left-hand-sides. We found

that for NR productions, training separate classi-

fiers is harmful because it has the unwanted side-

effect of preferring one label assignment of enti-

ties over another due to the fact that these pro-

ductions gave different probabilities for the “not-

related” relation between the entities. To avoid

3Except for the two entities at the ends

this, we found that it suffices if all these classi-

fiers for NR productions always return 0.5 as the

probability. This ensures that a real relation will

be preferred over NR if and only if its probability

is greater than 0.5, otherwise nothing will change.

4 Experiments

We conducted experiments to compare our card-

pyramid parsing approach for joint entity and re-

lation extraction to a pipelined approach.

4.1 Methodology

We used the dataset4 created by Roth & Yih (2004;

2007) that was also used by Giuliano et el. (2007).

The sentences in this data were taken from the

TREC corpus and annotated with entities and re-

lations. As in the previous work with this dataset,

in order to observe the interaction between enti-

ties and relations, our experiments used only the

1437 sentences that include at least one relation.

The boundaries of the entities are already supplied

by this dataset. There are three types of entities:

Person (1685), Location (1968) and Organization

(978), in addition there is a fourth type Other

(705), which indicates that the candidate entity is

none of the three types. There are five types of re-

lations: Located In (406) indicates that one Loca-

tion is located inside another Location, Work For

(394) indicates that a Person works for an Orga-

nization, OrgBased In (451) indicates that an Or-

ganization is based in a Location, Live In (521)

indicates that a Person lives at a Location and Kill

(268) indicates that a Person killed another Per-

son. There are 17007 pairs of entities that are not

related by any of the five relations and hence have

the NR relation between them which thus signifi-

cantly outnumbers other relations.

Our implementation uses the LIBSVM5 soft-

ware for SVM classifiers. We kept the noise

penalty parameter of SVM very high (100) as-

suming there is little noise in our data. For the

word-subsequence kernel, we set 5 as the max-

imum length of a subsequence and 0.25 as the

penalty parameter for subsequence gaps (Lodhi et

al., 2002). We used k = 5 words for before and

after patterns for the relation classifiers. These pa-

rameter values were determined through pilot ex-

periments on a subset of the data. We used a beam

4Available at: http://l2r.cs.uiuc.edu/

˜cogcomp/Data/ER/conll04.corp
5http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/

208

Entity Person Location Organization

Approach Rec Pre F Rec Pre F Rec Pre F

Pipeline 93.6 92.0 92.8 94.0 90.3 92.1 87.9 90.6 89.2

Card-pyramid 94.2 92.1 93.2 94.2 90.8 92.4† 88.7 90.5 89.5

RY07 Pipeline 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7
RY07 Joint 89.5 89.1 89.0 88.7 89.7 89.1 72.0 89.5 79.2

Relation Located In Work For OrgBased In Live In Kill

Approach Rec Pre F Rec Pre F Rec Pre F Rec Pre F Rec Pre F

Pipeline 57.0 71.5 62.3 66.0 74.1 69.7 60.2 70.6 64.6 56.6 68.1 61.7 61.2 91.1 73.1

Card-pyramid 56.7 67.5 58.3 68.3 73.5 70.7 64.1 66.2 64.7 60.1 66.4 62.9† 64.1 91.6 75.2

RY07 Pipeline 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3 50.0 58.9 53.5 81.5 73.0 76.5

RY07 Joint 55.7 53.9 51.3 42.3 72.0 53.1 41.6 79.8 54.3 49.0 59.1 53.0 81.5 77.5 79.0†

Table 1: Results of five-fold cross-validation for entity and relation extraction using pipelined and joint extraction. Boldface

indicates statistical significance (p < 0.1 using paired t-test) when compared to the corresponding value in the other row

grouped with it. Symbol † indicates statistical significance with p < 0.05. Only statistical significance for F-measures are

indicated. RY07 stands for the “E ↔ R” model in (Roth and Yih, 2007).

size of 5 in our card-pyramid parsing algorithm at

which the performance plateaus.

We note that by using a beam size of 1 and by

not using the second part of input for relation clas-

sifiers as described in section 3 (i.e. by ignoring

the relations at the lower levels), the card-parsing

algorithm reduces to the traditional pipelined ap-

proach because then only the best entity label for

each candidate entity is considered for relation ex-

traction. Hence, in our experiments we simply use

this setting as our pipelined approach.

We performed a 5-fold cross-validation to com-

pare with the previous work with this dataset by

Roth & Yih (2007), however, our folds are not

same as their folds which were not available. We

also note that our entity and relation classifiers are

different from theirs. They experimented with sev-

eral models to see the effect of joint inference on

them, we compare with the results they obtained

with their most sophisticated model which they

denote by “E ↔ R”. For every entity type and

relation type, we measured Precision (percentage

of output labels correct), Recall (percentage of

gold-standard labels correctly identified) and F-

measure (the harmonic mean of Precision and Re-

call).

4.2 Results and Discussion

Table 1 shows the results of entity and relation ex-

traction. The statistical significance is shown only

for F-measures. We first note that except for the

Kill relation, all the results of our pipelined ap-

proach are far better than the pipelined approach

of (Roth and Yih, 2007), for both entities and rela-

tions. This shows that the entity and relation clas-

sifiers we used are better that the ones they used.

These strong baselines also set a higher ceiling for

our joint extraction method to improve upon.

The entity extraction results show that on all

the entities the card-pyramid parsing approach for

joint extraction obtains a better performance than

the pipelined approach. This shows that entity

extraction benefits when it is jointly done with

relation extraction. Joint extraction using card-

pyramid parsing also gave improvement in perfor-

mance on all the relations except the Located In

relation.6

The results thus show that entity and relation ex-

traction correct some of each other’s errors when

jointly performed. Roth & Yih (2004; 2007) re-

port that 5% to 25% of the relation predictions

of their pipeline models were incoherent, meaning

that the types of the entities related by the relations

are not of the required types. Their joint inference

method corrects these mistakes, hence a part of the

improvement their joint model obtains over their

pipeline model is due to the fact that their pipeline

model can output incoherent relations. Since the

types of the entities a relation’s arguments should

6Through error analysis we found that the drop in the
performance for this relation was mainly because of an un-
usual sentence in the data which had twenty Location entities
in it separated by commas. After incorrectly extracting Lo-
cated In relation between the Location entities at the lower
levels, these erroneous extractions would be taken into ac-
count at higher levels in the card-pyramid, leading to extract-
ing many more incorrect instances of this relation while do-
ing joint extraction. Since this is the only such sentence in the
data, when it is present in the test set during cross-validation,
the joint method never gets a chance to learn not to make
these mistakes. The drop occurs in only that one fold and
hence the overall drop is not found as statistically significant
despite being relatively large.

209

take are known, we believe that filtering out the

incoherent relation predictions of their pipeline

model can improve its precision without hurting

the recall. On the other hand our pipelined ap-

proach never outputs incoherent relations because

the grammar of relation productions enforce that

the relations are always between entities of the re-

quired types. Thus the improvement obtained by

our joint extraction method over our pipelined ap-

proach is always non-trivial.

5 Related Work

To our knowledge, Roth & Yih (2004; 2007) have

done the only other work on joint entity and re-

lation extraction. Their method employs inde-

pendent entity and relation classifiers whose out-

puts are used to compute a most probable consis-

tent global set of entities and relations using lin-

ear programming. One key advantage of our card-

pyramid method over their method is that the clas-

sifiers can take the output of other classifiers under

its node as input features during parsing. This is

not possible in their approach because all classi-

fier outputs are determined before they are passed

to the linear program solver. Thus our approach

is more integrated and allows greater interaction

between dependent extraction decisions.

Miller et al. (2000) adapt a probabilistic

context-free parser for information extraction by

augmenting syntactic labels with entity and rela-

tion labels. They thus do a joint syntactic parsing

and information extraction using a fixed template.

However, as designed, such a CFG approach can-

not handle the cases when an entity is involved

in multiple relations and when the relations criss-

cross each other in the sentence, as in Figure 1.

These cases occur frequently in the dataset we

used in our experiments and many other relation-

extraction tasks.

Giuliano et al. (2007) thoroughly evaluate the

effect of entity extraction on relation extraction us-

ing the dataset used in our experiments. However,

they employ a pipeline architecture and did not in-

vestigate joint relation and entity extraction. Carl-

son et al. (2009) present a method to simultane-

ously do semi-supervised training of entity and re-

lation classifiers. However, their coupling method

is meant to take advantage of the available unsu-

pervised data and does not do joint inference.

Riedel et al. (2009) present an approach for ex-

tracting bio-molecular events and their arguments

using Markov Logic. Such an approach could

also be adapted for jointly extracting entities and

their relations, however, this would restrict entity

and relation extraction to the same machine learn-

ing method that is used with Markov Logic. For

example, one would not be able to use kernel-

based SVM for relation extraction, which has been

very successful at this task, because Markov Logic

does not support kernel-based machine learning.

In contrast, our joint approach is independent of

the individual machine learning methods for en-

tity and relation extraction, and hence allows use

of the best machine learning methods available for

each of them.

6 Future Work

There are several possible directions for extend-

ing the current approach. The card-pyramid struc-

ture could be used to perform other language-

processing tasks jointly with entity and rela-

tion extraction. For example, co-reference res-

olution between two entities within a sentence

can be easily incorporated in card-pyramid pars-

ing by introducing a production like coref →
Person Person, indicating that the two person

entities are the same.

In this work, and in most previous work, re-

lations are always considered between two enti-

ties. However, there could be relations between

more than two entities. In that case, it should

be possible to binarize those relations and then

use card-pyramid parsing. If the relations are be-

tween relations instead of between entities, then

card-pyramid parsing can handle it by considering

the labels of the immediate children as RHS non-

terminals instead of the labels of the left-most and

the right-most leaves beneath it. Thus, it would

be interesting to apply card-pyramid parsing to ex-

tract higher-order relations (such as causal or tem-

poral relations).

Given the regular graph structure of the card-

pyramid, it would be interesting to investigate

whether it can be modeled using a probabilistic

graphical model (Koller and Friedman, 2009). In

that case, instead of using multiple probabilis-

tic classifiers, one could employ a single jointly-

trained probabilistic model, which is theoretically

more appealing and might give better results.

Finally, we note that a better relation classifier

could be used in the current approach which makes

more use of linguistic information. For example,

210

by using dependency-based kernels (Bunescu and

Mooney, 2005a; Kate, 2008) or syntactic kernels

(Qian et al., 2008; Moschitti, 2009) or by includ-

ing the word categories and their POS tags in the

subsequences. Also, it will be interesting to see if

a kernel that computes the similarity between sub-

card-pyramids could be developed and used for re-

lation classification.

7 Conclusions

We introduced a card-pyramid graph structure and

presented a new method for jointly extracting enti-

ties and their relations from a sentence using it. A

card-pyramid compactly encodes the entities and

relations in a sentence thus reducing the joint ex-

traction task to jointly labeling its nodes. We pre-

sented an efficient parsing algorithm for jointly

labeling a card-pyramid using dynamic program-

ming and beam search. The experiments demon-

strated the benefit of our joint extraction method

over a pipelined approach.

Acknowledgments

This research was funded by Air Force Contract

FA8750-09-C-0172 under the DARPA Machine

Reading Program.

References

Razvan C. Bunescu and Raymond J. Mooney. 2005a. A
shortest path dependency kernel for relation extraction. In
Proc. of the Human Language Technology Conf. and Conf.
on Empirical Methods in Natural Language Processing
(HLT/EMNLP-05), pages 724–731, Vancouver, BC, Oc-
tober.

Razvan C. Bunescu and Raymond J. Mooney. 2005b. Sub-
sequence kernels for relation extraction. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural In-
formation Processing Systems 18, Vancouver, BC.

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Mar-
cotte, Raymond J. Mooney, Arun Kumar Ramani, and
Yuk Wah Wong. 2005. Comparative experiments on
learning information extractors for proteins and their inter-
actions. Artificial Intelligence in Medicine (special issue
on Summarization and Information Extraction from Med-
ical Documents), 33(2):139–155.

Andrew Carlson, Justin Betteridge, Estevam R. Hruschka,
and Tom M. Mitchell. 2009. Coupling semi-supervised
learning of categories and relations. In SemiSupLearn
’09: Proceedings of the NAACL HLT 2009 Workshop on
Semi-Supervised Learning for Natural Language Process-
ing, pages 1–9, Boulder, Colorado.

Michael Collins. 2002. Ranking algorithms for named-entity
extraction: Boosting and the voted perceptron. In Proc. of
the 40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-2002), pages 489–496, Philadel-
phia, PA.

Nello Cristianini and John Shawe-Taylor. 2000. An Introduc-
tion to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press.

Claudio Giuliano, Alberto Lavelli, and Lorenza Romano.
2007. Relation extraction and the influence of automatic
named-entity recognition. ACM Trans. Speech Lang. Pro-
cess., 5(1):1–26.

D. Jurafsky and J. H. Martin. 2008. Speech and Language
Processing: An Introduction to Natural Lan guage Pro-
cessing, Computational Linguistics, and Speech Recogni-
tion. Prentice Hall, Upper Saddle River, NJ.

Rohit J. Kate and Raymond J. Mooney. 2006. Using string-
kernels for learning semantic parsers. In Proc. of the 21st
Intl. Conf. on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics
(COLING/ACL-06), pages 913–920, Sydney, Australia,
July.

Rohit J. Kate. 2008. A dependency-based word subsequence
kernel. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2008),
pages 400–409, Waikiki,Honolulu,Hawaii, October.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models: Principles and Techniques. The MIT
Press, Cambridge, MA.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini, and Chris Watkins. 2002. Text classification
using string kernels. Journal of Machine Learning Re-
search, 2:419–444.

Scott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
Weischedel. 2000. A novel use of statistical parsing to
extract information from text. In Proc. of the Meeting of
the N. American Association for Computational Linguis-
tics, pages 226–233, Seattle, Washington.

Alessandro Moschitti. 2009. Syntactic and semantic ker-
nels for short text pair categorization. In Proceedings of
the 12th Conference of the European Chapter of the ACL
(EACL 2009), pages 576–584, Athens,Greece, March.

John C. Platt. 1999. Probabilistic outputs for support vec-
tor machines and comparisons to regularized likelihood
methods. In Alexander J. Smola, Peter Bartlett, Bern-
hard Schölkopf, and Dale Schuurmans, editors, Advances
in Large Margin Classifiers, pages 185–208. MIT Press.

Vasin Punyakanok and Dan Roth. 2001. The use of classi-
fiers in sequential inference. In Advances in Neural Infor-
mation Processing Systems 13.

Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu,
and Peide Qian. 2008. Exploiting constituent depen-
dencies for tree kernel-based semantic relation extraction.
In Proceedings of the 22nd International Conference on
Computational Linguistics (Coling 2008), pages 697–704,
Manchester, UK, August.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi, and
Jun’ichi Tsujii. 2009. A Markov logic approach to
bio-molecular event extraction. In Proceedings of the
BioNLP 2009 Workshop Companion Volume for Shared
Task, pages 41–49, Boulder, Colorado, June. Association
for Computational Linguistics.

211

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
Proc. of 8th Conf. on Computational Natural Language
Learning (CoNLL-2004), pages 1–8, Boston, MA.

D. Roth and W. Yih. 2007. Global inference for entity and
relation identification via a linear programming formula-
tion. In L. Getoor and B. Taskar, editors, Introduction to
Statistical Relational Learning, pages 553–580. The MIT
Press, Cambridge, MA.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proc. of
7th Conf. on Computational Natural Language Learning
(CoNLL-2003), Edmonton, Canada.

Erik F. Tjong Kim Sang. 2002. Introduction to the CoNLL-
2002 shared task: Language-independent named entity
recognition. In Proceedings of CoNLL-2002, pages 155–
158. Taipei, Taiwan.

Min Zhang, Jie Zhang, Jian Su, and Guodong Zhou. 2006.
A composite kernel to extract relations between entities
with both flat and structured features. In Proc. of the 21st
Intl. Conf. on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics
(COLING/ACL-06), Sydney, Australia, July.

212

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 213–222,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Distributed Asynchronous Online Learning
for Natural Language Processing

Kevin Gimpel Dipanjan Das Noah A. Smith
Language Technologies Institute

Carnegie Mellon Univeristy
Pittsburgh, PA 15213, USA

{kgimpel,dipanjan,nasmith}@cs.cmu.edu

Abstract

Recent speed-ups for training large-scale
models like those found in statistical NLP
exploit distributed computing (either on
multicore or “cloud” architectures) and
rapidly converging online learning algo-
rithms. Here we aim to combine the two.
We focus on distributed, “mini-batch”
learners that make frequent updates asyn-
chronously (Nedic et al., 2001; Langford
et al., 2009). We generalize existing asyn-
chronous algorithms and experiment ex-
tensively with structured prediction prob-
lems from NLP, including discriminative,
unsupervised, and non-convex learning
scenarios. Our results show asynchronous
learning can provide substantial speed-
ups compared to distributed and single-
processor mini-batch algorithms with no
signs of error arising from the approximate
nature of the technique.

