
ACL 2010

ATANLP 2010

2010 Workshop on Applications of Tree Automata
in Natural Language Processing

Proceedings of the Workshop

16 July 2010
Uppsala University
Uppsala, Sweden

Production and Manufacturing by
Taberg Media Group AB
Box 94, 562 02 Taberg
Sweden

c©2010 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-79-4 / 1-932432-79-5

ii

Preface

We are pleased to present the proceedings of the ACL 2010 Workshop on Applications of Tree Automata
in Natural Language Processing, which will be held on July 16 in Uppsala, Sweden, following the 48th
Annual Meeting of the Association for Computational Linguistics (ACL).

The theory of tree automata has always had a close connection with natural language processing. In
the 1960s, computational linguistics was the major driving force for the development of a theory of tree
automata. However, the number of successful applications of this theory to natural language processing
remained small during the 20th century. This situation has now changed. Applications of tree automata
in natural language processing can be found in work on topics as diverse as grammar formalisms,
computational semantics, language generation, and machine translation. Researchers in natural language
processing have recognized the usefulness of tree automata theory for solving the problems they are
interested in, and theorists are inspired by the resulting theoretical questions.

The goals of this workshop are to provide a dedicated venue for the presentation of work that relates the
theory of tree automata to natural language processing, and to create a forum where researchers from
the two areas can meet and exchange ideas. Specifically, the workshop aims at raising the awareness
for theoretical results useful for applications in natural language processing, and at identifying open
theoretical problems raised by such applications.

We are very happy that Kevin Knight (ISI/University of Southern California, USA), certainly the most
recognized ambassador for tree automata techniques in machine translation, agreed to give one of his
stimulating invited lectures.

For the workshop, authors were invited to submit full papers and proposals for quickfire presentations,
the latter being a means for triggering discussions and an exchange of ideas. After a thorough reviewing
process with three reviews per full paper, six full papers and four quickfire presentations were accepted
for the workshop. The quality and diversity of the papers accepted ensures an interesting and inspiring
workshop that we look forward to.

We thank the members of the program committee for their support, and in particular for being careful
reviewers of the papers submitted. Furthermore, we would like to thank the program chairs, Sandra
Carberry and Stephen Clark, as well as the workshop chairs, Pushpak Bhattacharyia and David Weir, for
their friendly and professional assistance.

We hope that all participants of the workshop will experience an inspiring event characterized by
curiosity and an open-minded atmosphere, and that all readers of these proceedings will gain new insights
that make a difference.

Frank Drewes
Marco Kuhlmann

May 2010

iii

Organizers:

Frank Drewes, Umeå University, Sweden
Marco Kuhlmann, Uppsala University, Sweden

Program Committee:

Parosh Aziz Abdulla, Uppsala University, Sweden
Leonor Becerra-Bonache, Yale University, USA
Chris Callison-Burch, Johns Hopkins University, USA
David Chiang, ISI/University of Southern California, USA
Loek Cleophas, University of Pretoria, South Africa, and Eindhoven University of Technology, the
Netherlands
Trevor Cohn, University of Sheffield, UK
François Denis, Université de Provence, France
Johanna Högberg, Umeå University, Sweden
Liang Huang, ISI/University of Southern California, USA
Stephan Kepser, codecentric AG, Germany
Alexander Koller, Saarland University, Germany
Andreas Maletti, Universitat Rovira i Virgili, Spain
Sebastian Maneth, NICTA and University of New South Wales, Australia
Jonathan May, ISI/University of Southern California, USA
Brink van der Merwe, University of Stellenbosch, South Africa
Mark-Jan Nederhof, University of St Andrews, UK
Joachim Niehren, INRIA, France
Kai Salomaa, Queen’s University, Canada
Anoop Sarkar, Simon Fraser University, Canada
Giorgio Satta, University of Padua, Italy
Stuart Shieber, Harvard University, USA
Magnus Steinby, University of Turku, Finland
Marc Tommasi, INRIA, France
Heiko Vogler, Technische Universität Dresden, Germany

Invited Speaker:

Kevin Knight, ISI/University of Southern California, USA

v

Table of Contents

Preservation of Recognizability for Synchronous Tree Substitution Grammars
Zoltán Fülöp, Andreas Maletti and Heiko Vogler . 1

A Decoder for Probabilistic Synchronous Tree Insertion Grammars
Steve DeNeefe, Kevin Knight and Heiko Vogler . 10

Parsing and Translation Algorithms Based on Weighted Extended Tree Transducers
Andreas Maletti and Giorgio Satta . 19

Millstream Systems – a Formal Model for Linking Language Modules by Interfaces
Suna Bensch and Frank Drewes . 28

Transforming Lexica as Trees
Mark-Jan Nederhof . 37

n-Best Parsing Revisited
Matthias Büchse, Daniel Geisler, Torsten Stüber and Heiko Vogler . 46

vii

Workshop Program

Friday, July 16, 2010

09:00–09:15 Opening Remarks

09:15–10:30 Invited Talk by Kevin Knight

10:30–11:00 Coffee Break

Full Paper Session 1

11:00–11:30 Preservation of Recognizability for Synchronous Tree Substitution Grammars
Zoltán Fülöp, Andreas Maletti and Heiko Vogler

11:30–12:00 A Decoder for Probabilistic Synchronous Tree Insertion Grammars
Steve DeNeefe, Kevin Knight and Heiko Vogler

12:00–12:30 Parsing and Translation Algorithms Based on Weighted Extended Tree Transducers
Andreas Maletti and Giorgio Satta

12:30–14:00 Lunch Break

Full Paper Session 2

14:00–14:30 Millstream Systems – a Formal Model for Linking Language Modules by Interfaces
Suna Bensch and Frank Drewes

14:30–15:00 Transforming Lexica as Trees
Mark-Jan Nederhof

15:00–15:30 n-Best Parsing Revisited
Matthias Büchse, Daniel Geisler, Torsten Stüber and Heiko Vogler

15:30–16:00 Coffee Break

ix

Friday, July 16, 2010 (continued)

Quickfire Presentations

16:00–16:15 Tree Automata Techniques and the Learning of Semantic Grammars
Michael Minock

16:15–16:30 Do We Really Want a Single Tree to Cover the Whole Sentence?
Aravind Joshi

16:30–16:45 The Tree Automata Workbench ‘Marbles’
Frank Drewes

16:45–17:00 Requirements on a Tree Transformation Model for Machine Translation
Andreas Maletti

17:00–17:30 Discussion

x

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 1–9,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Preservation of Recognizability for
Synchronous Tree Substitution Grammars

Zoltán Fülöp
Department of Computer Science

University of Szeged
Szeged, Hungary

Andreas Maletti
Departament de Filologies Romàniques

Universitat Rovira i Virgili
Tarragona, Spain

Heiko Vogler
Faculty of Computer Science

Technische Universität Dresden
Dresden, Germany

Abstract

We consider synchronous tree substitution
grammars (STSG). With the help of a
characterization of the expressive power
of STSG in terms of weighted tree bimor-
phisms, we show that both the forward and
the backward application of an STSG pre-
serve recognizability of weighted tree lan-
guages in all reasonable cases. As a con-
sequence, both the domain and the range
of an STSG without chain rules are recog-
nizable weighted tree languages.

1 Introduction

The syntax-based approach to statistical machine
translation (Yamada and Knight, 2001) becomes
more and more competitive in machine transla-
tion, which is a subfield of natural language pro-
cessing (NLP). In this approach the full parse trees
of the involved sentences are available to the trans-
lation model, which can base its decisions on this
rich structure. In the competing phrase-based ap-
proach (Koehn et al., 2003) the translation model
only has access to the linear sentence structure.

There are two major classes of syntax-based
translation models: tree transducers and synchro-
nous grammars. Examples in the former class
are the top-down tree transducer (Rounds, 1970;
Thatcher, 1970), the extended top-down tree trans-
ducer (Arnold and Dauchet, 1982; Galley et al.,
2004; Knight and Graehl, 2005; Graehl et al.,
2008; Maletti et al., 2009), and the extended
multi bottom-up tree transducer (Lilin, 1981; En-
gelfriet et al., 2009; Maletti, 2010). The lat-
ter class contains the syntax-directed transduc-
tions of Lewis II and Stearns (1968), the gen-
eralized syntax-directed transductions (Aho and
Ullman, 1969), the synchronous tree substitu-
tion grammar (STSG) by Schabes (1990) and the
synchronous tree adjoining grammar (STAG) by

Abeillé et al. (1990) and Shieber and Schabes
(1990). The first bridge between those two classes
were established in (Martin and Vere, 1970). Fur-
ther comparisons can be found in (Shieber, 2004)
for STSG and in (Shieber, 2006) for STAG.

One of the main challenges in NLP is the am-
biguity that is inherent in natural languages. For
instance, the sentence “I saw the man with the
telescope” has several different meanings. Some
of them can be distinguished by the parse tree,
so that probabilistic parsers (Nederhof and Satta,
2006) for natural languages can (partially) achieve
the disambiguation. Such a parser returns a set
of parse trees for each input sentence, and in
addition, each returned parse tree is assigned a
likelihood. Thus, the result can be seen as a
mapping from parse trees to probabilities where
the impossible parses are assigned the probabil-
ity 0. Such mappings are called weighted tree lan-
guages, of which some can be finitely represented
by weighted regular tree grammars (Alexandrakis
and Bozapalidis, 1987). Those weighted tree
languages are recognizable and there exist algo-
rithms (Huang and Chiang, 2005) that efficiently
extract the k-best parse trees (i.e., those with the
highest probability) for further processing.

In this paper we consider synchronized tree sub-
stitution grammars (STSG). To overcome a techni-
cal difficulty we add (grammar) nonterminals to
them. Since an STSG often uses the nontermi-
nals of a context-free grammar as terminal sym-
bols (i.e., its derived trees contain both termi-
nal and nonterminal symbols of the context-free
grammar), we call the newly added (grammar)
nonterminals of the STSG states. Substitution does
no longer take place at synchronized nonterminals
(of the context-free grammar) but at synchronized
states (one for the input and one for the output
side). The states themselves will not appear in the
final derived trees, which yields that it is sufficient
to assume that only identical states are synchro-

1

nized. Under those conventions a rule of an STSG

has the form q → (s, t, V, a) where q is a state,
a ∈ R≥0 is the rule weight, s is an input tree that
can contain states at the leaves, and t is an output
tree that can also contain states. Finally, the syn-
chronization is defined by V , which is a bijection
between the state-labeled leaves of s and t. We
require that V only relates identical states.

The rules of an STSG are applied in a step-wise
manner. Here we use a derivation relation to define
the semantics of an STSG. It can be understood as
the synchronization of the derivation relations of
two regular tree grammars (Gécseg and Steinby,
1984; Gécseg and Steinby, 1997) where the syn-
chronization is done on nonterminals (or states) in
the spirit of syntax-directed transductions (Lewis
II and Stearns, 1968). Thus each sentential form
is a pair of (nonterminal-) connected trees.

An STSG G computes a mapping τG , called
its weighted tree transformation, that assigns a
weight to each pair of input and output trees,
where both the input and output tree may not con-
tain any state. This transformation is obtained as
follows: We start with two copies of the initial
state that are synchronized. Given a connected tree
pair (ξ, ζ), we can apply the rule q → (s, t, V, a)
to each pair of synchronized states q. Such an ap-
plication replaces the selected state q in ξ by s and
the corresponding state q in ζ by t. All the re-
maining synchronized states and the synchronized
states of V remain synchronized. The result is
a new connected tree pair. This step charges the
weight a. The weights of successive applications
(or steps) are multiplied to obtain the weight of the
derivation. The weighted tree transformation τG
assigns to each pair of trees the sum of all weights
of derivations that derive that pair.

Shieber (2004) showed that for every classical
unweighted STSG there exists an equivalent bi-
morphism (Arnold and Dauchet, 1982). The con-
verse result only holds up to deterministic rela-
belings (Gécseg and Steinby, 1984; Gécseg and
Steinby, 1997), which remove the state informa-
tion from the input and output tree. It is this dif-
ference that motivates us to add states to STSG.
We generalize the result of Shieber (2004) and
prove that every weighted tree transformation that
is computable by an STSG can also be computed
by a weighted bimorphism and vice versa.

Given an STSG and a recognizable weighted
tree language ϕ of input trees, we investigate un-

der which conditions the weighted tree language
obtained by applying G to ϕ is again recognizable.
In other words, we investigate under which condi-
tions the forward application of G preserves rec-
ognizability. The same question is investigated for
backward application, which is the corresponding
operation given a recognizable weighted tree lan-
guage of output trees. Since STSG are symmet-
ric (i.e., input and output can be exchanged), the
results for backward application can be obtained
easily from the results for forward application.

Our main result is that forward application pre-
serves recognizability if the STSG G is output-
productive, which means that each rule of G con-
tains at least one output symbol that is not a state.
Dually, backward application preserves recogniz-
ability if G is input-productive, which is the anal-
ogous property for the input side. In fact, those re-
sults hold for weights taken from an arbitrary com-
mutative semiring (Hebisch and Weinert, 1998;
Golan, 1999), but we present the results only for
probabilities.

2 Preliminary definitions

In this contribution we will work with ranked
trees. Each symbol that occurs in such a tree
has a fixed rank that determines the number of
children of nodes with this label. Formally, let
Σ be a ranked alphabet, which is a finite set Σ
together with a mapping rkΣ : Σ → N that asso-
ciates a rank rkΣ(σ) with every σ ∈ Σ. We let
Σk = {σ ∈ Σ | rkΣ(σ) = k} be the set contain-
ing all symbols in Σ that have rank k. A Σ-tree
indexed by a set Q is a tree with nodes labeled by
elements of Σ ∪ Q, where the nodes labeled by
some σ ∈ Σ have exactly rkΣ(σ) children and the
nodes with labels ofQ have no children. Formally,
the set TΣ(Q) of (term representations of) Σ-trees
indexed by a set Q is the smallest set T such that
• Q ⊆ T and
• σ(t1, . . . , tk) ∈ T for every σ ∈ Σk and
t1, . . . , tk ∈ T .

We generally write α instead of α() for all α ∈ Σ0.
We frequently work with the set pos(t) of po-

sitions of a Σ-tree t, which is defined as fol-
lows. If t ∈ Q, then pos(t) = {ε}, and if
t = σ(t1, . . . , tk), then

pos(t) = {ε} ∪ {iw | 1 ≤ i ≤ k,w ∈ pos(ti)} .

Thus, each position is a finite (possibly empty) se-
quence of natural numbers. Clearly, each position

2

designates a node of the tree, and vice versa. Thus
we identify nodes with positions. As usual, a leaf
is a node that has no children. The set of all leaves
of t is denoted by lv(t). Clearly, lv(t) ⊆ pos(t).

The label of a position w ∈ pos(t) is denoted
by t(w). Moreover, for every A ⊆ Σ ∪ Q, let
posA(t) = {w ∈ pos(t) | t(w) ∈ A} and
lvA(t) = posA(t) ∩ lv(t) be the sets of po-
sitions and leaves that are labeled with an ele-
ment of A, respectively. Let t ∈ TΣ(Q) and
w1, . . . , wk ∈ lvQ(t) be k (pairwise) different
leaves. We write t[w1 ← t1, . . . , wk ← tk] or just
t[wi ← ti | 1 ≤ i ≤ k] with t1, . . . , tk ∈ TΣ(Q)
for the tree obtained from t by replacing, for every
1 ≤ i ≤ k, the leaf wi with the tree ti.

For the rest of this paper, let Σ and ∆ be two
arbitrary ranked alphabets. To avoid consistency
issues, we assume that a symbol σ that occurs in
both Σ and ∆ has the same rank in Σ and ∆; i.e.,
rkΣ(σ) = rk∆(σ). A deterministic relabeling is
a mapping r : Σ → ∆ such that r(σ) ∈ ∆k for
every σ ∈ Σk. For a tree s ∈ TΣ, the relabeled
tree r(s) ∈ T∆ is such that pos(r(s)) = pos(s)
and

(
r(s)

)
(w) = r(s(w)) for every w ∈ pos(s).

The class of tree transformations computed by de-
terministic relabelings is denoted by dREL.

A tree language (over Σ) is a subset of TΣ. Cor-
respondingly, a weighted tree language (over Σ)
is a mapping ϕ : TΣ → R≥0. A weighted tree
transformation (over Σ and ∆) is a mapping
τ : TΣ × T∆ → R≥0. Its inverse is the weighted
tree transformation τ−1 : T∆×TΣ → R≥0, which
is defined by τ−1(t, s) = τ(s, t) for every t ∈ T∆

and s ∈ TΣ.

3 Synchronous tree substitution
grammars with states

Let Q be a finite set of states with a distinguished
initial state qS ∈ Q. A connected tree pair is a
tuple (s, t, V, a) where s ∈ TΣ(Q), t ∈ T∆(Q),
and a ∈ R≥0. Moreover, V : lvQ(s) → lvQ(t) is
a bijective mapping such that s(u) = t(v) for ev-
ery (u, v) ∈ V . We will often identify V with its
graph. Intuitively, a connected tree pair (s, t, V, a)
is a pair of trees (s, t) with a weight a such that
each node labeled by a state in s has a correspond-
ing node in t, and vice versa. Such a connected
tree pair (s, t, V, a) is input-productive and output-
productive if s /∈ Q and t /∈ Q, respectively. Let
Conn denote the set of all connected tree pairs that
use the index setQ. Moreover, let Connp ⊆ Conn

contain all connected tree pairs that are input- or
output-productive.

A synchronous tree substitution grammar G
(with states) over Σ, ∆, and Q (for short: STSG),
is a finite set of rules of the form q → (s, t, V, a)
where q ∈ Q and (s, t, V, a) ∈ Connp. We call
a rule q → (s, t, V, a) a q-rule, of which q and
(s, t, V, a) are the left-hand and right-hand side,
respectively, and a is its weight. The STSG G is
input-productive (respectively, output-productive)
if each of its rules is so. To simplify the following
development, we assume (without loss of general-
ity) that two different q-rules differ on more than
just their weight.1

To make sure that we do not account essentially
the same derivation twice, we have to use a deter-
ministic derivation mode. Since the choice is im-
material, we use the leftmost derivation mode for
the output component t of a connected tree pair
(s, t, V, a). For every (s, t, V, a) ∈ Conn such
that V 6= ∅, the leftmost output position is the
pair (w,w′) ∈ V , where w′ is the leftmost (i.e.,
the lexicographically smallest) position of lvQ(t).

Next we define derivations. The derivation re-
lation induced by G is the binary relation ⇒G
over Conn such that

ξ = (s1, t1, V1, a1)⇒G (s2, t2, V2, a2) = ζ

if and only if the leftmost output position of ξ is
(w,w′) ∈ V1 and there exists a rule

s1(w)→ (s, t, V, a) ∈ G

such that
• s2 = s1[w ← s] and t2 = t1[w′ ← t],
• V2 = (V1 \ {(w,w′)}) ∪ V ′ where
V ′ = {(ww1, w

′w2) | (w1, w2) ∈ V }, and
• a2 = a1 · a.

A sequence D = (ξ1, . . . , ξn) ∈ Connn is a
derivation of (s, t, V, a) ∈ Conn from q ∈ Q if
• ξ1 = (q, q, {(ε, ε)}, 1),
• ξn = (s, t, V, a), and
• ξi ⇒G ξi+1 for every 1 ≤ i ≤ n− 1.

The set of all such derivations is denoted by
Dq
G(s, t, V, a).
For every q ∈ Q, s ∈ TΣ(Q), t ∈ T∆(Q), and

bijection V : lvQ(s)→ lvQ(t), let

τ qG(s, t, V) =
∑

a∈R≥0,D∈Dq
G(s,t,V,a)

a .

1Formally, q → (s, t, V, a) ∈ G and q → (s, t, V, b) ∈ G
implies a = b.

3

o 1
— o ⇒G,lo

σ

e o
6−1

—

σ

o e
⇒G,lo

σ

e α
18−1

—

σ

α e
⇒G,lo

σ

σ

o o

α 36−1

—

σ

α σ

o o

⇒G,lo

σ

σ

o α

α 108−1

—

σ

α σ

α o

⇒G,lo

σ

σ

α α

α 324−1

—

σ

α σ

α α

Figure 1: Example derivation with the STSG G of Example 1.

Finally, the weighted tree transformation com-
puted by G is the weighted tree transformation
τG : TΣ × T∆ → R≥0 with τG(s, t) = τ qSG (s, t, ∅)
for every s ∈ TΣ and t ∈ T∆. As usual, we
call two STSG equivalent if they compute the same
weighted tree transformation. We observe that
every STSG is essentially a linear, nondeleting
weighted extended top-down (or bottom-up) tree
transducer (Arnold and Dauchet, 1982; Graehl et
al., 2008; Engelfriet et al., 2009) without (both-
sided) epsilon rules, and vice versa.

Example 1. Let us consider the STSG G over
Σ = ∆ = {σ, α} and Q = {e, o} where qS = o,
rk(σ) = 2, and rk(α) = 0. The STSG G consists
of the following rules where V = {(1, 2), (2, 1)}
and id = {(1, 1), (2, 2)}:

o→ (σ(o, e), σ(e, o), V, 1/3) (ρ1)

o→ (σ(e, o), σ(o, e), V, 1/6) (ρ2)

o→ (σ(e, o), σ(e, o), id, 1/6) (ρ3)

o→ (α, α, ∅, 1/3) (ρ4)

e→ (σ(e, e), σ(e, e), V, 1/2) (ρ5)

e→ (σ(o, o), σ(o, o), V, 1/2) (ρ6)

Figure 1 shows a derivation induced by G. It can
easily be checked that τG(s, t) = 1

6·3·2·3·3 where
s = σ(σ(α, α), α) and t = σ(α, σ(α, α)). More-
over, τG(s, s) = τG(s, t). If τ qG(s, t, ∅) 6= 0 with
q ∈ {e, o}, then s and t have the same number
of α-labeled leaves. This number is odd if q = o,
otherwise it is even. Moreover, at every position
w ∈ pos(s), the left and right subtrees s1 and s2

are interchanged in s and t (due to V in the rules
ρ1, ρ2, ρ5, ρ6) except if s1 and s2 contain an even
and odd number, respectively, of α-labeled leaves.
In the latter case, the subtrees can be interchanged
or left unchanged (both with probability 1/6).

4 Recognizable weighted tree languages

Next, we recall weighted regular tree grammars
(Alexandrakis and Bozapalidis, 1987). To keep
the presentation simple, we identify WRTG with
particular STSG, in which the input and the out-
put components are identical. More precisely, a
weighted regular tree grammar over Σ and Q (for
short: WRTG) is an STSG G over Σ, Σ, and Q
where each rule has the form q → (s, s, id, a)
where id is the suitable (partial) identity mapping.
It follows that s /∈ Q, which yields that we do not
have chain rules. In the rest of this paper, we will
specify a rule q → (s, s, id, a) of a WRTG sim-
ply by q a→ s. For every q ∈ Q, we define the
weighted tree language ϕqG : TΣ(Q) → R≥0 gen-
erated by G from q by ϕqG(s) = τ qG(s, s, idlvQ(s))
for every s ∈ TΣ(Q), where idlvQ(s) is the iden-
tity on lvQ(s). Moreover, the weighted tree lan-
guage ϕG : TΣ → R≥0 generated by G is defined
by ϕG(s) = ϕqSG (s) for every s ∈ TΣ.

A weighted tree language ϕ : TΣ → R≥0 is
recognizable if there exists a WRTG G such that
ϕ = ϕG . We note that our notion of recognizabil-
ity coincides with the classical one (Alexandrakis
and Bozapalidis, 1987; Fülöp and Vogler, 2009).

Example 2. We consider the WRTGK over the in-
put alphabet Σ = {σ, α} and P = {p, q} with
qS = q, rk(σ) = 2, and rk(α) = 0. The WRTG K
contains the following rules:

q
0.4→ σ(p, α) q

0.6→ α p
1→ σ(α, q) (ν1–ν3)

Let s ∈ TΣ be such that ϕK(s) 6= 0. Then s is a
thin tree with zig-zag shape; i.e., there exists n ≥ 1
such that pos(s) contains exactly the positions:
• (12)i for every 0 ≤ i ≤ bn−1

2 c, and
• (12)i1, (12)i2, and (12)i11 for every integer

0 ≤ i ≤ bn−3
2 c.

The integer n can be understood as the length of
a derivation that derives s from q. Some example

4

α

σ

σ

α α

α

σ

σ

α σ

σ

α α

α

α

weight: 0.6 weight: 0.24 weight: 0.096

Figure 2: Example trees and their weight in ϕG
where G is the WRTG of Example 2.

trees with their weights are displayed in Figure 2.

Proposition 3. For every WRTG G there is an
equivalent WRTG G′ in normal form, in which the
right-hand side of every rule contains exactly one
symbol of Σ.

Proof. We can obtain the statement by a trivial ex-
tension to the weighted case of the approach used
in Lemma II.3.4 of (Gécseg and Steinby, 1984)
and Section 6 of (Gécseg and Steinby, 1997).

5 STSG and weighted bimorphisms

In this section, we characterize the expressive
power of STSG in terms of weighted bimorphisms.
This will provide a conceptually clear pattern for
the construction in our main result (see Theo-
rem 6) concerning the closure of recognizable
weighted tree languages under forward and back-
ward application. For this we first recall tree ho-
momorphisms. Let Γ and Σ be two ranked al-
phabets. Moreover, let h : Γ → TΣ × (N∗)∗
be a mapping such that h(γ) = (s, u1, . . . , uk)
for every γ ∈ Γk where s ∈ TΣ and all leaves
u1, . . . , uk ∈ lv(s) are pairwise different. The
mapping h induces the (linear and complete) tree
homomorphism h̃ : TΓ → TΣ, which is defined by
h̃(γ(d1, . . . , dk)) = s[u1 ← d̃1, . . . , uk ← d̃k]
for every γ ∈ Γk and d1, . . . , dk ∈ TΓ with
h(γ) = (s, u1, . . . , uk) and d̃i = h̃(di) for ev-
ery 1 ≤ i ≤ k. Moreover, every (linear and
complete) tree homomorphism is induced in this
way. In the rest of this paper we will not distin-
guish between h and h̃ and simply write h instead
of h̃. The homomorphism h is order-preserving
if u1 < · · · < uk for every γ ∈ Γk where
h(γ) = (s, u1, . . . , uk). Finally, we note that
every τ ∈ dREL can be computed by a order-
preserving tree homomorphism.

A weighted bimorphism B over Σ and ∆ con-
sists of a WRTG K over Γ and P and two tree ho-

TΓ R≥0

TΣ × T∆

(hin, hout)

ϕK

τB

Figure 3: Illustration of the semantics of the bi-
morphism B.

momorphisms

hin : TΓ → TΣ and hout : TΓ → T∆ .

The bimorphism B computes the weighted tree
transformation τB : TΣ × T∆ → R≥0 with

τB(s, t) =
∑

d∈h−1
in (s)∩h−1

out(t)

ϕK(d)

for every s ∈ TΣ and t ∈ T∆.
Without loss of generality, we assume that ev-

ery bimorphism B is presented by an WRTG K in
normal form and an order-preserving output ho-
momorphism hout. Next, we prepare the relation
between STSG and weighted bimorphisms. Let
G be an STSG over Σ, ∆, and Q. Moreover, let
B be a weighted bimorphism over Σ and ∆ con-
sisting of (i) K over Γ and P in normal form,
(ii) hin, and (iii) order-preserving hout. We say
that G and B are related if Q = P and there
is a bijection θ : G → K such that, for every
rule ρ ∈ G with ρ = (q → (s, t, V, a)) and
θ(ρ) = (p

a→ γ(p1, . . . , pk)) we have
• p = q,
• hin(γ) = (s, u1, . . . , uk),
• hout(γ) = (t, v1, . . . , vk),
• V = {(u1, v1), . . . , (uk, vk)}, and
• s(ui) = pi = t(vi) for every 1 ≤ i ≤ k.

