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Abstract not permit an efficient evaluation during the com-
putation of the analyses. These features are com-

similar to (Huang and Chiang, 2005) for puted using individual analyses from said approx-
finding then best derivations in éweighted imation, leading to a reranking amongst them.

hypergraph. We prove the correctness and (2) Spurious ambiguity: many models produce
termination of the algorithm and we show analyses which may be too fine-grained for further

experimental results concerning its run-  Processing (Li etal., 2009). As an example, con-
time. Our work is different from the afore- sider context-free grammars, where several left-

mentioned one in the following respects: most derivations may exist for the same terminal
we consider labeled hypergraphs, allowing string. The weight of the terminal string is ob-

for tree-based language models (Maletti tained by summing over these derivations. The
and Satta, 2009): we specifically handle n best leftmost derivations may be used to approx-

the case of cyclic hypergraphs; we admit ~ IMate this sum. .

structured weight domains, allowing for In this paper, we consider the case where the
multiple features to be processed; we use finite, compact representation has the form of a
the paradigm of functional programming weighted hypergraph (V\_/ith_labeled hyperedges)
together with lazy evaluation, achieving and the analyses are derivations of the hypergraph.

We derive and implement an algorithm

concise algorithmic descriptions. This covers many parsing appli(_:ations (Klein gnd
) Manning, 2001), including weighted deductive
1 Introduction systems (Goodman, 1999; Nederhof, 2003), and

In statistical natural language processing, proba@lso applications in machine translation (May and
bilistic models play an important role which can Knight, 2006).
be used to assign to some input sentence a set of In the nomenclature of (Huang and Chiang,
analyses, each carrying a probability. For instance2005), which we adopt here, a derivation of a hy-
an analysis can be a parse tree or a possible tranBergraph is a tree which is obtained in the follow-
lation. Due to the ambiguity of natural language,ing way. Starting from some node, an ingoing hy-
the number of analyses for one input sentence caeredge is picked and recorded as the label of the
be very large. Some models even assign an infinitoot of the tree. Then, for the subtrees, one con-
number of ana|yses to an input sentence. tinues with the source nodes of said hyperedge in

In many cases however, the set of analyses caifie same way. In other words, a derivation can be
in fact be represented in a finite and compact waydnderstood as an unfolding of the hypergraph.
While such a representation is space-efficient, it The n-best-derivations problem then amounts
may be incompatible with subsequent operationsto finding n derivations which are best with re-
In these cases a finite subset is used as an approxPect to the weights induced by the weighted hy-
imation, consisting of best analyses, i. @.anal-  pergrapht Among others, weighted hypergraphs
yses with highest probability. For example, thiswith labeled hyperedges subsume the following
approach has the following two applications. two concepts.

(1) Reranking: when log-linear models (Och () probabilistic context-free grammars (pcfgs).

and Ney, 2002) are employed, some features may—7————— . L
7}/ ) ploy INote that this problem is different from the-best-
* This research was financially supported by DFG VO hyperpaths problem described by Nielsen et al. (2005), as