1 Introduction

Modern statistical NLP models are notoriously
expensive to train, requiring the use of general-
purpose or specialized numerical optimization al-
gorithms (e.g., gradient and coordinate ascent al-
gorithms and variations on them like L-BFGS and
EM) that iterate over training data many times.
Two developments have led to major improve-
ments in training time for NLP models:

• online learning algorithms (LeCun et al., 1998;
Crammer and Singer, 2003; Liang and Klein,
2009), which update the parameters of a model
more frequently, processing only one or a small
number of training examples, called a “mini-
batch,” between updates; and

• distributed computing, which divides training
data among multiple CPUs for faster processing
between updates (e.g., Clark and Curran, 2004).

Online algorithms offer fast convergence rates
and scalability to large datasets, but distributed
computing is a more natural fit for algorithms that
require a lot of computation—e.g., processing a
large batch of training examples—to be done be-
tween updates. Typically, distributed online learn-
ing has been done in a synchronous setting, mean-
ing that a mini-batch of data is divided among
multiple CPUs, and the model is updated when
they have all completed processing (Finkel et al.,
2008). Each mini-batch is processed only after the
previous one has completed.

Synchronous frameworks are appealing in that
they simulate the same algorithms that work on
a single processor, but they have the drawback
that the benefits of parallelism are only obtainable
within one mini-batch iteration. Moreover, empir-
ical evaluations suggest that online methods only
converge faster than batch algorithms when using
very small mini-batches (Liang and Klein, 2009).
In this case, synchronous parallelization will not
offer much benefit.

In this paper, we focus our attention on asyn-
chronous algorithms that generalize those pre-
sented by Nedic et al. (2001) and Langford et al.
(2009). In these algorithms, multiple mini-batches
are processed simultaneously, each using poten-
tially different and typically stale parameters. The
key advantage of an asynchronous framework is
that it allows processors to remain in near-constant
use, preventing them from wasting cycles wait-
ing for other processors to complete their por-
tion of the current mini-batch. In this way, asyn-
chronous algorithms allow more frequent parame-
ter updates, which speeds convergence.

Our contributions are as follows:

• We describe a framework for distributed asyn-
chronous optimization (§5) similar to those de-
scribed by Nedic et al. (2001) and Langford et
al. (2009), but permitting mini-batch learning.
The prior work contains convergence results for
asynchronous online stochastic gradient descent

213

for convex functions (discussed in brief in §5.2).

• We report experiments on three structured NLP
tasks, including one problem that matches
the conditions for convergence (named entity
recognition; NER) and two that depart from the-
oretical foundations, namely the use of asyn-
chronous stepwise EM (Sato and Ishii, 2000;
Cappé and Moulines, 2009; Liang and Klein,
2009) for both convex and non-convex opti-
mization.

• We directly compare asynchronous algorithms
with multiprocessor synchronous mini-batch al-
gorithms (e.g., Finkel et al., 2008) and tradi-
tional batch algorithms.

• We experiment with adding artificial delays to
simulate the effects of network or hardware traf-
fic that could cause updates to be made with ex-
tremely stale parameters.

• Our experimental settings include both indi-
vidual 4-processor machines as well as large
clusters of commodity machines implementing
the MapReduce programming model (Dean and
Ghemawat, 2004). We also explore effects of
mini-batch size.

Our main conclusion is that, when small mini-
batches work well, asynchronous algorithms of-
fer substantial speed-ups without introducing er-
ror. When large mini-batches work best, asyn-
chronous learning does not hurt.

2 Optimization Setting

We consider the problem of optimizing a function
f : Rd → R with respect to its argument, denoted
θ = 〈θ1, θ2, . . . , θd〉. We assume that f is a sum
of n convex functions (hence f is also convex):1

f(θ) =
∑n

i=1 fi(θ) (1)

We initially focus our attention on functions that
can be optimized using gradient or subgradient
methods. Log-likelihood for a probabilistic model
with fully observed training data (e.g., conditional
random fields; Lafferty et al., 2001) is one exam-
ple that frequently arises in NLP, where the fi(θ)
each correspond to an individual training exam-
ple and the θ are log-linear feature weights. An-
other example is large-margin learning for struc-
tured prediction (Taskar et al., 2005; Tsochan-

1We use “convex” to mean convex-up when minimizing
and convex-down, or concave, when maximizing.

taridis et al., 2005), which can be solved by sub-
gradient methods (Ratliff et al., 2006).

For concreteness, we discuss the architecture
in terms of gradient-based optimization, using the
following gradient descent update rule (for mini-
mization problems):2

θ(t+1) ← θ(t) − η(t)g(θ(t)) (2)

where θ(t) is the parameter vector on the tth iter-
ation, η(t) is the step size on the tth iteration, and
g : Rd → Rd is the vector function of first deriva-
tives of f with respect to θ:

g(θ) =
〈

∂f
∂θ1

(θ), ∂f
∂θ2

(θ), . . . , ∂f
∂θd

(θ)
〉

(3)

We are interested in optimizing such functions
using distributed computing, by which we mean to
include any system containing multiple processors
that can communicate in order to perform a single
task. The set of processors can range from two
cores on a single machine to a MapReduce cluster
of thousands of machines.

Note our assumption that the computation re-
quired to optimize f with respect to θ is, essen-
tially, the gradient vector g(θ(t)), which serves
as the descent direction. The key to distribut-
ing this computation is the fact that g(θ(t)) =∑n

i=1 gi(θ
(t)), where gi(θ) denotes the gradient

of fi(θ) with respect to θ. We now discuss several
ways to go about distributing such a problem, cul-
minating in the asynchronous mini-batch setting.

3 Distributed Batch Optimization

Given p processors plus a master processor, the
most straightforward way to optimize f is to par-
tition the fi so that for each i ∈ {1, 2, . . . , n},
gi is computed on exactly one “slave” processor.
Let Ij denote the subset of examples assigned to
the jth slave processor (

⋃p
j=1 Ij = {1, . . . , n}

and j 6= j′ ⇒ Ij ∩ Ij′ = ∅). Processor j re-
ceives the examples in Ij along with the neces-
sary portions of θ(t) for calculating gIj

(θ(t)) =∑
i∈Ij

gi(θ
(t)). The result of this calculation is

returned to the master processor, which calculates
g(θ(t)) =

∑
j gIj

(θ(t)) and executes Eq. 2 (or
something more sophisticated that uses the same
information) to obtain a new parameter vector.

It is natural to divide the data so that each pro-
cessor is assigned approximately n/p of the train-
ing examples. Because of variance in the expense

2We use the term “gradient” for simplicity, but subgradi-
ents are sufficient throughout.

214

of calculating the different gi, and because of un-
predictable variation among different processors’
speed (e.g., variation among nodes in a cluster,
or in demands made by other users), there can be
variation in the observed runtime of different pro-
cessors on their respective subsamples. Each it-
eration of calculating g will take as long as the
longest-running among the processors, whatever
the cause of that processor’s slowness. In comput-
ing environments where the load on processors is
beyond the control of the NLP researcher, this can
be a major bottleneck.

Nonetheless, this simple approach is widely
used in practice; approaches in which the gradient
computation is distributed via MapReduce have
recently been described in machine learning and
NLP (Chu et al., 2006; Dyer et al., 2008; Wolfe et
al., 2008). Mann et al. (2009) compare this frame-
work to one in which each processor maintains a
separate parameter vector which is updated inde-
pendently of the others. At the end of learning, the
parameter vectors are averaged or a vote is taken
during prediction. A similar parameter-averaging
approach was taken by Chiang et al. (2008) when
parallelizing MIRA (Crammer et al., 2006). In
this paper, we restrict our attention to distributed
frameworks which maintain and update a single
copy of the parameters θ. The use of multiple
parameter vectors is essentially orthogonal to the
framework we discuss here and we leave the inte-
gration of the two ideas for future exploration.

4 Distributed Synchronous Mini-Batch
Optimization

Distributed computing can speed up batch algo-
rithms, but we would like to transfer the well-
known speed-ups offered by online and mini-batch
algorithms to the distributed setting as well. The
simplest way to implement mini-batch stochastic
gradient descent (SGD) in a distributed computing
environment is to divide each mini-batch (rather
than the entire batch) among the processors that
are available and to update the parameters once the
gradient from the mini-batch has been computed.
Finkel et al. (2008) used this approach to speed
up training of a log-linear model for parsing. The
interaction between the master processor and the
distributed computing environment is nearly iden-
tical to the distributed batch optimization scenario.
Where M (t) is the set of indices in the mini-batch

processed on iteration t, the update is:

θ(t+1) ← θ(t) − η(t) ∑
i∈M(t) gi(θ

(t)) (4)

The distributed synchronous framework can
provide speed-ups over a single-processor imple-
mentation of SGD, but inevitably some processors
will end up waiting for others to finish processing.
This is the same bottleneck faced by the batch ver-
sion in §3. While the time for each mini-batch is
shorter than the time for a full batch, mini-batch
algorithms make far more updates and some pro-
cessor cycles will be wasted in computing each
one. Also, more mini-batches imply that more
time will be lost due to per-mini-batch overhead
(e.g., waiting for synchronization locks in shared-
memory systems, or sending data and θ to the pro-
cessors in systems without shared memory).

5 Distributed Asynchronous Mini-Batch
Optimization

An asynchronous framework may use multiple
processors more efficiently and minimize idle time
(Nedic et al., 2001; Langford et al., 2009). In this
setting, the master sends θ and a mini-batch Mk to
each slave k. Once slave k finishes processing its
mini-batch and returns gMk

(θ), the master imme-
diately updates θ and sends a new mini-batch and
the new θ to the now-available slave k. As a result,
slaves stay occupied and never need to wait on oth-
ers to finish. However, nearly all gradient com-
ponents are computed using slightly stale parame-
ters that do not take into account the most recent
updates. Nedic et al. (2001) proved that conver-
gence is still guaranteed under certain conditions,
and Langford et al. (2009) obtained convergence
rate results. We describe these results in more de-
tail in §5.2.

The update takes the following form:

θ(t+1) ← θ(t) − η(t) ∑
i∈M(τ(t)) gi(θ

(τ(t))) (5)

where τ(t) ≤ t is the start time of the mini-batch
used for the tth update. Since we started pro-
cessing the mini-batch at time τ(t) (using param-
eters θ(τ(t))), we denote the mini-batch M (τ(t)). If
τ(t) = t, then Eq. 5 is identical to Eq. 4. That is,
t− τ(t) captures the “staleness” of the parameters
used to compute the gradient for the tth update.

Asynchronous frameworks do introduce error
into the training procedure, but it is frequently
the case in NLP problems that only a small frac-
tion of parameters is needed for each mini-batch

215

Input: number of examples n, mini-batch size m,
random seed r

θ` ← θ;
seedRandomNumberGenerator (r);
while converged (θ) = false do

g ← 0;
for j ← 1 to m do

k ∼ Uniform({1, . . . , n});
g ← g + gk(θ`);

end
acquireLock (θ);
θ ← updateParams (θ, g);
θ` ← θ;
releaseLock (θ);

end
Algorithm 1: Procedure followed by each thread for multi-
core asynchronous mini-batch optimization. θ is the single
copy of the parameters shared by all threads. The conver-
gence criterion is left unspecified here.

of training examples. For example, for simple
word alignment models like IBM Model 1 (Brown
et al., 1993), only parameters corresponding to
words appearing in the particular subsample of
sentence pairs are needed. The error introduced
when making asynchronous updates should intu-
itively be less severe in these cases, where dif-
ferent mini-batches use small and mostly non-
overlapping subsets of θ.

5.1 Implementation
The algorithm sketched above is general enough
to be suitable for any distributed system, but when
using a system with shared memory (e.g., a single
multiprocessor machine) a more efficient imple-
mentation is possible. In particular, we can avoid
the master/slave architecture and simply start p
threads that each compute and execute updates in-
dependently, with a synchronization lock on θ. In
our single-machine experiments below, we use Al-
gorithm 1 for each thread. A different random seed
(r) is passed to each thread so that they do not all
process the same sequence of examples. At com-
pletion, the result is contained in θ.

5.2 Convergence Results
We now briefly summarize convergence results
from Nedic et al. (2001) and Langford et al.
(2009), which rely on the following assumptions:
(i) The function f is convex. (ii) The gradients
gi are bounded, i.e., there exists C > 0 such that
‖gi(θ

(t))‖ ≤ C. (iii) ∃ (unknown) D > 0 such
that t − τ(t) < D. (iv) The stepsizes η(t) satisfy
certain standard conditions.

In addition, Nedic et al. require that all func-
tion components are used with the same asymp-

totic frequency (as t → ∞). Their results are
strongest when choosing function components in
each mini-batch using a “cyclic” rule: select func-
tion fi for the kth time only after all functions have
been selected k − 1 times. For a fixed step size
η, the sequence of function values f(θ(t)) con-
verges to a region of the optimum that depends
on η, the maximum norm of any gradient vector,
and the maximum delay for any mini-batch. For
a decreasing step size, convergence is guaranteed
to the optimum. When choosing components uni-
formly at random, convergence to the optimum is
again guaranteed using a decreasing step size for-
mula, but with slightly more stringent conditions
on the step size.

Langford et al. (2009) present convergence rates
via regret bounds, which are linear in D. The con-
vergence rate of asynchronous stochastic gradient
descent is O(

√
TD), where T is the total number

of updates made. In addition to the situation in
which function components are chosen uniformly
at random, Langford et al. provide results for sev-
eral other scenarios, including the case in which an
adversary supplies the training examples in what-
ever ordering he chooses.

Below we experiment with optimization of both
convex and non-convex functions, using fixed step
sizes and decreasing step size formulas, and con-
sider several values of D. Even when exploring
regions of the experimental space that are not yet
supported by theoretical results, asynchronous al-
gorithms perform well empirically in all settings.

5.3 Gradients and Expectation-Maximization

The theory applies when using first-order methods
to optimize convex functions. Though the function
it is optimizing is not usually convex, the EM algo-
rithm can be understood as a hillclimber that trans-
forms the gradient to keep θ feasible; it can also
be understood as a coordinate ascent algorithm.
Either way, the calculations during the E-step re-
semble g(θ). Several online or mini-batch vari-
ants of the EM algorithm have been proposed, for
example incremental EM (Neal and Hinton, 1998)
and online EM (Sato and Ishii, 2000; Cappé and
Moulines, 2009), and we follow Liang and Klein
(2009) in referring to this latter algorithm as step-
wise EM. Our experiments with asynchronous
minibatch updates include a case where the log-
likelihood f is convex and one where it is not.

216

task data n # params. eval. method convex?
§6.1 named entity

recognition (CRF;
Lafferty et al., 2001)

CoNLL 2003 English
(Tjong Kim Sang and De
Meulder, 2003)

14,987
sents.

1.3M F1 SGD yes

§6.2 word alignment (Model
1, both directions;
Brown et al., 1993)

NAACL 2003 parallel text
workshop (Mihalcea and
Pedersen, 2003)

300K
pairs

14.2M ×2
(E→F +
F→E)

AER EM yes

S6.3 unsupervised POS
(bigram HMM)

Penn Treebank §1–21
(Marcus et al., 1993)

41,825
sents.

2,043,226 (Johnson,
2007)

EM no

Table 1: Our experiments consider three tasks.

0 2 4 6 8 10 12

84

86

88

90

Wall clock time (hours)

F
1

Asynchronous (4 processors)
Synchronous (4 processors)
Single−processor

Figure 1: NER: Synchronous
mini-batch SGD converges faster
in F1 than the single-processor
version, and the asynchronous
version converges faster still. All
curves use a mini-batch size of 4.

6 Experiments

We performed experiments to measure speed-ups
obtainable through distributed online optimiza-
tion. Since we will be considering different opti-
mization algorithms and computing environments,
we will primarily be interested in the wall-clock
time required to obtain particular levels of perfor-
mance on metrics appropriate to each task. We
consider three tasks, detailed in Table 1.

For experiments on a single node, we used a
64-bit machine with two 2.6GHz dual-core CPUs
(i.e., 4 processors in all) with a total of 8GB of
RAM. This was a dedicated machine that was not
available for any other jobs. We also conducted
experiments using a cluster architecture running
Hadoop 0.20 (an implementation of MapReduce),
consisting of 400 machines, each having 2 quad-
core 1.86GHz CPUs with a total of 6GB of RAM.