Let G and B be related. The following three easy
statements can be used to prove that G and B are
equivalent:

1. For every derivation D ∈ Dq
G(s, t, ∅, a) with

q ∈ Q, s ∈ TΣ, t ∈ T∆, a ∈ R≥0, there exists
d ∈ TΓ and a derivation D′ ∈ Dq

K(d, d, ∅, a)
such that hin(d) = s and hout(d) = t.

2. For every d ∈ TΓ and D′ ∈ Dq
K(d, d, ∅, a)

with q ∈ Q and a ∈ R≥0, there exists a
derivation D ∈ Dq

G(hin(d), hout(d), ∅, a).
3. The mentioned correspondence on deriva-

tions is a bijection.
Given an STSG G, we can easily construct a
weighted bimorphism B such that G and B are re-
lated, and vice versa. Hence, STSG and weighted

5

bimorphisms are equally expressive, which gener-
alizes the corresponding characterization result in
the unweighted case by Shieber (2004), which we
will state after the introduction of STSG↓.

Classical synchronous tree substitution gram-
mars (STSG↓) do not have states. An STSG↓ can
be seen as an STSG by considering every substitu-
tion site (i.e., each pair of synchronised nontermi-
nals) as a state.2 We illustrate this by means of an
example here. Let us consider the STSG↓ G with
the following rules:
• (S(α,B↓), S(D↓, β)) with weight 0.2
• (B(γ,B↓), D(δ,D↓)) with weight 0.3
• (B(α), D(β)) with weight 0.4.

The substitution sites are marked with ↓. Any
rule with root A can be applied to a substitution
site A↓. An equivalent STSG G′ has the rules:

〈S, S〉 → (S(α, 〈B,D〉), S(〈B,D〉, β), V, 0.2)

〈B,D〉 → (B(γ, 〈B,D〉), D(δ, 〈B,D〉), V ′, 0.3)

〈B,D〉 → (B(α), D(β), ∅, 0.4) ,

where V = {(2, 1)} and V ′ = {(2, 2)}. It is easy
to see that G and G′ are equivalent.

Let Σ = {γ, γ′, γ′′, α, β} where γ, γ′, γ′′ ∈ Σ1

and α, β ∈ Σ0 (and γ′ 6= γ′′ and α 6= β). We write
γm(t) with t ∈ TΣ for the tree γ(· · · γ(t) · · ·) con-
taining m occurrences of γ above t. STSG↓ have a
certain locality property, which yields that STSG↓
cannot compute transformations like

τ(s, t) =


1 if s = γ′(γm(α)) = t

or s = γ′′(γm(β)) = t

0 otherwise

for every s, t ∈ TΣ. The non-local feature is the
correspondence between the symbols γ′ and α (in
the first alternative) and the symbols γ′′ and β (in
the second alternative). An STSG that computes τ
is presented in Figure 4.

Theorem 4. Let τ be a weighted tree transforma-
tion. Then the following are equivalent.

1. τ is computable by an STSG.
2. τ is computable by a weighted bimorphism.
3. There exists a STSG↓ G and deterministic re-

labelings r1 and r2 such that

τ(s, t) =
∑

s′∈r−1
1 (s),t′∈r−1

2 (t)

τG(s′, t′) .

2To avoid a severe expressivity restriction, several initial
states are allowed for an STSG↓.

The inverse of an STSG computable weighted
tree transformation can be computed by an STSG.
Formally, the inverse of the STSG G is the STSG

G−1 = {(t, s, V −1, a) | (s, t, V, a) ∈ G}

where V −1 is the inverse of V . Then τG−1 = τ−1
G .

6 Forward and backward application

Let us start this section with the definition of the
concepts of forward and backward application of a
weighted tree transformation τ : TΣ × T∆ → R≥0

to weighted tree languages ϕ : TΣ → R≥0 and
ψ : T∆ → R≥0. We will give general definitions
first and deal with the potentially infinite sums
later. The forward application of τ to ϕ is the
weighted tree language τ(ϕ) : T∆ → R≥0, which
is defined for every t ∈ T∆ by(

τ(ϕ)
)
(t) =

∑
s∈TΣ

ϕ(s) · τ(s, t) . (1)

Dually, the backward application of τ to ψ is
the weighted tree language τ−1(ψ) : TΣ → R≥0,
which is defined for every s ∈ TΣ by(

τ−1(ψ)
)
(s) =

∑
t∈T∆

τ(s, t) · ψ(t) . (2)

In general, the sums in Equations (1) and (2) can
be infinite. Let us recall the important property
that makes them finite in our theorems.

Proposition 5. For every input-productive (resp.,
output-productive) STSG G and every tree s ∈ TΣ

(resp., t ∈ T∆), there exist only finitely many
trees t ∈ T∆ (respectively, s ∈ TΣ) such that
τG(s, t) 6= 0.

Proof sketch. If G is input-productive, then each
derivation step creates at least one input symbol.
Consequently, any derivation for the input tree s
can contain at most as many steps as there are
nodes (or positions) in s. Clearly, there are only
finitely many such derivations, which proves the
statement. Dually, we can obtain the statement for
output-productive STSG.

In the following, we will consider forward ap-
plications τG(ϕ) where G is an output-productive
STSG and ϕ is recognizable, which yields that (1)
is well-defined by Proposition 5. Similarly, we
consider backward applications τ−1

G (ψ) where G
is input-productive and ψ is recognizable, which
again yields that (2) is well-defined by Proposi-
tion 5. The question is whether τG(ϕ) and τ−1

G (ψ)

6

q0 →
γ′

q1

1
—

γ′

q1

q0 →
γ′′

q2

1
—

γ′′

q2

q1 →
γ

q1

1
—

γ

q1

q2 →
γ

q2

1
—

γ

q2

q1 → α
1

— α

q2 → β
1

— β

Figure 4: STSG computing the weighted tree transformation τ with initial state q0.

are again recognizable. To avoid confusion, we
occasionally use angled parentheses as in 〈p, q〉
instead of standard parentheses as in (p, q). More-
over, for ease of presentation, we identify the ini-
tial state qS with 〈qS, qS〉.
Theorem 6. Let G be an STSG over Σ, ∆, and Q.
Moreover, let ϕ : TΣ → R≥0 and ψ : T∆ → R≥0

be recognizable weighted tree languages.
1. If G is output-productive, then τG(ϕ) is rec-

ognizable.
2. If G is input-productive, then τ−1

G (ψ) is rec-
ognizable.

Proof. For the first item, let K be a WRTG over
Σ and P such that ϕ = ϕK. Without loss of gen-
erality, we suppose that K is in normal form.

Intuitively, we take each rule q → (s, t, V, a)
of G and run the WRTG K with every start state p
on the input side s of the rule. In this way, we
obtain a weight b. The WRTG will reach the state
leaves of s in certain states, which we then trans-
fer to the linked states in t to obtain t′. Finally, we
remove the input side and obtain a rule 〈p, q〉 ab→ t′

for the WRTG L that represents the forward ap-
plication. We note that the same rule of L might
be constructed several times. If this happens, then
we replace the several copies by one rule whose
weight is the sum of the weights of all copies.
As already mentioned the initial state is 〈qS, qS〉.
Clearly, this approach is inspired (and made rea-
sonable) by the bimorphism characterization. We
can take the HADAMARD product of the WRTG of
the bimorphism with the inverse image of ϕK un-
der its input homomorphism. Then we can simply
project to the output side. Our construction per-
forms those three steps at once. The whole process
is illustrated in Figure 5.

Formally, we construct the WRTG L over ∆ and
P×Qwith the following rules. Let p ∈ P , q ∈ Q,
and t′ ∈ T∆(P × Q). Then 〈p, q〉 c→ t′ is a rule
in L′, where

c =
∑

(q→(s,t,V,a))∈G
V={(u1,v1),...,(uk,vk)}

p1,...,pk∈P
t′=t[vi←〈pi,t(vi)〉|1≤i≤k]
b=ϕp

K(s[ui←pi|1≤i≤k])

ab .

This might create infinitely many rules in L′, but
clearly only finitely many will have a weight dif-
ferent from 0. Thus, we can obtain the finite rule
set L by removing all rules with weight 0.

The main statement to prove is the following:
for every t ∈ T∆(Q) with lvQ(t) = {v1, . . . , vk},
p, p1, . . . , pk ∈ P , and q ∈ Q∑

s∈TΣ(Q)
u1,...,uk∈lvQ(s)

ϕpK(s′) · τ qG(s, t, V) = ϕ
〈p,q〉
L (t′) ,

where
• V = {(u1, v1), . . . , (uk, vk)},
• s′ = s[ui ← pi | 1 ≤ i ≤ k], and
• t′ = t[vi ← 〈pi, t(vi)〉 | 1 ≤ i ≤ k].

In particular, for t ∈ T∆ we obtain∑
s∈TΣ

ϕpK(s) · τ qG(s, t, ∅) = ϕ
〈p,q〉
L (t) ,

which yields(
τG(ϕK)

)
(t) =

∑
s∈TΣ

ϕK(s) · τG(s, t)

=
∑
s∈TΣ

ϕqSK (s) · τ qSG (s, t, ∅)

= ϕ
〈qS,qS〉
L (t) = ϕL(t) .

In the second item G is input-productive. Then
G−1 is output-productive and τ−1

G (ψ) = τG−1(ψ).
Hence the first statement proves that τ−1

G (ψ) is
recognizable.

Example 7. As an illustration of the construction
in Theorem 6, let us apply the STSG G of Exam-
ple 1 to the WRTG K over Σ and P = {p, qS, qα}
and the following rules:

qS

2
5→ σ(p, qα) qS

3
5→ α

p
1→ σ(qα, qS) qα

1→ α .

In fact, K is in normal form and is equivalent to
the WRTG of Example 2. Using the construction
in the proof of Theorem 6 we obtain the WRTG L
over Σ and P ×Q with Q = {e, o}. We will only

7

o
↓

σ

σ

o o

α
1
36
—

σ

α σ

o o

〈q, o〉
↓

σ

σ

〈qα, o〉 〈q, o〉

α 1
36 ·

2
5

—

σ

α σ

o o

〈q, o〉
1
36 ·

2
5−−−→

σ

α σ

〈q, o〉 〈qα, o〉

Figure 5: Illustration of the construction in the proof of Theorem 6 using the WRTG K of Example 7:
some example rule (left), run of K on the input side of the rule (middle), and resulting rule (right).

q1

1
15−→

σ

q2 q3
q1

1
15−→

σ

q3 q2
q1

1
5−→ α

q2

1
3−→ α q3

1
5−→

σ

q1 q2

Figure 6: WRTG constructed in Example 7. We
renamed the states and calculated the weights.

show rules of L that contribute to ϕL. To the right
of each rule we indicate from which state ofK and
which rule of G the rule was constructed.

〈qS, o〉
1
6
· 2
5−→ σ(〈qα, o〉, 〈p, e〉) qS, ρ2

〈qS, o〉
1
6
· 2
5−→ σ(〈p, e〉, 〈qα, o〉) qS, ρ3

〈qS, o〉
1
3
· 3
5−→ α qS, ρ4

〈qα, o〉
1
3
·1
−→ α qα, ρ4

〈p, e〉
1
2
· 2
5−→ σ(〈qS, o〉, 〈qα, o〉) p, ρ6

The initial state ofL is 〈qS, o〉. It is easy to see that
every t ∈ TΣ such that ϕL(t) 6= 0 is thin, which
means that |pos(t) ∩ Nn| ≤ 2 for every n ∈ N.

7 Domain and range

Finally, let us consider the domain and range of a
weighted tree transformation τ : TΣ×T∆ → R≥0.
Again, we first give general definitions and deal
with the infinite sums that might occur in them
later. The domain dom(τ) of τ and the range
range(τ) of τ are defined by(

dom(τ)
)
(s) =

∑
u∈T∆

τ(s, u) (3)

(
range(τ)

)
(t) =

∑
u∈TΣ

τ(u, t) (4)

for every s ∈ TΣ and t ∈ T∆. Obviously,
the domain dom(τ) is the range range(τ−1) of

the inverse of τ . Moreover, we can express the
domain dom(τ) of τ as the backward applica-
tion τ−1(1) where 1 is the weighted tree language
that assigns the weight 1 to each tree. Note that 1
is recognizable for every ranked alphabet.

We note that the sums in Equations (3) and (4)
might be infinite, but for input-productive (re-
spectively, output-productive) STSG G the do-
main dom(τG) (respectively, the range range(τG))
are well-defined by Proposition 5. Using those ob-
servations and Theorem 6 we can obtain the fol-
lowing statement.
Corollary 8. Let G be an STSG. If G is input-
productive, then dom(τG) is recognizable. More-
over, if G is output-productive, then range(τG) is
recognizable.
Proof. These statements follow directly from The-
orem 6 with the help of the observation that
dom(τG) = τ−1

G (1) and range(τG) = τG(1).

Conclusion

We showed that every output-productive STSG

preserves recognizability under forward applica-
tion. Dually, every input-productive STSG pre-
serves recognizability under backward applica-
tion. We presented direct and effective construc-
tions for these operations. Special cases of those
constructions can be used to compute the domain
of an input-productive STSG and the range of an
output-productive STSG. Finally, we presented a
characterization of the power of STSG in terms of
weighted bimorphisms.

Acknowledgements

ZOLTÁN FÜLÖP and HEIKO VOGLER were finan-
cially supported by the TÁMOP-4.2.2/08/1/2008-
0008 program of the Hungarian National Devel-
opment Agency. ANDREAS MALETTI was finan-
cially supported by the Ministerio de Educación y
Ciencia (MEC) grant JDCI-2007-760.

8

References
Anne Abeillé, Yves Schabes, and Aravind K. Joshi.

1990. Using lexicalized TAGs for machine trans-
lation. In Proc. 13th CoLing, volume 3, pages 1–6.
University of Helsinki, Finland.

Alfred V. Aho and Jeffrey D. Ullman. 1969. Transla-
tions on a context-free grammar. In Proc. 1st STOC,
pages 93–112. ACM.

Athanasios Alexandrakis and Symeon Bozapalidis.
1987. Weighted grammars and Kleene’s theorem.
Inf. Process. Lett., 24(1):1–4.

André Arnold and Max Dauchet. 1982. Morphismes
et bimorphismes d’arbres. Theoret. Comput. Sci.,
20(1):33–93.

Joost Engelfriet, Eric Lilin, and Andreas Maletti.
2009. Extended multi bottom-up tree transducers
— composition and decomposition. Acta Inform.,
46(8):561–590.

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Handbook
of Weighted Automata, chapter 9, pages 313–403.
Springer.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proc. HLT-NAACL 2004, pages 273–280. ACL.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest, Hungary.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In Grzegorz Rozenberg and Arto Salomaa,
editors, Handbook of Formal Languages, chapter 1,
pages 1–68. Springer.

Jonathan S. Golan. 1999. Semirings and their Appli-
cations. Kluwer Academic.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational
Linguistics, 34(3):391–427.

Udo Hebisch and Hanns J. Weinert. 1998. Semirings
— Algebraic Theory and Applications in Computer
Science. World Scientific.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proc. 9th IWPT, pages 53–64. ACL.

Kevin Knight and Jonathan Graehl. 2005. An
overview of probabilistic tree transducers for natural
language processing. In Proc. 6th CICLing, volume
3406 of LNCS, pages 1–24. Springer.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proc.
HLT-NAACL 2003, pages 48–54. ACL.

Philip M. Lewis II and Richard Edwin Stearns. 1968.
Syntax-directed transductions. J. ACM, 15(3):465–
488.

Eric Lilin. 1981. Propriétés de clôture d’une extension
de transducteurs d’arbres déterministes. In Proc.
6th CAAP, volume 112 of LNCS, pages 280–289.
Springer.

Andreas Maletti, Jonathan Graehl, Mark Hopkins,
and Kevin Knight. 2009. The power of ex-
tended top-down tree transducers. SIAM J. Comput.,
39(2):410–430.

Andreas Maletti. 2010. Why synchronous tree substi-
tution grammars? In Proc. HLT-NAACL 2010. ACL.
to appear.

David F. Martin and Steven A. Vere. 1970. On syntax-
directed transduction and tree transducers. In Proc.
2nd STOC, pages 129–135. ACM.

Mark-Jan Nederhof and Giorgio Satta. 2006. Proba-
bilistic parsing strategies. J. ACM, 53(3):406–436.

William C. Rounds. 1970. Mappings and grammars
on trees. Math. Systems Theory, 4(3):257–287.

Yves Schabes. 1990. Mathematical and computa-
tional aspects of lexicalized grammars. Ph.D. thesis,
University of Pennsylvania.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree-adjoining grammars. In Proc. 13th
CoLing, pages 253–258. ACL.

Stuart M. Shieber. 2004. Synchronous grammars as
tree transducers. In Proc. TAG+7, pages 88–95. Si-
mon Fraser University.

Stuart M. Shieber. 2006. Unifying synchronous tree
adjoining grammars and tree transducers via bimor-
phisms. In Proc. 11th EACL, pages 377–384. ACL.

James W. Thatcher. 1970. Generalized2 sequential
machine maps. J. Comput. System Sci., 4(4):339–
367.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proc. 39th
ACL, pages 523–530. ACL.

9

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 10–18,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

A Decoder for
Probabilistic Synchronous Tree Insertion Grammars

Steve DeNeefe∗ and Kevin Knight ∗

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292, USA
{sdeneefe,knight}@isi.edu

Heiko Vogler †

Department of Computer Science
Technische Universität Dresden

D-01062 Dresden
Heiko.Vogler@tu-dresden.de

Abstract

Synchronous tree insertion grammars
(STIG) are formal models for syntax-
based machine translation. We formal-
ize a decoder for probabilistic STIG; the
decoder transforms every source-language
string into a target-language tree and cal-
culates the probability of this transforma-
tion.

1 Introduction

Tree adjoining grammars (TAG) were invented in
(Joshi et al. 1975) in order to better character-
ize the string sets of natural languages1. One of
TAG’s important features is the ability to introduce
two related syntactic units in a single rule, then
push those two units arbitrarily far apart in sub-
sequent derivation steps. For machine translation
(MT) between two natural languages, each being
generated by a TAG, the derivations of the two
TAG may be synchronized (Abeille et al., 1990;
Shieber and Shabes, 1990) in the spirit of syntax-
directed transductions (Lewis and Stearns, 1968);
this results insynchronous TAG(STAG). Recently,
in (Nesson et al., 2005, 2006) probabilistic syn-
chronous tree insertion grammars (pSTIG) were
discussed as model of MT; a tree insertion gram-
mar is a particular TAG in which the parsing prob-
lem is solvable in cubic-time (Schabes and Wa-
ters, 1994). In (DeNeefe, 2009; DeNeefe and
Knight 2009) a decoder for pSTIG has been pro-
posed which transforms source-language strings
into (modifications of) derivation trees of the
pSTIG. Nowadays, large-scale linguistic STAG
rule bases are available.

In an independent tradition, the automata-
theoretic investigation of the translation of trees

∗ financially supported by NSF STAGES project, grant
#IIS-0908532.

† financially supported by DFG VO 1011/5-1.
1see (Joshi and Shabes, 1997) for a survey

led to the rich theory of tree transducers (Gécseg
and Steinby, 1984, 1997). Roughly speaking, a
tree transducer is a finite term rewriting system. If
each rewrite rule carries a probablity or, in gen-
eral, a weight from some semiring, then they are
weighted tree transducers (Maletti, 2006, 2006a;
Fülöp and Vogler, 2009). Such weighted tree
transducers have also been used for the specifi-
cation of MT of natural languages (Yamada and
Knight, 2001; Knight and Graehl, 2005; Graehl et
al., 2008; Knight and May 2009).

Martin and Vere (1970) and Schreiber (1975)
established the first connections between the two
traditions; also Shieber (2004, 2006) and Maletti
(2008, 2010) investigated their relationship.

The problem addressed in this paper is the
decoding of source-language strings into target-
language trees where the transformation is de-
scribed by a pSTIG. Currently, this decoding re-
quires two steps: first, every source string is
translated into a derivation tree of the underly-
ing pSTIG (DeNeefe, 2009; DeNeefe and Knight
2009), and second, the derivation tree is trans-
formed into the target tree using an embedded tree
transducer (Shieber, 2006). We propose a trans-
ducer model, called abottom-up tree adjoining
transducer, which performs this decoding in a sin-
gle step and, simultaneously, computes the prob-
abilities of its derivations. As a basis of our ap-
proach, we present a formal definition of pSTIG.

2 Preliminaries

For two setsΣ andA, we letUΣ(A) be the set of
all (unranked) trees overΣ in which also elements
of A may label leaves. We abbreviateUΣ(∅) by
UΣ. We denote the set ofpositions, leaves, and
non-leavesof ξ ∈ UΣ by pos(ξ) ⊆ N

∗, lv(ξ), and
nlv(ξ), resp., whereε denotes the root ofξ and
w.i denotes theith child of positionw; nlv(ξ) =
pos(ξ) \ lv(ξ). For a positionw ∈ pos(ξ), thela-
bel of ξ at w (resp.,subtree ofξ at w) is denoted

10

by ξ(w) (resp.,ξ|w). If additionally ζ ∈ UΣ(A),
thenξ[ζ]w denotes the tree which is obtained from
ξ by replacing its subtree atw by ζ. For every
∆ ⊆ Σ ∪A, the setpos∆(ξ) is the set of all those
positionsw ∈ pos(ξ) such thatξ(w) ∈ ∆. Simi-
larly, we can definelv∆(ξ) andnlv∆(ξ). Theyield
of ξ is the sequenceyield(ξ) ∈ (Σ ∪ A)∗ of sym-
bols that label the leaves from left to right.

If we associate withσ ∈ Σ a rankk ∈ N, then
we require that in every treeξ ∈ UΣ(A) everyσ-
labeled position has exactlyk children.

3 Probabilistic STAG and STIG

First we will define probabilistic STAG, and sec-
ond, as a special case, probabilistic STIG.

LetN andT be two disjoint sets of, resp., non-
terminals and terminals. Asubstitution ruler is a
tuple(ζs, ζt, V,W, P

r
adj) where

• ζs, ζt ∈ UN (T) (sourceand target tree) and
|lvN (ζs)| = |lvN (ζt)|,

• V ⊆ lvN (ζs)×lvN (ζt) (substitution sites), V
is a one-to-one relation, and|V | = |lvN (ζs)|,

• W ⊆ nlvN (ζs)×nlvN (ζt) (potential adjoin-
ing sites), and

• P r
adj : W → [0, 1] (adjoining probability).

An auxiliary ruler is a tuple(ζs, ζt, V,W, ∗, P r
adj)

whereζs, ζt,W , andP r
adj are defined as above and

• V is defined as above except that|V | =
|lvN (ζs)| − 1 and

• ∗ = (∗s, ∗t) ∈ lvN (ζs)× lvN (ζt) and neither
∗s nor ∗t occurs in any element ofV ; more-
over,ζs(ε) = ζs(∗s) andζt(ε) = ζt(∗t), and
∗s 6= ε 6= ∗t; the node∗s (and∗t) is called
thefoot-node ofζs (resp.,ζt).

An (elementary) ruleis either a substitution rule
or an auxiliary rule. Theroot-categoryof a ruler
is the tuple(ζs(ε), ζt(ε)), denoted byrc(r).

A probabilistic synchronous tree ad-
joining grammar (pSTAG) is a tuple
G = (N,T, (Ss, St),S,A, P) such that N
andT are two disjoint sets (resp., of nonterminals
and terminals),(Ss, St) ∈ N×N (start nontermi-
nal), S andA are finite sets of, resp., substitution
rules and auxiliary rules, andP : S ∪ A → [0, 1]
such that for every(A,B) ∈ N ×N ,

∑

r∈S
rc(r)=(A,B)

P (r) = 1 and
∑

r∈A
rc(r)=(A,B)

P (r) = 1

assuming that in each case the number of sum-
mands is not zero. In the following, letG always
denote an arbitrary pSTAG.

Ss

α A↓ A

α

a
r1⇐⇒

St

B

β

B↓ βa

P (r1) = 1
P r1

adj(a) = .9

A

A γ

b,c

∗

r2⇐⇒

B

B

δ

B

b

c ∗

P (r2) = .4
P r2

adj(b) = .2

P r2

adj(c) = .6

A

A A

λ

d

∗ e
r3⇐⇒

B

µ B

d,e

∗

P (r3) = .6
P r3

adj(d) = .3

P r3

adj(e) = .8

A

α

r4⇐⇒

B

β
P (r4) = .1

A

γ

r5⇐⇒
B

δ
P (r5) = .9

Figure 1: The running example pSTAGG.

In Fig. 1 we show the rules of our running ex-
ample pSTAG, where the capital Roman letters are
the nonterminals and the small Greek letters are
the terminals. The substitution site (in ruler1) is
indicated by↓, and the potential adjoining sites are
denoted2 by a, b, c, d, ande. For instance, in for-
mal notation the rulesr1 andr2 are written as fol-
lows:

r1 = (Ss(α, A, A(α)), St(B(β), B, β), {↓}, {a}, P r1

adj)

where↓ = (2, 2) anda = (3, 1), and

r2 = (A(A, γ), B(B(δ), B), ∅, {b, c}, ∗, P r2

adj)

whereb = (ε, ε), c = (ε, 1), and∗ = (1, 2).
In the derivation relation ofG we will distin-

guish four types of steps:
1. substitution of a rule at a substitution site

(substitution),
2. deciding to turn a potential adjoining site into

an activated adjoining site (activation),
3. deciding to drop a potential adjoining site,

i.e., not to adjoin, (non-adjoining) and
4. adjoining of a rule at an activated adjoining

site (adjoining).
In the sentential forms (defined below) we will
maintain for every adjoining sitew a two-valued
flag g(w) indicating whetherw is a potential
(g(w) = p) or an activated site (g(w) = a).

Theset of sentential forms ofG is the setSF(G)
of all tuplesκ = (ξs, ξt, V,W, g) with

2Their placement (as left or right index) does not play a
role yet, but will later when we introduce pSTIG.

11

• ξs, ξt ∈ UN (T),
• V ⊆ lvN (ξs)× lvN (ξt) is a one-to-one rela-

tion, |V | = |lvN (ξs)| = |lvN (ξt)|,
• W ⊆ nlvN (ξs)× nlvN (ξt), and
• g : W → {p,a}.
The derivation relation (ofG) is the binary

relation ⇒ ⊆ SF(G) × SF(G) such that
for every κ1 = (ξ1s , ξ

1
t , V1,W1, g1) and κ2 =

(ξ2s , ξ
2
t , V2,W2, g2) we haveκ1 ⇒ κ2 iff one of

the following is true:

1. (substitution) there arew = (ws, wt) ∈ V1

andr = (ζs, ζt, V,W, P
r
adj) ∈ S such that

– (ξ1s (ws), ξ
1
t (wt)) = rc(r),

– ξ2s = ξ1s [ζs]ws andξ2t = ξ1t [ζt]wt ,
– V2 = (V1 \ {w}) ∪ w.V ,3

– W2 = W1 ∪ w.W , and
– g2 is the union ofg1 and the set of pairs

(w.u,p) for everyu ∈W ;
this step is denoted byκ1

w,r
=⇒ κ2;

2. (activation) there is aw ∈ W1 with g1(w) =
p and (ξ1s , ξ

1
t , V1,W1) = (ξ2s , ξ

2
t , V2,W2),

andg2 is the same asg1 except thatg2(w) =
a; this step is denoted byκ1

w
=⇒ κ2;

3. (non-adjoining) there isw ∈ W1 with
g1(w) = p and(ξ1s , ξ

1
t , V1) = (ξ2s , ξ

2
t , V2),

W2 = W1 \ {w}, andg2 is g1 restricted to
W2; this step is denoted byκ1

¬w
=⇒ κ2;

4. (adjoining) there arew ∈ W1 with g1(w) =
a, andr = (ζs, ζt, V,W, ∗, P

r
adj) ∈ A such

that, forw = (ws, wt),
– (ξ1s (ws), ξ

1
t (wt)) = rc(r),

– ξ2s = ξ1s [ζ ′s]ws whereζ ′s = ζs[ξ
1
s |ws]∗s ,

ξ2t = ξ1t [ζ ′t]wt whereζ ′t = ζt[ξ
1
t |wt]∗t ,

– V2 is the smallest set such that (i) for
every(us, ut) ∈ V1 we have(u′s, u

′
t) ∈ V2

where

u′s =

{

us if ws is not a prefix ofus,

ws. ∗s .u if us = ws.u for someu;

andu′t is obtained in the same way fromut,
wt, and∗t, and (ii)V2 containsw.V ;

– W2 is the smallest set such that (i) for every
(us, ut) ∈ W1 \ {w} we have(u′s, u

′
t) ∈

W2 whereu′s and u′t are obtained in the
same way as forV2, and g2(u′s, u

′
t) =

g1(us, ut) and (ii) W2 containsw.W and
g2(w.u) = p for everyu ∈W ;

this step is denoted byκ1
w,r
=⇒ κ2.