1101/5-1. already argued in (Huang and Chiang, 2005, Section 2).
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In this case, nodes correspond to nonterminaldyest-derivations problem can be solved efficiently
hyperedges are labeled with productions, and thby first solving thel-best-derivation problem and
derivations are exactly the abstract syntax treethen extending that solution in a lazy manner.
(ASTSs) of the grammar (which are closely relatedHuang and Chiang assume weighted unlabeled hy-
the parse trees). Note that, unless the pcfg is urpergraphs with weights computed in the reals, and
ambiguous, a given word may have several corthey require the weight functions to be monotone.
responding ASTs, and its weight is obtained by Moreover they assume that thd-best-
summing over the weights of the ASTs. Hence,derivation problem be solved using the Viterbi
the n best derivations need not coincide with thealgorithm, which implies that the hypergraph must
n best words (cf. application (2) above). be acyclic. However they conjecture that their
(1) weighted tree automata (wta) (Alexandrakis second phase also works for cyclic hypergraphs.
and Bozapalidis, 1987; Berstel and Reutenauer, e Pauls and Klein (2009) propose a variation
1982; Esik and Kuich, 2003; Fulop and Vogler, of the algorithm of Huang and Chiang (2005) in
2009). These automata serve both as a tree-basdich thel-best-derivation problem is computed
language model and as a data structure for theia an A'-based exploration of the 1-best charts.
parse forests obtained from that language model In this paper, we also present an algorithm
by applying the Bar-Hillel construction (Maletti for solving then-best-derivations problem. Ulti-
and Satta, 2009). Itis well known that context-freemately it uses the same algorithmic ideas as the
grammars and tree automata are weakly equivene of Huang and Chiang (2005); however, it is
alent (Thatcher, 1967Fsik and Kuich, 2003). different in the following sense:
However, unlike the former formalism, the latter 1. we consider labeled hypergraphs, allowing
one has the ability to model non-local dependenfor wta to be used in parsing;
cies in parse trees. 2. we specifically handle the case of cyclic
In the case of wta, nodes correspond to statedlypergraphs, thus supporting the conjecture of
hyperedges are labeled with input symbols, andiuang and Chiang; for this we impose on the
the derivations are exactly the runs of the automaweight functions the same requirements as Knuth
ton. Since, due to ambiguity, a given tree mayand use his algorithm;
have several accepting runs, thé&est derivations 3. by using the concept of linear pre-orders (and
need not coincide with the best trees. As for not only linear orders on the set of reals) our ap-
the pcfgs, this is an example of spurious ambigufproach can handle structured weights such as vec-
ity, which can be tackled as indicated by appli-tors over frequencies, probabilities, and reals;
cation (2) above. Alternatively, one can attempt 4. we present our algorithm in the framework
to find an equivalent deterministic wta (May and of functional programming (and not in that of im-
Knight, 2006; Biichse et al., 2009). perative programming); this framework allows to
Next, we briefly discuss four known algorithms decribe algorithms in a more abstract and concise,
which solve then-best-derivations problem or Yet natural way;
subproblems thereof. 5. due to the lazy evaluation paradigm often
e The Viterbi algorithm solves thel-best- found in functional programming, we obtain the
derivation problem for acyclic hypergraphs. It is laziness on which the algorithm of Huang and Chi-

based on a topological sort of the hypergraph. ~ @nd (2005) is based for free;

« Knuth (1977) generalizes Dijkstra’s algorithm 6. e>§pI0|t|ng the abstract level of description
(for finding the single-source shortest paths in a(see pomt 4), we are able tq prove the correctness
graph) to hypergraphs, thus solving the case 1 and termination OT our algorlthm.. _ _
even if the hypergraph contains cycles. Knuth as- Atthe e.nd of this paper, we wil d's‘?uss expert-
sumes the weights to be real numbers, and he r&€Nts which have been performed with an imple-
quires weight functions to be monotone and Supementatlion of our algorithm in the functional pro-
rior in order to guarantee that a best derivation ex9"@mMming language ASKELL.
ists. (The superiority property corresponds to Di- L
jkstra’s requirement that edge weights—or, more2 The n-best-derivations problem
generally, cycle weights—are nonnegative.) In this section, we state the-best-derivations

e Huang and Chiang (2005) show that the problem formally, and we give a comprehensive
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example. First, we introduce some basic notions.

Trees and hypergraphs The definition of
ranked trees commonly used in formal tree lan-
guage theory will serve us as the basis for defining
derivations.

A ranked alphabeis a finite se (of symbol$
where every symbol carriesrank (a nonnegative
integer). By~(*) we denote the set of those sym-
bols having ranki. The set of trees oveE, de- o Hy = {e1,e2,e3(e1), e3(e2), es(es(er)),. .. }
noted byT’;, is the smallest sef’ such that for and

(k)
everyk € N, o € YW and&y,..., & € T, o Hy — es(Hy,H)) U es(Hy) where, e.g.,

2 (0) - : i
EISO.U(&’”'B&“) < E for o ke > Nwe ab es(Hy, Hy) is the top-concatenation df;,
reviateo() by o. For everyk € N, o € H, with ey, and thus

Figure 1: Hypergraph of Example 1.