6.1 Named Entity Recognition
Our NER CRF used a standard set of features, fol-
lowing Kazama and Torisawa (2007), along with
token shape features like those in Collins (2002)
and simple gazetteer features; a feature was in-
cluded if and only it occurred at least once in train-
ing data (total 1.3M). We used a diagonal Gaussian
prior with a variance of 1.0 for each weight.

We compared SGD on a single processor to dis-
tributed synchronous SGD and distributed asyn-
chronous SGD. For all experiments, we used a
fixed step size of 0.01 and chose each training ex-
ample for each mini-batch uniformly at random
from the full data set.3 We report performance by

3In preliminary experiments, we experimented with vari-

0 2 4 6 8 10

86

88

90
F

1

Synchronous (4 processors)
Synchronous (2 processors)
Single−processor

0 2 4 6 8 10

86

88

90

Wall clock time (hours)

F
1

Asynchronous (4 processors)
Asynchronous (2 processors)
Single−processor

Figure 2: NER: (Top) Synchronous optimization improves
very little when moving from 2 to 4 processors due to the
need for load-balancing, leaving some processors idle for
stretches of time. (Bottom) Asynchronous optimization does
not require load balancing and therefore improves when mov-
ing from 2 to 4 processors because each processor is in near-
constant use. All curves use a mini-batch size of 4 and the
“Single-processor” curve is identical in the two plots.

plotting test-set accuracy against wall-time over
12 hours.4

Comparing Synchronous and Asynchronous
Algorithms Figure 1 shows our primary result
for the NER experiments. When using all four
available processors, the asynchronous algorithm
converges faster than the other two algorithms. Er-
ror due to stale parameters during gradient com-
putation does not appear to cause any more varia-

ous fixed step sizes and decreasing step size schedules, and
found a fixed step size to work best for all settings.

4Decoding was performed offline (so as not to affect mea-
surments) with models sampled every ten minutes.

217

tion in performance than experienced by the syn-
chronous mini-batch algorithm. Note that the dis-
tributed synchronous algorithm and the single-
processor algorithm make identical sequences of
parameter updates; the only difference is the
amount of time between each update. Since we
save models every ten minutes and not every ith
update, the curves have different shapes. The se-
quence of updates for the asynchronous algorithm,
on the other hand, actually depends on the vagaries
of the computational environment. Nonetheless,
the asynchronous algorithm using 4 processors has
nearly converged after only 2 hours, while the
single-processor algorithm requires 10–12 hours
to reach the same F1.

Varying the Number of Processors Figure 2
shows the improvement in convergence time by
using 4 vs. 2 processors for the synchronous (top)
and asynchronous (bottom) algorithms. The ad-
ditional two processors help the asynchronous al-
gorithm more than the synchronous one. This
highlights the key advantage of asynchronous al-
gorithms: it is easier to keep all processors in
constant use. Synchronous algorithms might be
improved through load-balancing; in our experi-
ments here, we simply assigned m/p examples to
each processor, where m is the mini-batch size and
p is the number of processors. When m = p, as in
the 4-processor curve in the upper plot of Figure 2,
we assign a single example to each processor; this
is optimal in the sense that no other scheduling
strategy will process the mini-batch faster. There-
fore, the fact that the 2-processor and 4-processor
curves are so close suggests that the extra two pro-
cessors are not being fully exploited, indicating
that the optimal load balancing strategy for a small
mini-batch still leaves processors under-used due
to the synchronous nature of the updates.

The only bottleneck in the asynchronous algo-
rithm is the synchronization lock during updating,
required since there is only one copy of θ. For
CRFs with a few million weights, the update is
typically much faster than processing a mini-batch
of examples; furthermore, when using small mini-
batches, the update vector is typically sparse.5 For
all experimental results presented thus far, we used
a mini-batch size of 4. We experimented with ad-

5In a standard implementation, the sparsity of the update
will be nullified by regularization, but to improve efficiency
in practice the regularization penalty can be accumulated and
applied less frequently than every update.

0 2 4 6 8 10 12
85

86

87

88

89

90

91

Wall clock time (hours)

F
1

Asynchronous, no delay

Asynchronous, µ = 5
Single−processor, no delay

Asynchronous, µ = 10

Asynchronous, µ = 20

Figure 3: NER: Convergence curves when a delay is incurred
with probability 0.25 after each mini-batch is processed. The
delay durations (in seconds) are sampled from N(µ, (µ/5)2),
for several means µ. Each mini-batch (size = 4) takes less
than a second to process, so if the delay is substantially longer
than the time required to process a mini-batch, the single-
node version converges faster. While curves with µ = 10 and
20 appear less smooth than the others, they are still heading
steadily toward convergence.

ditional mini-batch sizes of 1 and 8, but there was
very little difference in the resulting curves.

Artificial Delays We experimented with adding
artificial delays to the algorithm to explore how
much overhead would be tolerable before paral-
lelized computation becomes irrelevant. Figure 3
shows results when each processor sleeps with
0.25 probability for a duration of time between
computing the gradient on its mini-batch of data
and updating the parameters. The delay length is
chosen from a normal distribution with the means
(in seconds) shown and σ = µ/5 (truncated at
zero). Since only one quarter of the mini-batches
have an artificial delay, increasing µ increases the
average parameter “staleness”, letting us see how
the asynchronous algorithm fares with extremely
stale parameters.

The average time required to compute the gradi-
ent for a mini-batch of 4 is 0.62 seconds. When the
average delay is 1.25 seconds (µ = 5), twice the
average time for a mini-batch, the asynchronous
algorithm still converges faster than the single-
node algorithm. In addition, even with substan-
tial delays of 5–10 times the processing time for a
mini-batch, the asynchronous algorithm does not
fail but proceeds steadily toward convergence.

The practicality of using the asynchronous algo-
rithm depends on the average duration for a mini-
batch and the amount of expected additional over-
head. We attempted to run these experiments on

218

AER Time (h:m)
Single machine:
Asynch. stepwise EM 0.274 1:58
Synch. stepwise EM (4 proc.) 0.274 2:08
Synch. stepwise EM (1 proc.) 0.272 6:57
Batch EM 0.276 2:15
MapReduce:
Asynch. stepwise EM 0.281 5:41
Synch. stepwise EM 0.273 27:03
Batch EM 0.276 8:35

Table 2: Alignment error rates and wall time after 20 itera-
tions of EM for various settings. See text for details.

a large MapReduce cluster, but the overhead re-
quired for each MapReduce job was too large to
make this viable (30–60 seconds).

6.2 Word Alignment
We trained IBM Model 1 in both directions. To
align test data, we symmetrized both directional
Viterbi alignments using the “grow-diag-final”
heuristic (Koehn et al., 2003). We evaluated our
models using alignment error rate (AER).

Experiments on a Single Machine We fol-
lowed Liang and Klein (2009) in using syn-
chronous (mini-batch) stepwise EM on a single
processor for this task. We used the same learning
rate formula (η(t) = (t+2)−q, with 0.5 < q ≤ 1).
We also used asynchronous stepwise EM by using
the same update rule, but gathered sufficient statis-
tics on 4 processors of a single machine in paral-
lel, analogous to our asynchronous method from
§5. Whenever a processor was done gathering the
expected counts for its mini-batch, it updated the
sufficient statistics vector and began work on the
next mini-batch.

We used the sparse update described by Liang
and Klein, which allows each thread to make
additive updates to the parameter vector and
to separately-maintained normalization constants
without needing to renormalize after each update.
When probabilities are needed during inference,
normalizers are divided out on-the-fly as needed.

We made 10 passes of asynchronous stepwise
EM to measure its sensitivity to q and the mini-
batch size m, using different values of these
hyperparameters (q ∈ {0.5, 0.7, 1.0}; m ∈
{5000, 10000, 50000}), and selected values that
maximized log-likelihood (q = 0.7, m = 10000).

Experiments on MapReduce We implemented
the three techniques in a MapReduce framework.
We implemented batch EM on MapReduce by

converting each EM iteration into two MapRe-
duce jobs: one for the E-step and one for the M-
step.6 For the E-step, we divided our data into
24 map tasks, and computed expected counts for
the source-target parameters at each mapper. Next,
we summed up the expected counts in one reduce
task. For the M-step, we took the output from
the E-step, and in one reduce task, normalized
each source-target parameter by the total count for
the source word.7 To gather sufficient statistics
for synchronous stepwise EM, we used 6 mappers
and one reducer for a mini-batch of size 10000.
For the asynchronous version, we ran four parallel
asynchronous mini-batches, the sufficient statis-
tics being gathered using MapReduce again for
each mini-batch with 6 map tasks and one reducer.

Results Figure 4 shows log-likelihood for the
English→French direction during the first 80 min-
utes of optimization. Similar trends were observed
for the French→English direction as well as for
convergence in AER. Table 2 shows the AER at
the end of 20 iterations of EM for the same set-
tings.8 It takes around two hours to finish 20 iter-
ations of batch EM on a single machine, while it
takes more than 8 hours to do so on MapReduce.
This is because of the extra overhead of transfer-
ring θ from a master gateway machine to mappers,
from mappers to reducers, and from reducers back
to the master. Synchronous and asynchronous EM
suffer as well.

From Figure 4, we see that synchronous and
asynchronous stepwise EM converge at the same
rate when each is given 4 processors. The main
difference between this task and NER is the size
of the mini-batch used, so we experimented with
several values for the mini-batch size m. Fig-
ure 5 shows the results. As m decreases, a larger
fraction of time is spent updating parameters; this
slows observed convergence time even when us-
ing the sparse update rule. It can be seen that,
though synchronous and asynchronous stepwise
EM converge at the same rate with a large mini-
batch size (m = 10000), asynchronous stepwise

6The M-step could have been performed without MapRe-
duce by storing all the parameters in memory, but memory
restrictions on the gateway node of our cluster prevented this.

7For the reducer in the M-step, the source served as the
key, and the target appended by the parameter’s expected
count served as the value.

8Note that for wall time comparison, we sample models
every five minutes. The time taken to write these models
ranges from 30 seconds to a minute, thus artificially elon-
gating the total time for all iterations.

219

10 20 30 40 50 60 70 80

−40

−35

−30

−25

−20
Lo

g−
Li

ke
lih

oo
d

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)

10 20 30 40 50 60 70 80

−40

−35

−30

−25

−20

Wall clock time (minutes)

Lo
g−

Li
ke

lih
oo

d

Asynch. Stepwise EM (MapReduce)
Synch. Stepwise EM (MapReduce)
Batch EM (MapReduce)

Figure 4: English→French log-likelihood vs. wall clock time
in minutes on both a single machine (top) and on a large
MapReduce cluster (bottom), shown on separate plots for
clarity, though axis scales are identical. We show runs of
each setting for the first 80 minutes, although EM was run
for 20 passes through the data in all cases (Table 2). Fastest
convergence is obtained by synchronous and asynchronous
stepwise EM using 4 processors on a single node. While the
algorithms converge more slowly on MapReduce due to over-
head, the asynchronous algorithm converges the fastest. We
observed similar trends for the French→English direction.

EM converges faster as m decreases. With large
mini-batches, load-balancing becomes less impor-
tant as there will be less variation in per-mini-
batch observed runtime. These results suggest that
asynchronous mini-batch algorithms will be most
useful for learning problems in which small mini-
batches work best. Fortunately, however, we do
not see any problems stemming from approxima-
tion errors due to the use of asynchronous updates.

6.3 Unsupervised POS Tagging
Our unsupervised POS experiments use the same
task and approach of Liang and Klein (2009) and
so we fix hyperparameters for stepwise EM based
on their findings (learning rate η(t) = (t+2)−0.7).
The asynchronous algorithm uses the same learn-
ing rate formula as the single-processor algorithm.
There is only a single t that is maintained and gets
incremented whenever any thread updates the pa-
rameters. Liang and Klein used a mini-batch size
of 3, but we instead use a mini-batch size of 4 to
better suit our 4-processor synchronous and asyn-
chronous architectures.

Like NER, we present results for unsupervised
tagging experiments on a single machine only, i.e.,
not using a MapReduce cluster. For tasks like POS
tagging that have been shown to work best with
small mini-batches (Liang and Klein, 2009), we

10 20 30 40 50 60 70 80

−35

−30

−25

−20

Wall clock time (minutes)

Lo
g−

Li
ke

lih
oo

d

Asynch. (m = 10,000)
Synch. (m = 10,000)
Asynch. (m = 1,000)
Synch. (m = 1,000)
Asynch. (m = 100)
Synch. (m = 100)

Figure 5: English→French log-likelihood vs. wall clock time
in minutes for stepwise EM with 4 processors for various
mini-batch sizes (m). The benefits of asynchronous updat-
ing increase as m decreases.

did not conduct experiments with MapReduce due
to high overhead per mini-batch.

For initialization, we followed Liang and Klein
by initializing each parameter as θi ∝ e1+ai ,
ai ∼ Uniform([0, 1]). We generated 5 random
models using this procedure and used each to ini-
tialize each algorithm. We additionally used 2
random seeds for choosing the ordering of exam-
ples,9 resulting in a total of 10 runs for each al-
gorithm. We ran each for six hours, saving mod-
els every five minutes. After training completed,
using each model we decoded the entire training
data using posterior decoding and computed the
log-likelihood. The results for 5 initial models and
two example orderings are shown in Figure 6. We
evaluated tagging performance using many-to-1
accuracy, which is obtained by mapping the HMM
states to gold standard POS tags so as to maximize
accuracy, where multiple states can be mapped to
the same tag. This is the metric used by Liang and
Klein (2009) and Johnson (2007), who report fig-
ures comparable to ours. The asynchronous algo-
rithm converges much faster than the single-node
algorithm, allowing a tagger to be trained from
the Penn Treebank in less than two hours using
a single machine. Furthermore, the 4-processor
synchronous algorithm improves only marginally

9We ensured that the examples processed in the sequence
of mini-batches were identical for the 1-processor and 4-
processor versions of synchronous stepwise EM, but the
asynchronous algorithm requires a different seed for each
processor and, furthermore, the actual order of examples pro-
cessed depends on wall times and cannot be controlled for.
Nonetheless, we paired a distinct set of seeds for the asyn-
chronous algorithm with each of the two seeds used for the
synchronous algorithms.

220

0 1 2 3 4 5 6

−7.5

−7

−6.5

−6
x 10

6

Lo
g−

Li
ke

lih
oo

d

0 1 2 3 4 5 6

50

55

60

65

Wall clock time (hours)

A
cc

ur
ac

y
(%

)

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)

0 1 2 3 4 5 6

−7.5

−7

−6.5

−6
x 10

6

Lo
g−

Li
ke

lih
oo

d

0 1 2 3 4 5 6

50

55

60

65

Wall clock time (hours)

A
cc

ur
ac

y
(%

)

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)

Figure 6: POS: Asynchronous stepwise EM converges faster in log-likelihood and accuracy than the synchronous versions.
Curves are shown for each of 5 random initial models. One example ordering random seed is shown on the left, another on the
right. The accuracy curves for batch EM do not appear because the highest accuracy reached is only 40.7% after six hours.

over the 1-processor baseline.
The accuracy of the asynchronous curves of-

ten decreases slightly after peaking. We can sur-
mise from the log-likelihood plot that the drop
in accuracy is not due to the optimization be-
ing led astray, but probably rather due to the
complex relationship between likelihood and task-
specific evaluation metrics in unsupervised learn-
ing (Merialdo, 1994). In fact, when we exam-
ined the results of synchronous stepwise EM be-
tween 6 and 12 hours of execution, we found sim-
ilar drops in accuracy as likelihood continued to
improve. From Figure 6, we conclude that the
asynchronous algorithm has no harmful effect on
learned model’s accuracy beyond the choice to op-
timize log-likelihood.

While there are currently no theoretical conver-
gence results for asynchronous optimization algo-
rithms for non-convex functions, our results are
encouraging for the prospects of establishing con-
vergence results for this setting.

7 Discussion

Our best results were obtained by exploiting mul-
tiple processors on a single machine, while exper-
iments using a MapReduce cluster were plagued
by communication and framework overhead.

Since Moore’s Law predicts a continual in-
crease in the number of cores available on a sin-
gle machine but not necessarily an increase in the
speed of those cores, we believe that algorithms
that can effectively exploit multiple processors on
a single machine will be increasingly useful. Even
today, applications in NLP involving rich-feature
structured prediction, such as parsing and transla-

tion, typically use a large portion of memory for
storing pre-computed data structures, such as lex-
icons, feature name mappings, and feature caches.
Frequently these are large enough to prevent the
multiple cores on a single machine from being
used for multiple experiments, leaving some pro-
cessors unused. However, using multiple threads
in a single program allows these large data struc-
tures to be shared and allows the threads to make
use of the additional processors.