3w.V = {(ws.vs, wt.vt) | (vs, vt) ∈ V }

In Fig. 2 we show a derivation of our running
example pSTAG where activated adjoining sites
are indicated by surrounding circles, the other ad-
joining sites are potential.

Ss↓ ⇐⇒ St↓

substitution of
r1 at (ε, ε)

=
⇒ P (r1) = 1

Ss

α A↓ A

α

a
⇐⇒

St

B

β

B↓ βa

substitution of
r4 at (2, 2)

=
⇒ P (r4) = .1

Ss

α A

α

A

α

a
⇐⇒

St

B

β

B

β

βa

activation
at a = (3, 1)

=
⇒ P r1

adj(a) = .9

Ss

α A

α

A

α

a
⇐⇒

St

B

β

B

β

βa

adjoining of
r2 at a = (3, 1)

=
⇒ P (r2) = .4

Ss

α A

α

A

A

α

γ

b,c
⇐⇒

St

B

B

δ

B

β

B

β

βb

c

non-adjoining
at c = (3, 1.1)

=
⇒ 1− P r2

adj(c) = .4

Ss

α A

α

A

A

α

γ

b
⇐⇒

St

B

B

δ

B

β

B

β

βb

non-adjoining
at b = (3, 1)

=
⇒ 1− P r2

adj(b) = .8

Ss

α A

α

A

A

α

γ

⇐⇒

St

B

B

δ

B

β

B

β

β

Figure 2: An example derivation with total proba-
bility 1× .1× .9× .4× .4× .8 = .01152.

The only initial sentential form isκin =
(Ss, St, {(ε, ε)}, ∅, ∅). A sentential formκ is final
if it has the form(ξs, ξt, ∅, ∅, ∅). Let κ ∈ SF(G).
A derivation (ofκ) is a sequenced of the form
κ0u1κ1 . . . unκn with κ0 = κin and n ≥ 0,
κi−1

ui⇒ κi for every1 ≤ i ≤ n (andκn = κ). We

12

denoteκn also bylast(d), and the set of all deriva-
tions ofκ (resp., derivations) byD(κ) (resp.,D).
We calld ∈ D successfulif last(d) is final.

The tree transformation computed byG is
the relation τG ⊆ UN (T) × UN (T) with
(ξs, ξt) ∈ τG iff there is a successful derivation
of (ξs, ξt, ∅, ∅, ∅).

Our definition of the probability of a deriva-
tion is based on the following observation.4 Let
d ∈ D(κ) for someκ = (ξs, ξt, V,W, g). Then,
for everyw ∈ W , the rule which createdw and
the corresponding local position in that rule can
be retrieved fromd. Let us denote this rule by
r(d, κ, w) and the local position byl(d, κ, w).

Now let d be the derivationκ0u1κ1 . . . unκn.
Then theprobability ofd is defined by

P (d) =
∏

1≤i≤n

Pd(κi−1
ui⇒ κi)

where
1. (substitution)Pd(κi−1

w,r
=⇒ κi) = P (r)

2. (activation)
Pd(κi−1

w
=⇒ κi) = P r′

adj(w
′) wherer′ =

r(d, κi−1, w) andw′ = l(d, κi−1, w)
3. (non-adjoining)
Pd(κi−1

¬w
=⇒ κi) = 1 − P r′

adj(w
′) wherer′

andw′ are defined as in the activation case
4. (adjoining)
Pd(κi−1

w,r
=⇒ κi) = P (r).

In order to describe the generative model of
G, we impose a deterministic strategysel on the
derivation relation in order to obtain, for every
sentential form, a probability distribution among
the follow-up sentential forms. Adeterministic
derivation strategyis a mappingsel : SF(G) →
(N∗ × N

∗) ∪ {⊥} such that for everyκ =
(ξs, ξt, V,W, g) ∈ SF(G), we have thatsel(κ) ∈
V ∪W if V ∪W 6= ∅, andsel(κ) = ⊥ otherwise.
In other words,sel chooses the next site to operate
on. Then we define⇒sel in the same way as⇒ but
in each of the cases we require thatw = sel(κ1).
Moreover, for every derivationd ∈ D, we denote
by next(d) the set of all derivations of the form
duκ wherelast(d)

u
⇒sel κ.

The generative model ofG comprises all the
generative stories ofG. A generative storyis a
treet ∈ UD; the root oft is labeled byκin. Let
w ∈ pos(t) and t(w) = d. Then eitherw is a
leaf, because we have stopped the generative story

4We note that a different definition occurs in (Nesson et
al., 2005, 2006).

atw, orw has|next(d)| children, each one repre-
sents exactly one possible decision about how to
extendd by a single derivation step (where their
order does not matter). Then, for every generative
storyt, we have that

∑

w∈lv(t)

P (t(w)) = 1 .

We note that(D,next, µ) can be considered as
a discrete Markov chain (cf., e.g. (Baier et al.,
2009)) where the initial probability distribution
µ : D → [0, 1] mapsd = κin to 1, and all the
other derivations to0.

A probabilistic synchronous tree insertion
grammar (pSTIG) G is a pSTAG except that
for every ruler = (ζs, ζt, V,W, P

r
adj) or r =

(ζs, ζt, V,W, ∗, P
r
adj) we have that

• if r ∈ A, then|lv(ζs)| ≥ 2 and|lv(ζt)| ≥ 2,
• for ∗ = (∗s, ∗t) we have that∗s is either the

rightmost leaf ofζs or its leftmost one; then
we callr, resp.,L-auxiliary in the sourceand
R-auxiliary in the source; similarly, we re-
strict ∗t; the source-spine ofr (target-spine
of r) is the set of prefixes of∗s (resp., of∗t)

• W ⊆ nlvN (ζs)×{L,R}×nlvN (ζt)×{L,R}
where the new components are thedirection-
typeof the potential adjoining site, and

• for every(ws, δs, wt, δt) ∈ W , if ws lies on
the source-spine ofr andr is L-auxiliary (R-
auxiliary) in the source, thenδs = L (resp.,
δs = R), and corresponding restrictions hold
for the target component.

According to the four possibilities for the foot-
node∗ we callr LL-, LR-, RL-, or RR-auxiliary.
The restriction for the probability distributionP of
G is modified such that for every(A,B) ∈ N×N
andx, y ∈ {L,R}:

∑

r∈A, rc(r)=(A,B)
r is xy−auxiliary

P (r) = 1 .

In the derivation relation of the pSTIGG we
will have to make sure that the direction-type of
the chosen adjoining sitew matches with the type
of auxiliarity of the auxiliary rule. Again we as-
sume that the data structureSF(G) is enriched
such that for every potential adjoining sitew of
κ ∈ SF(G) we know its direction-typedir(w).

We define the derivation relation of the pSTIG
G to be the binary relation⇒I ⊆ SF(G)×SF(G)
such that we haveκ1 ⇒I κ2 iff (i) κ1 ⇒ κ2 and

13

(ii) if adjoining takes place atw, then the used aux-
iliary rule must bedir(w)-auxiliary. Since⇒I is
a subset of⇒, the concepts of derivation, success-
ful derivation, and tree transformation are defined
also for a pSTIG.

In fact, our running example pSTAG in Fig. 1 is
a pSTIG, wherer2 and r3 areRL-auxiliary and
every potential adjoining site has direction-type
RL; the derivation shown in Fig. 2 is a pSTIG-
derivation.

4 Bottom-up tree adjoining transducer

Here we introduce the concept of a bottom-up tree
adjoining transducer (BUTAT) which will be used
to formalize a decoder for a pSTIG.

A BUTAT is a finite-state machine which trans-
lates strings into trees. The left-hand side of each
rule is a string over terminal symbols and state-
variable combinations. A variable is either a sub-
stitution variable or an adjoining variable; a substi-
tution variable (resp., adjoining variable) can have
an output tree (resp., output tree with foot node) as
value. Intuitively, each variable value is a transla-
tion of the string that has been reduced to the cor-
responding state. The right-hand side of a rule has
the formq(ζ) whereq is a state andζ is an output
tree (with or without foot-node);ζ may contain the
variables from the left-hand side of the rule. Each
rule has a probabilityp ∈ [0, 1].

In fact, BUTAT can be viewed as the string-
to-tree version of bottom-up tree transducers (En-
gelfriet, 1975; Gecseg and Steinby, 1984,1997) in
which, in addition to substitution, adjoining is al-
lowed.

Formally, we letX = {x1, x2, . . .} andF =
{f1, f2, . . .} be the sets ofsubstitution variables
and adjoining variables, resp. Each substitu-
tion variable (resp., adjoining variable) has rank
0 (resp.,1). Thus when used in a tree, substitu-
tion variables are leaves, while adjoining variables
have a single child.

A bottom-up tree adjoining transducer(BU-
TAT) is a tupleM = (Q,Γ,∆, Qf , R) where
• Q is a finite set (ofstates),
• Γ is an alphabet (ofinput symbols), assuming

thatQ ∩ Γ = ∅,
• ∆ is an alphabet (ofoutput symbols),
• Qf ⊆ Q (set offinal states), and
• R is a finite set of rules of the form

γ0 q1(z1) γ1 . . . qk(zk) γk
p
→ q(ζ) (†)

wherep ∈ [0, 1] (probability of (†)), k ≥ 0,
γ0, γ1, . . . , γk ∈ Γ∗, q, q1, . . . , qk ∈ Q,
z1, . . . , zk ∈ X ∪ F , and ζ ∈ RHS(k)
where RHS(k) is the set of all trees over
∆ ∪ {z1, . . . , zk} ∪ {∗} in which the nullary
∗ occurs at most once.

The set ofintermediate results ofM is the set
IR(M) = {ι | ι ∈ U∆({∗}), |pos{∗}(ι)| ≤ 1}
and the set ofsentential forms ofM is the set
SF(M) = (Γ ∪ {q(ι) | q ∈ Q, ι ∈ IR(M)})∗.
The derivation relation induced byM is the bi-
nary relation⇒ ⊆ SF(M) × SF(M) such that
for everyξ1, ξ2 ∈ SF(M) we defineξ1 ⇒ ξ2 iff
there areξ, ξ′ ∈ SF(M), there is a rule of the form
(†) in R, and there areζ1, . . . , ζk ∈ IR(M) such
that:
• for every1 ≤ i ≤ k: if zi ∈ X, thenζi does

not contain∗; if zi ∈ F , thenζi contains∗
exactly once,

• ξ1 = ξ γ0 q1(ζ1) γ1 . . . qk(ζk) γk ξ
′, and

• ξ2 = ξ q(θ(ζ)) ξ′

where θ is a function that replaces variables
in a right-hand side with their values (subtrees)
from the left-hand side of the rule. Formally,
θ : RHS(k) → IR(M) is defined as follows:

(i) for everyξ = δ(ξ1, . . . , ξn) ∈ RHS(k), δ ∈
∆, we haveθ(ξ) = δ(θ(ξ1), . . . , θ(ξn)),

(ii) (substitution) for everyzi ∈ X, we have
θ(zi) = ζi,

(iii) (adjoining) for every zi ∈ F and ξ ∈
RHS(k), we haveθ(zi(ξ)) = ζi[θ(ξ)]v
wherev is the uniquely determined position
of ∗ in ζi, and

(iv) θ(∗) = ∗.
Clearly, the probablity of a rule carries over to
derivation steps that employ this rule. Since, as
usual, a derivationd is a sequence of derivation
steps, we let theprobability ofd be the product of
the probabilities of its steps.

The string-to-tree transformation computed by
M is the setτM of all tuples(γ, ξ) ∈ Γ∗×U∆ such
that there is a derivation of the formγ ⇒∗ q(ξ) for
someq ∈ Qf .

5 Decoder for pSTIG

Now we construct the decoderdec(G) for a pSTIG
G that transforms source strings directly into tar-
get trees and simultaneously computes the proba-
bility of the corresponding derivation ofG. This
decoder is formalized as a BUTAT.

Sincedec(G) is a string-to-tree transducer, we

14

have to transform the source treeζs of a rule r
into a left-hand sideρ of a dec(G)-rule. This is
done similarly to (DeNeefe and Knight, 2009) by
traversingζs via recursive descent using a map-
ping ϕ (see an example after Theorem 1); this
creates appropriate state-variable combinations for
all substitution sites and potential adjoining sites
of r. In particular, the source component of the
direction-type of a potential adjoining site deter-
mines the position of the corresponding combina-
tion in ρ. If there are several potential adjoining
sites with the same source component, then we
create aρ for every permutation of these sites. The
right-hand side of adec(G)-rule is obtained by
traversing the target treeζt via recursive descent
using a mappingψρ and, whenever a nonterminal
with a potential adjoining sitew is met, a new po-
sition labeled byfw is inserted.5 If there is more
than one potential adjoining site, then the set of
all those sites is ordered as in the left-hand sideρ

from top to bottom.
Apart from these main rules we will employ

rules which implement the decision of whether or
not to turn a potential adjoining sitew into an ac-
tivated adjoining site. Rules for the first purpose
just pass the already computed output tree through
from left to right, whereas rules for the second pur-
pose create for an empty left-hand side the output
tree∗.

We will use the state behavior ofdec(G) in or-
der to check that (i) the nonterminals of a substi-
tution or potential adjoining site match the root-
category of the used rule, (ii) the direction-type
of an adjoining site matches the auxiliarity of the
chosen auxiliary rule, and (iii) the decisions of
whether or not to adjoin for each ruler of G are
kept separate.

Whereas each pair(ξs, ξt) in the translation of
G is computed in a top-down way, starting at the
initial sentential form and substituting and adjoin-
ing to the present sentential form,dec(G) builds
ξt in a bottom-up way. This change of direction is
legitimate, because adjoining is associative (Vijay-
Shanker and Weir, 1994), i.e., it leads to the same
result whether we first adjoinr2 to r1, and then
align r3 to the resulting tree, or first adjoinr3 to
r2, and then adjoin the resulting tree tor1.

In Fig. 3 we show some rules of the decoder
of our running example pSTIG and in Fig. 4 the

5We will allow variables to have structured indices that
are not elements ofN. However, by applying a bijective re-
naming, we can always obtain rules of the form(†).

derivation of this decoder which correponds to the
derivation in Fig. 2.

Theorem 1. Let G be a pSTIG overN and T .
Then there is a BUTATdec(G) such that for ev-
ery (ξs, ξt) ∈ UN (T) × UN (T) andp ∈ [0, 1] the
following two statements are equivalent:

1. there is a successful derivation of
(ξs, ξt, ∅, ∅, ∅) byG with probabilityp,

2. there is a derivation fromyield(ξs) to
[Ss, St](ξt) by dec(G) with probabilityp.

PROOF. Let G = (N,T, [Ss, St],S,A, P) be a
pSTIG. We will construct the BUTATdec(G) =
(Q,T,N ∪T, {[Ss, St]}, R) as follows (where the
mappingsϕ andψρ will be defined below):
• Q = [N ×N] ∪ [N ×{L,R}×N ×{L,R}]
∪{[r, w] | r ∈ A,w is an adjoining site ofr},

• R is the smallest setR′ of rules such
that for every r ∈ S ∪ A of the form
(ζs, ζt, V,W, P

r
adj) or (ζs, ζt, V,W, ∗, P

r
adj):

– for everyρ ∈ ϕ(ε), if r ∈ S, then the
main rule

ρ
P (r)
→ [ζs(ε), ζt(ε)]

(

ψρ(ε)
)

is in R′, and if r ∈ A and r is δsδt-
auxiliary, then the main rule

ρ
P (r)
→ [ζs(ε), δs, ζt(ε), δt]

(

ψρ(ε)
)

is inR′, and
– for everyw = (ws, δs, wt, δt) ∈ W the

rules

qw
(

fw

) P r
adj

(w)
−→ [r, w]

(

fw(∗)
)

with qw = [ζ(ws), δs, ζt(wt), δt] for ac-
tivation atw, and the rule

ε
1−P r

adj
(w)

−→ [r, w](∗)

for non-adjoining atw are inR′.
We define the mapping

ϕ : pos(ζs) → P((T ∪Q(X ∪ F))∗)

with Q(X ∪ F) = {q(z) | q ∈ Q, z ∈ X ∪ F}
inductively on its argument as follows. Letw ∈
pos(ζs) and letw haven children.
(a) Letζs(w) ∈ T . Thenϕ(w) = {ζs(w)}.

15

(b) (substitution site) Letζs(w) ∈ N and let
w′ ∈ pos(ζt) such that(w,w′) ∈ V . Then

ϕ(w) = {[ζs(w), ζt(w
′)]

(

x(w,w′)

)

}.

(c) (adjoining site) Letζs(w) ∈ N and let there
be an adjoining site inW with w as first
component. Then, we defineϕ(w) to be the
smallest set such that for every permutation
(u1, . . . , ul) (resp.,(v1, . . . , vm)) of all the L-
adjoining (resp., R-adjoining) sites inW with
w as first component, the set6

J ◦ ϕ(w.1) ◦ . . . ◦ ϕ(w.n) ◦K

is a subset ofϕ(w), whereJ = {u′1 . . . u
′
l}

andK = {v′m . . . v′1} and

u′i = [r, ui]
(

fui

)

andv′j = [r, vj]
(

fvj

)

for 1 ≤ i ≤ l and1 ≤ j ≤ m.
(d) Let ζs(w) ∈ N , w 6= ∗, and letw be neither

the first component of a substitution site inV
nor the first component of an adjoining site in
W . Then

ϕ(w) = ϕ(w.1) ◦ . . . ◦ ϕ(w.n) .

(e) Letw = ∗. Then we defineϕ(w) = {ε}.
For everyρ ∈ ϕ(ε), we define the mapping

ψρ : pos(ζt) → UN∪F∪X(T ∪ {∗})

inductively on its argument as follows. Let
w ∈ pos(ζt) and letw haven children.
(a) Letζt(w) ∈ T . Thenψρ(w) = ζt(w).
(b) (substitution site) Letζt(w) ∈ N and let

w′ ∈ pos(ζs) such that(w′, w) ∈ V . Then
ψρ(w) = x(w′,w).

(c) (adjoining site) Letζt(w) ∈ N and let there
be an adjoining site inW with w as third
component. Then let{u1, . . . , ul} ⊆ W be
the set of all potential adjoining sites withw
as third component, and we define

ψρ(w) = fu1
(. . . ful

(ζ) . . .)

where ζ = ζt(w)(ψρ(w.1), . . . , ψρ(w.n))
and theui’s occur inψρ(w) (from the root
towards the leaves) in exactly the same order
as they occur inρ (from left to right).

(d) Let ζt(w) ∈ N , w 6= ∗, and letw be neither
the second component of a substitution site
in V nor the third component of an adjoining
site inW . Then

ψρ(w) = ζt(w)(ψρ(w.1), . . . , ψρ(w.n)).

6using the usual concatenation◦ of formal languages

(e) Letw = ∗. Thenψρ(w) = ∗.
With dec(G) constructed as shown, for each
derivation ofG there is a corresponding deriva-
tion ofdec(G), with the same probability, and vice
versa. The derivations proceed in opposite direc-
tions. Each sentential form in one has an equiv-
alent sentential form in the other, and each step
of the derivations correspond. There is no space
to present the full proof, but let us give a slightly
more precise idea about the formal relationship be-
tween the derivations ofG anddec(G).

In the usual way we can associate a deriva-
tion treedt with every successful derivationd of
G. Assume thatlast(d) = (ξs, ξt, ∅, ∅, ∅), and
let Es andEt be the embedded tree transducers
(Shieber, 2006) associated with, respectively, the
source component and the target component of
G. Then it was shown in (Shieber, 2006) that
τEs

(dt) = ξs and τEt
(dt) = ξt where τE de-

notes the tree-to-tree transduction computed by an
embedded tree transducerE. Roughly speaking,
Es andEt reproduce the derivations of, respec-
tively, the source component and the target com-
ponent ofG that are prescribed bydt. Thus, for
κ = (ξ′s, ξ

′
t, V,W, g), if κin ⇒

∗
G κ andκ is a prefix

of d, then there is exactly one subtreedt[(w,w′)]
of dt associated with every(w,w′) ∈ V ∪ W ,
which prescribes how to continue at(w,w′) with
the reproduction ofd. Having this in mind, we ob-
tain the sentential form of thedec(G)-derivation
which corresponds toκ by applying a modifica-
tion of ϕ to κ where the modification amounts to
replacingx(w,w′) andf(w,w′) by τEt

(dt[(w,w′)]);
note thatτEt

(dt[(w,w′)]) might contain∗. �

As illustration of the construction in Theorem 1
let us apply the mappingsϕ andψρ to rule r2 of
Fig. 1, i.e., tor2 = (ζs, ζt, ∅, {b, c}, ∗, P

r2

adj)
with ζs = A(A, γ), ζt = B(B(δ), B),
b = (ε,R, ε,L), c = (ε,R, 1,L), and∗ = (1, 2).

Let us calculateϕ(ε) on ζs. Due to (c),

ϕ(ε) = J ◦ ϕ(1) ◦ ϕ(2) ◦K.

Since there are no L-adjoinings atε, we have that
J = {ε}. Since there are the R-adjoiningsb andc
atε, we have the two permutations(b, c) and(c, b).
(v1, v2) = (b, c): K = {[r2, c](fc)[r2, b](fb)}
(v1, v2) = (c, b): K = {[r2, b](fb)[r2, c](fc)}

Due to (e) and (a), we have thatϕ(1) = {ε} and
ϕ(2) = {γ}, resp. Thus,ϕ(ε) is the set:

{γ [r2, c](fc) [r2, b](fb), γ [r2, b](fb) [r2, c](fc)}.

16

r1

(r1, a)

r2

(r2,¬b) (r2,¬c)

r4

α

[A,B]

x(2,2)

α

[r1, a]

fa

1
−→

[Ss, St]

St

f

B

β

x βa (2,2)

[A,R, B,L]

fa

.9
−→

[r1, a]

f

∗

a

γ

[r2, b]

f b

[r2, c]

fc

.4
−→

[A,R, B,L]

f

B

f

B

δ

∗

b

c

ε
.8
−→

[r2, b]

∗
ε

.4
−→

[r2, c]

∗

α
.1
−→

[A,B]

B

β

Figure 3: Some rules of the running example de-
coder.

Now letρ = γ [r2, b](fb) [r2, c](fc). Let us cal-
culateψρ(ε) on ζt.

ψρ(ε)
(c)
= fb(B(ψρ(1), ψρ(2)))
(c)
= fb(B(fc(B(ψρ(1.1))), ψρ(2)))
(a)
= fb(B(fc(B(δ)), ψρ(2)))
(e)
= fb(B(fc(B(δ)), ∗))

Hence we obtain the rule

γ [r2, b](fb) [r2, c](fc) →

[A,R, B,L](fb(B(fc(B(δ)), ∗)))

which is also shown in Fig. 3.

α α α γ

α α α γ
[r2, b]

∗

α α α γ
[r2, b]

∗

[r2, c]

∗

α α α

α α α

α

[A,B]

B

β

α

[A,R, B,L]

B

B

δ

∗

=
⇒

=
⇒

=
⇒

=
⇒

=
⇒

[Ss, St]

St

B

B

δ

B

β

B

β

β

prob. .8

prob. .4

prob. .4

prob. .9

prob. .1

=
⇒ prob. .1

[r1, a]

B

B

δ

∗

(r2,¬b)

(r2,¬c)

(r2, bc)

(r1, a)

r4

r1

[r1, a]

B

B

δ

∗

Figure 4: Derivation of the decoder corresponding
to the derivation in Fig. 2.

17

References

A. Abeille, Y. Schabes, A.K. Joshi. Using lexicalized
TAGs for machine translation. InProceedings of
the 13th International Conference on Computational
Linguistics, volume 3, pp. 1–6, Helsinki, Finland,
1990.

C. Baier, M. Gr̈oßer, F. Ciesinski. Model checking
linear-time properties of probabilistic systems. In
Handbook of Weighted Automata, Chapter 13, pp.
519–570, Springer, 2009.

S. DeNeefe. Tree adjoining machine translation. Ph.D.
thesis proposal, Univ. of Southern California, 2009.

S. DeNeefe, K. Knight. Synchronous tree adjoining
machine translation. InProc. of Conf. Empirical
Methods in NLP, pp. 727–736, 2009.

J. Engelfriet. Bottom-up and top-down tree transfor-
mations — a comparison.Math. Systems Theory,
9(3):198–231, 1975.

J. Engelfriet. Tree transducers and syntax-directed se-
mantics. InCAAP 1982: Lille, France, 1982.

A. Fujiyoshi, T. Kasai. Spinal-formed context-free tree
grammars. Theory of Computing Systems, 33:59–
83, 2000.

Z. Fülöp, H. Vogler. Weighted tree automata and tree
transducers. InHandbook of Weighted Automata,
Chapter 9, pp. 313–403, Spinger, 2009.

F. Gécseg, M. Steinby.Tree Automata. Akad́emiai
Kiadó, Budapest, 1984.

F. Gécseg, M. Steinby. Tree languages. InHandbook
of Formal Languages, volume 3, chapter 1, pages
1–68. Springer-Verlag, 1997.

J. Graehl, K. Knight, J. May. Training tree transducers.
Computational Linguistics, 34(3):391–427, 2008

A.K. Joshi, L.S. Levy, M. Takahashi. Tree adjunct
grammars. Journal of Computer and System Sci-
ences, 10(1):136–163, 1975.

A.K. Joshi, Y. Schabes. Tree-adjoining grammars. In
Handbook of Formal Languages. Chapter 2, pp. 69–
123, Springer-Verlag, 1997.

K. Knight, J. Graehl. An overview of probabilis-
tic tree transducers for natural language processing.
In Computational Linguistics and Intelligent Text
Processing, CICLing 2005, LNCS 3406, pp. 1–24,
Springer, 2005.

K. Knight, J. May. Applications of Weighted Au-
tomata in Natural Language Processing. InHand-
book of Weighted Automata, Chapter 14, pp. 571–
596, Springer, 2009.

P.M. Lewis, R.E. Stearns. Syntax-directed transduc-
tions. Journal of the ACM, 15:465–488, 1968.

A. Maletti. Compositions of tree series transforma-
tions. Theoret. Comput. Sci., 366:248–271, 2006.

A. Maletti. The Power of Tree Series Transducers.
Ph.D. thesis, TU Dresden, Germany, 2006.

A. Maletti. Compositions of extended top-down
tree transducers. Information and Computation,
206:1187–1196, 2008.

A. Maletti. Why synchronous tree substitution gram-
mars? inProc. 11th Conf. North American Chap-
ter of the Association of Computational Linguistics.
2010.

D.F. Martin and S.A. Vere. On syntax-directed trans-
ductions and tree transducers. InAnn. ACM Sympo-
sium on Theory of Computing, pp. 129–135, 1970.

R. Nesson, S.M. Shieber, and A. Rush. Induction
of probabilistic synchronous tree-insertion gram-
mars. Technical Report TR-20-05, Computer Sci-
ence Group, Harvard Univeristy, Cambridge, Mas-
sachusetts, 2005.