»*) and subsetdy,..., T, C Tx we define
the top-concatenation (withr) o (77, ..., ;) = eq(H1,Hy) = {ea(e1,e1), ea(er, e2),
{o(1, &) [ & €Th,. ., & € Ti ) esler,es(er)), ea(es(er),er), ... } .
A XY-hypergraphis a pairH = (V, E) where _ o
V is a finite set (ofverticesor node$ and E C Nextwe give an example of ambiguity in hyper-

V*x ¥ x V is a finite set (ohyperedgessuch that 9raphs with labeled hyperedges. Suppose Hhat
for every (v; ... v, 0,v) € E we have thar € contains an addltlon_al hypere.dg@. = (0,7,0).
(k) 3 We interpretE as a ranked alphabet where ThenHo would contain the derivations; (es(e1))
the rank of each edge is carried over from its labef"d €5 (¢3(e1)), which describe the same-tree,
in 3. The family(H, | v € V) of derivations off ~ ViZ- 7(7(a)) (obtained by the node-wise projec-
is the smallest family P, | v € V) of subsets tion to the second component). 0
of Ty such thate(P,,,...,P, ) € P, for every Inthe sequel, lel = (V, E) be aX-hypergraph.
e=(vy...v,0,0) € E.

A 3-hypergraph (V, E) is cyclic if there
are  hyperedges (vf...v} ,o1,0'), ...,
(vi...v},01,0") € E such thate’~! occurs

Ordering Usually an ordering is induced on the
set of derivations by means of probabilities or,
more generally, weights. In the following, we will

abstract from the weights by using a binary rela-

invi... v foreveryje{2,....0} andv' occurs  tion < directly on derivations, where we will in-
invy ...up . Itis calledacyclicif itis not cyclic.  terpret the fact; 3 & as % is better than or
Example 1 Consider the ranked alphab& =  €qual tog".

»Our®Ous@ with 2@ = {a, 8}, 21 = {4},  Example 2 (Ex. 1 contd.) First we show how an
and ©® = {s}, and theX-hypergraphH = ordering is induced on derivations by means of
(V, E) where weights. To this end, we associate an operation

over the seRR of reals with every hyperedge (re-
specting its arity) by means of a mappitg

o [/ = {(E,Oé, 1),(5757 1)7(17’77 1)7(117070)7 9(61)() =4 9(62)() =3

(L,7,0)}.
_ _ _ CO(es)(z1) =xz1+1  O(ea)(z1,22) = 21 + 22
A grap_hlca_tl representatlon_of this hypergraph _|39(€5>($1> — 2405
shown in Fig. 1. Note that this hypergraph is cyclic
because of the edde, v, 1). The weighth(§) of a tree¢ € Ty is obtained by
We indicate the derivations d@f, assuming that interpreting the symbols at each node uging. g.
e1,...,es are the edges i in the order given h(ez(ez2)) = 6(e3)(0(e2)()) = O(e2)() +1 =4.
above: Then the natural ordex on R induces the bi-
>The termo (¢1, . . ., &) is usually understood as a string nary relation3 over Tx as 'fO”OWS: for every
composed of the symba¥, an opening parenthesis, the §1,& € Tk we letéy 3 & iff h(§1) < h(&2),
string¢,, a comma, and so on. _ meaning that trees with smaller weights are con-
The hypergraphs defined here are essentially nondeter-.d d bett This i th h |
ministic tree automata, whefié is the set of states anfl is Sl _ere e er ( _'S IS, e_' g., tné case when calcu-
the set of transitions. lating probabilites in the image of log z.) Note

e V={0,1} and
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that we could just as well have definggwith the Before we state the-best-derivations problem