We found the overhead incurred by the MapRe-
duce programming model, as implemented in
Hadoop 0.20, to be substantial. Nonetheless,
we found that asynchronously running multiple
MapReduce calls at the same time, rather than
pooling all processors into a single MapReduce
call, improves observed convergence with negli-
gible effects on performance.

8 Conclusion

We have presented experiments using an asyn-
chronous framework for distributed mini-batch
optimization that show comparable performance
of trained models in significantly less time than
traditional techniques. Such algorithms keep pro-
cessors in constant use and relieve the programmer
from having to implement load-balancing schemes
for each new problem encountered. We expect
asynchronous learning algorithms to be broadly
applicable to training NLP models.

Acknowledgments The authors thank Qin Gao, Garth Gib-
son, André Martins, Brendan O’Connor, Stephan Vogel, and
the reviewers for insightful comments. This work was sup-
ported by awards from IBM, Google, computing resources
from Yahoo, and NSF grants 0836431 and 0844507.

221

References
P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and

R. L. Mercer. 1993. The mathematics of statistical
machine translation: parameter estimation. Compu-
tational Linguistics, 19(2):263–311.

O. Cappé and E. Moulines. 2009. Online EM algo-
rithm for latent data models. Journal of the Royal
Statistics Society: Series B (Statistical Methodol-
ogy), 71.

D. Chiang, Y. Marton, and P. Resnik. 2008. On-
line large-margin training of syntactic and structural
translation features. In Proc. of EMNLP.

C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and
K. Olukotun. 2006. Map-Reduce for machine learn-
ing on multicore. In NIPS.

S. Clark and J.R. Curran. 2004. Log-linear models for
wide-coverage CCG parsing. In Proc. of EMNLP.

M. Collins. 2002. Ranking algorithms for named-
entity extraction: Boosting and the voted perceptron.
In Proc. of ACL.

K. Crammer and Y. Singer. 2003. Ultraconservative
online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research,
7:551–585.

J. Dean and S. Ghemawat. 2004. MapReduce: Sim-
plified data processing on large clusters. In Sixth
Symposium on Operating System Design and Imple-
mentation.

C. Dyer, A. Cordova, A. Mont, and J. Lin. 2008. Fast,
easy, and cheap: Construction of statistical machine
translation models with MapReduce. In Proc. of the
Third Workshop on Statistical Machine Translation.

J. R. Finkel, A. Kleeman, and C. D. Manning. 2008.
Efficient, feature-based, conditional random field
parsing. In Proc. of ACL.

M. Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers? In Proc. of EMNLP-CoNLL.

J. Kazama and K. Torisawa. 2007. A new perceptron
algorithm for sequence labeling with non-local fea-
tures. In Proc. of EMNLP-CoNLL.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proc. of HLT-NAACL.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of
ICML.

J. Langford, A. J. Smola, and M. Zinkevich. 2009.
Slow learners are fast. In NIPS.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324.

P. Liang and D. Klein. 2009. Online EM for unsuper-
vised models. In Proc. of NAACL-HLT.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. 2009. Efficient large-scale distributed
training of conditional maximum entropy models.
In NIPS.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn treebank. Computational Linguis-
tics, 19:313–330.

B. Merialdo. 1994. Tagging English text with a
probabilistic model. Computational Linguistics,
20(2):155–172.

R. Mihalcea and T. Pedersen. 2003. An evaluation
exercise for word alignment. In HLT-NAACL 2003
Workshop: Building and Using Parallel Texts: Data
Driven Machine Translation and Beyond.

R. Neal and G. E. Hinton. 1998. A view of the EM al-
gorithm that justifies incremental, sparse, and other
variants. In Learning in Graphical Models.

A. Nedic, D. P. Bertsekas, and V. S. Borkar. 2001.
Distributed asynchronous incremental subgradient
methods. In Proc. of the March 2000 Haifa Work-
shop: Inherently Parallel Algorithms in Feasibility
and Optimization and Their Applications.

N. Ratliff, J. Bagnell, and M. Zinkevich. 2006. Sub-
gradient methods for maximum margin structured
learning. In ICML Workshop on Learning in Struc-
tured Outputs Spaces.

M. Sato and S. Ishii. 2000. On-line EM algorithm for
the normalized Gaussian network. Neural Compu-
tation, 12(2).

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.
2005. Learning structured prediction models: A
large margin approach. In Proc. of ICML.

E. F. Tjong Kim Sang and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proc. of
CoNLL.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Al-
tun. 2005. Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research, 6:1453–1484.

J. Wolfe, A. Haghighi, and D. Klein. 2008. Fully
distributed EM for very large datasets. In Proc. of
ICML.

222

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 223–233,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

On Reverse Feature Engineering of Syntactic Tree Kernels

Daniele Pighin
FBK-irst, DISI, University of Trento

Via di Sommarive, 14
I-38123 Povo (TN) Italy

daniele.pighin@gmail.com

Alessandro Moschitti
DISI, University of Trento

Via di Sommarive, 14
I-38123 Povo (TN) Italy

moschitti@disi.unitn.it

Abstract

In this paper, we provide a theoretical
framework for feature selection in tree ker-
nel spaces based on gradient-vector com-
ponents of kernel-based machines. We
show that a huge number of features can
be discarded without a significant decrease
in accuracy. Our selection algorithm is as
accurate as and much more efficient than
those proposed in previous work. Com-
parative experiments on three interesting
and very diverse classification tasks, i.e.
Question Classification, Relation Extrac-
tion and Semantic Role Labeling, support
our theoretical findings and demonstrate
the algorithm performance.

1 Introduction

Kernel functions are very effective at modeling
diverse linguistic phenomena by implicitly rep-
resenting data in high dimensional spaces, e.g.
(Cumby and Roth, 2003; Culotta and Sorensen,
2004; Kudo et al., 2005; Moschitti et al., 2008).
However, the implicit nature of the kernel space
causes two major drawbacks: (1) high computa-
tional costs for learning and classification, and (2)
the impossibility to identify the most important
features. A solution to both problems is the ap-
plication of feature selection techniques.

In particular, the problem of feature selection
in Tree Kernel (TK) spaces has already been ad-
dressed by previous work in NLP, e.g. (Kudo
and Matsumoto, 2003; Suzuki and Isozaki, 2005).
However, these approaches lack a theoretical char-
acterization of the problem that could support and
justify the design of more effective algorithms.

In (Pighin and Moschitti, 2009a) and (Pighin
and Moschitti, 2009b) (P&M), we presented a
heuristic framework for feature selection in kernel
spaces that selects features based on the compo-

nents of the weight vector, ~w, optimized by Sup-
port Vector Machines (SVMs). This method ap-
pears to be very effective, as the model accuracy
does not significantly decrease even when a large
number of features are filtered out. Unfortunately,
we could not provide theoretical or intuitive moti-
vations to justify our proposed apporach.

In this paper, we present and empirically val-
idate a theory which aims at filling the above-
mentioned gaps. In particular we provide: (i) a
proof of the equation for the exact computation of
feature weights induced by TK functions (Collins
and Duffy, 2002); (ii) a theoretical characteriza-
tion of feature selection based on ‖~w‖. We show
that if feature selection does not sensibly reduces
‖~w‖, the margin associated with ~w does not sen-
sibly decrease as well. Consequently, the theoret-
ical upperbound to the probability error does not
sensibly increases; (iii) a proof that the convolu-
tive nature of TK allows for filtering out an expo-
nential number of features with a small ‖~w‖ de-
crease. The combination of (ii) with (iii) suggests
that an extremely aggressive feature selection can
be applied. We describe a greedy algorithm that
exploits these results. Compared to the one pro-
posed in P&M, the new version of the algorithm
has only one parameter (instead of 3), it is more
efficient and can be more easily connected with the
amount of gradient norm that is lost after feature
selection.

In the remainder: Section 2 briefly reviews
SVMs and TK functions; Section 3 describes the
problem of selecting and projecting features from
very high onto lower dimensional spaces, and pro-
vides the theoretical foundation to our approach;
Section 4 presents a selection of related work; Sec-
tion 5 describes our approach to tree fragment se-
lection; Section 6 details the outcome of our ex-
periments; finally, in Section 7 we draw our con-
clusions.

223

2 Fragment Weights in TK Spaces

The critical step for feature selection in tree ker-
nel spaces is the computation of the weights of
features (tree fragments) in the kernel machines’
gradient. The basic parameters are the fragment
frequencies which are combined with a decay fac-
tor used to downscale the weight of large sub-
trees (Collins and Duffy, 2002). In this section, af-
ter introducing basic kernel concepts, we describe
a theorem that establishes the correct weight1 of
features in the STK space.

2.1 Kernel Based-Machines

Typically, a kernel machine is a linear classifier
whose decision function can be expressed as:

c(~x) = ~w · ~x+ b =
∑̀
i=1

αiyi ~xi · ~x+ b (1)

where ~x ∈ <N is a classifying example and
~w ∈ <N and b ∈ < are the separating hyper-
plane’s gradient and its bias, respectively. The
gradient is a linear combination of ` training
points ~xi ∈ <N multiplied by their labels
yi ∈ {−1,+1} and their weights αi ∈ <+.
Different optimizers use different strategies to
learn the gradient. For instance, an SVM learns
to maximize the distance between positive and
negative examples, i.e. the margin γ. Applying
the so-called kernel trick, it is possible to replace
the scalar product with a kernel function defined
over pairs of objects, which can more efficiently
compute it:

c(o) =
∑̀
i=1

αiyik(oi, o) + b,

where k(oi, o) = φ(oi) · φ(o), with the advantage
that we do not need to provide an explicit mapping
φ : O → <N of our example objects O in a vec-
tor space. In the next section, we show a kernel
directly working on syntactic trees.

2.2 Syntactic Tree Kernel (STK)

Tree Kernel (TK) functions are convolution ker-
nels (Haussler, 1999) defined over pairs of trees.
Different TKs are characterized by alternative
fragment definitions, e.g. (Collins and Duffy,
2002; Kashima and Koyanagi, 2002; Moschitti,
2006). We will focus on the syntactic tree kernel
described in (Collins and Duffy, 2002), which re-
lies on a fragment definition that does not allow to

1In P&M we provided an approximation of the real
weight.

break production rules (i.e. if any child of a node is
included in a fragment, then also all the other chil-
dren have to). As such, it is especially indicated
for tasks involving constituency parsed texts.

Tree kernels compute the number of common
substructures between two trees T1 and T2

without explicitly considering the whole feature
(fragment) space. Let F = {f1, f2, . . . , f|F|}
be the set of tree fragments, i.e. the explicit
representation for the components of the fragment
space, and χi(n) be an indicator function2, equal
to 1 if the target fi is rooted at node n and equal
to 0 otherwise. A tree kernel function over T1 and
T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (2)

whereNT1 andNT2 are the sets of nodes in T1 and
T2, respectively and

∆(n1, n2) =
|F|∑
i=1

χi(n1)χi(n2). (3)

The ∆ function counts the number of common
subtrees rooted in n1 and n2 and weighs them
according to their size. It can be evaluated as
follows (Collins and Duffy, 2002):
1. if the productions at n1 and n2 are different,
then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same,
and n1 and n2 have only leaf children (i.e. they
are pre-terminal symbols) then ∆(n1, n2) = λ;
3. if the productions at n1 and n2 are the same,
and n1 and n2 are not pre-terminals then

∆(n1, n2) = λ

l(n1)∏
j=1

(1 + ∆(cjn1
, cjn2

)), (4)

where l(n1) is the number of children of n1, cjn
is the j-th child of node n and λ is a decay factor
penalizing larger structures.

2.3 Tree Fragment Weights

Eq. 3 shows that ∆ counts the shared fragments
rooted in n1 and n2 in the form of scalar product,
as evaluated by Eq. 2. However, when λ is used in
∆ as in Eq. 4, it changes the weight of the product
χi(n1)χi(n2). As λ multiplies ∆ in each recur-
sion step, we may be induced to assume3 that the

2We will consider it as a weighting function.
3In (Collins and Duffy, 2002), there is a short note about

the correct value weight of lambda for each product compo-
nents (i.e. pairs of fragments). This is in line with the formu-
lation we provide.

224

weight of a fragment is λd, where d is the depth of
the fragment. On the contrary, we show the actual
weight by providing the following:

Theorem 1. Let T and f be a tree and one of
its fragments, respectively, induced by STK. The
weight of f accounted by STK is λ

s(f)
2 , where

lf (n) is the number of children of n in f and
s(f) = |{n ∈ T : lf (n) > 0}| is the number
of nodes that have active productions in the frag-
ment, i.e. the size of the fragment.

In other words, the exponent of λ is the number
of fragment nodes that have at least one child (i.e.
active productions), divided by 2.

Proof. The thesis can be proven by induction on
the depth d of f . The base case is f of depth
1. Fragments of depth 1 are matched by step 2
of ∆(n1, n2) computation, which assigns a value
λ = χi(n1)χi(n2) independently of the number of
children (where fi = f). It follows that the weight
of f is χi(n1) = χi(n2) = λ1/2.

Suppose that the thesis is valid for depth d and
let us consider a fragment f of depth d+ 1, rooted
in r. Without loss of generality, we can assume
that f is in the set of the fragments rooted in n1

and n2, as evaluated by Eq. 4. It follows that
the production rules associated with n1 and n2 are
identical to the production rule in r. Let us con-
sider M = {i ∈ {1, .., l(n1)} : l(cir) > 0},
i.e. the set of child indices of r which have at
least a child. Thus, for j ∈ M , cir has a pro-
duction shared by cjn1

and cjn2
. Conversely, for

j /∈ M , there is no match and ∆(cjn1
, cjn2

) = 0.
Therefore, the product in Eq. 4 can be rewrit-
ten as λ

∏
j∈M ∆(cjn1

, cjn2
), where the term 1 in

(1 + ∆(cjn1
, cjn2

)) is not considered since it ac-
counts for those cases where there are no common
productions in the children, i.e. cjn1 6= cjn2∀j ∈
M .

We can now substitute ∆(cjn1
, cjn2

) with the
weight of the subtree tj of f rooted in cjr (and ex-
tended until its leaves), which is λs(tj) by induc-
tive hypothesis (since tj has depth lower than d).
Thus, the weight of f is s(f) = λ

∏
j∈M λs(tj) =

λ
1+
∑

j∈M s(tj), where
∑
j∈M s(tj) is the num-

ber of nodes in f ’s subtrees rooted in r’s chil-
dren and having at least one child; by adding
1, i.e. the root of f , we obtain s(f). Finally,
λs(f) = χi(n1)χi(n2), which satisfies our thesis:

χi(n1) = χi(n2) = λ
s(f)
2 .

2.4 Weights in Feature Vectors
In the light of this result, we can use the definition
of a TK function to project a tree t onto a linear
space by recognizing that t can be represented as a
vector ~xi = [x(1)

i , . . . , x
(N)
i] whose attributes are

the counts of the occurrences for each fragment,
weighed with respect to the decay factor λ.

For a normalized STK kernel, the value of the
j-th attribute of the example ~xi is therefore:

x
(j)
i =

ti,jλ
s(fj)

2

‖~xi‖
=

ti,jλ
s(fj)

2√∑N
k=1 t

2
i,kλ

s(fk)
(5)

where: ti,j is the number of occurrences of the
fragment fj , associated with the j-th dimension
of the feature space, in the tree ti. It follows that
the components of ~w (see Eq. 1) can be rewritten
as:

w(j) =
∑̀
i=1

αiyix
(j)
i =

∑̀
i=1

αiyiti,jλ
s(fj)

2√∑N
k=1 t

2
i,kλ

s(fk)
(6)

3 Projecting Exponentially Large Spaces

In order to provide a theoretical background to our
feature selection technique and to develop effec-
tive algorithms, we want to relate our approach to
statistical learning and, in particular, support vec-
tor classification theory. Since we select features
with respect to their weight w(j), we can use the
following theorem that establishes a general bound
for margin-based classifiers.

Theorem 2. (Bartlett and Shawe-Taylor, 1998)
Let C = {~x → ~w · ~x : ‖~w‖ ≤ 1, ‖~x‖ ≤ R}
be the class of real-valued functions defined in a
ball of radius R in <N . Then there is a con-
stant k such that ∀c ∈ C having a margin γ, i.e.
|~w · ~x| ≥ γ,∀~x ∈ X (training set), the error of c

is bounded by b/` +
√

k
`

(
R2

γ2 log2`+ log 1
δ

)
with

a probability 1 − δ, where ` = |X | and b is the
number of examples with margin less than γ.

