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Abstract There exists prior work on supervised domain

adaptation (or multi-task learning) that can be re-
lated to EASYADAPT. An algorithm for multi-
task learning using shared parameters was pro-
posed (Evgeniou and Pontil, 2004) for multi-task
regularization where each task parameter was rep-
resented as sum of a mean parameter (that stays
same for all tasks) and its deviation from this
mean. SVM was used as the base classifier
and the algorithm was formulated in the standard
SVM dual optimization setting. Subsequently,
this framework (Evgeniou and Pontil, 2004) was
extended (Dredze et al., 2010) to online multi-
domain setting. Prior work on semi-supervised
approaches to domain adaptation also exists in lit-
erature. Extraction of specific features from the
available dataset was proposed (Arnold and Co-
1 Introduction hen, 2008; Blitzer et al., 2006) to facilitate the
task of domain adaptation. Co-adaptation (Tur,
A domain adaptation approach for sequential |a2009), a combination of co-training and domain
beling tasks in NLP was proposed in (Da@m zqaptation, can also be considered as a semi-
Ill, 2007). The proposed approach, termedsypervised approach to domain adaptation. A
EASYADAPT (EA), augments theource domain  semj-supervised EM algorithm for domain adap-
feature space using features from labeled data itytion was proposed in (Dai et al., 2007). Sim-
target domain EA is simple, easy to extend and jjar to graph based semi-supervised approaches,
implement as a preprocessing step and most iy |apel propagation method was proposed (Xing
portantly is agnostic of the underlying classifier.gt g 2007) to facilitate domain adaptation. The
However, EA requires labeled data in the targetecently proposed Domain Adaptation Machine
and hence applies fally supervisedlabeled data (DAM) (Duan et al., 2009) is a semi-supervised
in sourceandtargef) domain adaptation settings extension of SVMs for domain adaptation and
only. In this paper, we proposesemi-supervised presents extensive empirical results. However, in
(labeled data irsource and both labeled and un- gimost all of the above cases, the proposed meth-
labeled data inarge9 approach to leverage unla- oqs ejther use specifics of the datasets or are cus-
beled data for BSYADAPT (which we call EA++)  tomized for some particular base classifier and
and empirically demonstrate its superior perfor-nence it is not clear how the proposed methods

manci over EA as well as few other existing apcan pe extended to other existing classifiers.
proaches.

In this work, we propose a semi-
supervised extension to a well-known
supervised domain adaptation approach
(EA) (Daunt lll, 2007). Our proposed
approach (EA++) builds on the notion
of augmented space (introduced in EA)
and harnesses unlabeled data in target do-
main to ameliorate the transfer of infor-
mation fromsourceto target This semi-
supervised approach to domain adaptation
is extremely simple to implement, and can
be applied as a pre-processing step to any
supervised learner. Experimental results
on sequential labeling tasks demonstrate
the efficacy of the proposed method.

'We refer, labeled data in source amly unlabeled data EA, onthe Other hand, is remarkably general ”_1
in target, as thensupervisedlomain adaptation setting. the sense that it can be used as a pre-processing
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step in conjunction with any base classifier. How-where x and 0 are vectors inR?¢, and 0 de-
ever, one of the prime limitations of EA is its inca- notes a zero vector of dimensiah The firstd-
pability to leverage unlabeled data. Given its sim-dimensional segment corresponds to commonality
plicity and generality, it would be interesting to between source and target, secahdimensional
extend EA to semi-supervised settings. In this pasegment corresponds to the source domain while
per we propose EA++, a co-regularization basedhe last segment corresponds to the target domain.
semi-supervised extension to EA. We present ougource and target domain features are transformed
approach and results for a single pair of sourceising these feature maps and the augmented fea-
and target domain. However, we note that EA++ure space so constructed is passed onto the un-
can also be extended to multiple source settingglerlying supervised classifier. One of the most ap-
If we havek sources and a single target domainpealing properties of ESYADAPT is that it is ag-
then we can introduce a co-regularizer for eachostic of the underlying supervised classifier be-
source-target pair. Due to space constraints, wing used to learn in th@augmentedspace. Al-