inverted order. formally, we define the operatiomin,,, which
Since addition is commutative, we obtain maps every subséf of T to the set of all se-
for every 1,& € Tg that h(eq(&1,62)) =  quences oh best elements df’. To this end, let
h(es(€2,&1)) and thuses (€1, &2) 3 ea(€2,61) and T C Ty andn < |T|. We definemin, (T") to be
vice versa. Thus, for two different trees ({1,&2)  the set of all sequencés,, ... ,¢,) € T" of pair-

andey (&9, £1)) having the same weights should  wise distinct elements such th@gt = ... 3 &, and
not prefer any of them. That isg need not be for everyé € T\ {&1,...,&} we have, = €.
antisymmetric. For everyn > |T'| we setmin, (1) = min (7).
As another example, the mappifigcould as-  In addition, we setin<,(T) = [J"_, min; (7).
sign to each symbol an operation over real-valuegz-best-derivations problem The  n-best-
vectors, where each component represents one. ot :

. . _derivations problemamounts to the following.
feature of a log-linear model such as frequencies,
probabilities, reals, etc. Then the ordering couldGiven a X-hypergraphHd = (V, E), a vertexv €
be defined by means of a linear combination ofthe  V/, and a linear pre-order on T fulfilling

feature weights. o SP and CP,

We use the concept of a linear pre-order to capgompute an element ofnin,, (H,).
ture the orderings which are obtained this way.
Let S be a set. Apre-order (onS) is a binary 3 Functional Programming

relations < 5 x 5 such that ()s = s for ev- We will describe our main algorithm as a func-
erys € S (reflexivity) and (i) s1 < so andss = s d

. . : tional program. In essence, such a program is a
implies s; = s3 for everysy, so,s3 € S (transi- brog prog

. ~ . ; . m of (recursiv ions th fin V-
tivity). A pre-order= is calledlinear if s1 = so syste o (recursive) equ.at ons that defines se
: eral functions (as shown in Fig. 2). As a conse-
or so 3 s1 for everysy, s, € S. Forinstance, the ) . .
. . . ) . guence the main computational paradigm for eval-
binary relations on Ty as defined in Ex. 2 is a : o .
~ uating the applicatior{f a) of a functionf to an

linear pre-order. . . .
. ; . . argumenta is to choose an appropriate defining
We will restrict our considerations to a class .
equationf x = r and then evaluatéf a) tor’

of linear pre-orders which admit efficient algo- ~'. . . -
. . . .~ which is obtained front by substituting every oc-
rithms. For this, we will always assume a lin-

currence of by a.

ear pre-orders with the following two properties We assume dazy (and in particular,call-by-
(cf. Knuth (1977)) ) : )

need evaluation strategy, as in the functional pro-
SP (subtree property For everye(¢,...,&,) € 9ramming language KsKELL. Roughly speak-

Tp andi € {1,....k} we have¢ = ing, this amounts to evaluating the arguments of
e(€1,... &) 5 a function only as needed to evaluate the its body
(i.e. for branching). If an argument occurs multi-
CP (compatibility) For every paire({1,...,&k),  ple times in the body, it is evaluated only once.
e(&l,...,&) € Tp with & 2 &, ..., We use HASKELL notation and functions for
& 3 &, we have thate(éy,...,&) T dealing with lists, i. e. we denote the empty list by
e(&1y -5 &) [1 and list construction by:xs (where an ele-

mentx is prepended to a lists), and we use the
functionshead (line 01),tail (line 02), andtake
(lines 03 and 04), which return the first element in
In the sequel, leK be a linear pre-order a Iistz a list withput its first element, and a prefix
on Ty, fulfilling SP and CP. of a list, respectively. o _

In fact, the functions shown in Fig. 2 will be

*Originally, these properties were called “superioritytlan ysed in our main algorithm (cf. Fig. 4). Thus,
“monotonicity” because they were viewed as properties of

the weight functions. We use the terms “subtree property’V€ explain the_ functiongerge _(Imes 0_5_07) ?nd
and “compatibility” respectively, because we view them ase(11, .. .,1;) (lines 08-10) a bit more in detail.
properties of the linear pre-order. The merge function takes a sef of pairwise