In other words, if X is separated with a margin
γ by a linear classifier, then the error has a bound
depending on γ. Another conclusion is that a fea-
ture selection algorithm that wants to preserve the
accuracy of the original space should not affect the
margin.

Since we would like to exploit the availability
of the initial gradient ~w derived by the applica-
tion of SVMs, it makes sense to try to quantify the
percentage of γ reduction after feature selection,
which we indicate by ρ. We found out that γ is

225

linked to the reduction of ||~w||, as illustrated by
the next lemma.

Lemma 1. Let X be a set of points in a vector
space and ~w be the gradient vector which sepa-
rates them with a margin γ. If the selection de-
creases ||~w|| of a ρ rate, then the resulting hyper-
plane separates X by a margin larger than γin =
γ − ρR||~w||.

Proof. Let ~w = ~win+ ~wout, where ~win and ~wout ∈
<N are constituted by the components of ~w that
are selected in and out, respectively, and have zero
values in the remaining positions. By hypothesis
|~w · ~x| ≥ γ; without loss of generality, we can
consider just the case ~w · ~x ≥ γ, and write ~w ·
~x = ~win · ~x + ~wout · ~x ≥ γ ⇒ ~win · ~x ≥ γ −
~wout · ~x ≥ γ − |~wout · ~x| ≥ γ − ||~wout|| × ||~x||,
where the last inequality holds owing to Cauchy-
Schwarz inequality. The margin associated with
~win, i.e. γin, is therefore γ − ||~wout|| × ||~x|| ≥
γ − ||~wout||R = γ − ρR||~w||.

Remark 1. The lemma suggests that, even in case
of very aggressive feature selection, if a small per-
centage ρ of ||~w|| is lost, the margin reduction is
small. Consequently, through Theorem 2, we can
conclude that the accuracy of the model is by and
large preserved.

Remark 2. We prefer to show the lemma in the
more general form, but if we use normalized ~x and
classifiers with ||~w|| ≤ 1, then γin = γ−||~w||ρ >
γ − ρ.

The last result that we present justifies our se-
lection approach as it demonstrates that most of
the gradient norm is concentrated in relatively few
features, with respect to the huge space induced
by tree kernels. The selection of these few fea-
tures allows us to preserve most of the norm and
the margin.

Lemma 2. Let ~w be a linear separator of a set of
points X , where each ~xi ∈ X is an explicit vector
representations of a tree ti in the space induced by
STK and let ν be the largest s(ti), i.e. the max-
imum tree size. Then, if we discard fragments of

size greater than η, ||~wout|| ≤ ν
γ2

√
(λν)η−(λν)ν

1−λν .

Proof. By applying simple norm proper-
ties, ||~wout|| =

∥∥∥∑`
i=1 αiyi~xouti

∥∥∥ ≤ ∑`
i=1

||αiyi~xouti || =
∑`
i=1 αi||~xouti ||. To evaluate

the latter, we first re-organize the summation in
Eq. 5 (with no normalization) such that ‖~xi‖2

=
∑ν
k=1

∑
j:s(fj)=k t

2
i,jλ

s(fj). Since a fragment
fj can be at maximum rooted in ν nodes, then
ti,j ≤ ν. Therefore, by replacing the number of
trees of size k with the upperbound νk, we have
‖~xi‖ <

√∑ν
k=1 ν

2λkνk =
√∑ν

k=1 ν
2(νλ)k =√

ν2 1−µν
1−µ , where we applied geometric series

summation. Now if we assume that our algorithm
selects out (i.e. discards) fragments with size
s(f) > η, ‖~xouti‖ <

√
ν2 µ

η−µν
1−µ . It follows that

||~wout|| <
∑`
i=1 αi

√
ν2 µ

η−µν
1−µ . In case of hard-

margin SVMs, we have
∑`
i=1 αi = 1/γ2. Thus,

||~wout|| < ν
γ2

√
µη−µν
1−µ = ν

γ2

√
(λν)η−(λν)ν

1−λν .

Remark 3. The lemma shows that for an enough
large η and λ < 1/ν, ||~wout|| can be very small,
even though it includes an exponential number of
features, i.e. all the subtrees whose size ranges
from η to ν. Therefore, according to Lemma 1 and
Theorem 2, we can discard an exponential number
of features with a limited loss in accuracy.

Remark 4. Regarding the proposed norm bound,
we observe that νk is a rough overestimation of the
the real number of fragments having size k rooted
in the nodes of the target tree t. This suggests that
we don’t really need λ < 1/ν. Moreover, in case
of soft-margin SVMs, we can bound αi with the
value of the trade-off parameter C.

4 Previous Work

Initial work on feature selection for text, e.g.
(Yang and Pedersen, 1997), has shown that it may
improve the accuracy or, at least, improve effi-
ciency while preserving accuracy. Our context for
feature selection is different for several important
reasons: (i) we focus on structured features with
a syntactic nature, which show different behaviour
from lexical ones, e.g. they tend to be more sparse;
(ii) in the TK space, the a-priori weights are very
skewed, and large fragments receive exponentially
lower scores than small ones; (iii) there is high re-
dundancy and inter-dependency between such fea-
tures; (iv) we want to be able to observe the most
relevant features automatically generated by TKs;
and (v) the huge number of features makes it im-
possible to evaluate the weight of each feature in-
dividually.

Guyon and Elisseeff (2003) carries out a very
informative survey of feature selection techniques.
Non-filter approaches for SVMs and kernel ma-
chines are often concerned with polynomial and

226

Gaussian kernels, e.g. (Weston et al., 2001; Neu-
mann et al., 2005). In (Kudo and Matsumoto,
2003), an extension of the PrefixSpan algo-
rithm (Pei et al., 2001) is used to efficiently mine
the features in a low degree polynomial kernel
space. The authors discuss an approximation
of their method that allows them to handle high
degree polynomial kernels. Suzuki and Isozaki
(2005) present an embedded approach to feature
selection for convolution kernels based on χ2-
driven relevance assessment. With respect to their
work, the main differences in the approach that we
propose are that we want to exploit the SVM op-
timizer to select the most relevant features, and to
be able to observe the relevant fragments.

Regarding work that may directly benefit from
reverse kernel engineering is worthwhile mention-
ing: (Cancedda et al., 2003; Shen et al., 2003;
Daumé III and Marcu, 2004; Giuglea and Mos-
chitti, 2004; Toutanova et al., 2004; Kazama and
Torisawa, 2005; Titov and Henderson, 2006; Kate
and Mooney, 2006; Zhang et al., 2006; Bloehdorn
et al., 2006; Bloehdorn and Moschitti, 2007; Mos-
chitti and Zanzotto, 2007; Surdeanu et al., 2008;
Moschitti, 2008; Moschitti and Quarteroni, 2008;
Martins et al., 2009; Nguyen et al., 2009a)

5 Mining Fragments Efficiently

The high-level description of our feature selection
technique is as follows: we start by learning an
STK model and we greedily explore the support
vectors in search for the most relevant fragments.
We store them in an index, and then we decode (or
linearize) all the trees in the dataset, i.e. we repre-
sent them as vectors in a linear space where only a
very small subset of the fragments in the original
space are accounted for. These vectors are then
employed for learning and classification in the lin-
ear space.

To explore the fragment space defined by a set
of support vectors, we adopt the greedy strategy
described in Algorithm 5.1. Its arguments are a
model M , and the threshold factor L. The greedy
algorithm explores the fragment space in a small to
large fashion. The first step is the generation of the
all base fragments F encoded in each tree, i.e. the
smallest possible fragments according to the defi-
nition of the kernel function. For STK, such frag-
ments are all those consisting of a node and all its
direct children (i.e. production rules of the gram-
mar). We assess the cumulative relevance of each

Algorithm 5.1: GREEDY MODEL MINER(M,L)

B ← BASE FRAGS(model)
B ← REL(BEST(B))
σ ← B/L
Dprev ← FILTER(B, σ)
UPDATE(Dprev)
while Dprev 6= ∅

do



Dnext ← ∅
τ ← 1/ ∗ widthfactor ∗ /
Wprev ← Dprev
whileWprev 6= ∅

do



Wnext ← ∅
for each f ∈ Wprev

do


Ef ← EXPAND(f, τ)
F ← FILTER(Ef , σ)
if F 6= ∅

then

{
Wnext ←Wnext ∪ {f}
Dnext ← Dnext ∪ F
UPDATE(F)

τ ← τ + 1
Wprev ←Wnext

Dprev ← Dnext
return (result)

base fragment according to Eq. 6 and then use the
relevanceB of the heaviest fragment, i.e. the frag-
ment with the highest relevance in absolute value,
as a criterion to set our fragment mining threshold
σ to B/L. We then apply the FILTER(·) operator
which discards all the fragments whose cumula-
tive score is less than σ. Then, the UPDATE(·) op-
erator stores the ramaining fragments in the index.

The exploration of the kernel space is carried
out via the process of fragment expansion, by
which each fragment retained at the previous step
is incrementally grown to span more levels of the
tree and to include more nodes at each level. These
two directions of growth are controlled by the
outer and the inner while loops, respectively. Frag-
ment expansion is realized by the EXPAND(f, n)
operator, that grows the fragment f by including
the children of n expandable nodes in the frag-
ment. Expandable nodes are nodes which are
leaves in f but that have children in the tree that
originated f .

After each expansion, the FILTER(·) operator is
invoked on the set of generated fragments. If the
filtered set is empty, i.e. no fragments more rele-
vant than σ have been found during the previous
iteration, then the loop is terminated.

Unlike previous attempts, this algorithm relies
on just one parameter, i.e. L. As it revolves around
the weight of the most relevant fragment, it oper-
ates according to the norm-preservation principle
described in the previous sections. In fact, if we
call N the number of fragments mined for a given
value of L, the norm after feature selection can be

227

bounded by B
L

√
N ≤ ‖win‖ ≤ B

√
N .

The choice of B, i.e. the highest relevance of
a base fragment, as an upper bound for fragment
relevance is motivated as follows. In Eq. 6, we can
identify a term Ti = αiyi/‖ti‖ that is the same for
all the fragments in the tree ti. For 0 < λ ≤ 1,
if fj is an expansion of fk, then from our defini-

tion of fragment expansion it follows that λ
s(fj)

2 <

λ
s(fk)

2 . It can also be observed that ti,j ≤ ti,k. In-
deed, if ti,k is a subset of ti,j , then it will occur at
least as many times as its expansion ti,k, possibly
occurring as a seed fragment for different expan-
sions in other parts of the tree as well. Therefore,
if Ef is the set of expansions of f , for every two
fragments fi,j , fi,k coming from the same tree ti,
we can conclude that x(j)

i < x
(k)
i ∀fi,j ∈ Efi,k . In

other words, for each tree in the model, base frag-
ments are the most relevant, and we can assume
that the relevance of the heaviest fragment is an
upper bound for the relevance of any fragment 4.

6 Experiments

We ran a set of thorough experiments to sup-
port our claims with empirical evidence. We
show our results on three very different bench-
marks: Question Classification (QC) using TREC
10 data (Voorhees, 2001), Relation Extraction
(RE) based on the newswire and broadcast news
domain of the ACE 2004 English corpus (Dod-
dington et al., 2004) and Semantic Role Labeling
(SRL) on the CoNLL 2005 shared task data (Car-
reras and Màrquez, 2005). In the next sections we
elaborate on the setup and outcome of each set
of experiments. As a supervised learning frame-
work we used SVM-Light-TK5, which extends the
SVM-Light optimizer (Joachims, 2000) with sup-
port for tree kernel functions.

Unless differently stated, all the classifiers are
parametrized for optimal Precision and Recall on
a development set, obtained by selecting one ex-
ample in ten from the training set with the same
positive-to-negative example ratio. The results
that we show are obtained on the test sets by using
all the available data for training. For multi-class
scenarios, the classifiers are arranged in a one vs.

4In principle, the weight of some fragment encoded in the
model M may be greater than B. However, as an empirical
justification, we report that in all our experiments we have
never been able to observe such case. Thus, with a certain
probability, we can assume that the highest weight will be
obtained from the heaviest of the base fragments.

5
http://disi.unitn.it/˜moschitt/Tree-Kernel.htm

all configuration, where each sentence is a positive
example for one of the classes, and negative for
the others. While binary classifiers are evaluated
in terms of F1 measure, for multi-class classifiers
we show the final accuracy.

The next paragraphs describe the datasets used
for the experiments.

Question Classification (QC) Given a question,
the task consists in selecting the most appropriate
expected answer type from a given set of possibil-
ities. We adopted the question taxonomy known
as coarse grained, which has been described
in (Zhang and Lee, 2003) and (Li and Roth, 2006),
consisting of six non overlapping classes: Abbre-
viations (ABBR), Descriptions (DESC, e.g. def-
initions or explanations), Entity (ENTY, e.g. an-
imal, body or color), Human (HUM, e.g. group
or individual), Location (LOC, e.g. cities or coun-
tries) and Numeric (NUM, e.g. amounts or dates).

The TREC 10 QA data set accounts for 6,000
questions. For each question, we generate the
full parse of the sentence and use it to train our
models. Automatic parses are obtained with the
Stanford parser6 (Klein and Manning, 2003), and
we actually have only 5,953 sentences in our data
set due to parsing issues. During preliminary ex-
periments, we observed an uneven distribution of
examples in the traditional training/test split (the
same used in P&M). Therefore, we used a ran-
dom selection to generate an unbiased split, with
5,468 sentences for training and 485 for testing.
The resulting data set is available for download
at http://danielepighin.net/cms/research/

QC_dataset.tgz.

Relation Extraction (RE) The corpus
consists of 348 documents, and contains
seven relation classes defined over pairs of
mentions: Physical, Person/Social, Employ-
ment/Membership/Subsidiary, Agent-Artifact,
PER/ORG Affiliation, GPE Affiliation, and
Discourse. There are 4,400 positive and 38,696
negative examples when the potential relations
are generated using all the entity/mention pairs in
the same sentence.

Documents are parsed using the Stanford
Parser, where the nodes of the entities are enriched
with information about the entity type. Overall,
we used the setting and data defined in (Nguyen et
al., 2009b).

6
http://nlp.stanford.edu/software/lex-parser.shtml

228

Semantic Role Labeling (SRL) SRL can be de-
composed into two tasks: boundary detection,
where the word sequences that are arguments of
a predicate word w are identified, and role clas-
sification, where each argument is assigned the
proper role. For these experiments we concen-
trated on this latter task and used exactly the same
setup as P&M. We considered all the argument
nodes of any of the six PropBank (Palmer et al.,
2005) core roles7 (i.e. A0, . . . , A5) from all the
available training sections, i.e. 2 through 21, for a
total of 179,091 training instances. Similarly, we
collected 9,277 test instances from the annotations
of Section 23.

6.1 Model Comparison
To show the validity of Lemma 1 in practical sce-
narios, we compare the accuracy of our linearized
models against vanilla STK classifiers. We de-
signed two types of classifiers:

LIN, a linearized STK model, which uses the
weights estimated by the learner in the STK space
and linearized examples; in other words LIN uses
~wIN . It allows us to measure exactly the loss in
accuracy with respect to the reduction of ||~w||.

OPT, a linearized STK model that is re-
optimized in the linear space, i.e. for which we
retrained an SVM using the linearized training ex-
amples as input data. Since the LIN solution is
part of the candidate solutions from which OPT is
selected, we always expect higher accuracy from
it.

Additionally, we compare selection based on
gradient ~w (as detailed in Section 2.4) against to
χ2 selection, which evaluates the relevance of fea-
tures, in a similar way to (Suzuki and Isozaki,
2005). The relevance of a fragment is calculated
as

χ2 =
N(yN −Mx)2

x(N − x)M(N −M)
,

where N is the number of support vectors, M is
the number of positive vectors (i.e. αi > 0), and x
and y are the fractions ofN andM where the frag-
ment is instantiated, respectively. We specify the
selection models by means of Grad for the former
and Chi for the latter. For example, a model called
OPT/Grad is a re-trained model using the features
selected according the highest gradient weights,
while LIN/Chi would be a linearized tree kernel
model using χ2 for feature selection.

7We do not consider adjuncts because we preferred the
number of classes to be similar across the three benchmarks.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 10 100 1000 10000

Number of fragments (log)

ABBR
DESC
ENTY
HUM
LOC

NUM

1
−
ρ

Figure 1: Percentage of gradient Norm, i.e. 1− ρ,
according to the number of selected fragments, for
different QC classifiers.