defer details to a full version. most anystandard supervised learning approach
for linear classifierdfor e.g., SVMs, perceptrons)
2 Background can be used to learnlmear hypothesih ¢ R3¢

in the augmented space. As mentioned earlier,
this work considers linear hypotheses only and the
Let ¥ Cc R? denote the instance space aid the proposed techniques can be extended (Baum
= {—1,+1} denote the label space. \We have a selil, 2007) to non-linear hypotheses. Let us denote
of source labeled examplds,(~ Dy(z,y)) and h = (he, hg, ht), where each ok, hg, hy is of
a set of target labeled examplég(~ D;(z,y)), dimensiond and represent theommon source-
where|L,| = I, > |L;| = l;. We also have target specificand target-specificomponents oh, re-
unlabeled data denoted &, (~ D;(x)), where spectively. During prediction on target data, the
|Ui| = u;. Our goal is to learn a hypothesfis:  incoming target feature is transformed to obtain
X +— Y having low expected error with respect to !(x) andh is applied on this transformed fea-
the target domain. In this paper, we consilier  ture. This is equivalent to applying. + h¢) on
ear hypothesesnly. However, the proposed tech- x.
niques extend to non-linear hypotheses, as men- A good intuitive insight into why this simple
tioned in (Daurg Ill, 2007). Source and target algorithm works so well in practice and outper-
empirical errors for hypothesis are denoted by forms most state-of-the-art algorithms is given
és(h, fs) andé(h, f;) respectively, wher¢fs and  in (Daunre Ill, 2007). Briefly, it can be thought to
ft are source and target labeling functions. Simpe simultaneously training two hypotheseg; =
ilarly, the corresponding expected errors are deth,, + hy) for source domain andy = (h + g;)
noted byes(h, fs) ande(h, fi). Shorthand no- for target domain. The commonality between the
tions ofés, ¢, €; ande; have also been used. domains is represented by, whereas the source
and target domain specific information is captured
2.2 EasyAdapt (EA) by hg and hg, respectively. This technique can
In this section, we give a brief overview of be easily extended to a multi-domain scenario by
EASYADAPT proposed in (Daulll, 2007). Let making more copies of the original feature space
us denoteR? as theoriginal space. EA operates ((K + 1) copies in case ok domains). A kernel-
in anaugmentedpace denoted by ¢ R3? (fora  ized version of the algorithm has also been pre-
single pair of source and target domain). Falo-  sented in (Daum@lll, 2007).
mains, theaugmentedpace blows up t& (<1, _
The augmented feature mapg, &' : X — X for 3 Using Unlabeled data
source and target domains are defined as,

2.1 Problem Setup and Notations

As discussed in the previous section, the
EASYADAPT algorithm is attractive because it
(2.1) performs very well empirically and can be used in
conjunction with any underlying supervised clas-

P%(x) = (x, x, 0)
' (x) = (x, 0, x)
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sifier. One drawback of ESYADAPT is that it aims to achieve the following condition:
does not make use of unlabeled target data which

is generally available in large quantity in most Ws * Xj & Wt - Xj

practical problems. In this section, we propose a <= (h. + hg) - x; ~ (he + hy) - x;
semi-supervised extension of this algorithm while (he — hy) - x5 ~ 0 (3.1)
maintaining the desirable classifier-agnostic prop-

ory d GnostCRIOP™ . h,, by, hy) - (0, x1, —x3) ~ 0.

We define another feature médy : X — X for

unlabeled data as below:
3.1 Motivation

P"(x) = (0, x, —x). (3.2)
In multi-view approach for semi-supervised learn-
ing algorithms (Sindhwani et al., 2005), different Every unlabeled sample is transformed using the
hypotheses are learned in differaiéws There- Mmap®*(.). The augmented feature space that re-
after, unlabeled data is utilized to co-regularizesults from the application of three feature maps,
these learned hypotheses by making them agrég@amely,® : X — X, &' : X s X, 0" : X +
on unlabeled samples. In domain adaptation, thel, on source labeled samples, target labeled sam-
source and target data come from two differenled and target unlabeled samples is summarized
distributions. However, if the source and tar-in Figure 1.
get domains areeasonably clos¢o each other, ~ As shown in Eq. 3.1, during the training phase,
we can employ a similar form of regularization EA++ assigns a predicted value closétior each
using unlabeled data. A similar co-regularizerunlabeled sample. However, it is worth noting
based approach for unlabeled data was previouskpat, during the test phase, EA++ predicts labels
shown (Duan et al., 2009) to give improved empir-from two classes:+1 and —1. This warrants
ical results for domain adaptation task. Howeverfurther exposition of the implementation specifics
their technique applies for the particular base claswhich is deferred until the next subsection.
sifier they consider and hence does not extend to