5This strong property is used here for simplicity. It suf- . . . . L .
fices to require that for every € V and pairé, ¢’ ¢ H, we  disjoint lists of derivations, each one in ascend-

have¢ < ¢’ if € is a subtree of’. ing order with respect tg, and merges them into

It is easy to verify that the linear pre-ordgrof
Ex. 2 has the aforementioned properties.
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-- standard Haskell functions: list deconstructors, tgkeration
01 head (x:xs) = x
02 tail (x:xs) =
03 take n xs = [] ifn == 0o0rxs == []
04 take n xs = (head xs):take (n-1) (tail xs)

Xs

-- merge operation (lists id should be disjoint)
05 merge £ = [] if L\{[1}=0
06 merge £ = m:merge ({tail 1|1€ £, 1 != [], head 1 == m} U
{1]1€£,1 =[], head 1 != m})
07 wherem = min{head 1|1 € £, 1 !'= [1}

-- top concatenation
08 e(ly,...,1%) = [ if 1, == [1 forsome: € {1,...,k}
09 e(1i,...,1;) = e(head 1y,...,head 1j):merge {e(1},...,1}) i€ {1,...,k}}
1, if j <i
10 wherel’ = ¢ tail 1;  if j =3
[head 1;1 ifj >4

Figure 2: Some useful functions specified in a functionagprmming style.

one list with the same property (as known from theobtained by evaluating the term
merge sort algorithm).

Note that the minimum used in line 07 is based take n (p v)
on the linear pre-orders. For this reason, it

need not be uniquely determined. However, in 8y heretake is specified in lines 03-04 of Fig. 2.

implementation this function is deterministic, de- s what is left to be done is to specifyappro-
pending on the the data structures. priatély.

The functione(14, . ..,1x) implements the top-
coqcatenatlon witle on lists of derivations. Itis 44 A provisional specification ofp
defined for everye = (vy...v;,0,v) € E and
takes listsly, ..., 1; of derivations, each in as- Consider the following provisional specification
cending order as fatierge. The resulting list is  of p:

also in ascending order.
p v = merge {e(p vi,...,p Vi) |
e=(v1...v5,0,0) € E} ()

4 Algorithm .
where the functionsierge ande(14,...,1;) are

specified in lines 05-07 and lines 08-10 of Fig. 2,

In this section, we develop our algorithm for solv- A . e
. S . respectively. This specification models exactly the
ing the n-best-derivations problem. We begin by , =~ :

trivial equation

motivating our general approach, which amounts
to solving thel-best-derivation problem first and
then extending that solution to a solution of the H, = U e(Hy,, ..., Hy,)
best-derivations problem. e=(v1...0,0,0)EE

It can be shown that for everyn > n, the
setmin, (H,) is equal to the set of all prefixes of for everyv € V, where the union and the top-
length . of elements ofmin,,(H,). According concatenation have been implemented for lists via
to this observation, we will develop a functign the functionsnerge ande(1y, ... ,1;).
mapping every € V to a (possibly infinite) list This specification is adequate H is acyclic.
such that the prefix of length is in min, (H,) For cyclic hypergraphs however, it can not even
for everyn. Then, by virtue of lazy evaluation, a solve thel-best-derivation problem. To illustrate
solution to then-best-derivations problem can be this, we consider the hypergraph of Ex. 2 and cal-