STK Linearized

LIN OPT

F1 ||~w|| Frags F1 ||~win|| F1

A 80.00 11.77 566 66.67 7.13 90.91
D 86.26 41.33 5161 81.87 25.10 83.72
E 76.86 51.71 5,702 73.03 31.06 75.56
H 84.92 43.61 5,232 80.47 26.20 77.08
L 81.69 38.73 1,732 78.87 24.27 82.89
N 92.31 37.65 1,015 85.07 24.53 87.07

Table 1: Per-class comparison between STK and
the LIN/Grad and OPT/Grad models on the QC
task. Each class is identified by its initial (e.g.
A=ABBR). For each class, we considered a value
of the threshold factor parameter L so as to retain
at least 60% of the gradient norm after feature se-
lection.

6.2 Results

The plots in Figure 1 show, for each class, the per-
centage of the gradient norm (i.e. 1 − ρ, see Sec-
tion 3) retained when including a different num-
ber of fragments. This graph empirically validates
Lemma 2 since it clearly demonstrates that after
1,000-10,000 features the percentage of the norm
reaches a plateau (around 60-65%). This means
that after such threshold, which interestingly gen-
eralizes across all classifiers, a huge number of
features is needed for a small increase of the norm.
We recall that the maximum reachable norm is
around 70% since we apriori filter out fragments
of frequency lower than three.

Table 1 shows the F1 of the binary question clas-
sifiers learned with STK, LIN/Grad and OPT/Grad
models. It also shows the norm of the gradi-
ent before, ||~w||, and after, ||~win||, feature selec-

229

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

F1
 (

L
O

C
)

LIN/Grad
OPT/Grad

LIN/Chi
OPT/Chi

STK

1− ρ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 0.2 0.3 0.4 0.5 0.6

F1
 (

D
E

SC
)

LIN/Grad
OPT/Grad

LIN/Chi
OPT/Chi

STK

1− ρ

Figure 2: F1-measure of LOC and DESC wrt dif-
ferent 1− ρ values.

tion along with the number of selected fragments,
Frags. Instead of selecting an optimal number of
fragments on a validation set, we investigated the
60% value suggested by the previous plot. Thus,
for each category we selected the feature set reach-
ing approximately 60% of ||~w||. The table shows
that the accuracy of the OPT/Grad model is in
line with STK. In some cases, e.g. ABBR, the
projected model is more accurate, i.e. 90.91 vs.
80.00, whereas in others, e.g. HUM, STK per-
forms better, i.e. 84.92 vs. 77.08. It is interesting
to see how the empirical results clearly comple-
ment the theoretical findings of the previous sec-
tions. For example, the LOC classifier uses only
1,732 of the ∼ 1012 features encoded by the cor-
responding STK model, but since only 40% of the
norm of ~w is lost, classification accuracy is af-
fected only marginally.

As mentioned above, the selected number of
features is not optimal for every class. Fig-
ure 2 plots the accuracy of the LIN/Grad and
OPT/Grad for different numbers of fragments on
two classes 8. These show that the former, with

8The other classes, which show similar behaviour, are
omitted due to lack of space.

 20

 30

 40

 50

 60

 70

 80

 90

 100 1000 10000 100000

M
ul

tic
la

ss
 a

cc
ur

ac
y

Number of fragments (log)

OPT/Grad
OPT/Chi

STK

Figure 3: Multiclass accuracy obtained by includ-
ing a growing number of fragments.

more than 60% of the norm, approaches STK
whereas the latter requires less fragments. The
plots also show the comparison against the same
fragment mining algorithm and learning frame-
work when using χ2-based selection. This also
provides similar good results, as far as the reduc-
tion of ||~w|| is kept under control, i.e. as far as we
select the components of the gradient that mostly
affect its norm.

To concretely assess the benefits of our models
for QC, Figure 3 plots the accuracy of OPT/Grad
and OPT/Chi on the multiclass QC problem wrt
the number of fragments employed. The results
for the multi-class classifier are less biased by the
binary Precision/Recall classifiers thus they are
more stable and clearly show how, after selecting
the optimal number of fragments (1,000-10,000
i.e. 60-65% of the norm), the accuracy of the OPT
and CHI classifiers stabilize around levels of accu-
racy which are in line with STK.

STK OPT/Grad

F1 F1 Frags

QC 83.70 84.12 ∼2k
RE 67.53 66.31 ∼10k
SRL 87.56 88.17 ∼300k

Table 2: Multiclass classification accuracy on
three benchmarks.

Finally, Table 2 shows the best results that we
achieved on the three multi-class classification
tasks, i.e. QC, RE9 and SRL, and compares them
against the STK 10. For all the tasks OPT/Grad

9For RE, we show lower accuracy than in (Nguyen et al.,
2009b) since, to have a closer comparison with STK, we do
not combine structural features with manual designed fea-
tures.

10We should point out that this models are only partially

230

produces the best results for all the tests, even
though the difference with OPT/Chi is generally
not statistically significant. Out of three tasks,
OPT/Grad manages to slightly improve two of
them, i.e. QC (84.12 vs. 83.7) and SRL (88.17
vs. 87.56), while STK is more accurate on RE, i.e.
67.53 vs. 66.31.

6.3 Comparison with P&M

The results on SRL can be compared against
those that we presented in (Pighin and Moschitti,
2009a), where we measured an accuracy of 87.13
exactly on the same benchmark. As we can see in
Table 2, our model improves the classification ac-
curacy of about 1 point, i.e. 88.17. On the other
hand, such comparison is not really fair since the
algorithms rely on different parameter sets, and it
is almost impossible to find matching configura-
tions for the different versions of the algorithms
that would result in exactly the same number of
fragments. In a projected space with approxi-
mately 103 or 104 fragments, including a few hun-
dred more features can produce noticeably differ-
ent accuracy readings.

Generally speaking, the current model can
achieve comparable accuracy with P&M while
considering a smaller number of fragments. For
example, in (Pighin and Moschitti, 2009b) the
best model for the A1 binary classifier of the
SRL benchmark was obtained by including 50,000
fragments, achieving an F1 score of 89.04. With
the new algorithm, using approximately half the
fragments the accuracy of the linearized A1 clas-
sifier is 90.09. In P&M, the algorithm would only
consider expansions of a fragment f where at most
m nodes are expanded. Consequently, the set of
mined fragments may include some small struc-
tures which can be less relevant than larger ones.
Conversely, the new algorithm (see Alg. 5.1) may
include larger but more relevant structures, thus
accounting for a larger fraction of the gradient
norm with a smaller number of fragments.

Concerning efficiency, the complexity of both
mining algorithms is proportional to the number
of fragments that they generate. Therefore, we can
conclude that the new implementation is more effi-
cient by considering that we can achieve the same
accuracy with less fragments. As for the complex-

optimized, as we evaluated them by using the same threshold
factor parameter L for all the classes. Better performances
could be achieved by selecting an optimal value of L for in-
dividual classes when building the multi-class classifier.

ity of decoding, i.e. providing explicit vector rep-
resentations of the input trees, in P&M, we used
a very naive approach, i.e. the generation of all
the fragments encoded in the tree and then look up
each fragment in the index. This solution has ex-
ponential complexity with the number of nodes in
the tree. Conversely, the new implementation has
approximately linear complexity. The approach is
based on the idea of an FST-like index, that we
can query with a tree node. Every time the tree
matches one of the fragments, the index increases
the count of that fragment for the tree. The reduc-
tion in time complexity is made possible by en-
coding in the index the sequence of expansion op-
erations that produced each indexed fragment, and
by considering only those expansions at decoding
time.

7 Conclusions

Available feature selection frameworks for very
high dimensional kernel families, such as tree ker-
nels, suffer from the lack of a theory that could
justify the very aggressive selection strategies nec-
essary to cope with the exceptionally high dimen-
sional feature space.

In this paper, we have provided a theoretical
foundation in the context of margin classifiers by
(i) linking the reduction of the gradient norm to the
theoretical error bound and (ii) by proving that the
norm is mostly concentrated in a relatively small
number of features. The two properties suggest
that we can apply an extremely aggressive fea-
ture selection by keeping the same accuracy. We
described a very efficient algorithm to carry out
such strategy in the fragment space. Our experi-
ments empirically support our theoretical findings
on three very different NLP tasks.

Acknowledgements

We would like to thank Truc-Vien T. Nguyen for
providing us with the SVM learning and test files
of the Relation Extraction dataset. Many thanks to
the anonymous reviewers for their valuable sug-
gestions.
This research has been partially supported by the
EC project, EternalS: “Trustworthy Eternal Sys-
tems via Evolving Software, Data and Knowl-
edge”, project number FP7 247758.

231

References
P. Bartlett and J. Shawe-Taylor, 1998. Advances in Kernel

Methods — Support Vector Learning, chapter Generaliza-
tion Performance of Support Vector Machines and other
Pattern Classifiers. MIT Press.

Stephan Bloehdorn and Alessandro Moschitti. 2007. Struc-
ture and semantics for expressive text kernels. In In Pro-
ceedings of CIKM ’07.

Stephan Bloehdorn, Roberto Basili, Marco Cammisa, and
Alessandro Moschitti. 2006. Semantic kernels for text
classification based on topological measures of feature
similarity. In Proceedings of ICDM 06, Hong Kong, 2006.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and
Jean Michel Renders. 2003. Word sequence kernels.
Journal of Machine Learning Research, 3:1059–1082.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proceedings of CoNLL’05.

Michael Collins and Nigel Duffy. 2002. New Ranking Al-
gorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron. In Proceedings of
ACL’02.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
Tree Kernels for Relation Extraction. In Proceedings of
ACL’04.

Chad Cumby and Dan Roth. 2003. Kernel Methods for Re-
lational Learning. In Proceedings of ICML 2003.

Hal Daumé III and Daniel Marcu. 2004. Np bracketing by
maximum entropy tagging and SVM reranking. In Pro-
ceedings of EMNLP’04.

G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw,
S. Strassel, and R. Weischedel. 2004. The Auto-
matic Content Extraction (ACE) Program–Tasks, Data,
and Evaluation. Proceedings of LREC 2004, pages 837–
840.

Ana-Maria Giuglea and Alessandro Moschitti. 2004.
Knowledge Discovering using FrameNet, VerbNet and
PropBank. In In Proceedings of the Workshop on On-
tology and Knowledge Discovering at ECML 2004, Pisa,
Italy.

Isabelle Guyon and André Elisseeff. 2003. An introduc-
tion to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182.

David Haussler. 1999. Convolution kernels on discrete struc-
tures. Technical report, Dept. of Computer Science, Uni-
versity of California at Santa Cruz.

T. Joachims. 2000. Estimating the generalization perfor-
mance of a SVM efficiently. In Proceedings of ICML’00.

Hisashi Kashima and Teruo Koyanagi. 2002. Kernels for
semi-structured data. In Proceedings of ICML’02.

Rohit J. Kate and Raymond J. Mooney. 2006. Using string-
kernels for learning semantic parsers. In Proceedings of
the 21st ICCL and 44th Annual Meeting of the ACL, pages
913–920, Sydney, Australia, July. Association for Compu-
tational Linguistics.

Jun’ichi Kazama and Kentaro Torisawa. 2005. Speeding up
training with tree kernels for node relation labeling. In
Proceedings of HLT-EMNLP’05.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL’03, pages
423–430.

Taku Kudo and Yuji Matsumoto. 2003. Fast methods for
kernel-based text analysis. In Proceedings of ACL’03.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005. Boosting-
based parse reranking with subtree features. In Proceed-
ings of ACL’05.

Xin Li and Dan Roth. 2006. Learning question classifiers:
the role of semantic information. Natural Language En-
gineering, 12(3):229–249.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro
M. Q. Aguiar, and Mário A. T. Figueiredo. 2009. Nonex-
tensive information theoretic kernels on measures. J.
Mach. Learn. Res., 10:935–975.

Alessandro Moschitti and Silvia Quarteroni. 2008. Kernels
on linguistic structures for answer extraction. In Proceed-
ings of ACL-08: HLT, Short Papers, Columbus, Ohio.

Alessandro Moschitti and Fabio Massimo Zanzotto. 2007.
Fast and effective kernels for relational learning from
texts. In Zoubin Ghahramani, editor, Proceedings of the
24th Annual International Conference on Machine Learn-
ing (ICML 2007).

Alessandro Moschitti, Daniele Pighin, and Roberto Basili.
2008. Tree kernels for semantic role labeling. Compu-
tational Linguistics, 34(2):193–224.

Alessandro Moschitti. 2006. Efficient convolution kernels
for dependency and constituent syntactic trees. In Pro-
ceedings of ECML’06, pages 318–329.

Alessandro Moschitti. 2008. Kernel methods, syntax and
semantics for relational text categorization. In Proceeding
of CIKM ’08, NY, USA.

Julia Neumann, Christoph Schnorr, and Gabriele Steidl.
2005. Combined SVM-Based Feature Selection and Clas-
sification. Machine Learning, 61(1-3):129–150.

Truc-Vien T. Nguyen, Alessandro Moschitti, and Giuseppe
Riccardi. 2009a. Convolution kernels on constituent, de-
pendency and sequential structures for relation extraction.
In Proceedings of EMNLP.

Truc-Vien T. Nguyen, Alessandro Moschitti, and Giuseppe
Riccardi. 2009b. Convolution kernels on constituent,
dependency and sequential structures for relation extrac-
tion. In EMNLP ’09: Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing,
pages 1378–1387, Morristown, NJ, USA. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Comput. Linguist., 31(1):71–106.

J. Pei, J. Han, Mortazavi B. Asl, H. Pinto, Q. Chen, U. Dayal,
and M. C. Hsu. 2001. PrefixSpan Mining Sequential Pat-
terns Efficiently by Prefix Projected Pattern Growth. In
Proceedings of ICDE’01.

232

Daniele Pighin and Alessandro Moschitti. 2009a. Efficient
linearization of tree kernel functions. In Proceedings of
CoNLL’09.

Daniele Pighin and Alessandro Moschitti. 2009b. Reverse
engineering of tree kernel feature spaces. In Proceedings
of EMNLP, pages 111–120, Singapore, August. Associa-
tion for Computational Linguistics.

Libin Shen, Anoop Sarkar, and Aravind k. Joshi. 2003. Us-
ing LTAG Based Features in Parse Reranking. In Proceed-
ings of EMNLP’06.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2008. Learning to rank answers on large online
QA collections. In Proceedings of ACL-08: HLT, Colum-
bus, Ohio.

Jun Suzuki and Hideki Isozaki. 2005. Sequence and Tree
Kernels with Statistical Feature Mining. In Proceedings
of NIPS’05.

Ivan Titov and James Henderson. 2006. Porting statisti-
cal parsers with data-defined kernels. In Proceedings of
CoNLL-X.

Kristina Toutanova, Penka Markova, and Christopher Man-
ning. 2004. The Leaf Path Projection View of Parse
Trees: Exploring String Kernels for HPSG Parse Selec-
tion. In Proceedings of EMNLP 2004.

Ellen M. Voorhees. 2001. Overview of the trec 2001 ques-
tion answering track. In In Proceedings of the Tenth Text
REtrieval Conference (TREC, pages 42–51.

Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimil-
iano Pontil, Tomaso Poggio, and Vladimir Vapnik. 2001.
Feature Selection for SVMs. In Proceedings of NIPS’01.

Yiming Yang and Jan O. Pedersen. 1997. A comparative
study on feature selection in text categorization. In Dou-
glas H. Fisher, editor, Proceedings of ICML-97, 14th In-
ternational Conference on Machine Learning, pages 412–
420, Nashville, US. Morgan Kaufmann Publishers, San
Francisco, US.

Dell Zhang and Wee Sun Lee. 2003. Question classifica-
tion using support vector machines. In Proceedings of SI-
GIR’03, pages 26–32.

Min Zhang, Jie Zhang, and Jian Su. 2006. Exploring Syntac-
tic Features for Relation Extraction using a Convolution
tree kernel. In Proceedings of NAACL.

233

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 234–242,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Inspecting the Structural Biases of Dependency Parsing Algorithms ∗

Yoav Goldberg and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel
yoavg|elhadad@cs.bgu.ac.il

Abstract

We propose the notion of a structural bias
inherent in a parsing system with respect
to the language it is aiming to parse. This
structural bias characterizes the behaviour
of a parsing system in terms of structures
it tends to under- and over- produce. We
propose a Boosting-based method for un-
covering some of the structural bias inher-
ent in parsing systems. We then apply
our method to four English dependency
parsers (an Arc-Eager and Arc-Standard
transition-based parsers, and first- and
second-order graph-based parsers). We
show that all four parsers are biased with
respect to the kind of annotation they are
trained to parse. We present a detailed
analysis of the biases that highlights spe-
cific differences and commonalities be-
tween the parsing systems, and improves
our understanding of their strengths and
weaknesses.