EASYADAPT. —d—--d—wed—
Ly L L 0
EA: |
3.2 EA++: EASYADAPT with unlabeled data )t I 0 I
t t
EA++ | . . .
In our proposed semi-supervised extension to . . 3
EASYADAPT, the source and target hypothesis are
made to agree on unlabeled data. We refer to
this algorithm as EA++. Recall thatdSYADAPT

learns a linear hypothesf$ € ER?’d in the aug-
mentedspace. The hypothesls contains com-  Figure 1: Diagrammatic representation of feature
mon, source and target sub-hypotheses and is exugmentation in EA and EA++

pressed ah = (h¢, hg, h¢). In original space

(ref. section 2.2), this is equivalent to learning a Algorithm 1 presents the EA++ approach in de-
source specific hypothesig; = (h. + hg) and a tail.

target specific hypothesis; = (h. + hy).

In EA++, we want source hypothesig, and -3 Implementation

target hypothesisv; to agree on unlabeled data. In this section, we present implementation specific
For some unlabeled target sampglec U, ¢ R¢,  details of EA++. We consider SVM as our base
EA++ would implicitly want to make the predic- supervised learnerCEARN in Algorithm 1).

tions of wy andwy on x; to agree. Formally, it However, these details hold for other supervised

55



Algorithm 1 EA++

L |
Input: Lg; Ly, Uy, LEARN : supervised clas- \
sifier | |

Output: £ : classifier learned in augmented ~

space @ ;
/* initialize augmented training set */ o
8 /
— |

[* construct augmented training set */
2:V(x,y) € Ls, P:= PU{®%(x),y}
3:V(x,y) € Ly, P:= PU{®'(x),y}
4:Vx € Uy, P:= PU{®"%(x),0}

/* output learned classifier */

5:h = LEARN(P)

1. P:={}

\

b)

-

(ss,\

©

classifiers too. In the dual form of SVM optimiza-
tion function, the labels are multiplied with the in- _. . ,

ner product of features. This can make the un_Flgure 2: Loss functions for classl, class—1
labeled samples redundant since we want their Ia"ZanI unlabeled samples.
bels to be) according to Eqg. 3.1. To avoid this, we
create as many copies of (x) as there are labels
and assign each label to one copy. For the case of
binary classification, we create two copies of ev-
ery augmented unlabeled sample, and assign
label to one copy and 1 to the other. The learner
attempts to balance the loss of the two copies, andTreebank-Brown. Treebank-Chunk data consists
tries to make the prediction on unlabeled sample  of the following domains: the standard WSJ
equal to0. Figure 2 shows the curves of the hinge domain (the same data as for CoNLL 2000),

task is to perform part-of-speech tagging on
unlabeled PubMed abstracts with a classifier
trained on labeled WSJ and PubMed data.

loss for classt1, class—1 and their sum. The ef- the ATIS switchboard domain and the Brown
fective loss for each unlabeled sample is similarto  corpus. The Brown corpus consists of data
the sum of losses for1 and—1 classes (shown in combined from six subdomains. Treebank-
Figure 2c). Chunk is a shallow parsing task based on
the data from the Penn Treebank. Treebank-
4 Experiments Brown is identical to the Treebank-Chunk

task, However, in Treebank-Brown we con-
sider all of the Brown corpus to be a single
domain.

In this section, we demonstrate the empirical per-
formance of EA augmented with unlabeled data.