50



culaté We can exploit this knowledge in a program by
keeping a set of visited nodes, taking care not to

take 1 (p 1) consider edges which lead us back to those nodes.
= (head (p 1)):take 0 (tail (p 1)) (04) Consider the following function:
= head (p 1) (03) b v U = minfe(b vi U’,..., b v U’)|
= head (merge {e1(),ea()es(p 1)} ) e=(v...0,0,0) € B,
‘ {v1,...,0:} NV’ =0}
= min{head e;(),head ez(),head e3(p 1)} where U’ = U U {v}
(01,096,090, is th f visited nodes. Th
. e argument is the set of visited nodes. e
= min{head e;(),head e3(), es(head (p 1()8;) termb v 0 evaluates to a minimal element A,

or tomin () if H, = (). The problem of this divide-

Note that the infinite regress occurs because th@nd-conquer (or top-down) approach is that man-
computation of the head elemeantad (p 1) de- aging a separate s#tfor every recursive call in-
pends on itself. This leads us to the idea ofcurs abig overhead in the computation.

“pulling” this head element (which is the solu- This overhead can be avoided by using a
tion to the1-best-derivation problem) “out” of the dynamic programming (or bottom-up) approach
merge in(1). Applying this idea to our particular where each node is visited only once, ar_md nodes
example, we reach the following equation fort: ~ aré visited in the order of their respective best

derivations.
P 1=ey: merge {e1(),es(p 1)} To be more precise, we maintain a famjlg, |
because, is the best derivation i/;. Then, in v € V) of already found best derivations (where
order to evaluateerge we have to compute P, € min<;(H,) and initially empty) and a set’

of candidate derivations, where candidates for all
vertices are considered at the same time. In each
iteration, a minimal candidate with respecttds
selected. This candidate is then declared the best
derivation of its respective node.

The following lemma shows that the bottom-up
ea: merge {e1(),es(p 1)} approach is sound.

= ez er: merge {tail (), es(p 1)} Lemma 3 Let(P, | v € V) be a family such that
= et e1: eg(er): merge {tail es(p 1)} P, € ming (H,). We define

C= Ue:(vl...vk,a,v)EE, G(PUI, cee 7-ka) .

v =

min{head e;(),head e3(p 1)}

= min{e;, eg(head (p 1))}

= min{es, es(ez2)}.
Sinceh(e;) = h(es(e2)) = 4, we can choose any
of them, saye;, and continue:

Generalizing this example, the functiprcould

be specified as follows: _ _
Then (i) for everyt € UveV,Pv:(Z) H, there is a

pl=1=01: merge {cip} () ¢ € ¢ such thate’ < ¢, and (i) for everys € V
whereb 1 evaluates the 1-best derivation By and¢ € C N H, the following implication holds:
and exp “somehow” calculates the next bestif ¢ < ¢’ for everye’ € C, then{ € min; (H,).
derivations. In the following subsection, we elabo- 5, algorithm based on this lemma is shown in
rate this approach. First, we develop an algorithnjg 3 s key functioniter uses the notion of ac-
for solving thel-best-derivation problem. cumulating parameters. The parametds a map-
ping corresponding to the familyP, | v € V') of
the lemma, i.e.q v = P,; the parametet is a
Using SP and CP, it can be shown that for ev-et corresponding t6'. We begin in line 01 with
eryv € V such thatd, # { there is a mini-  he functionq0 mapping every vertex to the empty

mal derivation inf,, which does not contain any |ist. According to the lemma, the candidates then

words, it is not necessary to consider cycles when as |ong as there are candidates left (line 04),

4.2 Solving thel-best-derivation problem

solving thel-best-derivation problem. in a recursive call of.ter the parameteq is up-
®Please note that () is an application of the function in dated with _the newly found PaIQ’v, [€]) of ver-
lines 08—10 of Fig. 2 while is a derivation. tex v and (list of) best derivatiog (expressed by
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Require X-hypergraphH = (V, E), linear pre-  tions not given there, please refer to Fig. 3 (func-