R. Nesson, S.M. Shieber, and A. Rush. Induction of
probabilistic synchronous tree-inserting grammars
for machine translation. InProceedings of the 7th
Conference of the Association for Machine Transla-
tion in the Americas (AMTA 2006), 2006.

Y. Schabes, R.C. Waters. Tree insertion grammars:
a cubic-time, parsable formalism that lexicalizes
context-free grammar without changing the trees
produced.Computational Linguistics, 21:479–513,
1994.

P.P. Schreiber. Tree-transducers and syntax-connected
transductions. InAutomata Theory and Formal
Languages, Lecture Notes in Computer Science 33,
pp. 202–208, Springer, 1975.

S.M. Shieber. Synchronous grammars and tree trans-
ducers. InProc. 7th Workshop on Tree Adjoin-
ing Grammars and Related Formalisms, pp. 88–95,
2004.

S.M. Shieber. Unifying synchronous tree-adjoining
grammars and tree transducers via bimorphisms. In
Proc. 11th Conf. European Chapter of ACL, EACL
06, pp. 377–384, 2006.

S.M. Shieber, Y. Schabes. Synchronous tree-adjoining
grammars. InProceedings of the 13th Interna-
tional Conference on Computational Linguistics,
volume 3, pp. 253–258, Helsinki, Finland, 1990.

K. Vijay-Shanker, D.J. Weir. The equivalence of four
extensions of context-free grammars.Mathematical
Systems Theory, 27:511–546, 1994.

K. Yamada and K. Knight. A syntax-based statistical
translation model. InProc. of 39th Annual Meeting
of the Assoc. Computational Linguistics, pp. 523–
530, 2001.

18

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 19–27,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Parsing and Translation Algorithms
Based on Weighted Extended Tree Transducers

Andreas Maletti∗
Departament de Filologies Romàniques

Universitat Rovira i Virgili
Tarragona, Spain

Giorgio Satta
Department of Information Engineering

University of Padua
Padua, Italy

Abstract

This paper proposes a uniform frame-
work for the development of parsing and
translation algorithms for weighted ex-
tended (top-down) tree transducers and in-
put strings. The asymptotic time complex-
ity of these algorithms can be improved
in practice by exploiting an algorithm for
rule factorization in the above transducers.

1 Introduction

In the field of statistical machine translation, con-
siderable interest has recently been shown for
translation models based on weighted tree trans-
ducers. In this paper we consider the so-called
weighted extended (top-down) tree transducers
(WXTTs for short). WXTTs have been proposed
by Graehl and Knight (2004) and Knight (2007)
and are rooted in similar devices introduced ear-
lier in the formal language literature (Arnold and
Dauchet, 1982).

WXTTs have enough expressivity to represent
hierarchical syntactic analyses for natural lan-
guage sentences and can directly model most of
the elementary operations that rule the process
of translation between natural languages (Knight,
2007). Furthermore, the use of weights and in-
ternal states allows the encoding of statistical pa-
rameters that have recently been shown to be ex-
tremely useful in discriminating likely translations
from less plausible ones.

For an WXTT M , the parsing problem is tradi-
tionally defined for a pair of trees t and u and re-
quires as output some representation of the set of
all computations ofM that map t into u. Similarly,
the translation problem forM is defined for an in-
put tree t and requires as output some representa-
tion of the set of all computations of M mapping t

∗Financially supported by the Ministerio de Educación y
Ciencia (MEC) grant JDCI-2007-760.

into any other tree. When we deal with natural
language processing applications, however, pars-
ing and translation are most often represented on
the basis of input strings rather than trees. Some
tricks are then applied to map the problem back
to the case of input trees. As an example in the
context of machine translation, let w be some in-
put string to be translated. One can intermediately
construct a tree automaton Mw that recognizes the
set of all possible trees that have w as yield with
internal nodes from the input alphabet of M . This
automaton Mw is further transformed into a tree
transducer implementing a partial identity trans-
lation. This transducer is then composed with M
(relational composition) to obtain a transducer that
represents all translations of w. This is usually
called the ‘cascaded’ approach.

In contrast with the cascaded approach above,
which may be rather inefficient, we investigate a
more direct technique for both parsing and transla-
tion of strings based on WXTTs. We do this by ex-
tending to WXTTs the well-known BAR-HILLEL

construction defined for context-free grammars
(Bar-Hillel et al., 1964) and for weighted context-
free grammars (Nederhof and Satta, 2003). We
then derive computational complexity results for
parsing and translation of input strings on the ba-
sis of WXTTs. Finally, we develop a novel fac-
torization algorithm for WXTTs that, in practical
applications, can reduce the asymptotic complex-
ity for such problems.

2 Preliminary definitions

Let · be an associative binary operation on a set S.
If S contains an element 1 such that 1·s = s = s·1
for every s ∈ S, then (S, ·, 1) is a monoid. Such
a monoid (S, ·, 1) is commutative if the identity
s1 ·s2 = s2 ·s1 holds for all s1, s2 ∈ S. A commu-
tative semiring (S,+, ·, 0, 1) is an algebraic struc-
ture such that:
• (S,+, 0) and (S, ·, 1) are commutative

19

monoids,
• · distributes over + (from both sides), and
• s · 0 = 0 = 0 · s for every s ∈ S.

From now on, let (S,+, ·, 0, 1) be a com-
mutative semiring. An alphabet is a finite
set of symbols. A weighted string automa-
ton [WSA] (Schützenberger, 1961; Eilenberg,
1974) is a system N = (P,Γ, J, ν, F) where
• P and Γ are alphabets of states and input

symbols, respectively,
• J, F : P → S assign initial and final weights,

respectively, and
• ν : P × Γ× P → S assigns a weight to each

transition.
The transition weight mapping ν can be under-
stood as square matrices ν(·, γ, ·) ∈ SP×P for ev-
ery γ ∈ Γ. The WSA N is deterministic if
• J(p) 6= 0 for at most one p ∈ P and
• for every p ∈ P and γ ∈ Γ there exists at

most one p′ ∈ P such that ν(p, γ, p′) 6= 0.
We now proceed with the semantics of N . We

will define the initial algebra semantics here; al-
ternative, equivalent definitions of the semantics
exist (Sakarovitch, 2009). Let w ∈ Γ∗ be an in-
put string, γ ∈ Γ, and p, p′ ∈ P be two states.
We extend ν to a mapping hν : P × Γ∗ × P → S
recursively as follows:

hν(p, ε, p′) =

{
1 if p = p′

0 otherwise

hν(p, γw, p′) =
∑
p′′∈P

ν(p, γ, p′′) · hν(p′′, w, p′) .

Consequently,

hν(p, uw, p′) =
∑
p′′∈P

hν(p, u, p′′) · hν(p′′, w, p′)

for all p, p′ ∈ P and u,w ∈ Γ∗. Then the matrix
hν(·, γ1 · · · γk, ·) equals ν(·, γ1, ·) · . . . · ν(·, γk, ·).
Thus, if the semiring operations can be performed
in constant time and access to ν(p, γ, q) is in con-
stant time for every p, q ∈ P , then for every
w ∈ Γ∗ we can compute the matrix hν(·, w, ·) in
time O(|w| · |P |3) because it can be computed by
|w| − 1 matrix multiplications.

The WSA N computes the map N : Γ∗ → S,
which is defined for every w ∈ Γ∗ by1

N(w) =
∑
p,p′∈P

J(p) · hν(p, w, p′) · F (p′) .

1We overload the symbol N to denote both the WSA and
its recognized mapping. However, the intended meaning will
always be clear from the context.

Since we will also consider individual runs,
let us recall the run semantics as well. Let
w = γ1 · · · γk ∈ Γ∗ be an input string of length k.
Then any mapping r : [0, k] → P is a run of N
on w, where [0, k] denotes the set of integers be-
tween (inclusive) 0 and k. A run can be under-
stood as a vector of states and thus we some-
times write ri instead of r(i). The weight of
such a run r, denoted by wtN (r), is defined by
wtN (r) =

∏k
i=1 ν(ri−1, γi, ri). Then

hν(p, w, p′) =
∑

r : [0,k]→P
r0=p,rk=p′

wtN (r)

for every p, p′ ∈ P and w ∈ Γ∗.

3 Weighted extended tree transducers

Next, we move to tree languages, for which we
need to introduce some additional notation. Let
Σ be a ranked alphabet, that is, an alphabet
whose symbols have a unique associated arity. We
write Σk to denote the set of all k-ary symbols
in Σ. We use the special nullary symbol e ∈ Σ0 to
syntactically represent the empty string ε. The set
of Σ-trees indexed by a set V , denoted by TΣ(V),
is the smallest set satisfying both of the following
conditions:
• for every v ∈ V , the single node labeled v,

written v, is a tree of TΣ(V),
• for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(V),

the tree with a root node labeled σ and
trees t1, . . . , tk as its k children, written
σ(t1, . . . , tk), belongs to TΣ(V).

Throughout this paper we sometimes write σ() as
just σ. In the following, let t ∈ TΣ(V). The set
of positions Pos(t) ⊆ N∗ of a tree t ∈ TΣ(V) is
recursively defined as follows:

Pos(v) = {ε}
Pos(t) = {ε} ∪ {iw | 1 ≤ i ≤ k,w ∈ Pos(ti)}

for every v ∈ V , σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V)
where t = σ(t1, . . . , tk). The label of t at posi-
tion w ∈ Pos(t) is denoted by t(w). The size of
the tree t ∈ TΣ is defined as |t| = |Pos(t)|. For
every w ∈ Pos(t) the subtree of t that is rooted
at w is denoted by subt(w); i.e.,

subt(ε) = t

subσ(t1,...,tk)(iw) = subti(w)

20

for every σ ∈ Σk, t1, . . . , tk ∈ TΣ(V), 1 ≤ i ≤ k,
and w ∈ Pos(ti). Finally, the set of vari-
ables var(t) is given by

var(t) = {v ∈ V | ∃w ∈ Pos(t) : t(w) = v} .

If for every v ∈ var(t) there exists exactly one
w ∈ Pos(t) such that t(w) = v, then t is linear.

We use the fixed sets X = {xi | i ≥ 1} and
Y = {yi,j | 1 ≤ i < j} of formal variables
and the subsets Xk = {xi | 1 ≤ i ≤ k} and
Yk = {yi,j | 1 ≤ i < j ≤ k} for every k ≥ 0.
Note thatX0 = ∅. For everyH ⊆ Σ0∪X∪Y , the
H-yield of t is recursively defined by ydH(t) = t
if t ∈ H \ {e}, ydH(t) = ydH(t1) · · · ydH(tk) if
t = σ(t1, . . . , tk) with σ ∈ Σk and k ≥ 1, and
ydH(t) = ε otherwise. If H = Σ0 ∪X ∪ Y , then
we also omit the index and just write yd(t).

Let l ∈ TΣ(V) and θ : V → TΣ(V). Then
lθ denotes the result obtained from l by replacing
every occurrence of v ∈ V by θ(v). The k-fold
application is denoted by lθk. If lθk = lθk+1 for
some k ≥ 0, then we denote lθk by lθ∗. In addi-
tion, if V = Xk, then we write l[θ(x1), . . . , θ(xk)]
instead of lθ. We write CΣ(Xk) for the subset
of those trees of TΣ(Xk) such that every vari-
able of x ∈ Xk occurs exactly once in it. Given
t ∈ TΣ(X), we write dec(t) for the set{

(l, t1, . . . , tk)
∣∣∣ l ∈ CΣ(Xk), l[t1, . . . , tk] = t,
t1, . . . , tk ∈ TΣ(X)

}
A (linear and nondeleting) weighted extended

(top-down) tree transducer [WXTT] (Arnold and
Dauchet, 1975; Arnold and Dauchet, 1976; Lilin,
1981; Arnold and Dauchet, 1982; Maletti et al.,
2009) is a system M = (Q,Σ,∆, I, R) where
• Q is an alphabet of states,
• Σ and ∆ are ranked alphabets of input and

output symbols, respectively,
• I : Q→ S assigns initial weights, and
• R is a finite set of rules of the form

(q, l)
s→ (q1 · · · qk, r) with q, q1, . . . , qk ∈ Q,

l ∈ CΣ(Xk) and r ∈ C∆(Xk), and s ∈ S
such that {l, r} 6⊆ X .

Let us discuss the final restriction imposed on
the rules of a WXTT. Essentially, it disallows rules
of the form (q, x1)

s→ (q′, x1) with q, q′ ∈ Q and
s ∈ S. Such pure epsilon rules only change the
state and charge a cost. However, they can yield
infinite derivations (and with it infinite products
and sums) and are not needed in our applications.
The WXTT M is standard if ydX(r) = x1 · · ·xk

for every (q, l)
s→ (q1 · · · qk, r) ∈ R. This restric-

tion enforces that the order of the variables is fixed
on the right-hand side r, but since the order is ar-
bitrary in the left-hand side l (and the names of the
variables are inconsequential), it can be achieved
easily without loss of generality. If there are sev-
eral rules that differ only in the naming of the vari-
ables, then their weights should be added to obtain
a single standard rule. To keep the presentation
simple, we also construct nonstandard WXTTs in
the sequel. However, we implicitly assume that
those are converted into standard WXTTs.

The semantics of a standard WXTT is in-
spired by the initial-algebra semantics for classi-
cal weighted top-down and bottom-up tree trans-
ducers (Fülöp and Vogler, 2009) [also called top-
down and bottom-up tree series transducers by En-
gelfriet et al. (2002)]. Note that our semantics
is equivalent to the classical term rewriting se-
mantics, which is presented by Graehl and Knight
(2004) and Graehl et al. (2008), for example. In
fact, we will present an equivalent semantics based
on runs later. Let M = (Q,Σ,∆, I, R) be a
WXTT. We present a definition that is more gen-
eral than immediately necessary, but the general-
ization will be useful later on. For every n ∈ N,
p1, . . . , pn ∈ Q, and L ⊆ R, we define the
mapping hp1···pn

L : TΣ(Xn) × T∆(Xn) → SQ by
hp1···pn

L (xi, xi)pi = 1 for every 1 ≤ i ≤ n and

hp1···pn

L (t, u)q

=
∑

(l,t1,...,tk)∈dec(t)
(r,u1,...,uk)∈dec(u)

(q,l)
s→(q1···qk,r)∈L

s ·
k∏
i=1

hp1···pn

L (ti, ui)qi (1)

for all remaining t ∈ TΣ(Xn), u ∈ T∆(Xn), and
q ∈ Q. Note that for each nonzero summand in (1)
one of the decompositions dec(t) and dec(u) must
be proper (i.e., either l /∈ X or r /∈ X). This
immediately yields that the sum is finite and the
recursion well-defined. The transformation com-
puted by M , also denoted by M , is the map-
ping M : TΣ × T∆ → S, which is defined by
M(t, u) =

∑
q∈Q I(q)·hR(t, u)q for every t ∈ TΣ

and u ∈ T∆.
Let us also introduce a run semantics for the

WXTT (Q,Σ,∆, I, R). The rank of a rule
ρ = (q, l)

s→ (q1 · · · qk, r) ∈ R, denoted by rk(ρ),
is rk(ρ) = k. This turns R into a ranked alphabet.
The input state of ρ is in(ρ) = q, the ith output
state is outi(ρ) = qi for every 1 ≤ i ≤ k, and

21

the weight of ρ is wt(ρ) = s. A tree r ∈ TR(X)
is called run if in(r(wi)) = outi(r(w)) for every
wi ∈ Pos(r) and 1 ≤ i ≤ rk(r(w)) such that
r(wi) ∈ R. The weight of a run r ∈ TR(X) is

wt(r) =
∏

w∈Pos(r),r(w)∈R

wt(r(w)) .

The evaluation mappings π1 : TR(X) → TΣ(X)
and π2 : TR(X) → T∆(X) are defined for every
x ∈ X , ρ = (q, l)

s→ (q1 · · · qk, r) ∈ R, and
r1, . . . , rk ∈ TR(X) by π1(x) = x, π2(x) = x,
and

π1(ρ(r1, . . . , rk)) = l[π1(r1), . . . , π1(rk)]

π2(ρ(r1, . . . , rk)) = r[π2(r1), . . . , π2(rk)] .

We obtain the weighted tree transformation for ev-
ery t ∈ TΣ and u ∈ T∆ as follows2

M(t, u) =
∑

run r∈TR
t=π1(r),u=π2(r)

I(in(r(ε))) · wt(r) .

This approach is also called the bimorphism ap-
proach (Arnold and Dauchet, 1982) to tree trans-
formations.

4 Input and output restrictions of WXTT

In this section we will discuss the BAR-HILLEL

construction for the input and the output part of a
WXTT M . This construction essentially restricts
the input or output of the WXTT M to the string
language recognized by a WSA N . Contrary to
(direct or inverse) application, this construction
is supposed to yield another WXTT. More pre-
cisely, the constructed WXTT should assign to
each translation (t, u) the weight assigned to it
by M multiplied by the weight assigned by N
to the yield of t (or u if the output is restricted).
Since our WXTTs are symmetric, we will actu-
ally only need one construction. Let us quickly
establish the mentioned symmetry statement. Es-
sentially we just have to exchange left- and right-
hand sides and redistribute the states in those left-
and right-hand sides accordingly.

From now on, let M = (Q,Σ,∆, I, R) be a
WXTT.

Theorem 1. There exists a WXTT M ′ such that
M ′(u, t) = M(t, u) for every t ∈ TΣ and u ∈ T∆.

2We immediately also use M for the run semantics be-
cause the two semantics trivially coincide.

Proof. Let M ′ = (Q,∆,Σ, I, R′) be the WXTT
such that

R′ = {(q, r) s→ (w, l) | (q, l) s→ (w, r) ∈ R} .

It should be clear that M ′(u, t) = M(t, u) for ev-
ery t ∈ TΣ and u ∈ T∆.

With the symmetry established, we now only
need to present the BAR-HILLEL construction for
either the input or output side. Without loss of
generality, let us assume that M is standard. We
then choose the output side here because the order
of variables is fixed in it. Note that we sometimes
use the angled parentheses ‘〈’ and ‘〉’ instead of
parentheses for clarity.

Definition 2. Let N = (P,Γ, J, ν, F) be a WSA
with Γ = ∆0 \ {e}. We construct the output prod-
uct Prod(M,N) = (P×Q×P,Σ,∆, I ′, R′) such
that
• I ′(〈p, q, p′〉) = J(p) · I(q) · F (p′) for every
p, p′ ∈ P and q ∈ Q,
• for every rule (q, l)

s→ (q1 · · · qk, r) ∈ R and
every p0, . . . , pk, p

′
0, . . . , p

′
k ∈ P , let

(q′, l)
s·s0·...·sk−−−−−→ (q′1 · · · q′k, r) ∈ R′

where
– q′ = 〈p0, q, p

′
k〉,

– q′i = 〈p′i−1, qi, pi〉 for every 1 ≤ i ≤ k,
– yd(r) = w0x1w1 · · ·wk−1xkwk with
w0, . . . , wk ∈ Γ∗, and

– si = hν(pi, wi, p
′
i) for every 0 ≤ i ≤ k.

Let ρ = (q, l)
s→ (q1 · · · qk, r) ∈ R. The

size of ρ is |ρ| = |l| + |r|. The size and
rank of the WXTT M are |M | =

∑
ρ∈R|ρ|

and rk(M) = maxρ∈R rk(ρ), respectively. Fi-
nally, the maximal output yield length of M , de-
noted by len(M), is the maximal length of yd(r)
for all rules (q, l)

s→ (q1 · · · qk, r) ∈ R.
The size and rank of Prod(M,N) are in
O(|M | · |P |2 rk(M)+2) and rk(M), respec-
tively. We can compute Prod(M,N) in time
O(|R| · len(M) · |P |2 rk(M)+5). If N is de-
terministic, then the size of Prod(M,N) is
in O(|M | · |P |rk(M)+1) and the required time is
inO(|R| · len(M) · |P |rk(M)+1). Next, let us prove
that our BAR-HILLEL construction is actually cor-
rect.

Theorem 3. Let M and N be as in Defini-
tion 2, and let M ′ = Prod(M,N). Then
M ′(t, u) = M(t, u) ·N(yd(u)) for every t ∈ TΣ

and u ∈ T∆.

22

Proof. Let M ′ = (Q′,Σ,∆, I ′, R′). First, a sim-
ple proof shows that

hR′(t, u)〈p,q,p′〉 = hR(t, u)q · hν(p, yd(u), p′)

for every t ∈ TΣ, u ∈ T∆, q ∈ Q, and p, p′ ∈ P .
Now we can prove the main statement as follows:

M ′(t, u)

=
∑
q′∈Q′

I ′(q′) · hR′(t, u)q′

=
∑
p,p′∈P
q∈Q

I ′(〈p, q, p′〉) · hR(t, u)q · hν(p, yd(u), p′)

= M(t, u) ·N(yd(u))

for every t ∈ TΣ and u ∈ T∆.

Note that the typical property of many BAR-
HILLEL constructions, namely that a run of M
and a run of N uniquely determine a run
of Prod(M,N) and vice versa, does not hold for
our construction. In fact, a run of M and a run
of N uniquely determine a run of Prod(M,N),
but the converse does not hold. We could modify
the construction to enable this property at the ex-
pense of an exponential increase in the number of
states of Prod(M,N). However, since those re-
lations are important for our applications, we ex-
plore the relation between runs in some detail here.

To simplify the discussion, we assume, without
loss of generality, that M is standard and s = s′

for every two rules (q, l)
s→ (w, r) ∈ R and

(q, l)
s′→ (w, r) ∈ R. Moreover, we assume the

symbols of Definition 2. For every r′ ∈ TR′(X),
we let base(r′) denote the run obtained from r′ by
replacing each symbol

(q′, l)
s·s0·...·sk−−−−−→ (q′1 · · · q′k, r)

by just (q, l)
s→ (q1 · · · qk, r) ∈ R. Thus, we re-

place a rule (which is a symbol) of R′ by the un-
derlying rule of R. We start with a general lemma,
which we believe to be self-evident.

Lemma 4. Let r′ ∈ TR′ and n = |yd(π2(r′))|.
Then wtM ′(r

′) = wtM (base(r′))·
∑

r∈R′′ wtN (r)
where R′′ is a nonempty subset of
{r : [0, n]→ P | in(r′(ε)) = 〈r0, q, rn〉}.

Let us assume that N is trim (i.e., all states are
reachable and co-reachable) and unambiguous. In
this case, for every γ1 · · · γk ∈ Γ∗ and p, p′ ∈ P
there is at most one successful run r : [0, k] → P
such that

• ν(ri−1, γi, ri) 6= 0 for every 1 ≤ i ≤ k, and
• r0 = p and rk = p′.

This immediately yields the following corollary.

Corollary 5 (of Lemma 4). Let N be trim and
unambiguous. For every r′ ∈ TR′ we have

wtM ′(r
′) = wtM (base(r′)) · wtN (r)

for some r : [0, n]→ P with n = |yd(π2(r′))|.

We now turn to applications of the product con-
struction. We first consider the translation prob-
lem for an input string w and a WXTTM . We can
represent w as a trim and unambiguous WSA Nw

that recognizes the language {w} with weight
of 1 on each transition (which amounts to ignor-
ing the weight contribution of Nw). Then the in-
put product transducer Mw = Prod(Nw,M) pro-
vides a compact representation of the set of all
computations of M that translate the string w.
From Corollary 5 we have that the weights of
these computations are also preserved. Thus,
Mw(TΣ × T∆) =

∑
(t,u)∈TΣ×T∆

Mw(t, u) is the
weight of the set of string translations of w.

As usual in natural language processing ap-
plications, we can exploit appropriate semirings
and compute several useful statistical parameters
through Mw(TΣ × T∆), as for instance the high-
est weight of a computation, the inside probabil-
ity and the rule expectations; see (Li and Eisner,
2009) for further discussion.

One could also construct in linear time the range
tree automaton for Mw, which can be interpreted
as a parsing forest with all the weighted trees as-
signed to translations of w under M . If we fur-
ther assume thatM is unambiguous, thenMw will
also have this property, and we can apply standard
techniques to extract from Mw the highest score
computation. In machine translation applications,
the unambiguity assumption is usually met, and
avoids the so-called ‘spurious’ ambiguity, that is,
having several computations for an individual pair
of trees.

The parsing problem for input strings w and u
can be treated in a similar way, by restricting M
both to the left and to the right.

5 Rule factorization

As already discussed, the time complexity of the
product construction is an exponential function
of the rank of the transducer. Unfortunately,
it is not possible in the general case to cast a

23

WXTT into a normal form such that the rank is
bounded by some constant. This is also expected
from the fact that the translation problem for sub-
classes of WXTTs such as synchronous context-
free grammars is NP-hard (Satta and Peserico,
2005). Nonetheless, there are cases in which a
rank reduction is possible, which might result in
an improvement of the asymptotical run-time of
our construction.

Following the above line, we present here a
linear time algorithm for reducing the rank of a
WXTT under certain conditions. Similar algo-
rithms for tree-based transformation devices have
been discussed in the literature. Nesson et al.
(2008) consider synchronous tree adjoining gram-
mars; their algorithm is conceptually very sim-
ilar to ours, but computationally more demand-
ing due to the treatment of adjunction. Follow-
ing that work, we also demand here that the new
WXTT ‘preserves’ the recursive structure of the
input WXTT, as formalized below. Galley et al.
(2004) algorithm also behaves in linear time, but
deals with the different problem of tree to string
translation. Rank reduction algorithms for string-
based translation devices have also been discussed
by Zhang et al. (2006) and Gildea et al. (2006).

Recall that M = (Q,Σ,∆, I, R) is a standard
WXTT. Let M ′ = (Q′,Σ,∆, I ′, R′) be a WXTT
with Q ⊆ Q′.3 Then M ′ is a structure-preserving
factorization of M if
• I ′(q) = I(q) for every q ∈ Q and I ′(q) = 0

otherwise, and
• hp1···pn

R′ (t, u)q = hp1···pn

R (t, u)q for every
q, p1, . . . , pn ∈ Q, t ∈ TΣ(Xn), and
u ∈ T∆(Xn).

In particular, we have hR′(t, u)q = hR(t, u)q for
n = 0. Consequently, M ′ and M are equivalent
because

M ′(t, u) =
∑
q∈Q′

I ′(q) · hR′(t, u)q

=
∑
q∈Q

I(q) · hR(t, u)q = M(t, u) .

Note that the relation ‘is structure-preserving fac-
torization of’ is reflexive and transitive, and thus, a
pre-order. Moreover, in a ring (actually, additively
cancellative semirings are sufficient) it is also anti-
symmetric, and consequently, a partial order.

3Actually, an injective mapping Q → Q′ would be suffi-
cient, but since the naming of the states is arbitrary, we im-
mediately identify according to the injective mapping.

Informally, a structure-preserving factorization
ofM consists in a set of new rules that can be com-
posed to provide the original rules and preserve
their weights. We develop an algorithm for finding
a structure-preserving factorization by decompos-
ing each rule as much as possible. The algorithm
can then be iterated for all the rules in the WXTT.
The idea underlying our algorithm is very simple.
Let ρ = (q, l)

s→ (q1 · · · qk, r) ∈ R be an origi-
nal rule. We look for subtrees l′ and r′ of l and r,
respectively, such that var(l′) = var(r′). The con-
dition that var(l′) = var(r′) is derived from the
fact that hq1···qkR (l′, r′)q = 0 if var(l′) 6= var(r′).
We then split ρ into two new rules by ‘excis-
ing’ subtrees l′ and r′ from l and r, respectively.
In the remaining trees the ‘excised’ trees are re-
placed with some fresh variable. The tricky part
is the efficient computation of the pairs (wl, wr),
since in the worst case the number of such pairs
is in Θ(|l| · |r|), and naı̈ve testing of the condition
var(l′) = var(r′) takes time O(rk(ρ)).