4.1 Setup

We follow the same experimental setup used Table 1 presents a summary of the datasets
in (Daune Ill, 2007) and perform two sequence used. 'AII dataset's use rough'ly the same feature
labelling tasks (a) named-entity-recognitionSet which are lexical information (words, stems,

(NER), and (b) part-of-speech-tagging (POS )orfapitalization, prefixes and suffixes), membership
the following datasets: on gazetteers, etc. We use an averaged perceptron

classifier from the Megam framework (implemen-
PubMed-POS: Introduced by (Blitzer et al., tation due to (Daura Ill, 2004)) for all the afore-
2006), this dataset consists of two domainsmentioned tasks. The training sample size varies
The WSJ portion of the Penn Treebankfrom 1k to 16k. In all cases, the amount of unla-
serves as the source domain and the PubMeleled target data was equal to the total amount of
abstracts serve as the target domain. Thé&abeled source and target data.
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Task

Dom

#Tr

#De

#Te

#Ft

PubMed src | 950,028 - — 571K 05 Srconly ——
POS tgt | 11,264 1,987 14,554 39k Tgtonly-Full -
ws] | 101,200 29,455 38,440 94K 04|
swbd3 | 45282 5596 41,840 55k
br-cf | 58201 8307 7,607 144k g sl
Tree  brcg | 67.429 9444 6897 149k g 0
bank-  br-ck | 51,379 6,061  9,451| 121k =
Chunk  brcl | 47.382 5101 5880 95k 02| Ny
brcm | 11,696 1324 1594/ 51k o
br-cn | 56,057 6751  7.847| 115k x R S
br-cp | 55318 7,477 5977 112k 0.1 S . T
br-cr | 16,742 25522  2,712| 65k ‘ ‘ ‘ ‘
4000 8000 12000 16000

Table 1: Summary of Datasets. The columns de- number of samples

note task, domain, size of training, development (@
and test data sets, and the number of unique fea-

tures in the training data. > e
04 | TgtOnly

4.2 Results £ o3

We compare the empirical performance of g

EA++ with a few other baselines, namely, (a) 0.2 ¢ 1

SOURCEONLY (classifier trained on source la-

beled samples), (b)ARGETONLY-FULL (classi- 01r

fier trained on the same number of target labeled 8000 12000
samples as the number of source labeled samples number of samples
in SOURCEONLY), (c) TARGETONLY (classifier ()

trained on small amount of target labeled sam-

ples, roughly on.e-tenth of the amount of source lagigyre 3: Test accuracy of (a) PubMed-POS and
beled samples in QURCEONLY), (d) ALL (clas-  (b) Treebank-Brown for, SURCEONLY, TARGE-

sifier trained on combined labeled samples ofronLy-FuLL, TARGETONLY, ALL, EA and
SOURCEONLY and TARGETONLY), (e) EA (clas- ga++.

sifier trained inaugmented feature spaom the
same input training set asLA), (f) EA++ (clas-
sifier trained inaugmented feature spacm the EA++, thez-value plotted denotes the amount of
same input training set as EA and an equal amountnlabeled target data used (in addition to an equal
of unlabeledtarget data). All these approaches amount of source+target labeled data, as in A
were tested on the entire amount of availaile  or EA). We plot this number for EA++, just to
gettest data. compare its improvement over EA when using an
Figure 3 presents the learning curves foradditional (and equal) amount of unlabeled target
(a) SOURCEONLY, (b) TARGETONLY-FULL, (c) data. This accounts for the differenvalues plot-
TARGETONLY, (d) ALL, (e) EA, and (f) EA++ ted for the different curves. In all cases, the y-axis
(EA with unlabeled data). The x-axis repre-denotes the error rate.
sents the number of training samples on which As can be seen in Figure 3(a), EA++ performs
the predictor has been trained. At this point,better than the normal EA (which uses labeled
we note that the number of training samplesdata only). The labeled and unlabeled case start
vary depending on the particular approach beingogether but with increase in number of samples
used. For ®BURCEONLY, TARGETONLY-FULL  their gap increases with the unlabeled case result-
and TARGETONLY, it is just the corresponding ingin much lower error as compared to the labeled
number of labeled source or target samples, recase. Similar trends were observed in other data
spectively. For AL and EA, it is the summa- sets as can be seen in Figure 3(b). We also note
tion of labeled source and target samples. Fothat EA performs poorly for some cases, as was

4000 16000

57



shown (Daurg I, 2007) earlier. Rosenberg, 2008). Additionally, the afore-
mentioned techniques, namely, 0@RCEONLY,
> Summary TARGETONLY, ALL have been empirically com-

In this paper, we have proposed a semi-supervisgggred to EA and EA++. It would be interest-
extension to an existing domain adaptation techind to formally frame these approaches and see
nique (EA). Our approach EA++, leverages thewhether their empirical performance can be justi-
unlabeled data to improve the performance of EAfied within a theoretical framework.