order fulfilling SP and CP. tion b) and to Fig. 2 (functionserge, tail, and
Ensure b v € min(H,) for everyv € V  the top-concatenation). In particular, line 02 of
such that if b v == [e(&1,...,&)] for some  Fig. 4 shows the general way of “pulling out” the
e=(v1...v,0,0) € B, thend v; == [§] for  head element as it was indicated in Section 4.1 via
everyi € {1,... k}. an example. We also remark that the definition of
01 b = iter q0 {(c,,v) € E|a e X} the top-concatenation (lines 08-09 of Fig. 2) cor-
02 q0 v =[] _responds ;[o the way ir(]jWhhiFIhUIthk was sped up
03 iter q 0 = q in Fig. 4 of (Huang and Chiang, 2005).
04 iter q c = iter (q//(v,[£]1)) <’ Theorem 4 The algorithm in Fig. 4 is correct with
05 where ' respect to its require/ensure specification and it
06 ¢ =mincand{elH, terminates for every input.
07 c’ = Ue:(vl...vk,a,U)EE e(q Vi,...59 Vk)

qv==1[ PROOF (SKETCH). We indicate how induction on

) ) ) ~ can be used for the proof. if = 0, then the statement
Figure 3: Algorithm solving the 1-best-derivation s trivially true. Letn > 0. If b v == [], then the

problem. statement is trivially true as well. Now we consider the
converse case. To this end, we use the following three
_ _ auxiliary statements.
q// (v, [£])) and the candidate set is recomputed (1)take n (merge {li,...,1:}) =

accordingly. When the candidate set is exhaustefyxe n (merge {take n 1;,...,take n 1;}),
(line 03), theng is returned. (2)take n e(li,...,1;) =

Correctness and completeness of the algorithmgake n e(take n 1i,... take n 1),
follow from Statements (i) and (i) of Lemma 3,  (3)take n (taill) = tail (take (n+1) 1).
respectively. Now we show termination. In every ging these statements, line 04 of Fig. 2, and line 02
iteration a new next best derivation is determinecf Fig. 4, we are able to “pull” theake of take n (p
and the candidate set is recomputed. This set only) “into” the right-hand side of v, ultimately yield-
contains candidates for verticese V such that ing terms of the forntake n (p v;) in the first line

q v == [1. Hence, after at mogt/| iterations ~Of themerge application andtake (n-1) (p vj) in
the candidates must be depleted, and the algorith#fe Sécond one.
terminates. Then we can show the following statement by induc-

We note that the algorithm is very similar to that Flon onm (note that then is still fixed from the outer

. induction): for everym € N we have that if the tree
of Knuth (1977). However, in contrast to the Iatter,in b v has at most heigh,, thentake n (p v) ¢

(i) it admits H, = @ for somev € V and (i) it i, (f7,). To this end, we use the following two aux-
computes some minimal derivation instead of thejiary statements.

weight of some minimal derivation. (4) For every sequence of pairwise disjoint sub-
_ _ _ sets Pp,...,P, C U,cy Ho, sequence of nat-

Runtime According to the literature, the run- yra| numbersn,,....n, € N, and listsi; ¢

time of Knuth's algorithm is inO(|E| - log|V|)  min,, (P\), ..., I € min, (P) such that

(Knuth, 1977). This statement relies on a number; > n for everyj € {1,...,k} we have that

of optimizations which are beyond our scope. Wetake n (merge {l1,...,lx}) € min, (PU...UP).
just sketch two optimizations: (i) the candidate set (5) For every edge = (v; ... v, 0,v) € E, subsets
can be implemented in a way which admits ob-F1, - .-, Px € U,y Ho, and listsly € min, (P1), ...,
taining its minimum inO(log|C|), and (ii) for the ¢ € min,(Fx) we have thatake n e(ly,....l) €
computation of candidates, each edge needs to B8 (¢(F1:- - Fk)).

considered only once during the whole run of the Using these statements, it remains to show that

| ithm. {e(fla o 7§k)} © minn—l ((e(Hma ceey Huk) \
adorinm {61 6)) U Upsee(Hopsooo Hy))  C
min, (H,) whereb v = [e(&,...,&)] and o