Let us start with the formal development. Recall
the doubly-indexed set Y = {yi,j | 1 ≤ i < j}.
Intuitively speaking, the variable yi,j will
represent the set {xi, . . . , xj}. With this
intuition in mind, we define the mapping
vars : TΣ(X ∪ Y)→ N3

∞ as follows:

vars(xi) = (i, i, 1)

vars(yi,j) = (i, j, j − i+ 1)

and vars(σ(t1, . . . , tk)) is

(
k

min
`=1

vars(t`)1,
k

max
`=1

vars(t`)2,
k∑
`=1

vars(t`)3)

for every i, j ∈ N with i < j, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ(X ∪ Y). Clearly, vars(t) can
be computed in time O(|t|), which also in-
cludes the computation of vars(u) for every sub-
tree u of t. In addition, vars(t)3 = |var(t)|
for all linear t ∈ TΣ(X). Finally, if
t ∈ TΣ(X), then vars(t)1 and vars(t)2 are the
minimal and maximal index i ∈ N such that
xi ∈ var(t), respectively (they are ∞ and 0,
respectively, if var(t) = ∅). For better read-
ability, we use minvar(t) and maxvar(t) for
vars(t)1 and vars(t)2, respectively.

Let ρ = (q, l)
s→ (q1 · · · qk, r) ∈ R be an origi-

nal rule. In the following, we will use minvar(t),
maxvar(t), and |var(t)| freely for all subtrees t
of l and r and assume that they are precomputed,

24

which can be done in time O(|ρ|). Moreover, we
will freely use the test ‘var(t) = var(u)’ for sub-
trees t and u of l and r, respectively. This test can
be performed in constant time [disregarding the
time needed to precompute vars(t) and vars(u)]
by the equivalent test
• minvar(t) = minvar(u),
• maxvar(t) = maxvar(u),
• |var(t)| = maxvar(t)−minvar(t) + 1, and
• |var(u)| = maxvar(u)−minvar(u) + 1.
Our factorization algorithm is presented in Al-

gorithm 1. Its first two parameters hold the left-
and right-hand side (l, r), which are to be decom-
posed. The third and fourth parameter should ini-
tially be x1. To simplify the algorithm, we assume
that it is only called with left- and right-hand sides
that (i) contain the same variables and (ii) contain
at least two variables. These conditions are en-
sured by the algorithm for the recursive calls. The
algorithm returns a decomposition of (l, r) in the
form of a set D ⊆ TΣ(X ∪ Y) × T∆(X ∪ Y)
such that var(l′) = var(r′) for every (l′, r′) ∈ D.
Moreover, all such l′ and r′ are linear. Finally, the
pairs in D can be composed (by means of point-
wise substitution at the variables of Y) to form the
original pair (l, r).

Before we move on to formal properties of Al-
gorithm 1, let us illustrate its execution on an ex-
ample.

Example 6. We work with the left-hand side
l = σ(x1, σ(x3, x2)) and the right-hand side
r = γ(σ(x1, γ(σ(x2, x3)))). Then |var(l)| ≥ 2
and var(l) = var(r). Let us trace the call
DECOMPOSE(l, r, x1, x1). The condition in line 1
is clearly false, so we proceed with line 3. The
condition is true for i = 1, so we continue with
DECOMPOSE(l, σ(x1, γ(σ(x2, x3))), x1, γ(x1)).

This time neither the condition in line 1 nor the
condition in line 3 are true. In line 6, j is set to 1
and we initialize r′1 = x1 and r′2 = γ(σ(x2, x3)).
Moreover, the array h is initialized to h(1) = 1,
h(2) = 2, and h(3) = 2. Now let us discuss the
main loop starting in line 12 in more detail. First,
we consider i = 1. Since l1 = x1, the condition in
line 13 is fulfilled and we set l′1 = x1 and proceed
with the next iteration (i = 2). This time the condi-
tion of line 13 is false because l2 = σ(x3, x2) and
var(l2) = var(rh(2)) = var(r2) = {x2, x3}. Con-
sequently, j is set to 2 and l′2 = r′2 = y2,3. Next,
DECOMPOSE(σ(x3, x2), γ(σ(x2, x3)), x1, x1) is
processed. Let us suppose that it generates the

set D. Then we return

D ∪ {(σ(x1, y2,3), γ(σ(x1, y2,3)))} .

Finally, let us quickly discuss how the set D
is obtained. Since the condition in line 3 is
true, we have to evaluate the recursive call
DECOMPOSE(σ(x3, x2), σ(x2, x3), x1, γ(x1)).

Now, j = 2, h(2) = 1, and h(3) = 2.
Moreover, r′1 = x2 and r′2 = x3. In the
main loop starting in line 12, the condition of
line 13 is always fulfilled, which yields that
l′1 = x3 and l′2 = x2. Thus, we return
{(σ(x3, x2), γ(σ(x2, x3)))}, which is exactly the
input because decomposition completely failed.
Thus, the overall decomposition of l and r is

{(σ(x1, y2,3), γ(σ(x1, y2,3))),

(σ(x3, x2), γ(σ(x2, x3)))} ,

which, when the second pair is substituted (point-
wise) for y2,3 in the first pair, yields exactly (l, r).

Informally, the rules are obtained as follows
fromD. If all variables occur in a pair (l′, r′) ∈ D,
then the left-hand side is assigned to the original
input state. Furthermore, for every variable yi,j we
introduce a new fresh state qi,j whereas the vari-
able xi is associated to qi. In this way, we deter-
mine the states in the right-hand side.

Formally, let ρ = (q, l)
s→ (q1 · · · qk, r)

be the original rule and D be the result of
DECOMPOSE(l, r, x1, x1) of Algorithm 1. In ad-
dition, for every 1 ≤ i < j ≤ k, let qρ,i,j be a new
state such that qρ,1,k = q. Let

Q′ρ = {q, q1, . . . , qk} ∪ {qρ,i,j | 1 ≤ i < j ≤ k} .

Then for every (l′, r′) ∈ D we obtain the rule

(qρ,minvar(r′),maxvar(r′), l
′)

s′→ (p1 · · · pn, r′)

where ydX∪Y (r′) = z1 · · · zn,

s′ =

{
s if vars(r′)3 = k

1 otherwise

q′` =

{
qj if z` = xj

qρ,i,j if z` = yi,j

for every 1 ≤ ` ≤ n. The rules obtained in this
fashion are collected in R′ρ.4 The WXTT dec(M)
is dec(M) = (Q′,Σ,∆, I ′, R′) where

4Those rules need to be normalized to obtain a standard
WXTT.

25

Algorithm 1 DECOMPOSE(l, r, l′, r′) computing the decomposition of linear l ∈ TΣ(Xk) and
r ∈ T∆(Xk) with var(l) = var(r) and |var(l)| ≥ 2.

if l = σ(l1, . . . , lm) and there exists i ∈ N is such that var(li) = var(l) then
2: return DECOMPOSE(li, r, l

′[σ(l1, . . . , li−1, x1, li+1, . . . , lm)], r′[x1])
if r = δ(r1, . . . , rn) and there exists i ∈ N is such that var(ri) = var(r) then

4: return DECOMPOSE(l, ri, l
′[x1], r

′[δ(r1, . . . , ri−1, x1, ri+1, . . . , rn)])

let l = σ(l1, . . . , lm) and r = δ(r1, . . . , rn)
6: j = minvar(r)

for all 1 ≤ i ≤ n do
8: r′i = ri

while j ≤ maxvar(ri) do
10: h(j) = i; j = j + 1
D = ∅

12: for all 1 ≤ i ≤ m do
if |var(li)| ≤ 1 or var(li) 6= var(rh(minvar(li))) then

14: l′i = li
else

16: j = h(minvar(li))
l′i = r′j = yminvar(li),maxvar(li)

18: D = D ∪ DECOMPOSE(li, rj , x1, x1)

return D ∪ {(l′[σ(l′1, . . . , l
′
m)], r′[δ(r′1, . . . , r

′
n)])}

• Q′ = Q ∪
⋃
ρ∈R,rk(ρ)≥2Q

′
ρ,

• I ′(q) = I(q) for every q ∈ Q and I ′(q) = 0
otherwise, and
• R′ is

{ρ ∈ R | rk(ρ) < 2} ∪
⋃

ρ∈R,rk(ρ)≥2

R′ρ .

To measure the success of the factorization, we
introduce the following notion. The degree of M ,
denoted by deg(M), is the minimal rank of all
structure-preserving factorizations M ′ of M ; i.e.,

deg(M) = min
M ′ a structure-preserving

factorization of M

rk(M ′) .

Then the goal of this section is the efficient com-
putation of a structure-preserving factorizationM ′

of M such that rk(M ′) = deg(M).

Theorem 7. The WXTT dec(M) is a structure-
preserving factorization of M such that
rk(dec(M)) = deg(M). Moreover, dec(M) can
be computed in time O(|M |).

Proof. Let us only discuss the run-time complex-
ity shortly. Clearly, DECOMPOSE(l, r, x1, x1)
should be called once for each rule
(q, l)

s→ (q1 · · · qk, r) ∈ R. In lines 1–4 the
structure of l and r is inspected and the prop-
erties var(li) = var(l) and var(ri) = var(r)
are tested in constant time. Mind that we pre-
computed vars(l) and vars(r), which can be
done in linear time in the size of the rule. Then
each subtree ri is considered in lines 7–10 in
constant time. Finally, we consider all direct input

subtrees li in lines 12–18. The tests involving
the variables are all performed in constant time
due to the preprocessing step that computes
vars(l) and vars(r). Moreover, at most one
recursive call to DECOMPOSE is generated for
each input subtree ti. So if we implement the
union in lines 18 and 19 by a constant-time
operation (such as list concatenation, which can
be done since it is trivially a disjoint union), then
we obtain the linear time-complexity.

6 Concluding remarks

In this paper we have shown how to restrict com-
putations of WXTTs to given input and output
WSA, and have discussed the relevance of this
technique for parsing and translation applications
over input strings, resulting in the computation of
translation forests and other statistical parameters
of interest. We have also shown how to factorize
transducer rules, resulting in an asymptotic reduc-
tion in the complexity for these algorithms.

In machine translation applications transduc-
ers usually have very large sets of rules. One
should then specialize the restriction construction
in such a way that the number of useless rules
for Prod(Nw,M) is considerably reduced, result-
ing in a more efficient construction. This can be
achieved by grounding the construction of the new
rules by means of specialized strategies, as usually
done for parsing based on context-free grammars;
see for instance the parsing algorithms by Younger
(1967) or by Earley (1970).

26

References
André Arnold and Max Dauchet. 1975. Transductions

inversibles de forêts. Thèse 3ème cycle M. Dauchet,
Université de Lille.

André Arnold and Max Dauchet. 1976. Bi-
transductions de forêts. In ICALP, pages 74–86. Ed-
inburgh University Press.

André Arnold and Max Dauchet. 1982. Morphismes
et bimorphismes d’arbres. Theoret. Comput. Sci.,
20(1):33–93.

Yehoshua Bar-Hillel, Micha Perles, and Eliyahu
Shamir. 1964. On formal properties of simple
phrase structure grammars. In Yehoshua Bar-Hillel,
editor, Language and Information: Selected Essays
on their Theory and Application, chapter 9, pages
116–150. Addison Wesley.

Jay Earley. 1970. An efficient context-free parsing al-
gorithm. Commun. ACM, 13(2):94–102.

Samuel Eilenberg. 1974. Automata, Languages, and
Machines, volume 59 of Pure and Applied Math.
Academic Press.

Joost Engelfriet, Zoltán Fülöp, and Heiko Vogler.
2002. Bottom-up and top-down tree series transfor-
mations. J. Autom. Lang. Combin., 7(1):11–70.

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Hand-
book of Weighted Automata, EATCS Monographs on
Theoret. Comput. Sci., chapter IX, pages 313–403.
Springer.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proc. HLT-NAACL, pages 273–280. Association
for Computational Linguistics.

Daniel Gildea, Giorgio Satta, and Hao Zhang. 2006.
Factoring synchronous grammars by sorting. In
Proc. CoLing/ACL, pages 279–286. Association for
Computational Linguistics.

Jonathan Graehl and Kevin Knight. 2004. Training
tree transducers. In HLT-NAACL, pages 105–112.
Association for Computational Linguistics. See
also (Graehl et al., 2008).

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational
Linguistics, 34(3):391–427.

Kevin Knight. 2007. Capturing practical natural
language transformations. Machine Translation,
21(2):121–133.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In
Proc. EMNLP, pages 40–51. Association for Com-
putational Linguistics.

Eric Lilin. 1981. Propriétés de clôture d’une extension
de transducteurs d’arbres déterministes. In CAAP,
volume 112 of LNCS, pages 280–289. Springer.

Andreas Maletti, Jonathan Graehl, Mark Hopkins,
and Kevin Knight. 2009. The power of ex-
tended top-down tree transducers. SIAM J. Comput.,
39(2):410–430.

Mark-Jan Nederhof and Giorgio Satta. 2003. Prob-
abilistic parsing as intersection. In Proc. IWPT,
pages 137–148. Association for Computational Lin-
guistics.

Rebecca Nesson, Giorgio Satta, and Stuart M. Shieber.
2008. Optimal k-arization of synchronous tree-
adjoining grammar. In Proc. ACL, pages 604–612.
Association for Computational Linguistics.

Jacques Sakarovitch. 2009. Rational and recognisable
power series. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Au-
tomata, EATCS Monographs on Theoret. Comput.
Sci., chapter IV, pages 105–174. Springer.

Giorgio Satta and Enoch Peserico. 2005. Some
computational complexity results for synchronous
context-free grammars. In Proc. HLT-EMNLP,
pages 803–810. Association for Computational Lin-
guistics.

Marcel Paul Schützenberger. 1961. On the definition
of a family of automata. Information and Control,
4(2–3):245–270.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Inform. Control,
10(2):189–208.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. In Proc. HLT-NAACL, pages 256–
263. Association for Computational Linguistics.

27

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 28–36,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Millstream Systems – a Formal Model for
Linking Language Modules by Interfaces

Suna Bensch

Department of Computing Science,

Umeå University, Umeå, Sweden

suna@cs.umu.se

Frank Drewes

Department of Computing Science,

Umeå University, Umeå, Sweden

drewes@cs.umu.se

Abstract

We introduce Millstream systems, a for-

mal model consisting of modules and an

interface, where the modules formalise

different aspects of language, and the in-

terface links these aspects with each other.

1 Credits

This work is partially supported by the project

Tree Automata in Computational Language Tech-

nology within the Sweden – South Africa Re-

search Links Programme. A preliminary but more

detailed version of this article is available as a

technical report (Bensch and Drewes, 2009).

2 Introduction

Modern linguistic theories (Sadock, 1991; Jack-

endoff, 2002) promote the view that different as-

pects of language, such as phonology, morphol-

ogy, syntax, and semantics should be viewed as

autonomous modules that work simultaneously

and are linked with each other by interfaces that

describe their interaction and interdependency.

Formalisms in modern computational linguistics

which establish interfaces between different as-

pects of language are the Combinatory Categorical

Grammar (CCG), the Functional Generative De-

scription (FGD), the Head-Driven Phrase Struc-

ture Grammar (HPSG), the Lexical Functional

Grammar (LFG), and the Extensible Dependency

Grammar (XDG).1 Here, we propose Millstream

systems, an approach from a formal language the-

oretic point of view which is based on the same

ideas as XDG, but uses tree-generating modules

of arbitrary kinds.

Let us explain in slightly more detail what a

Millstream system looks like. A Millstream sys-

tem contains any number of tree generators, called

1See, e.g., (Dalrymple, 2001; Sgall et al., 1986; Pollard
and Sag, 1994; Steedman, 2000; Debusmann, 2006; Debus-
mann and Smolka, 2006).

its modules. Such a tree generator is any device

that specifies a tree language. For example, a tree

generator may be a context-free grammar, tree ad-

joining grammar, a finite-state tree automaton, a

dependency grammar, a corpus, human input, etc.

Even within a single Millstream system, the mod-

ules need not be of the same kind, since they are

treated as “black boxes”. The Millstream system

links the trees generated by the modules by an in-

terface consisting of logical formulas.

Suppose that a Millstream system has k mod-

ules. Then the interface consists of interface rules

in the form of logical expressions that establish

links between the (nodes of the) trees t1, . . . , tk
that are generated by the individual modules.

Thus, a valid combination of trees is not just any

collection of trees t1, . . . , tk generated by the k
modules. It also includes, between these struc-

tures, interconnecting links that represent their

relationships and that must follow the rules ex-

pressed by the interface. Grammaticality, in terms

of a Millstream system, means that the individ-

ual structures must be valid (i.e., generated by the

modules) and are linked in such a way that all in-

terface rules are logically satisfied. A Millstream

system can thus be considered to perform indepen-

dent concurrent derivations of autonomous mod-

ules, enriched by an interface that establishes links

between the outputs of the modules, thus con-

straining the acceptable configurations.

Millstream systems may, for example, be of in-

terest for natural language understanding and nat-

ural language generation. Simply put, the task

of natural language understanding is to construct

a suitable semantic representation of a sentence

that has been heard (phonology) and parsed (syn-

tax). Within the framework of Millstream sys-

tems this corresponds to the problem where we are

given a syntactic tree (and possibly a phonologi-

cal tree if such a module is involved) and the goal

is to construct an appropriate semantic tree. Con-

28

versely, natural language generation can be seen as

the problem to construct an appropriate syntactic

(and/or phonological) tree from a given semantic

tree. In abstract terms, the situations just described

are identical. We refer to the problem as the

completion problem. While the current paper is

mainly devoted to the introduction and motivation

of Millstream systems, in (Bensch et al., 2010) the

completion problem is investigated for so-called

regular MSO Millstream systems, i.e. systems in

which the modules are regular tree grammars (or,

equivalently, finite tree automata) and the interface

conditions are expressed in monadic second-order

(MSO) logic. In Section 7, the results obtained so

far are briefly summarised.

Now, let us roughly compare Millstream sys-

tems with XDG. Conceptually, the k modules of a

Millstream system correspond to the k dimensions

of an XDG. In an XDG, a configuration consists

of dependency structures t1, . . . , tk. The interface

of a Millstream system corresponds to the princi-

ples of the XDG. The latter are logical formulas

that express conditions that the collection of de-

pendency structures must fulfill.

The major difference between the two for-

malisms lies in the fact that XDG inherently builds

upon dependency structures, whereas the modules

of a Millstream system are arbitrary tree genera-

tors. In XDG, each of t1, . . . , tk is a dependency

analysis of the sentence considered. In particu-

lar, they share the yield and the set of nodes (as

the nodes of a dependency tree correspond to the

words in the sentence analysed, and its yield is that

sentence). Millstream systems do not make simi-

lar assumptions, which means that they may give

rise to new questions and possibilities:

• The purpose of a Millstream system is not

necessarily the analysis of sentences. For ex-

ample, a Millstream system with two mod-

ules could translate one language into an-

other. For this, tree grammars representing

the source and target languages could be used

as modules, with an interface expressing that

t2 is a correct translation of t1. This sce-

nario makes no sense in the context of XDG,

because the sentences represented by t1 and

t2 differ. Many similar applications of Mill-

stream system may the thought of, for exam-

ple correction or simplification of sentences.

• As the modules may be arbitrary devices

specifying tree languages, they contribute

their own generative power and theoretical

properties to the whole (in contrast to XDG,

which does not have such a separation). This

makes it possible to apply known results from

tree language theory, and to study the inter-

play between different kinds of modules and

interface logics.

• The fact that the individual modules of a

Millstream system may belong to different

classes of tree generators could be linguis-

tically valuable. For example, a Millstream

system combining a dependency grammar

module with a regular tree grammar module,

could be able to formalise aspects of a given

natural language that cannot be formalised by

using only one of these formalisms.

• For Millstream systems whose modules are

generative grammar formalisms (such as reg-

ular tree grammars, tree-adjoining grammars

and context-free tree grammars), it will be in-

teresting to study conditions under which the

Millstream system as a whole becomes gen-

erative, in the sense that well-formed config-

urations can be constructed in a step-by-step

manner based on the derivation relations of

the individual modules.

Let us finally mention another, somewhat sub-

tle difference between XDG and Millstream sys-

tems. In XDG, the interfaces are dimensions

on their own. For example, an XDG captur-

ing the English syntax and semantics would have

three dimensions, namely syntax, semantics, and

the syntax-semantics interface. An analysis of a

sentence would thus consist of three dependency

trees, where the third one represents the relation

between the other two. In contrast, a correspond-

ing Millstream system would only have two mod-

ules. The interface between them is considered

to be conceptually different and establishes direct

links between the trees that are generated by the

two modules. One of our tasks (which is, however,

outside the scope of this contribution) is a study of

the formal relation between XDG and Millstream

systems, to achieve a proper understanding of their

similarities and differences.

The rest of the paper is organised as follows.

In the next section, we discuss an example illus-

trating the linguistic notions and ideas that Mill-

stream systems attempt to provide a formal basis

for. After some mathematical preliminaries, which

29

are collected in Section 4, the formal definition of

Millstream systems is presented in Section 5. Sec-

tion 6 contains examples and remarks related to

Formal Language Theory. Finally, Section 7 dis-

cusses preliminary results and future work.

3 Linguistical Background

In this section, we discuss an example, roughly

following (Jackendoff, 2002), that illustrates the

linguistic ideas that have motivated our approach.

Figure 1 shows the phonological, syntactical and

semantical structure, depicted as trees (a), (b) and

(c), respectively of the sentence Mary likes Peter.

Trees are defined formally in the next section, for

the time being we assume the reader to be familiar

with the general notion of a tree as used in linguis-

tics and computer science.

s

w1

mE@ri

w2

w3

laIk

cl4

s

w5

pit@r

Morphophonology

Segmental structure

(a)

S

NP1 VP

V2

V3 infl4

NP5

(b) s

pres situation
4

likestate
3

maryagent
1 peterpatient

5

(c)

Figure 1: Phonological, syntactical and semantical

structure of Mary likes Peter.

The segmental structure in the phonological

tree (a) is the basic pronunciation of the sentence

Mary likes Peter, where each symbol represents

a speech sound. This string of speech sound sym-

bols is structured into phonological words by mor-

phophonolgy. The morphophonological structure

in our example consists of the three full phono-

logical words mE@ri, laIk, pit@r and of the clitic s.

The clitic is attached to the adjacent phonologi-

cal word, thus forming a larger phonological con-

stituent. The syntactical tree (b) depicts the syn-

tactical constituents. The sentence S is divided

into a noun phrase NP and a verb phrase VP.

The verb phrase VP is divided into an inflected

verb V and a noun phrase NP. The inflected verb

consists of its uninflected form and its inflection,

which refers, in our example, to the grammatical

features present tense and third person singular.

The semantical tree (c) depicts the semantical con-

stituents. In our example, like is a function of type

state and takes two arguments, namely mary and

peter which are of type agent and patient .

The structure of Mary likes Peter is not just the

sum of its phonological, syntactical and semanti-

cal structures. It also includes the relationships be-

tween certain constituents in these tree structures.

To illustrate these relationships we use indices in

Figure 1. The sole role of the indices here is to

express the linguistic relationships among coin-

dexed constituents. The indices do not occur in the

formalisation, where they are replaced by logical

links relating the nodes that, in the figure, carry the

same indices.2 The morphophonological wordw1,

for example, is linked with the noun phrase NP1

in the syntactical tree and with the conceptual con-

stituent maryagent
1 in the semantical tree. This il-

lustrates that w1, NP1, and maryagent
1 are the cor-

responding morphophonological, syntactical and

semantical representations of Mary, respectively.

But there are also correspondences that concern

only the phonological and syntactical trees, ex-

cluding the semantical tree. For example, the in-

flected word V2 in the syntactical structure corre-

sponds to the phonological word w2, but has no

link to the semantical structure whatsoever.

4 Preliminaries

The set of non-negative integers is denoted by N,

and N+ = N \ {0}. For k ∈ N, we let [k] =
{1, . . . , k}. For a set S, the set of all nonempty

finite sequences (or strings) over S is denoted by

S+; if the empty sequence ε is included, we write

S∗. As usual, A1×· · ·×Ak denotes the Cartesian

product of sets A1, . . . , Ak. The transitive and re-

flexive closure of a binary relation⇒ ⊆ A×A on

a set A is denoted by ⇒∗. A ranked alphabet is

a finite set Σ of pairs (f, k), where f is a symbol

and k ∈ N is its rank. We denote (f, k) by f (k), or

simply by f if k is understood or of lesser impor-

tance. Further, we let Σ(k) = {f (n) ∈ Σ | n = k}.
We define trees over Σ in one of the standard ways,

by identifying the nodes of a tree t with sequences

of natural numbers. Intuitively, such a sequence

2The reader is referred to (Bensch and Drewes, 2009) for
the proper formalisation of the example in terms of a Mill-
stream system.

30

shows that path from the root of the tree to the

node in question. In particular, the root is the

empty sequence ε.
Formally, the set TΣ of trees over Σ consists of

all mappings t : V (t) → Σ (called trees) with the

following properties:

• The set V (t) of nodes of t is a finite and non-

empty prefix-closed subset of N∗+. Thus, for

every node vi ∈ V (t) (where i ∈ N+), its

parent v is in V (t) as well.

• For every node v ∈ V (t), if t(v) = f (k), then

{i ∈ N | vi ∈ V (t)} = [k]. In other words,

the children of v are v1, . . . , vk.

Let t ∈ TΣ be a tree. The root of t is the node

ε. For every node v ∈ V (t), the subtree of t
rooted at v is denoted by t/v. It is defined by

V (t/v) = {v′ ∈ N∗ | vv′ ∈ V (t)} and, for all

v′ ∈ V (t/v), (t/v)(v′) = t(vv′). We shall de-

note a tree t as f [t1, . . . , tk] if t(ε) = f (k) and

t/i = ti for i ∈ [k]. In the special case where

k = 0 (i.e., V (t) = {ε}), the brackets may be

omitted, thus denoting t as f . For a set S of trees,

the set of all trees of the form f [t1, . . . , tk] such

that f (k) ∈ Σ and t1, . . . , tk ∈ S is denoted by

Σ(S). For a tuple T ∈ Tk
Σ, we let V (T) denote

the set {(i, v) | i ∈ [k] and v ∈ V (ti)}. Thus,

V (T) is the disjoint union of the sets V (ti). Fur-

thermore, we let V (T, i) denote the ith component

of this disjoint union, i.e., V (T, i) = {i} × V (ti)
for all i ∈ [k]. A tree language is a subset of TΣ,

for a ranked alphabet Σ, and a Σ-tree generator (or

simply tree generator) is any sort of formal device

G that determines a tree language L(G) ⊆ TΣ. A

typical sort of tree generator, which we will use in

our examples, is the regular tree grammar.

Definition 1 (regular tree grammar). A regular

tree grammar is a tuple G = (N,Σ, R, S) con-

sisting of disjoint ranked alphabets N and Σ of

nonterminals and terminals, where N = N (0), a

finite set R of rules A → r, where A ∈ N and

r ∈ TΣ∪N , and an initial nonterminal S ∈ N .

Given trees t, t′ ∈ TΣ∪N , there is a derivation

step t ⇒ t′ if t′ is obtained from t by replacing

a single occurrence of a nonterminal A with r,

where A → r is a rule in R. The regular tree

language generated by G is

L(G) = {t ∈ TΣ | S
∗⇒ t}.

It is well known that a string language L is

context-free if and only if there is a regular tree

language L′, such that L = yield(L′). Here,

yield(L′) = {yield(t) | t ∈ L′} denotes the set of

all yields of trees in L′, the yield yield(t) of a tree

t being the string obtained by reading its leaves

from left to right.