1 Introduction

Dependency Parsing, the task of inferring a depen-
dency structure over an input sentence, has gained
a lot of research attention in the last couple of
years, due in part to to the two CoNLL shared
tasks (Nivre et al., 2007; Buchholz and Marsi,
2006) in which various dependency parsing algo-
rithms were compared on various data sets. As a
result of this research effort, we have a choice of
several robust, efficient and accurate parsing algo-
rithms.

∗We would like to thank Reut Tsarfaty for comments and
discussions that helped us improve this paper. This work is
supported in part by the Lynn and William Frankel Center for
Computer Science.

These different parsing systems achieve com-
parable scores, yet produce qualitatively different
parses. Sagae and Lavie (2006) demonstrated that
a simple combination scheme of the outputs of dif-
ferent parsers can obtain substantially improved
accuracies. Nivre and McDonald (2008) explore
a parser stacking approach in which the output of
one parser is fed as an input to a different kind of
parser. The stacking approach also produces more
accurate parses.

However, while we know how to produce accu-
rate parsers and how to blend and stack their out-
puts, little effort was directed toward understand-
ing the behavior of different parsing systems in
terms of structures they produce and errors they
make. Question such as which linguistic phenom-
ena are hard for parser Y? and what kinds of er-
rors are common for parser Z?, as well as the more
ambitious which parsing approach is most suitable
to parse language X?, remain largely unanswered.

The current work aims to fill this gap by propos-
ing a methodology to identify systematic biases in
various parsing models and proposing and initial
analysis of such biases.

McDonald and Nivre (2007) analyze the dif-
ference between graph-based and transition-based
parsers (specifically the MALT and MST parsers)
by comparing the different kinds of errors made by
both parsers. They focus on single edge errors, and
learn that MST is better for longer dependency
arcs while MALT is better on short dependency
arcs, that MALT is better than MST in predict-
ing edges further from the root and vice-versa, that
MALT has a slight advantage when predicting the
parents of nouns and pronouns, and that MST is
better at all other word categories. They also con-
clude that the greedy MALT Parser suffer from er-
ror propagation more than the globally optimized

234

MST Parser.
In what follows, we complement their work by

suggesting a different methodology of analysis of
parsers behaviour. Our methodology is based on
the notion of structural bias of parsers, further ex-
plained in Section 2. Instead of comparing two
parsing systems in terms of the errors they pro-
duce, our analysis compares the output of a pars-
ing system with a collection of gold-parsed trees,
and searches for common structures which are pre-
dicted by the parser more often than they appear in
the gold-trees or vice-versa. These kinds of struc-
tures represent the bias of the parsing systems, and
by analyzing them we can gain important insights
into the strengths, weaknesses and inner working
of the parser.

In Section 2.2 we propose a Boosting-based
algorithm for uncovering these structural biases.
Then, in Section 3 we go on to apply our analysis
methodology to four parsing systems for English:
two transition-based systems and two graph-based
systems (Sections 4 and 5). The analysis shows
that the different parsing systems indeed possess
different biases. Furthermore, the analysis high-
lights the differences and commonalities among
the different parsers, and sheds some more light
on the specific behaviours of each system.

Recent work by Dickinson (2010), published
concurrently with this one, aims to identify depen-
dency errors in automatically parsed corpora by
inspecting grammatical rules which appear in the
automatically parsed corpora and do not fit well
with the grammar learned from a manually anno-
tated treebank. While Dickinson’s main concern is
with automatic identification of errors rather than
characterizing parsers behaviour, we feel that his
work shares many intuitions with this one: auto-
matic parsers fail in predictable ways, those ways
can be analyzed, and this analysis should be car-
ried out on structures which are larger than single
edges, and by inspecting trends rather than indi-
vidual decisions.

2 Structural Bias
Language is a highly structured phenomena, and
sentences exhibit structure on many levels. For
example, in English sentences adjectives appear
before nouns, subjects tend to appear before their
verb, and syntactic trees show a tendency toward
right-branching structures.1

1As noted by (Owen Rambow, 2010), there is little sense
in talking about the structure of a language without referring

Different combinations of languages and anno-
tation strategies exhibit different structural prefer-
ences: under a specific combination of language
and annotation strategy some structures are more
frequent than others, some structures are illegal
and some are very rare.

We argue that parsers also exhibit such struc-
tural preferences in the parses they produce. These
preferences stem from various parser design deci-
sions. Some of the preferences, such as projectiv-
ity, are due to explicit design decisions and lie at
the core of some parsing algorithms. Other pref-
erences are more implicit, and are due to specific
interactions between the parsing mechanism, the
feature function, the statistical mechanism and the
training data.

Ideally, we would like the structural preferences
of a parser trained on a given sample to reflect the
general preferences of the language. However, as
we demonstrate in Section 3, that it is usually not
the case.

We propose the notion of structural bias for
quantifying the differences in structural prefer-
ences between a parsing system and the language
it is aiming to parse. The structural bias of a
parser with respect to a language is composed of
the structures that tend to occur more often in the
parser’s output than in the language, and vice-
versa.

Structural biases are related to but different than
common errors. Parser X makes many PP at-
tachment errors is a claim about a common error.
Parser X tends to produce low attachment for PPs
while the language tends to have high attachment
is a claim about structural bias, which is related to
parser errors. Parser X can never produce struc-
ture Y is a claim about a structural preference of
a parser, which may or may not be related to its
error patterns.

Structural bias is a vast and vague concept. In
order to give a more concrete definition, we pose
the following question:

Assuming we are given two parses of the same
sentence. Can we tell, by looking at the parses and
without knowing the correct parse, which parser
produced which parse?

Any predictor which can help in answering this
question is an indicator of a structural bias.

to a specific annotation scheme. In what follow, we assume a
fixed annotation strategy is chosen.

235

Definition: structural bias between sets of trees
Given two sets of parse trees, A and B, over the
same sentences, a structural bias between these
sets is the collection of all predictors which can
help us decide, for a tree t, whether it belongs to
A or to B.

The structural bias between a parsing system
and an annotated corpus is then the structural bias
between the corpus and the output of the parser
on the sentences in the corpus. Note that this
definition adheres to the error vs. bias distinction
given above.

Under this task-based definition, uncovering
structural biases between two sets of trees amounts
to finding good predictors for discriminating be-
tween parses coming from these two sets of trees.
In what follows, we present a rich class of struc-
tural predictors, and an algorithm for efficiently
searching this predictor class for good predictors.

2.1 Representing Structure

A dependency representation of sentences in-
cludes words and dependency relations between
them (one word is the ROOT of the sentence, and
each other word has a single word as its parent).
Whenever possible, we would like to equate words
with their part-of-speech tags, to facilitate gener-
alization. However, in some cases the exact iden-
tity of the word may be of interest. When ana-
lyzing a language with a relatively fixed word or-
der, such as English, we are also interested in the
linear order between words. This includes the di-
rection between a parent and its dependent (does
the parent appear before or after the dependent in
the sentence?), as well as the order among several
dependents of the same parent. The length of a de-
pendency relation (distance in words between the
parent and dependent) may also be structurally in-
teresting.2

In order to capture this kind of information, we
take a structural element of a dependency tree to
be any connected subtree, coupled with informa-
tion about the incoming edge to the root of the
subtree. Examples of such structural elements are
given in Figure 1. This class of predictors is not
complete – it does not directly encode, for in-
stance, information about the number of siblings

2Relations can also be labeled, and labeling fit naturally
in our representation. However, we find the commonly used
set of edge labels for English to be lacking, and didn’t include
edge labels in the current analysis.

(a) JJ

3

(b) NN VB IN/with

2

Figure 1: Structural Elements Examples. (a) is an adjective
with a parent 3 words to its right. (b) is a verb whose parent
is on the left, it has a noun dependent on its left, and a prepo-
sition dependent 2 words to its right. The lexical item of the
preposition is with. The lexical items and distance to parent
are optional, while all other information is required. There
is also no information about other dependents a given word
may have.

a node has or the location of the structure relative
to the root of the tree. However, we feel it does
capture a good deal of linguistic phenomena, and
provide a fine balance between expressiveness and
tractability.

The class of predictors we consider is the set of
all structural elements. We seek to find structural
elements which appear in many trees of set A but
in few trees of set B, or vice versa.

2.2 Boosting Algorithm with Subtree
Features

The number of possible predictors is exponential
in the size of each tree, and an exhaustive search is
impractical. Instead, we solve the search problem
using a Boosting algorithm for tree classification
using subtree features. The details of the algo-
rithm and its efficient implementation are given in
(Kudo and Matsumoto, 2004). We briefly describe
the main idea behind the algorithm.

The Boosting algorithm with subtree features
gets as input two parse sets with labeled, ordered
trees. The output of the algorithm is a set of sub-
trees ti and their weights wi. These weighted sub-
trees define a linear classifier over trees f(T) =∑

ti∈T wi, where f(T) > 0 for trees in set A and
f(T) < 0 for trees in set B.

The algorithm works in rounds. Initially, all
input trees are given a uniform weight. At each
round, the algorithm seeks a subtree t with a max-
imum gain, that is the subtree that classifies cor-
rectly the subset of trees with the highest cumu-
lative weight. Then, it re-weights the input trees,
so that misclassified trees get higher weights. It
continues to repeatedly seek maximum gain sub-
trees, taking into account the tree weights in the
gain calculation, and re-weighting the trees after
each iteration. The same subtree can be selected
in different iterations.

Kudo and Matsumoto (2004) present an effec-

236

(a) JJ→

d:3

(b) VB←

NN→ IN←

w:with d:2

Figure 2: Encoding Structural Elements as Ordered Trees.
These are the tree encodings of the structural elements in Fig-
ure 1. Direction to parent is encoded in the node name, while
the optional lexical item and distance to parent are encoded
as daughters.

tive branch-and-bound technique for efficiently
searching for the maximum gain tree at each
round. The reader is referred to their paper for the
details.

Structural elements as subtrees The boosting
algorithm works on labeled, ordered trees. Such
trees are different than dependency trees in that
they contain information about nodes, but not
about edges. We use a simple transformation to
encode dependency trees and structural elements
as labeled, ordered trees. The transformation
works by concatenating the edge-to-parent infor-
mation to the node’s label for mandatory informa-
tion, and adding edge-to-parent information as a
special child node for optional information. Figure
2 presents the tree-encoded versions of the struc-
tural elements in Figure 1. We treat the direction-
to-parent and POS tag as required information,
while the distance to parent and lexical item are
optional.

2.3 Structural Bias Predictors

The output of the boosting algorithm is a set of
weighted subtrees. These subtrees are good can-
didates for structural bias predictors. However,
some of the subtrees may be a result of over-fitting
the training data, while the weights are tuned to
be used as part of a linear classifier. In our ap-
plication, we disregard the boosting weights, and
instead rank the predictors based on their number
of occurrences in a validation set. We seek predic-
tors which appear many times in one tree-set but
few times in the other tree-set on both the train-
ing and the validation sets. Manual inspection of
these predictors highlights the structural bias be-
tween the two sets. We demonstrate such an anal-
ysis for several English dependency parsers below.

In addition, the precision of the learned Boost-
ing classifier on the validation set can serve as a
metric for measuring the amount of structural bias

between two sets of parses. A high classification
accuracy means more structural bias between the
two sets, while an accuracy of 50% or lower means
that, at least under our class of predictors, the sets
are structurally indistinguishable.

3 Biases in Dependency Parsers

3.1 Experimental Setup
In what follows, we analyze and compare the
structural biases of 4 parsers, with respect to a de-
pendency representation of English.

Syntactic representation The dependency tree-
bank we use is a conversion of the English WSJ
treebank (Marcus et al., 1993) to dependency
structure using the procedure described in (Jo-
hansson and Nugues, 2007). We use the Mel’čuk
encoding of coordination structure, in which the
first conjunct is the head of the coordination struc-
ture, the coordinating conjunction depends on the
head, and the second conjunct depend on the coor-
dinating conjunction (Johansson, 2008).

Data Sections 15-18 were used for training the
parsers3. The first 4,000 sentences from sections
10-11 were used to train the Boosting algorithm
and find structural predictors candidates. Sec-
tions 4-7 were used as a validation set for ranking
the structural predictors. In all experiments, we
used the gold-standard POS tags. We binned the
distance-to-parent values to 1,2,3,4-5,6-8 and 9+.

Parsers For graph-based parsers, we used
the projective first-order (MST1) and second-
order (MST2) variants of the freely available
MST parser4 (McDonald et al., 2005; McDon-
ald and Pereira, 2006). For the transition-based
parsers, we used the arc-eager (ARCE) variant of
the freely available MALT parser5 (Nivre et al.,
2006), and our own implementation of an arc-
standard parser (ARCS) as described in (Huang et
al., 2009). The unlabeled attachment accuracies of
the four parsers are presented in Table 1.

Procedure For each parser, we train a boosting
classifier to distinguish between the gold-standard
trees and the parses produced for them by the

3Most work on parsing English uses a much larger train-
ing set. We chose to use a smaller set for convenience. Train-
ing the parsers is much faster, and we can get ample test data
without resorting to jackknifing techniques. As can be seen
in Table 1, the resulting parsers are still accurate.

4http://sourceforge.net/projects/mstparser/
5http://maltparser.org/

237

MST1 MST2 ARCE ARCS
88.8 89.8 87.6 87.4

Table 1: Unlabeled accuracies of the analyzed parsers

Parser Train Accuracy Val Accuracy
MST1 65.4 57.8
MST2 62.8 56.6
ARCE 69.2 65.3
ARCS 65.1 60.1

Table 2: Distinguishing parser output from gold-trees based
on structural information

parser. We remove from the training and valida-
tion sets all the sentences which the parser got
100% correct. We then apply the models to the
validation set. We rank the learned predictors
based on their appearances in gold- and parser-
produced trees in the train and validation sets, and
inspect the highest ranking predictors.

Training the boosting algorithm was done us-
ing the bact6 toolkit. We ran 400 iterations of
boosting, resulting in between 100 and 250 dis-
tinct subtrees in each model. Of these, the top 40
to 60 ranked subtrees in each model were good in-
dicators of structural bias. Our wrapping code is
available online7 in order to ease the application
of the method to other parsers and languages.

3.2 Quantitative Analysis
We begin by comparing the accuracies of the
boosting models trained to distinguish the pars-
ing results of the various parsers from the English
treebank. Table 2 lists the accuracies on both the
training and validation sets.

The boosting method is effective in finding
structural predictors. All parsers output is dis-
tinguishable from English trees based on struc-
tural information alone. The ArcEager variant of
MALT is the most biased with respect to English.
The transition-based parsers are more structurally
biased than the graph-based ones.

We now turn to analyze the specific structural
biases of the parsing systems. For each system
we present some prominent structures which are
under-produced by the system (these structures
appear in the language more often than they are
produce by the parser) and some structures which
are over-produced by the system (these structures

6http://chasen.org/∼taku/software/bact/
7http://www.cs.bgu.ac.il/∼yoavg/software/

are produced by the parser more often than they
appear in the language).8 Specifically, we manu-
ally inspected the predictors where the ratio be-
tween language and parser was high, ranked by
absolute number of occurrences.

4 Transition-based Parsers

We analyze two transition-based parsers (Nivre,
2008). The parsers differ in the transition sys-
tems they adopt. The ARCE system makes
use of a transition system with four transitions:
LEFT,RIGHT,SHIFT,REDUCE. The semantics of
this transition system is described in (Nivre,
2004). The ARCS system adopts an alterna-
tive transition system, with three transitions: AT-
TACHL,ATTACHR,SHIFT. The semantics of the
system is described in (Huang et al., 2009). The
main difference between the systems is that the
ARCE system makes attachments as early as pos-
sible, while the ARCS system should not attach a
parent to its dependent until the dependent has ac-
quired all its own dependents.

4.1 Biases of the Arc-Eager System
Over-produced structures The over-produced
structures of ARCE with respect to English are
overwhelmingly dominated by spurious ROOT at-
tachments.

The structures ROOT→“ , ROOT→DT,
ROOT→WP are produced almost 300 times by
the parser, yet never appear in the language. The
structures ROOT→” , ROOT→WRB , ROOT→JJ
appear 14 times in the language and are produced
hundreds of time by the parser. Another interest-
ing case is ROOT −→9+ NN , produced 180 times by
the parser and appearing 7 times in the language.
As indicated by the distance marking (9+), nouns
are allowed to be heads of sentences, but then they
usually appear close to the beginning, a fact which
is not captured by the parsing system. Other, less
clear-cut cases, are ROOT as the parent of IN,
NN, NNS or NNP. Such structures do appear in
the language, but are 2-5 times more common in
the parser.