Empirical results demonstrate improved accuracy

for sequential labeling tasks performed on stan-
dardized datasets. The previously proposed EBeferenceS

could be applied exclusively tully supervised Andrew Arnold and William W. Cohen. 2008. Intra-
domain adaptation problems only. However, with document structural frequency features for semi-
thecurrent extension, EA-+ applies to bty SUPET1SEA coman secniaon KOS pages
supervisedand semi-supervisedlomain adapta-

tion problems. John Blitzer, Ryan Mcdonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
6 Future Work dence learning. INEEMNLP’06, pages 120-128,

Sydney, Australia.
In both EA and EA++, we use features from

source and target space to construct an augmentéﬂ?nyuagolgai, Gui-ROfng Xue, Qiang Yang, 6|1nd 7][909
feature space. In other words, we are sharing fea- YU- 7. Transferring Naive Bayes classifiers
t P dt led dat V\? for text classification. IFAAAI'07, pages 540-545,
ures across sogrce and tardpgbele _a a. We vancouver, B.C.

term such algorithms abBeature Sharing Algo-

rithms Feature sharing algorithms are effectiveHal Daune Ill. 2004. Notes on CG and LM-BFGS
for domain adaptatlon because they are Slmple’ 0pt|m|zat|0n of IOg|St|C regression. August

easyto |mplemen.t qs apreprocessing step arld OLﬁal Daunt Ill. 2007. Frustratingly easy domain adap-
perform many existing state-of-the-art techniques tation. InACL'07, pages 256-263, Prague, Czech
(shown previously for domain adaptation (Da&im  Republic.

[ll, 2007)). However, despite their simplicity and
empirical success, it is not theoretically apparent@’k Dredze, Alex Kulesza, and Koby Crammer.
) . 2010. Multi-domain learning by confidence-

why these algorithms perform so well. Prior work \yeighted parameter combinatioachine Learn-

provides some intuitions but is mostly empirical ing, 79.

and a formal theoretical analysis to justify FSAs

(for domain adaptation) is clearly missing. Prior'—'x'cnhl?;a”'z(')‘é%r ngfna;:g’ a%‘;”%aii(gh ?r”ome";‘Tt{jt‘?”lg

WOI’|.( (Maurer, 2006) analyzgs the mUIt"t"_"Sk r'€9-  sources via aﬁxiliary classifiefs. IEML'09, pagesp

ularization approach (Evgeniou and Pontil, 2004) 289296, Montreal, Quebec.

(which is related to EA) but they consider a cumu-

lative loss in multi-task (or multi-domain) setting. Theodoros Evgeniou and Massimiliano Pontil. 2004.

This does not apply to domain adaptation setting i)eggf::.algz,esdeglﬁgl,té\;\ilﬁ\(,ILngRI_ng. KDD'04, pages

where we are mainly interested in loss in the target

domainonly. Andreas Maurer. 2006. The Rademacher complexity
Theoretically analyzing the superior perfor- of linear transformation classes. @OLT'06 pages

mance of EA and EA++ and providing gener- 65-78. Pittsburgh, Pennsylvania.

alization guarantees is an interesting line of fu-5 o Rosenberg and P. L. Bartlett. 2007. The

ture work. One approach would be to model Rademacher complexity of co-regularized kernel

the feature sharing approach in terms of co- classes. IIRISTATS'07San Juan, Puerto Rico.

regularization; an idea that originated in theV_k sindhwani and David S. R b 2008
.. . . IKas Sinanwani an avi . osenperg. .

context of muItIVIGW Ie_arnlng and for which An RKHS for multi-view learning and manifold

some theoretical analysis has already been done co-regularization.  INICML'08, pages 976-983,

(Rosenberg and Bartlett, 2007; Sindhwani and Helsinki, Finland.
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