5 Millstream Systems

Throughout the rest of this paper, let Λ denote any

type of predicate logic that allows us to make use

of n-ary predicates symbols. We indicate the ar-

ity of predicate symbols in the same way as the

rank of symbols in ranked alphabets, i.e., by writ-

ing P (n) if P is a predicate symbol of arity n. The

set of all well-formed formulas in Λ without free

variables (i.e., the set of sentences of Λ) is denoted

by FΛ. If S is a set, we say that a predicate symbol

P (n) is S-typed if it comes with an associated type

(s1, . . . , sn) ∈ Sn. We write P : s1 × · · · × sn to

specify the type of P . Recall that an n-ary predi-

cate ψ on D is a function ψ : Dn → {true, false}.
Alternatively, ψ can be viewed as a subset of Dn,

namely the set of all (d1, . . . , dn) ∈ Dn such that

ψ(d1, . . . , dn) = true. We use these views in-

terchangeably, selecting whichever is more conve-

nient. Given a (finite) set P of predicate symbols,

a logical structure 〈D; (ψP)P∈P〉 consists of a set

D called the domain and, for each P (n) ∈ P , a

predicate ψP ⊆ Dn. If an existing structure Z
is enriched with additional predicates (ψP)P∈P ′

(where P∩P ′ = ∅), we denote the resulting struc-

ture by 〈Z; (ψP)P∈P ′〉. In this paper, we will only

consider structures with finite domains. To repre-

sent (tuples of) trees as logical structures, consider

a ranked alphabet Σ, and let r be the maximum

rank of symbols in Σ. A tuple T = (t1, . . . , tk) ∈
Tk

Σ will be represented by the structure

|T | = 〈V (T); (Vi)i∈[k], (labg)g∈Σ, (↓i)i∈[r]〉

consisting of the domain V (T) and the predicates

V
(1)
i (i ∈ [k]), lab(1)

g (g ∈ Σ) and ↓(2)
i (i ∈ [r]).

The predicates are given as follows:

• For every i ∈ [k], Vi = V (T, i). Thus, Vi(d)
expresses that d is a node in ti (or, to be pre-

cise, that d represents a node of ti in the dis-

joint union V (T)).

• For every g ∈ Σ, labg = {(i, v) ∈ V (T) |
i ∈ [k] and ti(v) = g}. Thus, labg(d) ex-

presses that the label of d is g.

• For every j ∈ [r], ↓j = {((i, v), (i, vj)) |
i ∈ [k] and v, vj ∈ V (ti)}. Thus, ↓j(d, d′)

31

expresses that d′ is the jth child of d in one

of the trees t1, . . . , tk. In the following, we

write d ↓j d′ instead of ↓j(d, d′).

Note that, in the definition of |T |, we have

blurred the distinction between predicate symbols

and their interpretation as predicates, because this

interpretation is fixed. Especially in intuitive ex-

planations, we shall sometimes also identify the

logical structure |T | with the tuple T it represents.

To define Millstream systems, we start by for-

malising our notion of interfaces. The idea is that

a tuple T = (t1, . . . , tk) of trees, represented by

the structure |T |, is augmented with additional in-

terface links that are subject to logical conditions.

An interface may contain finitely many different

kinds of interface links. Formally, the collection

of all interface links of a given kind is viewed as

a logical predicate. The names of the predicates

are called interface symbols. Each interface sym-

bol is given a type that indicates which trees it is

intended to link with each other.

For example, if we want to make use of ternary

links called TIE, each linking a node of t1 with

a node of t3 and a node of t4, we use the in-

terface symbol TIE : 1 × 3 × 4. This interface

symbol would then be interpreted as a predicate

ψTIE ⊆ V (T, 1)× V (T, 3)× V (T, 4). Each triple

in ψTIE would thus be an interface link of type TIE

that links a node in V (t1) with a node in V (t3) and

a node in V (t4).

Definition 2 (interface). Let Σ be a ranked al-

phabet. An interface on Tk
Σ (k ∈ N) is a pair

INT = (I,Φ), such that

• I is a finite set of [k]-typed predicate symbols

called interface symbols, and

• Φ is a finite set of formulas in FΛ that may,

in addition to the fixed vocabulary of Λ, con-

tain the predicate symbols in I and those of

the structures |T | (where T ∈ Tk
Σ). These

formulas are called interface conditions.

A configuration (w.r.t. INT) is a structure C =
〈|T |; (ψI)I∈I〉, such that

• T ⊆ Tk
Σ,

• ψI ⊆ V (T, i1)× · · · × V (T, il) for every in-

terface symbol I : i1 × · · · × il in I, and

• C satisfies the interface conditions in Φ (if

each symbol I ∈ I is interpreted as ψI).

Note that several interfaces can always be com-

bined into one by just taking the union of their sets

of interface symbols and interface conditions.

Definition 3 (Millstream system). Let Σ be a

ranked alphabet and k ∈ N. A Millstream sys-

tem (MS, for short) is a system of the form MS =
(M1, . . . ,Mk; INT) consisting of Σ-tree genera-

tors M1, . . . ,Mk, called the modules of MS , and

an interface INT on Tk
Σ. The language L(MS)

generated by MS is the set of all configurations

〈|T |; (ψI)I∈I〉 such that T ∈ L(M1) × · · · ×
L(Mk).

Sometimes we consider only some of the trees

in these tuples. For this, if MS is as above and

1 ≤ i1 < · · · < il ≤ k, we define the notation

LMi1
×···×Mil (MS) = {(ti1 , . . . , til) |
〈|(t1, . . . , tk); (ψI)I∈I |〉 ∈ L(MS)}.

The reader should note that, intentionally, Mill-

stream systems are not a priori “generative”. Even

less so, they are “derivational” by nature. This is

because there is no predefined notion of derivation

that allows us to create configurations by means

of a stepwise (though typically nondeterministic)

procedure. In fact, there cannot be one, unless we

make specific assumptions regarding the way in

which the modules work, but also regarding the

logic Λ and the form of the interface conditions

that may be used. Similarly, as mentioned in the

introduction, there is no predefined order of im-

portance or priority among the modules.

6 Examples and Remarks Related to

Formal Language Theory

The purpose of this section is to indicate, by

means of examples and easy observations, that

Millstream systems are not only linguistically well

motivated, but also worth studying from the point

of view of computer science, most notably regard-

ing their algorithmic and language-theoretic prop-

erties. While this kind of study is beyond the scope

of the current article, part of our future research on

Millstream systems will be devoted to such ques-

tions.

Example 1. Let Λ be ordinary first-order logic

with equality, and consider the Millstream system

MS over Σ = {◦(2), a(0), b(0), c(0), d(0)} which

consists of two identical modules M1 = M2 that

simply generate TΣ (e.g., using the regular tree

grammar with the single nonterminal S and the

32

rules3 S → ◦[S, S] | a | b | c | d) and a sin-

gle interface symbol BIJ : 1 × 2 with the interface

conditions

∀x : lab{a,b,c,d}(x)↔
∃y : BIJ(x, y) ∨ BIJ(y, x),

∀x, y, z : (BIJ(x, y) ∧ BIJ(x, z)∨
BIJ(y, x) ∧ BIJ(z, x))→ y = z,

∀x, y : BIJ(x, y)→∨
z∈{a,b,c,d}

(labz(x) ∧ labz(y)).

The first interface condition expresses that all

and only the leaves of both trees are linked. The

second expresses that no leaf is linked with two or

more leaves. In effect, this amounts to saying that

BIJ is a bijection between the leaves of the two

trees. The third interface condition expresses that

this bijection is label preserving. Altogether, this

amounts to saying that the yields of the two trees

are permutations of each other; see Figure 2.

◦

◦

b ◦

c d

◦

a c

◦

d ◦

◦

c b

◦

c a

bij

bij

bij

bij

bij

Figure 2: An element of L(MS) in Example 1.

Now, let us replace the modules by slightly

more interesting ones. For a string w over {A,B,
a, b, c, d}, let w denote any tree over {◦(2), A(0),
B(0), a(0), b(0), c(0), d(0)} with yield(w) = w.

(For example, we may choose w to be the left

comb whose leaf symbols are given by w.) Let the

Millstream system MS ′ be defined as MS , but us-

ing the modules M ′1 = ({A,B,C,D},Σ, R1, A)
and M ′2 = ({A,B},Σ, R2, A) with the following

rules:

R′1 = {A→ aA | aB, B → bB | bC,
C → cC | cD, D → dD | d},

R′2 = {A→ acA | acB, B → bdB | bd}.

Thus, M ′1 and M ′2 are the “standard” grammars

(written as regular tree grammars) that generate

the regular languages {akblcmdn | k, l,m, n ≥
3As usual, A → r | r′ stands for A → r, A → r′.

1} and {(ac)m(bd)n | m,n ≥ 1}. The inter-

face makes sure that LM ′
1×M ′

2(MS ′) contains only

those pairs of trees t1, t2 in which yield(t1) is a

permutation of yield(t2). As a consequence, it

follows that yield(LM ′
1(MS)) = {ambncmdn |

m,n ≥ 1}.
The next example discusses how top-down tree

transductions can be implemented as Millstream

systems.

Example 2 (top-down tree transduction). Recall

that a tree transduction is a binary relation τ ⊆
TΣ × TΣ′ , where Σ and Σ′ are ranked alpha-

bets. The set of trees that a tree t ∈ TΣ is trans-

formed into is given by τ(t) = {t′ ∈ TΣ′ |
(t, t′) ∈ τ}. Obviously, every Millstream system

of the form MS = (M1,M2; INT) defines a tree

transduction, namely LM1×M2(MS). Let us con-

sider a very simple instance of a deterministic top-

down tree transduction τ (see, e.g., (Gécseg and

Steinby, 1997; Fülöp and Vogler, 1998; Comon et

al., 2007) for definitions and references regarding

top-down tree transductions), where Σ = Σ′ =
{f (2), g(2), a(0)}. We transform a tree t ∈ TΣ into

the tree obtained from t by interchanging the sub-

trees of all top-most fs (i.e., of all nodes that are

labelled with f and do not have an ancestor that

is labelled with f as well) and turning the f at

hand into a g. To accomplish this, a top-down

tree transducer would use two states, say SWAP

and COPY, to traverse the input tree from the top

down, starting in state SWAP. Whenever an f is

reached in this state, its subtrees are interchanged

and the traversal continues in parallel on each of

the subtrees in state COPY. The only purpose of

this state is to copy the input to the output without

changing it. Formally, this would be expressed by

the following term rewrite rules, viewing the states

as symbols of rank 1:

SWAP[f [x1, x2]] → g[COPY[x2], COPY[x1]],
COPY[f [x1, x2]] → f [COPY[x1], COPY[x2]],
SWAP[g[x1, x2]] → g[SWAP[x1], SWAP[x2]],
COPY[g[x1, x2]] → g[COPY[x1], COPY[x2]],

SWAP[a] → a,
COPY[a] → a.

(We hope that these rules are intuitive enough to

be understood even by readers who are unfamiliar

with top-down tree transducers, as giving the for-

mal definition of top-down tree transducers would

be out of the scope of this article.) We mimic

the behaviour of the top-down tree transducer us-

33

ing a Millstream system with interface symbols

SWAP : 1 × 2 and COPY : 1 × 2. Since the mod-

ules simply generate TΣ, they are not explicitly

discussed. The idea behind the interface is that an

interface link labelled q ∈ {SWAP, COPY} links a

node v in the input tree with a node v′ in the output

tree if the simulated computation of the tree trans-

ducer reaches v in state q, resulting in node v′ in

the output tree. First, we specify that the initial

state is SWAP, which simply means that the roots

of the two trees are linked by a SWAP link:

∀x, y : root1(x) ∧ root2(y)→ SWAP(x, y),

where root i is defined as root i(x) ≡ Vi(x) ∧
@y : y ↓1 x. It expresses that x is the root of

tree i. The next interface condition corresponds to

the first rule of the simulated top-down tree trans-

ducer:

∀x, y, x1, x2 : SWAP(x, y)∧labf (x)∧ x ↓1 x1∧
x ↓2 x2 → labg(y)∧∃y1, y2 : y ↓1 y1∧y ↓2 y2∧
COPY(x1, y2) ∧ COPY(x2, y1).

In a similar way, the remaining rules are turned

into interface conditions, e.g.,

∀x, y, x1, x2 : COPY(x, y)∧labf (x)∧ x ↓1 x1∧
x ↓2 x2 → labf (y)∧∃y1, y2 : y ↓1 y1∧y ↓2 y2∧
COPY(x1, y1) ∧ COPY(x2, y2).

The reader should easily be able to figure out

the remaining interface conditions required.

One of the elements of L(MS) is shown in Fig-

ure 3. It should not be difficult to see that, indeed,

LM1×M2(MS) = τ .

g

f

a f

a a

a

g

g

f

a a

a

a

swap

swap

copy

copy

copy copy

swap

Figure 3: An element of L(MS) in Example 2.

Extending the previous example, one can eas-

ily see that all top-down and bottom-up tree trans-

ductions can be turned into Millstream systems

in a way similar to the construction above. A

similar remark holds for many other types of tree

transductions known from the literature. Most no-

tably, monadic second-order definable tree trans-

ductions (Engelfriet and Maneth, 1999; Engelfriet

and Hoogeboom, 2001; Engelfriet and Maneth,

2003) can be expressed as Millstream systems.

Since the mentioned types of tree transductions

are well studied, and much is known about their

algorithmic properties, future research on Mill-

stream systems should investigate the relation-

ship between different types of tree transductions

and Millstream systems in detail. In particular,

it should be tried to formulate requirements on

the interface conditions that can be used to ob-

tain characterisations of various classes of tree

transductions. We note here that results of this

type would not only be interesting from a purely

mathematical point of view, since tree transduc-

ers have turned out to be a valuable tool in, for

example, machine translation (Knight and Graehl,

2005; May and Knight, 2006; Graehl et al., 2008).

7 Preliminary Results and Future Work

Millstream systems, as introduced in this article,

are formal devices that allow to model situations

in which several tree-generating modules are inter-

connected by logical interfaces. In a forthcoming

paper (Bensch et al., 2010), we investigate the the-

oretical properties of regular MSO Millstream sys-

tems, i.e., Millstream systems in which the mod-

ules are regular tree grammars and the logic used

is monadic second-order logic. In particular, we

study the so-called completion problem. Given

a Millstream system with k modules and l ≤ k
known trees ti1 , . . . , til (1 ≤ i1 < · · · < il ≤ k),

the task is to find a completion, i.e., a configura-

tion whose ij th tree is tij for all j ∈ [l]. Thus, if

viewed as a pure decision problem, the completion

problem corresponds to the membership problem

for LMi1
×···×Mil (MS). To be useful in applica-

tions, algorithms solving the completion problem

should, of course, be required to explicitly con-

struct a completion rather than just answering yes.

Let us briefly summarize the results of (Bensch

et al., 2010).

1. In general, the completion problem is unde-

cidable for k − l ≥ 2 even in the case where

only the use of first-order logic is permitted.

This can be shown by reducing Post’s corre-

spondence problem (PCP) to the emptiness

problem for a regular FO Millstream system

with k = 2. The Millstream system con-

structed is somewhat similar to the one in Ex-

ample 1, as it establishes bijective correspon-

dences between the nodes of two trees (that

34

represent the two parts of a solution to a PCP

instance).

2. If there are no direct links between unknown

trees (i.e., |{j1, . . . , jm} \ {i1, . . . , il}| ≤ 1
for each interface symbol I : j1 × · · · × jm),

then the completion problem is solvable for

all regular MSO Millstream systems.

3. Applying some well-known results, the com-

pletion problem is solvable for all regular

MSO Millstream systems for which L(MS)
is of bounded tree width. Thus, it is of inter-

est to establish conditions that guarantee the

configurations in L(MS) to be of bounded

tree width. Two such conditions, are given

in (Bensch et al., 2010). Roughly speaking,

they require that the links respect the struc-

ture of the trees. Let us informally describe

one of them, called nestedness. Say that a

link I ′(u1, . . . , um) is directly below a link

I(v1, . . . , vl) if there are i, j such that uj is

a descendant of vi and none of the nodes in

between carries a link. Now, fix a constant

h. A configuration is nested if the roots are

linked with each other and the following hold

for every link λ = I(v1, . . . , vl):

(a) There are at most h links I ′(u1, . . . , um)
directly below λ.

(b) Each of the nodes uj in (a) is a descen-

dant of one of the nodes vi.

As mentioned above, L(MS) is of bounded

tree width if its configurations are nested

(with respect to the same constant h).

Nestedness, and also the second sufficient con-

dition for bounded tree width studied in (Bensch

et al., 2010) restrict the configurations themselves.

While such conditions may be appropriate in many

practical cases (where one knows what the config-

urations look like), future research should also at-

tempt to find out whether it is possible to put some

easily testable requirements on the interface con-

ditions in order to force the configurations to be

of bounded tree width. Note that, since the prop-

erty of being of tree width at most d is expressible

in monadic second-order logic, one can always ar-

tificially force the configurations of a given MSO

Millstream system to be of bounded tree width, but

this is not very useful as it would simply exclude

those configurations whose tree width is greater

than the desired constant d, thus changing the se-

mantics of the given Millstream system in a usu-

ally undesired manner.

Future work should also investigate properties

that make it possible to obtain or complete config-

urations in a generative way. For example, for reg-

ular MSO Millstream systems with interface con-

ditions of a suitable type, it should be possible to

generate the configurations in L(MS) by generat-

ing the k trees in a parallel top-down manner, at

the same time establishing the interface links. Re-

sults of this kind could also be used for solving

the completion problem in an efficient manner. In

general, it is clear that efficiency must be an im-

portant aspect of future theoretical investigations

into Millstream systems.

In addition to theoretical results, a good imple-

mentation of Millstream systems is needed in or-

der to make it possible to implement nontrivial ex-

amples. While this work should, to the extent pos-

sible, be application independent, it will also be

necessary to seriously attempt to formalise and im-

plement linguistic theories as Millstream systems.

This includes exploring various such theories with

respect to their appropriateness.

To gain further insight into the usefulness and

limitations of Millstream systems for Computa-

tional Linguistics, future work should elaborate if

and how it is possible to translate formalisms such

as HPSG, LFG, CCG, FDG and XDG into Mill-

stream systems.

Acknowledgments

We thank Dot and Danie van der Walt for pro-

viding us with a calm and relaxed atmosphere at

Millstream Guest House in Stellenbosch (South

Africa), where the first ideas around Millstream

systems were born in April 2009. Scientifically,

we would like to thank Henrik Björklund, Stephen

J. Hegner, and Brink van der Merwe for discus-

sions and constructive input. Furthermore, we

would like to thank one of the referees for valu-

able comments.

References

Suna Bensch and Frank Drewes. 2009. Mill-
stream systems. Report UMINF 09.21,
Umeå University. Available at http:

//www8.cs.umu.se/research/uminf/

index.cgi?year=2009&number=21.

35

Suna Bensch, Henrik Björklund, and Frank Drewes.
2010. Algorithmic properties of Millstream sys-
tems. In Sheng Yu, editor, Proc. 14th Intl. Conf.

on Developments in Language Theory (DLT 2010),
Lecture Notes in Computer Science. To appear.

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Christof Löding, Denis Lugiez,
Sophie Tison, and Marc Tommasi. 2007. Tree

Automata Techniques and Applications. Internet
publication available at http://tata.gforge.

inria.fr. Release October 2007.

Mary Dalrymple. 2001. Lexical Functional Gram-

mar, volume 34 of Syntax and Semantics. Academic
Press.

Ralph Debusmann and Gert Smolka. 2006. Multi-
dimensional dependency grammar as multigraph de-
scription. In Proceedings of FLAIRS Conference,
pages 740–745.

Ralph Debusmann. 2006. Extensible Dependency

Grammar: A Modular Grammar Formalism Based

On Multigraph Description. Ph.D. thesis, Univer-
sität des Saarlandes. Available at http://www.

ps.uni-sb.de/˜rade/papers/diss.pdf.

Joost Engelfriet and Henrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Com-

putational Logic, 2:216–254.

Joost Engelfriet and Sebastian Maneth. 1999. Macro
tree transducers, attribute grammars, and MSO de-
finable tree translations. Information and Computa-

tion, 154:34–91.

Joost Engelfriet and Sebastian Maneth. 2003. Macro
tree translations of linear size increase are MSO de-
finable. SIAM Journal on Computing, 32:950–1006.

Zoltán Fülöp and Heiko Vogler. 1998. Syntax-Directed

Semantics: Formal Models Based on Tree Transduc-

ers. Springer.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages. Vol. 3: Beyond

Words, chapter 1, pages 1–68. Springer.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Computational

Linguistics, 34(3):391–427.

Ray Jackendoff. 2002. Foundations of Language:

Brain, Meaning, Grammar, Evolution. Oxford Uni-
versity Press, Oxford.

Kevin Knight and Jonathan Graehl. 2005. An
overview of probabilistic tree transducers for natural
language processing. In Alexander F. Gelbukh, edi-
tor, Proc. 6th Intl. Conf. on Computational Linguis-

tics and Intelligent Text Processing (CICLing 2005),
volume 3406 of Lecture Notes in Computer Science,
pages 1–24. Springer.

Jonathan May and Kevin Knight. 2006. Tiburon:
A weighted tree automata toolkit. In Oscar H.
Ibarra and Hsu-Chun Yen, editors, Proc. 11th Intl.

Conf. on Implementation and Application of Au-

tomata (CIAA 2006), volume 4094 of Lecture Notes
in Computer Science, pages 102–113. Springer.

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase

Structure Grammar. Chicago University Press.

Jerrold Sadock. 1991. Autolexical Syntax - A Theory

of Parallel Grammatical Representations. The Uni-
versity of Chicago Press, Chicago & London.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The meaning of the sentence in its semantic and

pragmatic aspects. Reidel, Dordrecht.

Mark Steedman. 2000. The Syntactic Process (Lan-

guage, Speech, and Communication). MIT Press.

36

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 37–45,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Transforming Lexica as Trees

Mark-Jan Nederhof
University of St Andrews
North Haugh, St Andrews

KY16 9SX
Scotland

Abstract

We investigate the problem of structurally
changing lexica, while preserving the in-
formation. We present a type of lexicon
transformation that is complete on an in-
teresting class of lexica. Our work is mo-
tivated by the problem of merging one or
more lexica into one lexicon. Lexica, lexi-
con schemas, and lexicon transformations
are all seen as particular kinds of trees.

1 Introduction

A standard for lexical resources, called Lexical
Markup Framework (LMF), has been developed
under the auspices of ISO (Francopoulo et al.,
2006). At its core is the understanding that most
information represented in a lexicon is hierarchi-
cal in nature, so that it can be represented as a
tree. Although LMF also includes relations be-
tween nodes orthogonal to the tree structure, we
will in this paper simplify the presentation by
treating only purely tree-shaped lexica.

There is a high demand for tools supporting the
merger of a number of lexica. A few examples
of papers that express this demand are Chan Ka-
Leung and Wu (1999), Jing et al. (2000), Mona-
chini et al. (2004) and Ruimy (2006). A typical
scenario is the following. The ultimate goal of
a project is the creation of a single lexicon for a
given language. In order to obtain the necessary
data, several field linguists independently gather
lexical resources. Despite efforts to come to agree-
ments before the start of the field work, there will
generally be overlap in the scope of the respec-
tive resources and there are frequently inconsis-
tencies both in the lexical information itself and
in the form in which information is represented.

In the latter case, the information needs to be re-
structured as part of the process of creating a sin-
gle lexicon.

We have developed a model of the merging pro-
cess, and experiments with an implementation are
underway. The actions performed by the tool are
guided by a linguist, but portions of the work may
also be done purely mechanically, if this is so
specified by the user. The purpose of the present
paper is to study one aspect of the adequacy of
the model, namely the restructuring of informa-
tion, with one input lexicon and one output lexi-
con. This corresponds to a special use of our tool,
which may in general produce one output lexicon
out of any number of input lexica.

As our lexica are trees, the use of well-
established techniques such as term unification
(Lloyd, 1984) and tree transduction (Fülöp and
Vogler, 1998) seem obvious candidates for so-
lutions to our problem. Also technologies such
as XSL (Harold and Means, 2004) and XQuery
(Walmsley, 2007) spring to mind. We have chosen
a different approach however, which, as we will
show, has favourable theoretical properties.

The structure of this paper is as follows. The
type of lexicon that we consider is formalized in
Section 2, and lexicon transformations are dis-
cussed in Section 3. Section 4 shows that the pro-
posed type of lexicon transformation suffices to
map all ‘reasonable’ lexica to one another, as long
as they contain the same information. Conditions
under which transformations preserve information
are discussed in Section 5. A brief overview of an
implementation is given in Section 6.

2 Lexica and their structures

In this section, we formalize the notions of lexica,
lexicon structures, and their meanings, abstracting

37

away from details that are irrelevant to the discus-
sion that follows.

A lexicon schemaS is a tuple(A,C, T), where
A is a finite set ofattributes, C is a finite set of
components(A ∩ C = ∅), andT is a labelled,
unordered tree such that:

• each leaf node is labelled by an element from
A,

• each non-leaf node is labelled by an element
from C, and

• each element fromA∪C occurs exactly once.

A lexiconL is a tuple(A,V,C, t), whereA is
as above,V is a set ofvalues, C is as above, andt
is a labelled, unordered tree such that:

• each leaf node is labelled by an element from
A× V ,

• each non-leaf node is labelled by an element
from C,

• if a leaf node with a label of the form(a, v1)
has a parent labelledc, theneach leaf node
with a label of the form(a, v2) has a parent
labelledc, and

• if a non-leaf node labelledc1 has a parent la-
belledc2, theneachnon-leaf node labelledc1

has a parent labelledc2.

Due to the last two constraints, we may compare
lexica and lexicon schemata. In order to simplify
this comparison, we will assume that in a lexicon,
A and C only contain elements that occur int.
This is without loss of generality, as unused ele-
ments ofA andC can be omitted. We will also
assume thatt contains at least two nodes, so that
the root is not a leaf.

We say a lexiconL = (AL, V, CL, t) is an in-
stance of lexicon schemaS = (AS , CS , T) if
AL ⊆ AS , CL ⊆ CS , and furthermore:

• the label of the root oft equals the label of
the root ofT ,

• if a leaf node oft with a label of the form
(a, v1) has a parent labelledc, then the leaf
node ofT labelleda has a parent labelledc,
and

• if a non-leaf node oft labelledc1 has a par-
ent labelledc2, then the non-leaf node ofT
labelledc1 has a parent labelledc2.

Lexicon

lang Entry

Key

lemma pos

Meaning

gloss example

Figure 1: A lexicon schemaS.

Examples of a lexicon schema and a lexicon are
given in Figures 1 and 2. For the sake of succinct-
ness, an attribute-value pair such as(example, ’Er
ist mit dem Zug gefahren’) is commonly separated
by =, and where it is required for graphical rea-
sons, the value may be drawn beneath the attribute,
stretched out vertically.

On a number of occasions in the constructions
and proofs that follow, it is convenient to assume
that the root node of a lexicon schema has exactly
one child. If this does not hold, as in the run-
ning example, we may introduce an artificial root
node labelled by an artificial component, denoted
by ‘$’, which has the conceptual root node as only
child. We will refer to the lexicon schema that
results as anextendedlexicon schema. (Cf. the
theory of context-free grammars, which are often
extended with a new start symbol.) As a conse-
quence, a lexicon that is an instance of an extended
lexicon schema may, in pathological cases, have
several nodes that are labelled by the conceptual
root component of the schema.

The components in lexicon schemata and lexica
provide a means of structuring sets of attributes, or
sets of attribute-value pairs respectively, into tree-
shaped forms. The discussion that follows will
treat components and structure as secondary, and
will take attributes and attribute-value pairs as the
primary carriers of information.

A lexicon baseB is a tuple(A,V, I), whereA

andV are as above, andI is a finite non-empty set
of items, each of which is a partial function from
A to V , defined on at least one attribute. Such
partial functions will also be represented as non-
empty sets of attribute-value pairs, in which each
attribute occurs at most once.