A different ROOT attachment bias is captured
by

ROOT VBZ VBD and ROOT VBD VBD ,

8One can think of over- and under- produced structures
in terms of the precision and recall metrics: over-produced
structures have low precision, while under-produced struc-
tures have low recall.

238

appearing 3 times in the language and produced
over a 100 times by the parser.

It is well known that the ROOT attachment ac-
curacies of transition-based systems is lower than
that of graph-based system. Now we can refine
this observation: the ARCE parsing system fails
to capture the fact that some categories are more
likely to be attached to ROOT than others. It also
fails to capture the constraint that sentences usu-
ally have only one main verb.

Another related class of biases are captured by
the structures→VBD −→9+ VBD,→VBD −→5−7 VBD
and ROOT→VBZ→VBZ which are produced by
the parser twice as many times as they appear
in the language. When confronted with embed-
ded sentences, the parser has a strong tendency of
marking the first verb as the head of the second
one.

The pattern −→+9 IN suggests that the parser
prefers high attachment for PPs. The pattern

DT←NN

9+

captures the bias of the parser
toward associating NPs with the preceding verb
rather than the next one, even if this preceding verb
is far away.

Under-produced structures We now turn to
ARCE’s under-produced structures. These include
the structures IN/that← , MD← , VBD← (each 4
times more frequent in the language than in the
parser) and VBP← (twice more frequent in the
language). MD and that usually have their par-
ents to the left. However, in some constructions
this is not the case, and the parser has a hard time
learning these constructions.

The structure →$→RB appearing 20 times in
the language and 4 times in the parser, reflects a
very specific construction (“$ 1.5 up from $ 1.2”).
These constructions pop up as under-produced by
all the parsers we analyze.

The structures −→1 RB→IN and →RB→JJ ap-
pear twice as often in the language. These
stem from constructions such as “not/RB unex-
pected/JJ”, “backed away/RB from/IN”, “pushed
back/RB in/IN”, and are hard for the parser.

Lastly, the structure JJ←NN←NNS←, deviates
from the the “standard” NP construction, and is
somewhat hard for the parser (39 times parser, 67
in language). However, we will see below that this
same construction is even harder for other parsers.

4.2 Biases of the Arc-Standard System

Over-produced structures The over-produced
structures of ARCS do not show the spurious
ROOT attachment ambiguity of ARCE. They do
include ROOT→IN, appearing twice as often in
the parser output than in the language.

The patterns ROOT→VBZ−→9+, , →VBP−→9+,
, →VBD−→9+VBD and →VB→VBD all reflect
the parser’s tendency for right-branching struc-
ture, and its inability to capture the verb-hierarchy
in the sentence correctly, with a clear preference
for earlier verbs as parents of later verbs.

Similarly, −→9+NNP and −→9+NNS indicate a ten-
dency to attach NPs to a parent on their left (as an
object) rather than to their right (as a subject) even
when the left candidate-parent is far away.

Finally, WRB MD VB , produced
48 times by the parser and twice by the language,
is the projective parser’s way of annotating the
correct non-projective structure in which the wh-
adverb is dependent on the verb.

Under-produced structures of ARCS in-

clude two structures WRB VBN and

WRB VB , which are usually part of
non-projective structures, and are thus almost
never produced by the projective parser.

Other under-produced structures include appos-
itive NPs:

→ IN NN ’ ’
(e.g., “by Merill , the nation’s largest firm , ”), and

the structure NN DT NN , which can
stand for apposition (“a journalist, the first jour-
nalist to . . . ”) or phrases such as “30 %/NN a
month”.

TO usually has its parent on its left. When this
is not the case (when it is a part of a quantifier,
such as “x to y %”, or due to fronting: “Due to
X, we did Y”), the parser is having a hard time to
adapt and is under-producing this structure.

Similar to the other parsers, ARCS also under-
produces NPs with the structure JJ←NN←−1 NN,
and the structure→$→RB.

Finally, the parser under-produces the con-
junctive structures →NN→CC→NN→IN and
→IN→CC→IN.

239

5 Graph-based Parsers

We analyze the behaviour of two graph-based
parsers (McDonald, 2006). Both parsers perform
exhaustive search over all projective parse trees,
using a dynamic programming algorithm. They
differ in the factorizations they employ to make
the search tractable. The first-order model em-
ploys a single-edge factorization, in which each
edge is scored independently of all other edges.
The second-order model employs a two-edge fac-
torization, in which scores are assigned to pairs
of adjacent edges rather than to a single edge at a
time.

5.1 Biases of First-order MST Parser
Over-produced structures of MST1 include:

→ IN NN NN → IN NNP NN

→ IN NNP NNS → IN NN VBZ/D

where the parsers fails to capture the fact
that prepositions only have one dependent.

Similarly, in the pattern: →CC NN NNS
the parser fails to capture that only one phrase
should attach to the coordinator, and the patterns

NN NN VBZ NNS NNS VBP

highlight the parser’s failing to capture that
verbs have only one object.

In the structure ROOT WRB VBD , pro-
duced by the parser 15 times more than it appears
in the language, the parser fails to capture the fact
that verbs modified by wh-adverbs are not likely
to head a sentence.

All of these over-produced structures are fine
examples of cases where MST1 fails due to its
edge-factorization assumption.

We now turn to analyzing the structures under-
produced by MST1.

Under-produced structures The non-
projective structures

WRB VBN

1

and WRB VB

1

clearly cannot be produced by the projective
parser, yet they appear over 100 times in the
language.

The structure WRB←VBD←VBD which is
represented in the language five times more than
in the parser, complements the over-produced case
in which a verb modified by a wh-adverb heads the
sentence.

IN/that←, which was under-produced by
ARCE is under-produced here also, but less so
than in ARCE. →$→RB is also under-produced
by the parser.

The structure CC←−1 , usually due to conjunc-
tions such as either, nor, but is produced 29 times
by the parser and appear 54 times in the language.

An interesting under-produced structure is

→NN IN CC NN . This structure reflects
the fact that the parser is having a hard time coor-
dinating “heavy” NPs, where the head nouns are
modified by PPs. This bias is probably a result
of the “in-between pos-tag” feature, which lists
all the pos-tags between the head and dependent.
This feature was shown to be important to the
parser’s overall performance, but probably fails it
in this case.

The construction −→6−8JJ, where the adjective
functions as an adverb (e.g., “he survived X
unscathed” or “to impose Y corporate-wise”)
is also under-produced by the parser, as well

as IN NN in which the preposition
functions as a determiner/quantifier (“at least”,
“between”, “more than”).

Finally, MST1 is under-producing NPs with
somewhat “irregular” structures: JJ←NN←NNS
or JJ←NN←NNS (“common stock purchase war-
rants”, “cardiac bypass patients”), or JJ←JJ← (“a
good many short-sellers”, “West German insur-
ance giant”)

5.2 Biases of Second-order MST Parser

Over-produced structures by MST2 are differ-
ent than those of MST1. The less-extreme edge
factorization of the second-order parser success-
fully prevents the structures where a verb has two
objects or a preposition has two dependents.

One over-produced structure,

NNS JJ NNP ’ ’ , produced
10 times by the parser and never in the language,
is due to one very specific construction, “bonds
due Nov 30 , 1992 ,” where the second comma
should attach higher up the tree.

240

Another over-produced structure involves
the internal structure of proper names:

NNP NNP NNP NNP (the “correct” analysis
more often makes the last NNP head of all the
others).

More interesting are: −→
1 CC→VBD and

−→
1 CC→NN→IN . These capture the parser’s in-

ability to capture the symmetry of coordinating
conjunctions.

Under-produced structures of MST2 are over-
all very similar to the under-produced structures of
MST1.

The structure CC←−1 which is under-produced by
MST1 is no longer under-produced by MST2. All
the other under-produced structures of MST1 reap-
pear here as well.

In addition, MST2 under-produces the struc-
tures ROOT→NNP→. (it tends not to trust NNPs
as the head of sentences) and−→6−8TO−→1 V B (where
the parser is having trouble attaching TO correctly
to its parent when they are separated by a lot of
sentential material).

6 Discussion

We showed that each of the four parsing systems
is structurally biased with respect to the English
training corpus in a noticeable way: we were able
to learn a classifier that can tell, based on structural
evidence, if a parse came from a parsing system
or from the training corpus, with various success
rates. More importantly, the classifier’s models are
interpretable. By analyzing the predictors induced
by the classifier for each parsing system, we un-
covered some of the biases of these systems.

Some of these biases (e.g., that transition-based
system have lower ROOT-attachment accuracies)
were already known. Yet, our analysis refines this
knowledge and demonstrates that in the Arc-Eager
system a large part of this inaccuracy is not due
to finding the incorrect root among valid ambigu-
ous candidates, but rather due to many illegal root
attachments, or due to illegal structures where a
sentence is analyzed to have two main verbs. In
contrast, the Arc-Standard system does not share
this spurious root attachment behaviour, and its
low root accuracies are due to incorrectly choos-
ing among the valid candidates. A related bias of
the Arc-Standard system is its tendency to choose
earlier appearing verbs as parents of later occur-
ring verbs.

Some constructions were hard for all the parsing
models. For example, While not discussed in the
analysis above, all parsers had biased structures
containing discourse level punctuation elements
(some commas, quotes and dashes) – we strongly
believe parsing systems could benefit from special
treatment of such markers.

The NP construction (JJ←NN←NNS←) ap-
peared in the analyses of all the parsers, yet were
easier for the transition-based parsers than for the
graph-based ones. Other NP constructions (dis-
cussed above) were hard only for the graph-based
parsers.

One specific construction involving the dollar
sign and an adverb appeared in all the parsers,
and may deserve a special treatment. Simi-
larly, different parsers have different “soft spots”
(e.g., “backed away from”, “not unexpected” for
ARCE, “at least” for MST1, TO← for ARCS, etc.)
which may also benefit from special treatments.

It is well known that the first-order edge-
factorization of the MST1 parser is too strong.
Our analysis reveals some specific cases where
this assumptions indeed breaks down. These
cases do not appear in the second-order factoriza-
tion. Yet we show that the second-order model
under-produces the same structures as the first-
order model, and that both models have specific
problems in dealing with coordination structures,
specifically coordination of NPs containing PPs.
We hypothesize that this bias is due to the “pos-in-
between” features used in the MST Parser.

Regarding coordination, the analysis reveals
that different parsers show different biases with re-
spect to coordination structures.

7 Conclusions and Future Work

We presented the notion of structural bias – spe-
cific structures that are systematically over- or
under- represented in one set of parse trees relative
to another set of parse trees – and argue that differ-
ent parsing systems exhibit different structural bi-
ases in the parses they produced due to various ex-
plicit and implicit decisions in parser design. We
presented a method for uncovering some of this
structural bias, and effectively used it to demon-
strate that parsers are indeed biased with respect
to the corpus they are trained on, and that differ-
ent parsers show different biases. We then ana-
lyzed the biases of four dependency parsing sys-
tems with respect to an English treebank. We ar-

241

gue that by studying the structural biases of pars-
ing systems we can gain a better understanding on
where dependency parsers fail, and how they dif-
fer from each other. This understanding can in turn
lead us toward designing better parsing systems.

We feel that the current study is just the tip of
the iceberg with respect to the analysis of struc-
tural bias. Any parsing system for any language
and annotation scheme can benefit from such anal-
ysis.

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In
Proc. of CoNLL.

Markus Dickinson. 2010. Detecting errors in
automatically-parsed dependency relations. In Proc.
of ACL.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proc of EMNLP.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for en-
glish. In Proc of NODALIDA.

Richard Johansson. 2008. Dependency-based Seman-
tic Analysis of Natural-language Text. Ph.D. thesis,
Lund University.

Taku Kudo and Yuji Matsumoto. 2004. A Boost-
ing Algorithm for Classification of Semi-Structured
Text. In Proceedings of EMNLP.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marchinkiewicz. 1993. Building a large annotated
corpus of English: The penn treebank. Computa-
tional Linguistics, 19:313–330.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proc. of EMNLP.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc of EACL.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proc of ACL.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL, pages 950–958.

Joakim Nivre, Johan Hall, and Jens Nillson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proc. of LREC.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proc. of EMNLP-CoNLL.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Incremental Parsing:
Bringing Engineering and Cognition Together, ACL-
Workshop.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4), December.

Owen Rambow. 2010. The Simple Truth about De-
pendency and Phrase Structure Representations: An
Opinion Piece. In Proceedings of NAACL.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proceedings of HLT-NAACL,
pages 129–133.

242

Author Index

Abend, Omri, 77
Alishahi, Afra, 182
Alshawi, Hiyan, 9
Ananthakrishnan, Sankaranarayanan, 126
Araujo, Lourdes, 38

Baldwin, Timothy, 192
Bergsma, Shane, 172
Blitzer, John, 46
Burkett, David, 46

Carrillo de Albornoz, Jorge, 153
Chang, Ming-Wei, 18
Chen, Jiajun, 135
Chrupała, Grzegorz, 182
Clark, Alexander, 28
Clarke, James, 18

Dai, Xinyu, 135
Das, Dipanjan, 213
Davidov, Dmitry, 107

Elhadad, Michael, 234
Everson, Richard, 144

Fattal, Raanan, 57

Gervás, Pablo, 153
Ghahramani, Zoubin, 56
Gimpel, Kevin, 213
Goldberg, Yoav, 234
Goldwasser, Dan, 18

Hänig, Christian, 1
He, Yulan, 144
Hockenmaier, Julia, 162
Hodosh, Micah, 162
Huang, Shujian, 135

Johansson, Richard, 67
Jurafsky, Daniel, 9

Kate, Rohit, 203
Kim, Su Nam, 192
Klein, Dan, 46

Lee, Lillian, 55

Li, Kangxi, 135
Lignos, Constantine, 88
Lin, Chenghua, 144
Lin, Dekang, 172

Manning, Christopher D., 9
Mooney, Raymond, 203
Moschitti, Alessandro, 67, 223
Mylonakis, Markos, 117

Natarajan, Prem, 126

Petrov, Slav, 46
Pighin, Daniele, 223
Plaza, Laura, 153
Prasad, Rohit, 126

Rappoport, Ari, 57, 77, 107
Rashtchian, Cyrus, 162
Reichart, Roi, 57, 77
Roth, Dan, 18

Santamarı́a, Jesús, 38
Schoenemann, Thomas, 98
Schuurmans, Dale, 172
Sima’an, Khalil, 117
Smith, Noah A., 213
Spitkovsky, Valentin I., 9
Stallard, David, 126

Tsur, Oren, 107

Wang, Li, 192

Yang, Charles, 88
Young, Peter, 162

243

	Program
	Improvements in Unsupervised Co-Occurrence Based Parsing
	Viterbi Training Improves Unsupervised Dependency Parsing
	Driving Semantic Parsing from the World's Response
	Efficient, Correct, Unsupervised Learning for Context-Sensitive Languages
	Identifying Patterns for Unsupervised Grammar Induction
	Learning Better Monolingual Models with Unannotated Bilingual Text
	(Invited Talk) Clueless: Explorations in Unsupervised, Knowledge-Lean Extraction of Lexical-Semantic Information
	(Invited Talk) Bayesian Hidden Markov Models and Extensions
	Improved Unsupervised POS Induction Using Intrinsic Clustering Quality and a Zipfian Constraint
	Syntactic and Semantic Structure for Opinion Expression Detection
	Type Level Clustering Evaluation: New Measures and a POS Induction Case Study
	Recession Segmentation: Simpler Online Word Segmentation Using Limited Resources
	Computing Optimal Alignments for the IBM-3 Translation Model
	Semi-Supervised Recognition of Sarcasm in Twitter and Amazon
	Learning Probabilistic Synchronous CFGs for Phrase-Based Translation
	A Semi-Supervised Batch-Mode Active Learning Strategy for Improved Statistical Machine Translation
	Improving Word Alignment by Semi-Supervised Ensemble
	A Comparative Study of Bayesian Models for Unsupervised Sentiment Detection
	A Hybrid Approach to Emotional Sentence Polarity and Intensity Classification
	Cross-Caption Coreference Resolution for Automatic Image Understanding
	Improved Natural Language Learning via Variance-Regularization Support Vector Machines
	Online Entropy-Based Model of Lexical Category Acquisition
	Tagging and Linking Web Forum Posts
	Joint Entity and Relation Extraction Using Card-Pyramid Parsing
	Distributed Asynchronous Online Learning for Natural Language Processing
	On Reverse Feature Engineering of Syntactic Tree Kernels
	Inspecting the Structural Biases of Dependency Parsing Algorithms