4.3 Solving the n-best-derivations problem denotes language concatenation. This can be shown by

Being able to solve thé-best-derivation problem, using the definition ofnin,,.
we can now refine our specification pf The re- Termination of the algorithm now follows from the
fined algorithm is given in Fig. 4; for the func- factthatevery finite prefix of vis well defined. m
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Require X-hypergraphd = (V, E), linear pre-orders fulfilling SP and CP.
Ensure (take n (p v)) € min,(H,) for everyv € V andn € N.
01 pv =[] if bv==1[]
02 pv =e(,...,&) merge ({tail e(p vy,...,p v}) | e=(v1...v5,0,v) € E} U
{€(p vi,...,p v},) | € = (v]...v},0",v) € E, ¢ #e})
if bv == [6(51, ce ,fkﬂ

Figure 4: Algorithm solving thex-best-derivations problem.

4.4 Implementation, Complexity, and n totaltime [s] time forn-best part [s]
Experiments 1 8.713 —
We have implemented the algorithm (consisting 25000 10.832 2.119
. . : 50000 12.815 4.102
of Figs. 3 and 4 and the auxiliary functions of 100000 16.542 7 739
Fig. 2) in HASKELL. The implementation is : :
200000 24.216 15.503

rather straightforward except for the following
three points. Table 1: Experimental results
(1) Weights: we assume that is defined by
means of weights (cf. Ex. 2), and that comparing _
these weights is ifO(1) (which often holds be- ©N the heap as the maximum rankRinWe assume

cause of limited precision). Hence, we store withthiS to be constant. Moreover, at mosteriva-
each derivation its weight so that comparison actions are computed for each node, that is, at most
cording to= is in O(1) as well. |V|-nintotal. Hence, the size of the heap of a node
h-is in O(|E[+n). For each derivation we compute,
we have to pop the minimal element off the heap
(cf. line 07 in Fig. 2), which isirO (log(|E| +n)),

and we have to compute the union of the remaining
|1']1_eap with the newly spawned candidates, which

(2) Memoization: we use a memoization tec
nique to ensure that no derivation occurringiry
is computed twice.

(3) Merge: themerge operation deserves some
consideration because it is used in a nested fas

ion, yielding trees ofmerge applications. This has the_same compIeX|_ty.
leads to an undesirable runtime complexity be- We give another estimate for the total number

cause these trees need not be balanced. Thus, i derivations computed by the algorithm, which
stead of actually computing thesrge in p and in is based on thg foI_Iowmg observation. When pop-
the top-concatenation, we just return a data strud?ind @ new derivatiog off the heap, new next best

ture describing what should be merged. That dat§andidates are computed. This involves comput-
structure consists of a best element and a list of'd & mostas many new derivations as the number

lists of derivations to be merged (cf. lines 06 and®f N0des of, because for each hyperedge occur-
09 in Fig. 2). We use a higher-order function to"n9 I ¢ we have to consider the next best alter-

manage these data structures on a heap, perforfjative. Since we pop off at mostelements from
ing the merge in a nonnested way the heap belonging to the target node, we arrive at

the estimatel - n, whered is the size of the biggest

Runtime Here we consider the-best part of the derivation of said node.
algorithm, i. e. we assume the computation of the A slight improvement of the runtime complex-
mappingb to take constant time. Note however ity can be obtained by restricting the heap size to
that due to memaoizatiom,is only computed once. n best elements, as argued by Huang and Chiang
Then the runtime complexity of our implementa- (2005). This way, they are able to obtain the com-
tionisinO(|E|+|V|-n-log(|E|+n)). Thiscan plexity O(|E|+d - n -logn).
be seen as follows. We have conducted experiments on an Intel

By line 02 in Fig. 4, the initial heaps in the Core Duo 1200 MHz with 2 GB of RAM using
higher-order merge described under (3) have a taa cyclic hypergraph containing 671 vertices and
tal of |[E| elements. Building these heaps is thus12136 edges. The results are shown in Table 1.
in O(|E|). By line 09 in Fig. 2, each newly found This table indicates that the runtime of thebest
derivation spawns at most as many new candidatgsart is roughly linear im.
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