38

Lexicon

lang=GermanEntry

Key

lemma
=
fahren

pos
=
V

Meaning

gloss
=
drive

example
=
Ein
Fahrrad
fahren

Meaning

gloss
=
go

example
=
Er
ist
mit
dem
Zug
gefahren

Entry

Key

lemma
=
Fahrrad

pos
=
N

Meaning

gloss
=
bicycle

example
=
Ein
Fahrrad
fahren

example
=
Mein
Fahrrad
hat
einen
Platten

Figure 2: A lexiconL that is an instance ofS from Figure 1.

Let L = (A,V,C, t) be a lexicon, wherer is the
root of t. Its base, denoted byB(L), is (A,V, I)
with I = I(r), where the functionI on nodesn of
the lexicon is defined as follows.

• For a leaf noden labelled by the attribute-
value pair (a, v), I(n) = {{(a, v)}}. In
words, the setI(n) contains only one item,
which is a partial function mapping attribute
a to valuev.

• For a non-leaf noden, assume thatm differ-
ent components or attributesd1, . . . , dm oc-
cur among the children. (Each elementd is
either a component or an attribute.) LetNj

(1 ≤ j ≤ m) be the set of children ofn
labelled bydj if dj is a component or by
(dj , v), some valuev, if dj is an attribute.
Then:

I(n) =

{ι1 ∪ · · · ∪ ιm | n1 ∈ N1, . . . , nm ∈ Nm,

ι1 ∈ I(n1), . . . , ιm ∈ I(nm)}.

Note that by the definition of lexica and ofN1, . . . ,
Nm, no attribute may occur both inιi and inιj if
i 6= j. This means thatι1 ∪ · · · ∪ ιm is a partial
function as required.

For the lexicon of the running example, the base
is:

{ {lang=German, lemma=fahren, pos=V,
gloss=drive,
example=Ein Fahrrad fahren},
{lang=German, lemma=fahren, pos=V,
gloss=go,
example=Er ist mit dem Zug gefahren},

{lang=German, lemma=Fahrrad, pos=N,
gloss=bicycle,
example=Ein Fahrrad fahren},
{lang=German, lemma=Fahrrad, pos=N,
gloss=bicycle,
example=Mein Fahrrad hat einen Platten} }.

There are many different lexica however that share
the same base. This is illustrated by Figure 3. We
see that the information is presented in an entirely
different fashion, with a focus on the examples.

In a lexicon such as that in Figure 2, there may
be nodes labelled ’Meaning’ without any children
corresponding to attribute ’example’. This means
that there would be itemsι in B(L) such that
ι(example) is undefined. For some of the con-
structions and proofs below, it is convenient to cir-
cumvent this complication, by assuming special
’null’ values for absent leaf nodes for attributes.
As a result, we may treat an item as a complete
function rather than as a partial function on the do-
mainA.

There is a certain resemblance between the base
of a lexicon and the disjunctive normal form of a
logical expression, the attribute-value pairs taking
the place of propositional variables, and the items

39

Phrasebook

lang=GermanPhrase

example
=
Ein
Fahrrad
fahren

Word

lemma
=
fahren

pos
=
V

gloss
=
drive

Word

lemma
=
Fahrrad

pos
=
N

gloss
=
bicycle

Phrase

example
=
Er
ist
mit
dem
Zug
gefahren

Word

lemma
=
fahren

pos
=
V

gloss
=
go

Phrase

example
=
Mein
Fahrrad
hat
einen
Platten

Word

lemma
=
Fahrrad

pos
=
N

gloss
=
bicycle

Figure 3: A lexiconL′ with the same base as the one in Figure 2.

taking the place of conjunctions. Thus our seman-
tic interpretation of lexica is such that two siblings
in the tree are regarded as alternatives (disjunc-
tion) if their labels contain the same attribute or
component, and they are regarded as joint infor-
mation (conjunction) if their labels contain distinct
attributes or components.

Theorem 1 For each lexicon base B =
(AB , V, I) and for each lexicon schemaS =
(AS , C, T) with AB ⊆ AS , there is a lexiconL
that is an instance ofS and whose base isB.

Proof Assume the rootr of T has only one child
r′. (Otherwise, makeS extended first.) LetT ′ be
the subtree ofT at r′. For each itemι ∈ I, create
a copy ofT ′, denoted bytι. At each leaf node of
tι, supplement the labela with the corresponding
value fromι if any; if a does not occur inι, then
remove the leaf node fromtι. (If the parent of a
removed leaf node has no other children, then also
remove the parent, etc.) Create a root node, with
the same label asr, the children of which are the
roots of the respectivetι. Let the resulting tree be
calledt. The requirements of the theorem are now
satisfied byL = (AB , V, C, t).

3 Lexicon transformations

As we have seen, the information contained in one
lexicon base may be rendered in different struc-
tural forms, in terms of lexica. The structure of a
lexicon is isolated from its content by means of a

lexicon schema. In this section we will address the
question how we may formalize transformations
from one lexicon schemaS1 to lexicon schemaS2,
or more precisely, from one class of lexica that are
instances ofS1 to another class of lexica that are
instances ofS2. In fact, for the sake of the defini-
tions below, we assume that the input to a transfor-
mation is not a lexicon but its base, which contains
all the necessary information. (That the actual im-
plementation mentioned in Section 1 may often
avoid expansion to the base need not concern us
here.)

A lexicon transformationR is a tuple(A,C, τ),
whereA is a finite set of attributes as before,C

is a finite set of components as before, andτ is a
labelled, unordered tree such that:

• each leaf node is labelled by an element from
A,

• the root node is labelled by an element from
C,

• each internal node is either labelled by an el-
ement fromC, or by a subset ofA,

• each element fromA∪C occurs exactly once
as a label by itself,

• each element fromA occurs exactly once in
a label that is a subset ofA, and

• each nodeν labelled by a set{a1, . . . , ak}
⊆ A has exactly one child, which is labelled

40

by an element fromA ∪ C, and the leaves
labelleda1, . . . , ak are each descendants of
ν.

A lexicon transformation is very similar to a lex-
icon schema, except for the extra nodes labelled
by setsA′ ⊆ A of attributes, which we refer to
as restrictors. Such a node indicates that for the
purpose of the subtree, one should commit to par-
ticular subsets of the input lexicon base. Each such
subset is determined by a choice of a fixed value
for each attribute inA′.

As an example, consider the lexicon transfor-
mations in Figure 4(a) and (b). If we omit the
nodes labelled by restrictors, then we obtain a lex-
icon schema. In the case of (b), this is the lexi-
con schema in Figure 1. In Figure 4(a), the node
labelled {example} means that the transforma-
tion takes one non-empty subset of the base for
each possible value of attribute ’example’. For
each subset, one node labelled ’Phrase’ is gener-
ated in the target lexicon. At the node labelled
{lemma,pos}, the subset of the base is further re-
stricted, and for each combination of a value of
’lemma’ and a value of ’pos’ in the current sub-
set of items, a node labelled ’Word’ is generated.
If the base contains several glosses for one choice
of ’example’, ’lemma’ and ’pos’, each such gloss
leads to a separate leaf node.

The meaning of a lexicon transformation is for-
mally expressed in Figure 5. A calllexicon(ν, I ′),
whereν is a node ofτ andI ′ is a subset ofI from
the input lexicon baseB = (A,V, I), returns a set
of nodes. The function is recursive, in that the
value oflexicon(ν, I ′) is expressed in terms of val-
ues oflexicon(ν ′, I ′′) for child nodesν ′ of ν and
subsetsI ′′ of I ′. The main purpose is the computa-
tion of lexicon(ρ, I), whereρ is the root ofτ . Asρ

is labelled by an element fromC, lexicon(ρ, I) is
by definition a singleton set{r}, with r becoming
the root of the resulting lexicon.

Note that the placement of restrictors is criti-
cal. For example, if we were to move up the re-
strictor {gloss} in Figure 4(b) to merge with the
restrictor{lemma,pos}, this would result in one
entry for each combination of ’lemma’, ’pos’ and
’gloss’, and in each entry there would be at most
one meaning. It is not apparent that such a choice
would be less appropriate than the choice we made
in Figures 2 and 4(b). However, if we were to
move down the node labelled{gloss} to become a
child of the node labelled ’Meaning’ and a parent

Phrasebook

{lang}

lang

{example}

Phrase

example {lemma, pos}

Word

lemma pos {gloss}

gloss

(a)

Lexicon

{lang}

lang

{lemma, pos}

Entry

Key

lemma pos

{gloss}

Meaning

gloss {example}

example

(b)

Figure 4: Two lexicon transformations: (a) is ca-
pable of mapping the base of lexiconL (Figure 2)
to lexiconL′ (Figure 3), and (b) is capable of the
reverse mapping.

of the leaf node labelled ’gloss’, then we would
lose the coupling between glosses and examples,
which seems undesirable. This observation under-
lies much of the development in Section 5.

4 Completeness

Next, we investigate whether the lexicon transfor-
mations as we defined them are powerful enough
to produce ’reasonable’ lexica starting from a lex-
icon base. As unreasonable, we reject those lexica
that contain information that cannot be expressed
in terms of a base. This concerns siblings in the
tree with the same component label. How many
siblings with the same component should be gen-
erated can be deduced from the base, provided we
may assume that there is a combination of attribute
values that distinguishes one sibling from another.

41

lexicon(ν, I ′) :
if the label ofν is a ∈ A

let v be the (only) value such that∃ι ∈ I ′[ι(a) = v]
create a new noden with label(a, v)
return{n}

else if the label ofν is c ∈ C

let the children ofν beν1, . . . , νm

create a new noden with labelc and children
⋃

1≤i≤m

lexicon(νi, I
′)

return{n}
else if the label ofν is A′ = {a1, . . . , ak} ⊆ A

let the only child ofν beν ′

let I be the set of allI ′′ such that there is a combination of
v1, . . . , vk ∈ V with I ′′ = {ι ∈ I ′ | ι(a1) = v1, . . . , ι(ak) = vk} 6= ∅

return
⋃

I′′∈I
lexicon(ν ′, I ′′)

Figure 5: The meaning of a lexicon transformation, as a recursive function. The return value is a set of
nodes that are created. The main application islexicon(ρ, I), whereρ is the root ofτ andI is taken from
the input lexicon base.

We call such a combination of attributes akey.
Formally, akey mappingfor a lexicon schema

(A,C, T) is a functionf that maps each compo-
nent fromC to a subset ofA, subject to the fol-
lowing restrictions. Letc be a component and let
n be the node ofT that is labelled byc. Then for
each attributea in keyf(c), the leaf node ofT that
is labelled bya should be a descendant ofn. The
component that occurs as label of the root ofT is
always mapped to the empty set of attributes, and
may be ignored in the following discussion.

Let lexiconL = (AL, V, CL, t) be an instance of
schemaS = (AS , CS , T). We say thatL satisfies
the key mappingf for S if:

1. among the leaves, there is no pair of distinct
siblings int with identical labels, and

2. for each maximal set{n1, . . . , nm} of sib-
lings in t labelled by the same componentc,
with f(c) = {a1, . . . , ak}, we have that for
eachi (1 ≤ i ≤ m), there is a distinct combi-
nation of valuesv1, . . . , vk ∈ V such that:

I(ni) = {ι ∈
⋃

1≤j≤m

I(nj) | ι(a1) = v1, . . . ,

ι(ak) = vk}.

The second condition states that the total set of
items coming from all siblings with the same label
c is partitioned on the basis of distinct combina-
tions of values for attributes from the key, and the
subsets of the partition come from the respective
siblings.

Returning to the running example, the lexiconL

in Figure 2 satisfies the key mappingf given by:

f(Lexicon) = ∅
f(Entry) = {lemma,pos}
f(Key) = ∅
f(Meaning) = {gloss}

A different key mapping exists for the lexiconL′

in Figure 3.
If n1 andn2 are two distinct nodes in the tree

T of schemaS, with labels c1 and c2, respec-
tively, then we may assume thatf(c1) andf(c2)
are disjoint, for the following reason. Suppose that
the intersection off(c1) andf(c2) includes an at-
tribute a, thenn1 must be a descendant ofn2 or
vice versa, because the leaf labelleda must be a
descendant of bothn1 andn2. Assume thatn1 is a
descendant ofn2. As the base is already restricted
at n1 to itemsι with ι(a) = v, for certainv, a

may be omitted fromf(c2) without changing the
semantics of the key mapping. This observation is
used in the construction in the proof of the follow-
ing.

Theorem 2 Let lexiconL = (AL, V, CL, t) be an
instance of schemaS = (AS , CS , T), satisfying
key mappingf . Then there is a lexicon transfor-
mation that mapsB(L) to L.

Proof The required lexicon transformation is
constructed out ofT and f . We insert an ad-
ditional restrictor node just above each non-leaf
node labelledc, and as the restrictor we takef(c).

42

(If f(c) = ∅, we may abstain from adding a restric-
tor node.) If an attributea does not occur inf(c),
for anyc ∈ CS , then we add a restrictor node with
set{a} just above the leaf node labelleda. The
result is the treeτ of a lexicon transformationR =
(AS , CS , τ).

It is now straightforward to prove thatR maps
B(L) to L, by induction on the height ofT , on
the basis of the close similarity between the struc-
ture ofT and the structure ofτ , and the close link
between the chosen restrictors and the keys from
which they were constructed.

For the running example, the construction in the
proof above leads to the transformation in Fig-
ure 4(b).

Theorem 2 reveals the conditions under which
the structure of a lexicon can be retrieved from
its base, by means of a transformation. Simulta-
neously, it shows the completeness of the type of
lexicon transformation that we proposed. If a lexi-
conL is given, and if an alternative lexiconL′ with
B(L′) = B(L) exists that is an instance of some
schemaS and that is ‘reasonable’ in the sense that
it satisfies a key mapping forS, thenL′ can be ef-
fectively constructed fromL by the derived trans-
formation.

5 Consistency

We now investigate the conditions under which
a lexicon transformation preserves the base. The
starting point is the observation at the end of Sec-
tion 3, where we argued that if a restrictor is cho-
sen too low in the treeτ relative to other restric-
tors, then some necessary dependence between at-
tribute values is lost. Note that the proof of Theo-
rem 1 suggests that having only one restrictor with
all attributes at the root of the tree always pre-
serves the base, but the result would be unsatis-
factory in practice.

For a setA of attributes, we define anindepen-
dence systemD as a set of triples(A1, A2, A3)
whereA1, A2, A3 ⊆ A andA1 ∩ A2 = ∅. We
pronounce(A1, A2, A3) ∈ D as ’A1 andA2 are
independent underA3’. It should be noted thatA3

may overlap withA1 and withA2.

We say a lexicon base(A,V, I) satisfiesD if
for each (A1, A2, A3) ∈ D with A1 = {a1,1,

. . . a1,k1
}, A2 = {a2,1, . . . a2,k2

}, A3 = {a3,1,

. . . a3,k3
}, and for each combination of valuesv1,1,

. . . , v1,k1
, v2,1, . . . , v2,k2

, v3,1, . . . , v3,k3
, we have:

∃ι ∈ I[ι(a1,1) = v1,1 ∧ . . . ∧ ι(a1,k1
) = v1,k1

∧
ι(a3,1) = v3,1 ∧ . . . ∧ ι(a3,k3

) = v3,k3
] ∧

∃ι ∈ I[ι(a2,1) = v2,1 ∧ . . . ∧ ι(a2,k2
) = v2,k2

∧
ι(a3,1) = v3,1 ∧ . . . ∧ ι(a3,k3

) = v3,k3
]

=⇒
∃ι ∈ I[ι(a1,1) = v1,1 ∧ . . . ∧ ι(a1,k1

) = v1,k1
∧

ι(a2,1) = v2,1 ∧ . . . ∧ ι(a2,k2
) = v2,k2

∧
ι(a3,1) = v3,1 ∧ . . . ∧ ι(a3,k3

) = v3,k3
].

The intuition is that as long as the values forA3 are
fixed, allowable combinations of values forA1 ∪
A2 in I can be found by looking atA1 and A2

individually.
We say that a lexicon transformationR =

(A,C, τ) is allowed by an independence system
D if the following condition is satisfied for each
nodeν in τ that is labelled by a componentc and
a nodeν ′ that is its child: LetA1 be the set of at-
tributes at leaves that are descendants ofν ′, and
let A2 be the set of attributes at leaves that are de-
scendants of the other children ofν. Let A3 be
the union of the restrictors at ancestors ofν. Now
(A1, A2, A3) should be inD.

Theorem 3 If a lexicon baseB = (A,V, I) satis-
fies an independence systemD, if a lexicon trans-
formationR is allowed byD, and ifR mapsB to
lexiconL, thenB(L) = B.

The proof by induction on the height ofτ is
fairly straightforward but tedious.

In the running example, there are a num-
ber of triples in D but most are trivial, such
as (∅, {gloss, example}, {lemma,pos}).
Another triple in D is ({lang},
{lemma,pos, gloss, example}, ∅), but only
because we assume in this example that one
lexicon is designed for one language only. In
general, there will be more interesting indepen-
dency, typically if a lexical entry consists of a
number of unconnected units, for example one
explaining syntactic usage of a word, another
explaining semantic usage, and another presenting
information on etymology.

The implication of Theorem 3 is that transfor-
mations between lexica preserve the information
that they represent, as long as the transforma-
tions respect the dependencies between sets of at-
tributes. Within these bounds, an attributea may
be located in a restrictor inτ anywhere between
the root node and the leaf node labelleda.

43

6 Implementation

The mathematical framework in this paper mod-
els a restricted case of merging and restructuring
a number of input lexica. An implementation was
developed as a potential new module of LEXUS,
which is a web-based tool for manipulating lexi-
cal resources, as described by Kemps-Snijders et
al. (2006).

The restriction considered here involves only
one input lexicon, and we have abstracted away
from a large number of features present in the ac-
tual implementation, among which are provisions
to interact with the user, to access external linguis-
tic functions (e.g. morphological operations), and
to rename attributes. These simplifications have
allowed us to isolate one essential and difficult
problem of lexicon merging, namely how to carry
over the underlying information from one lexicon
to another, in spite of possible significant differ-
ences in structure.

The framework considered here assumes that
during construction of the target lexicon, the infor-
mation present in the source lexicon is repeatedly
narrowed down by restrictors, as explained in Sec-
tion 3. Each restrictor amounts to a loop over all
combinations of the relevant attribute values from
the currently considered part of the source lexicon.

Let us consider a path from the root of the lexi-
con transformation to a leaf, which may comprise
several restrictors. The number of combinations of
attribute values considered is bounded by an expo-
nential function on the total number of attributes
contained in those restrictors. Motivated by this
consideration, we have chosen to regard a lexicon
transformation as if its input were an expanded
form of the source lexicon, or in other words, a
lexicon base.

However, in terms of the actual implementation,
the discussed form of restrictors must be seen as a
worst case, which is able to realize some of the
most invasive types of restructuring. Next to re-
strictors that select combinations of attribute val-
ues, our lexicon transformations also allow prim-
itives that each represent a loop over allnodesof
the presently considered part of the source lexi-
con that are labelled by a chosen component or
attribute. By using only such primitives, the time
complexity remains polynomial in the size of the
input lexicon and the size of the input lexicon
transformation. This requires an implementation
that does not expand the information contained in

a source lexicon in terms of a lexicon base. A
full description of the implementation would go
beyond the context of this paper.

7 Conclusions

We have introduced a class of lexicon transfor-
mations, and have shown interesting completeness
and consistency properties.

The restrictors in our lexicon transformations
are able to repeatedly narrow down the informa-
tion contained in the source lexicon based on at-
tribute values, while constructing the target lexi-
con from the top down. Existing types of tree ma-
nipulations, such as tree transducers, do not pos-
sess the ability to repeatedly narrow down aset
of considered nodes scattered throughout a source
structure, and therefore seem to be incapable of
expressing types of lexicon transformations allow-
ing the completeness results we have seen in this
paper.

One could in principle implement our lexicon
transformations in terms of technologies such as
XQuery and XSLT, but only in the sense that
these formalisms are Turing complete. Our restric-
tors do not have a direct equivalent in these for-
malisms, which would make our type of lexicon
transformation cumbersome to express in XQuery
or XSLT. At the same time, their Turing complete-
ness makes XQuery and XSLT too powerful to
be of practical use for the specification of lexicon
transformations.

A tentative conclusion seems to be that our class
of lexicon transformations has useful properties
not shared by a number of existing theories involv-
ing tree manipulations. This justifies further study.

Acknowledgements

This work was done while the author was em-
ployed at the Max Planck Institute for Psycholin-
guistics. The work was motivated by suggestions
from Peter Wittenburg and Marc Kemps-Snijders,
whose input is gratefully acknowledged.

References

D. Chan Ka-Leung and D. Wu. 1999. Automati-
cally merging lexicons that have incompatible part-
of-speech categories. InJoint SIGDAT Conference
on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora, pages 247–257,
University of Maryland, USA, June.

44

G. Francopoulo, N. Bel, M. George, N. Calzolari,
M. Monachini, M. Pet, and C. Soria. 2006. Lexi-
cal markup framework (LMF) for NLP multilingual
resources. InProceedings of the Workshop on Mul-
tilingual Language Resources and Interoperability,
pages 1–8, Sydney, Australia, July.

Z. Fülöp and H. Vogler. 1998.Syntax-Directed Se-
mantics: Formal Models Based on Tree Transduc-
ers. Springer, Berlin.

E.R. Harold and W.S. Means. 2004.XML in a Nut-
shell. O’Reilly.

H. Jing, Y. Dahan Netzer, M. Elhadad, and K.R. McK-
eown. 2000. Integrating a large-scale, reusable lex-
icon with a natural language generator. InProceed-
ings of the First International Conference on Nat-
ural Language Generation, pages 209–216, Mitzpe
Ramon, Israel, June.

M. Kemps-Snijders, M.-J. Nederhof, and P. Witten-
burg. 2006. LEXUS, a web-based tool for manip-
ulating lexical resources. InLREC 2006: Fifth In-
ternational Conference on Language Resources and
Evaluation, Proceedings, pages 1862–1865.

J.W. Lloyd. 1984.Foundations of Logic Programming.
Springer-Verlag.

M. Monachini, F. Calzolari, M. Mammini, S. Rossi,
and M. Ulivieri. 2004. Unifying lexicons in view
of a phonological and morphological lexical DB. In
LREC 2004: Fourth International Conference on
Language Resources and Evaluation, pages 1107–
1110, Lisbon, Portugal, May.

N. Ruimy. 2006. Merging two ontology-based lexi-
cal resources. InLREC 2006: Fifth International
Conference on Language Resources and Evaluation,
Proceedings, pages 1716–1721.

P. Walmsley. 2007.XQuery. O’Reilly.

45

Proceedings of the 2010 Workshop on Applications of Tree Automata in Natural Language Processing, ACL 2010, pages 46–54,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

n-Best Parsing Revisited∗

Matthias Büchse and Daniel Geisler and Torsten Stüber and Heiko Vogler
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden

{buechse,geisler,stueber,vogler}@tcs.inf.tu-dresden.de

Abstract

We derive and implement an algorithm
similar to (Huang and Chiang, 2005) for
finding then best derivations in a weighted
hypergraph. We prove the correctness and
termination of the algorithm and we show
experimental results concerning its run-
time. Our work is different from the afore-
mentioned one in the following respects:
we consider labeled hypergraphs, allowing
for tree-based language models (Maletti
and Satta, 2009); we specifically handle
the case of cyclic hypergraphs; we admit
structured weight domains, allowing for
multiple features to be processed; we use
the paradigm of functional programming
together with lazy evaluation, achieving
concise algorithmic descriptions.

1 Introduction

In statistical natural language processing, proba-
bilistic models play an important role which can
be used to assign to some input sentence a set of
analyses, each carrying a probability. For instance,
an analysis can be a parse tree or a possible trans-
lation. Due to the ambiguity of natural language,
the number of analyses for one input sentence can
be very large. Some models even assign an infinite
number of analyses to an input sentence.

In many cases however, the set of analyses can
in fact be represented in a finite and compact way.
While such a representation is space-efficient, it
may be incompatible with subsequent operations.
In these cases a finite subset is used as an approx-
imation, consisting ofn best analyses, i. e.n anal-
yses with highest probability. For example, this
approach has the following two applications.

(1) Reranking: when log-linear models (Och
and Ney, 2002) are employed, some features may

∗ This research was financially supported by DFG VO
1101/5-1.

not permit an efficient evaluation during the com-
putation of the analyses. These features are com-
puted using individual analyses from said approx-
imation, leading to a reranking amongst them.

(2) Spurious ambiguity: many models produce
analyses which may be too fine-grained for further
processing (Li et al., 2009). As an example, con-
sider context-free grammars, where several left-
most derivations may exist for the same terminal
string. The weight of the terminal string is ob-
tained by summing over these derivations. The
n best leftmost derivations may be used to approx-
imate this sum.

In this paper, we consider the case where the
finite, compact representation has the form of a
weighted hypergraph (with labeled hyperedges)
and the analyses are derivations of the hypergraph.
This covers many parsing applications (Klein and
Manning, 2001), including weighted deductive
systems (Goodman, 1999; Nederhof, 2003), and
also applications in machine translation (May and
Knight, 2006).

In the nomenclature of (Huang and Chiang,
2005), which we adopt here, a derivation of a hy-
pergraph is a tree which is obtained in the follow-
ing way. Starting from some node, an ingoing hy-
peredge is picked and recorded as the label of the
root of the tree. Then, for the subtrees, one con-
tinues with the source nodes of said hyperedge in
the same way. In other words, a derivation can be
understood as an unfolding of the hypergraph.

The n-best-derivations problem then amounts
to finding n derivations which are best with re-
spect to the weights induced by the weighted hy-
pergraph.1 Among others, weighted hypergraphs
with labeled hyperedges subsume the following
two concepts.

(I) probabilistic context-free grammars (pcfgs).

1Note that this problem is different from then-best-
hyperpaths problem described by Nielsen et al. (2005), as
already argued in (Huang and Chiang, 2005, Section 2).

46

In this case, nodes correspond to nonterminals,
hyperedges are labeled with productions, and the
derivations are exactly the abstract syntax trees
(ASTs) of the grammar (which are closely related
the parse trees). Note that, unless the pcfg is un-
ambiguous, a given word may have several cor-
responding ASTs, and its weight is obtained by
summing over the weights of the ASTs. Hence,
the n best derivations need not coincide with the
n best words (cf. application (2) above).

(II) weighted tree automata (wta) (Alexandrakis
and Bozapalidis, 1987; Berstel and Reutenauer,
1982; Ésik and Kuich, 2003; Fülöp and Vogler,
2009). These automata serve both as a tree-based
language model and as a data structure for the
parse forests obtained from that language model
by applying the Bar-Hillel construction (Maletti
and Satta, 2009). It is well known that context-free
grammars and tree automata are weakly equiv-
alent (Thatcher, 1967;́Esik and Kuich, 2003).
However, unlike the former formalism, the latter
one has the ability to model non-local dependen-
cies in parse trees.

In the case of wta, nodes correspond to states,
hyperedges are labeled with input symbols, and
the derivations are exactly the runs of the automa-
ton. Since, due to ambiguity, a given tree may
have several accepting runs, then best derivations
need not coincide with then best trees. As for
the pcfgs, this is an example of spurious ambigu-
ity, which can be tackled as indicated by appli-
cation (2) above. Alternatively, one can attempt
to find an equivalent deterministic wta (May and
Knight, 2006; Büchse et al., 2009).

Next, we briefly discuss four known algorithms
which solve then-best-derivations problem or
subproblems thereof.

• The Viterbi algorithm solves the1-best-
derivation problem for acyclic hypergraphs. It is
based on a topological sort of the hypergraph.

• Knuth (1977) generalizes Dijkstra’s algorithm
(for finding the single-source shortest paths in a
graph) to hypergraphs, thus solving the casen = 1
even if the hypergraph contains cycles. Knuth as-
sumes the weights to be real numbers, and he re-
quires weight functions to be monotone and supe-
rior in order to guarantee that a best derivation ex-
ists. (The superiority property corresponds to Di-
jkstra’s requirement that edge weights—or, more
generally, cycle weights—are nonnegative.)

• Huang and Chiang (2005) show that then-

best-derivations problem can be solved efficiently
by first solving the1-best-derivation problem and
then extending that solution in a lazy manner.
Huang and Chiang assume weighted unlabeled hy-
pergraphs with weights computed in the reals, and
they require the weight functions to be monotone.

Moreover they assume that the1-best-
derivation problem be solved using the Viterbi
algorithm, which implies that the hypergraph must
be acyclic. However they conjecture that their
second phase also works for cyclic hypergraphs.
• Pauls and Klein (2009) propose a variation

of the algorithm of Huang and Chiang (2005) in
which the1-best-derivation problem is computed
via an A∗-based exploration of the 1-best charts.

In this paper, we also present an algorithm
for solving then-best-derivations problem. Ulti-
mately it uses the same algorithmic ideas as the
one of Huang and Chiang (2005); however, it is
different in the following sense:

1. we consider labeled hypergraphs, allowing
for wta to be used in parsing;

2. we specifically handle the case of cyclic
hypergraphs, thus supporting the conjecture of
Huang and Chiang; for this we impose on the
weight functions the same requirements as Knuth
and use his algorithm;

3. by using the concept of linear pre-orders (and
not only linear orders on the set of reals) our ap-
proach can handle structured weights such as vec-
tors over frequencies, probabilities, and reals;

4. we present our algorithm in the framework
of functional programming (and not in that of im-
perative programming); this framework allows to
decribe algorithms in a more abstract and concise,
yet natural way;

5. due to the lazy evaluation paradigm often
found in functional programming, we obtain the
laziness on which the algorithm of Huang and Chi-
ang (2005) is based for free;

6. exploiting the abstract level of description
(see point 4) we are able to prove the correctness
and termination of our algorithm.

At the end of this paper, we will discuss experi-
ments which have been performed with an imple-
mentation of our algorithm in the functional pro-
gramming language HASKELL.

2 The n-best-derivations problem

In this section, we state then-best-derivations
problem formally, and we give a comprehensive

47

example. First, we introduce some basic notions.

Trees and hypergraphs The definition of
ranked trees commonly used in formal tree lan-
guage theory will serve us as the basis for defining
derivations.

A ranked alphabetis a finite setΣ (of symbols)
where every symbol carries arank (a nonnegative
integer). ByΣ(k) we denote the set of those sym-
bols having rankk. The set of trees overΣ, de-
noted byTΣ , is the smallest setT such that for
every k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T ,
also σ(ξ1, . . . , ξk) ∈ T ;2 for σ ∈ Σ(0) we ab-
breviate σ() by σ. For every k ∈ N, σ ∈
Σ(k) and subsetsT1, . . . , Tk ⊆ TΣ we define
the top-concatenation (withσ) σ(T1, . . . , Tk) =
{σ(ξ1, . . . , ξk) | ξ1 ∈ T1, . . . , ξk ∈ Tk}.

A Σ-hypergraphis a pairH = (V,E) where
V is a finite set (ofverticesor nodes) andE ⊆
V ∗×Σ×V is a finite set (ofhyperedges) such that
for every (v1 . . . vk, σ, v) ∈ E we have thatσ ∈
Σ(k).3 We interpretE as a ranked alphabet where
the rank of each edge is carried over from its label
in Σ. The family(Hv | v ∈ V) of derivations ofH
is the smallest family(Pv | v ∈ V) of subsets
of TE such thate(Pv1 , . . . , Pvk) ⊆ Pv for every
e = (v1 . . . vk, σ, v) ∈ E.

A Σ-hypergraph (V,E) is cyclic if there
are hyperedges (v11 . . . v1k1

, σ1, v
1), . . . ,

(vl
1 . . . vl

kl
, σl, v

l) ∈ E such thatvj−1 occurs

in v
j
1 . . . v

j
kj

for everyj ∈ {2, . . . , l} andvl occurs

in v11 . . . v1k1
. It is calledacyclic if it is not cyclic.

Example 1 Consider the ranked alphabetΣ =
Σ(0)∪Σ(1)∪Σ(2) with Σ(0) = {α, β}, Σ(1) = {γ},
and Σ(2) = {σ}, and theΣ-hypergraphH =
(V,E) where

• V = {0, 1} and

• E = {(ε, α, 1), (ε, β, 1), (1, γ, 1), (11, σ, 0),
(1, γ, 0)}.

A graphical representation of this hypergraph is
shown in Fig. 1. Note that this hypergraph is cyclic
because of the edge(1, γ, 1).

We indicate the derivations ofH, assuming that
e1, . . . , e5 are the edges inE in the order given
above:

2The termσ(ξ1, . . . , ξk) is usually understood as a string
composed of the symbolσ, an opening parenthesis, the
stringξ1, a comma, and so on.

3The hypergraphs defined here are essentially nondeter-
ministic tree automata, whereV is the set of states andE is
the set of transitions.

γ α

0 1 γ

σ β

e5

e3

e4

e1

e2

Figure 1: Hypergraph of Example 1.

• H1 = {e1, e2, e3(e1), e3(e2), e3(e3(e1)), . . . }
and

• H0 = e4(H1,H1) ∪ e5(H1) where, e. g.,
e4(H1,H1) is the top-concatenation ofH1,
H1 with e4, and thus

e4(H1,H1) = {e4(e1, e1), e4(e1, e2),

e4(e1, e3(e1)), e4(e3(e1), e1), . . . } .

Next we give an example of ambiguity in hyper-
graphs with labeled hyperedges. Suppose thatE

contains an additional hyperedgee6 = (0, γ, 0).
ThenH0 would contain the derivationse6(e5(e1))
and e5(e3(e1)), which describe the sameΣ-tree,
viz. γ(γ(α)) (obtained by the node-wise projec-
tion to the second component). �

In the sequel, letH = (V,E) be aΣ-hypergraph.

Ordering Usually an ordering is induced on the
set of derivations by means of probabilities or,
more generally, weights. In the following, we will
abstract from the weights by using a binary rela-
tion - directly on derivations, where we will in-
terpret the factξ1 - ξ2 as “ξ1 is better than or
equal toξ2”.

Example 2 (Ex. 1 contd.)First we show how an
ordering is induced on derivations by means of
weights. To this end, we associate an operation
over the setR of reals with every hyperedge (re-
specting its arity) by means of a mappingθ:

θ(e1)() = 4 θ(e2)() = 3

θ(e3)(x1) = x1 + 1 θ(e4)(x1, x2) = x1 + x2

θ(e5)(x1) = x1 + 0.5

The weighth(ξ) of a treeξ ∈ TE is obtained by
interpreting the symbols at each node usingθ, e. g.
h(e3(e2)) = θ(e3)(θ(e2)()) = θ(e2)() + 1 = 4.

Then the natural order≤ on R induces the bi-
nary relation- over TE as follows: for every
ξ1, ξ2 ∈ TE we let ξ1 - ξ2 iff h(ξ1) ≤ h(ξ2),
meaning that trees with smaller weights are con-
sidered better. (This is, e. g., the case when calcu-
lating probabilites in the image of− log x.) Note

48

that we could just as well have defined- with the
inverted order.

Since addition is commutative, we obtain
for every ξ1, ξ2 ∈ TE that h(e4(ξ1, ξ2)) =
h(e4(ξ2, ξ1)) and thuse4(ξ1, ξ2) - e4(ξ2, ξ1) and
vice versa. Thus, for two different trees (e4(ξ1, ξ2)
ande4(ξ2, ξ1)) having the same weight,- should
not prefer any of them. That is,- need not be
antisymmetric.

As another example, the mappingθ could as-
sign to each symbol an operation over real-valued
vectors, where each component represents one
feature of a log-linear model such as frequencies,
probabilities, reals, etc. Then the ordering could
be defined by means of a linear combination of the
feature weights. �

We use the concept of a linear pre-order to cap-
ture the orderings which are obtained this way.

Let S be a set. Apre-order (onS) is a binary
relation- ⊆ S × S such that (i)s - s for ev-
erys ∈ S (reflexivity) and (ii)s1 - s2 ands2 - s3
implies s1 - s3 for everys1, s2, s3 ∈ S (transi-
tivity). A pre-order- is calledlinear if s1 - s2
or s2 - s1 for everys1, s2 ∈ S. For instance, the
binary relation- on TE as defined in Ex. 2 is a
linear pre-order.

We will restrict our considerations to a class
of linear pre-orders which admit efficient algo-
rithms. For this, we will always assume a lin-
ear pre-order- with the following two properties
(cf. Knuth (1977)).4

SP (subtree property) For everye(ξ1, . . . , ξk) ∈
TE and i ∈ {1, . . . , k} we have ξi -

e(ξ1, . . . , ξk).5

CP (compatibility) For every paire(ξ1, . . . , ξk),
e(ξ′1, . . . , ξ

′
k) ∈ TE with ξ1 - ξ′1, . . . ,

ξk - ξ′k we have thate(ξ1, . . . , ξk) -

e(ξ′1, . . . , ξ
′
k).

It is easy to verify that the linear pre-order- of
Ex. 2 has the aforementioned properties.

In the sequel, let- be a linear pre-order
onTE fulfilling SP and CP.

4Originally, these properties were called “superiority” and
“monotonicity” because they were viewed as properties of
the weight functions. We use the terms “subtree property”
and “compatibility” respectively, because we view them as
properties of the linear pre-order.

5This strong property is used here for simplicity. It suf-
fices to require that for everyv ∈ V and pairξ, ξ′ ∈ Hv we
haveξ - ξ′ if ξ is a subtree ofξ′.

Before we state then-best-derivations problem
formally, we define the operationminn, which
maps every subsetT of TE to the set of all se-
quences ofn best elements ofT . To this end, let
T ⊆ TE andn ≤ |T |. We defineminn(T) to be
the set of all sequences(ξ1, . . . , ξn) ∈ T n of pair-
wise distinct elements such thatξ1 - . . . - ξn and
for everyξ ∈ T \ {ξ1, . . . , ξk} we haveξn - ξ.
For everyn > |T | we setminn(T) = min|T |(T).
In addition, we setmin≤n(T) =

⋃n
i=0 mini(T).

n-best-derivations problem The n-best-
derivations problemamounts to the following.

Given aΣ-hypergraphH = (V,E), a vertexv ∈
V , and a linear pre-order- on TE fulfilling
SP and CP,

compute an element ofminn(Hv).

3 Functional Programming

We will describe our main algorithm as a func-
tional program. In essence, such a program is a
system of (recursive) equations that defines sev-
eral functions (as shown in Fig. 2). As a conse-
quence the main computational paradigm for eval-
uating the application(f a) of a functionf to an
argumenta is to choose an appropriate defining
equationf x = r and then evaluate(f a) to r’

which is obtained fromr by substituting every oc-
currence ofx by a.

We assume alazy (and in particular,call-by-
need) evaluation strategy, as in the functional pro-
gramming language HASKELL. Roughly speak-
ing, this amounts to evaluating the arguments of
a function only as needed to evaluate the its body
(i. e. for branching). If an argument occurs multi-
ple times in the body, it is evaluated only once.

We use HASKELL notation and functions for
dealing with lists, i. e. we denote the empty list by
[] and list construction byx:xs (where an ele-
mentx is prepended to a listxs), and we use the
functionshead (line 01),tail (line 02), andtake
(lines 03 and 04), which return the first element in
a list, a list without its first element, and a prefix
of a list, respectively.

In fact, the functions shown in Fig. 2 will be
used in our main algorithm (cf. Fig. 4). Thus,
we explain the functionsmerge (lines 05–07) and
e(l1, . . . ,lk) (lines 08–10) a bit more in detail.

The merge function takes a setL of pairwise
disjoint lists of derivations, each one in ascend-
ing order with respect to-, and merges them into

49

-- standard Haskell functions: list deconstructors, take operation
01 head (x:xs) = x

02 tail (x:xs) = xs

03 take n xs = [] if n == 0 or xs == []

04 take n xs = (head xs):take (n-1) (tail xs)

-- merge operation (lists inL should be disjoint)
05 merge L = [] if L \ {[]} = ∅

06 merge L = m:merge ({tail l | l ∈ L, l != [], head l == m} ∪
{l | l ∈ L, l != [], head l != m})

07 wherem = min{head l | l ∈ L, l != []}

-- top concatenation
08 e(l1, . . . ,lk) = [] if li == [] for somei ∈ {1, . . . , k}
09 e(l1, . . . ,lk) = e(head l1, . . . , head lk):merge {e(li

1, . . . ,l
i
k) | i ∈ {1, . . . , k}}

10 wherelij =











lj if j < i

tail lj if j = i

[head lj] if j > i

Figure 2: Some useful functions specified in a functional programming style.

one list with the same property (as known from the
merge sort algorithm).

Note that the minimum used in line 07 is based
on the linear pre-order-. For this reason, it
need not be uniquely determined. However, in an
implementation this function is deterministic, de-
pending on the the data structures.

The functione(l1, . . . ,lk) implements the top-
concatenation withe on lists of derivations. It is
defined for everye = (v1 . . . vk, σ, v) ∈ E and
takes listsl1, . . . , lk of derivations, each in as-
cending order as formerge. The resulting list is
also in ascending order.

4 Algorithm

In this section, we develop our algorithm for solv-
ing then-best-derivations problem. We begin by
motivating our general approach, which amounts
to solving the1-best-derivation problem first and
then extending that solution to a solution of then-
best-derivations problem.

It can be shown that for everym ≥ n, the
setminn(Hv) is equal to the set of all prefixes of
length n of elements ofminm(Hv). According
to this observation, we will develop a functionp
mapping everyv ∈ V to a (possibly infinite) list
such that the prefix of lengthn is in minn(Hv)
for everyn. Then, by virtue of lazy evaluation, a
solution to then-best-derivations problem can be

obtained by evaluating the term

take n (p v)

wheretake is specified in lines 03–04 of Fig. 2.
Thus, what is left to be done is to specifyp appro-
priately.

4.1 A provisional specification ofp

Consider the following provisional specification
of p:

p v = merge {e(p v1, . . . ,p vk) |
e = (v1 . . . vk, σ, v) ∈ E} (†)

where the functionsmerge ande(l1, . . . ,lk) are
specified in lines 05–07 and lines 08–10 of Fig. 2,
respectively. This specification models exactly the
trivial equation

Hv =
⋃

e=(v1...vk ,σ,v)∈E

e(Hv1 , . . . ,Hvk)

for every v ∈ V , where the union and the top-
concatenation have been implemented for lists via
the functionsmerge ande(l1, . . . ,lk).

This specification is adequate ifH is acyclic.
For cyclic hypergraphs however, it can not even
solve the1-best-derivation problem. To illustrate
this, we consider the hypergraph of Ex. 2 and cal-

50

culate6

take 1 (p 1)

= (head (p 1)):take 0 (tail (p 1)) (04)

= head (p 1) (03)

= head (merge {e1(), e2(), e3(p 1)}) (†)

= min{head e1(), head e2(), head e3(p 1)}

(01, 06, 07)

= min{head e1(), head e2(), e3(head (p 1))}.

(09)

Note that the infinite regress occurs because the
computation of the head elementhead (p 1) de-
pends on itself. This leads us to the idea of
“pulling” this head element (which is the solu-
tion to the1-best-derivation problem) “out” of the
merge in(†). Applying this idea to our particular
example, we reach the following equation forp 1:

p 1 = e2: merge {e1(), e3(p 1)}

becausee2 is the best derivation inH1. Then, in
order to evaluatemerge we have to compute

min{head e1(), head e3(p 1)}

= min{e1, e3(head (p 1))}

= min{e1, e3(e2)}.

Sinceh(e1) = h(e3(e2)) = 4, we can choose any
of them, saye1, and continue:

e2: merge {e1(), e3(p 1)}

= e2: e1: merge {tail e1(), e3(p 1)}

= e2: e1: e3(e2): merge {tail e3(p 1)}

= ...

Generalizing this example, the functionp could
be specified as follows:

p 1 = (b 1) : merge {exp} (††)

whereb 1 evaluates the 1-best derivation inH1

and exp “somehow” calculates the next best
derivations. In the following subsection, we elabo-
rate this approach. First, we develop an algorithm
for solving the1-best-derivation problem.

4.2 Solving the1-best-derivation problem

Using SP and CP, it can be shown that for ev-
ery v ∈ V such thatHv 6= ∅ there is a mini-
mal derivation inHv which does not contain any
subderivation inHv (apart from itself). In other
words, it is not necessary to consider cycles when
solving the1-best-derivation problem.

6Please note thate1() is an application of the function in
lines 08–10 of Fig. 2 whilee1 is a derivation.

We can exploit this knowledge in a program by
keeping a setU of visited nodes, taking care not to
consider edges which lead us back to those nodes.
Consider the following function:

b v U = min{e(b v1 U’, . . . , b vk U’) |
e = (v1 . . . vk, σ, v) ∈ E,

{v1, . . . , vk} ∩ U’ = ∅}
where U’ = U ∪ {v}

The argumentU is the set of visited nodes. The
termb v ∅ evaluates to a minimal element ofHv,
or tomin ∅ if Hv = ∅. The problem of this divide-
and-conquer (or top-down) approach is that man-
aging a separate setU for every recursive call in-
curs a big overhead in the computation.

This overhead can be avoided by using a
dynamic programming (or bottom-up) approach
where each node is visited only once, and nodes
are visited in the order of their respective best
derivations.

To be more precise, we maintain a family(Pv |
v ∈ V) of already found best derivations (where
Pv ∈ min≤1(Hv) and initially empty) and a setC
of candidate derivations, where candidates for all
vertices are considered at the same time. In each
iteration, a minimal candidate with respect to- is
selected. This candidate is then declared the best
derivation of its respective node.

The following lemma shows that the bottom-up
approach is sound.

Lemma 3 Let (Pv | v ∈ V) be a family such that
Pv ∈ min≤1(Hv). We define

C =
⋃

e=(v1...vk ,σ,v)∈E,

Pv=∅

e(Pv1 , . . . , Pvk) .

Then (i) for everyξ ∈
⋃

v∈V,Pv=∅
Hv there is a

ξ′ ∈ C such thatξ′ � ξ, and (ii) for everyv ∈ V

andξ ∈ C ∩ Hv the following implication holds:
if ξ ≤ ξ′ for everyξ′ ∈ C, thenξ ∈ min1(Hv).

An algorithm based on this lemma is shown in
Fig. 3. Its key functioniter uses the notion of ac-
cumulating parameters. The parameterq is a map-
ping corresponding to the family(Pv | v ∈ V) of
the lemma, i. e.,q v = Pv; the parameterc is a
set corresponding toC. We begin in line 01 with
the functionq0 mapping every vertex to the empty
list. According to the lemma, the candidates then
consist of the nullary edges.

As long as there are candidates left (line 04),
in a recursive call ofiter the parameterq is up-
dated with the newly found pair(v, [ξ]) of ver-
tex v and (list of) best derivationξ (expressed by

51

Require Σ-hypergraphH = (V,E), linear pre-
order- fulfilling SP and CP.
Ensure b v ∈ min1(Hv) for every v ∈ V

such that if b v == [e(ξ1, . . . , ξk)] for some
e = (v1 . . . vk, σ, v) ∈ E, then b vi == [ξi] for
everyi ∈ {1, . . . , k}.

01 b = iter q0 {(ε, α, v) ∈ E | α ∈ Σ(0)}

02 q0 v = []

03 iter q ∅ = q

04 iter q c = iter (q//(v,[ξ])) c’

05 where
06 ξ = min c and ξ ∈ Hv

07 c’ =
⋃

e=(v1...vk,σ,v)∈E
q v == []

e(q v1, . . . ,q vk)

Figure 3: Algorithm solving the 1-best-derivation
problem.

q//(v,[ξ])) and the candidate set is recomputed
accordingly. When the candidate set is exhausted
(line 03), thenq is returned.

Correctness and completeness of the algorithm
follow from Statements (ii) and (i) of Lemma 3,
respectively. Now we show termination. In every
iteration a new next best derivation is determined
and the candidate set is recomputed. This set only
contains candidates for verticesv ∈ V such that
q v == []. Hence, after at most|V | iterations
the candidates must be depleted, and the algorithm
terminates.

We note that the algorithm is very similar to that
of Knuth (1977). However, in contrast to the latter,
(i) it admits Hv = ∅ for somev ∈ V and (ii) it
computes some minimal derivation instead of the
weight of some minimal derivation.

Runtime According to the literature, the run-
time of Knuth’s algorithm is inO(|E| · log|V |)
(Knuth, 1977). This statement relies on a number
of optimizations which are beyond our scope. We
just sketch two optimizations: (i) the candidate set
can be implemented in a way which admits ob-
taining its minimum inO(log|C|), and (ii) for the
computation of candidates, each edge needs to be
considered only once during the whole run of the
algorithm.

4.3 Solving the n-best-derivations problem

Being able to solve the1-best-derivation problem,
we can now refine our specification ofp. The re-
fined algorithm is given in Fig. 4; for the func-

tions not given there, please refer to Fig. 3 (func-
tion b) and to Fig. 2 (functionsmerge, tail, and
the top-concatenation). In particular, line 02 of
Fig. 4 shows the general way of “pulling out” the
head element as it was indicated in Section 4.1 via
an example. We also remark that the definition of
the top-concatenation (lines 08–09 of Fig. 2) cor-
responds to the way in whichmult�k was sped up
in Fig. 4 of (Huang and Chiang, 2005).

Theorem 4 The algorithm in Fig. 4 is correct with
respect to its require/ensure specification and it
terminates for every input.

PROOF (SKETCH). We indicate how induction onn
can be used for the proof. Ifn = 0, then the statement
is trivially true. Letn > 0. If b v == [], then the
statement is trivially true as well. Now we consider the
converse case. To this end, we use the following three
auxiliary statements.

(1) take n (merge {l1, . . . ,lk}) =

take n (merge {take n l1, . . . ,take n lk}),

(2) take n e(l1, . . . ,lk) =

take n e(take n l1, . . . ,take n lk),

(3) take n (tail l) = tail (take (n+1) l).

Using these statements, line 04 of Fig. 2, and line 02
of Fig. 4, we are able to “pull” thetake of take n (p

v) “into” the right-hand side ofp v, ultimately yield-
ing terms of the formtake n (p vj) in the first line
of themerge application andtake (n-1) (p v′j) in
the second one.

Then we can show the following statement by induc-
tion onm (note that then is still fixed from the outer
induction): for everym ∈ N we have that if the tree
in b v has at most heightm, thentake n (p v) ∈
minn(Hv). To this end, we use the following two aux-
iliary statements.

(4) For every sequence of pairwise disjoint sub-
sets P1, . . . , Pk ⊆

⋃

v∈V Hv, sequence of nat-
ural numbersn1, . . . , nk ∈ N, and lists l1 ∈
minn1

(P1), . . . , lk ∈ minnk
(Pk) such that

nj ≥ n for every j ∈ {1, . . . , k} we have that
take n (merge {l1, . . . , lk}) ∈ minn(P1∪. . .∪Pk).

(5) For every edgee = (v1 . . . vk, σ, v) ∈ E, subsets
P1, . . . , Pk ⊆

⋃

v∈V Hv, and listsl1 ∈ minn(P1), . . . ,
lk ∈ minn(Pk) we have thattake n e(l1, . . . , lk) ∈
minn(e(P1, . . . , Pk)).

Using these statements, it remains to show that
{e(ξ1, . . . , ξk)} ◦ minn−1

(

(e(Hv1 , . . . , Hvk) \

{e(ξ1, . . . , ξk)}) ∪
⋃

e′ 6=e e′(Hv′

1
, . . . , Hv′

k
)
)

⊆
minn(Hv) where b v = [e(ξ1, . . . , ξk)] and ◦
denotes language concatenation. This can be shown by
using the definition ofminn.

Termination of the algorithm now follows from the
fact that every finite prefix ofp v is well defined. �

52

Require Σ-hypergraphH = (V,E), linear pre-order- fulfilling SP and CP.
Ensure

(

take n (p v)
)

∈ minn(Hv) for everyv ∈ V andn ∈ N.

01 p v = [] if b v == []

02 p v = e(ξ1, . . . , ξk):merge ({tail e(p v1, . . . , p vk) | e = (v1 . . . vk, σ, v) ∈ E} ∪
{e′(p v′1, . . . , p v′k) | e

′ = (v′1 . . . v′k, σ
′, v) ∈ E, e′ 6= e})

if b v == [e(ξ1, . . . , ξk)]

Figure 4: Algorithm solving then-best-derivations problem.

4.4 Implementation, Complexity, and
Experiments

We have implemented the algorithm (consisting
of Figs. 3 and 4 and the auxiliary functions of
Fig. 2) in HASKELL. The implementation is
rather straightforward except for the following
three points.

(1) Weights: we assume that- is defined by
means of weights (cf. Ex. 2), and that comparing
these weights is inO(1) (which often holds be-
cause of limited precision). Hence, we store with
each derivation its weight so that comparison ac-
cording to- is in O(1) as well.

(2) Memoization: we use a memoization tech-
nique to ensure that no derivation occurring inp v

is computed twice.
(3) Merge: themerge operation deserves some

consideration because it is used in a nested fash-
ion, yielding trees ofmerge applications. This
leads to an undesirable runtime complexity be-
cause these trees need not be balanced. Thus, in-
stead of actually computing themerge in p and in
the top-concatenation, we just return a data struc-
ture describing what should be merged. That data
structure consists of a best element and a list of
lists of derivations to be merged (cf. lines 06 and
09 in Fig. 2). We use a higher-order function to
manage these data structures on a heap, perform-
ing the merge in a nonnested way.

Runtime Here we consider then-best part of the
algorithm, i. e. we assume the computation of the
mappingb to take constant time. Note however
that due to memoization,b is only computed once.
Then the runtime complexity of our implementa-
tion is inO

(

|E|+ |V | ·n · log(|E|+n)
)

. This can
be seen as follows.

By line 02 in Fig. 4, the initial heaps in the
higher-order merge described under (3) have a to-
tal of |E| elements. Building these heaps is thus
in O(|E|). By line 09 in Fig. 2, each newly found
derivation spawns at most as many new candidates

n total time [s] time forn-best part [s]

1 8.713 —
25 000 10.832 2.119
50 000 12.815 4.102

100 000 16.542 7.739
200 000 24.216 15.503

Table 1: Experimental results

on the heap as the maximum rank inΣ. We assume
this to be constant. Moreover, at mostn deriva-
tions are computed for each node, that is, at most
|V |·n in total. Hence, the size of the heap of a node
is in O(|E|+n). For each derivation we compute,
we have to pop the minimal element off the heap
(cf. line 07 in Fig. 2), which is inO

(

log(|E|+n)
)

,
and we have to compute the union of the remaining
heap with the newly spawned candidates, which
has the same complexity.

We give another estimate for the total number
of derivations computed by the algorithm, which
is based on the following observation. When pop-
ping a new derivationξ off the heap, new next best
candidates are computed. This involves comput-
ing at most as many new derivations as the number
of nodes ofξ, because for each hyperedge occur-
ring in ξ we have to consider the next best alter-
native. Since we pop off at mostn elements from
the heap belonging to the target node, we arrive at
the estimated ·n, whered is the size of the biggest
derivation of said node.

A slight improvement of the runtime complex-
ity can be obtained by restricting the heap size to
n best elements, as argued by Huang and Chiang
(2005). This way, they are able to obtain the com-
plexity O(|E|+ d · n · log n).

We have conducted experiments on an Intel
Core Duo 1200 MHz with 2 GB of RAM using
a cyclic hypergraph containing 671 vertices and
12136 edges. The results are shown in Table 1.
This table indicates that the runtime of then-best
part is roughly linear inn.

53

References

Athanasios Alexandrakis and Symeon Bozapalidis.
1987. Weighted grammars and Kleene’s theorem.
Inform. Process. Lett., 24(1):1–4.

Jean Berstel and Christophe Reutenauer. 1982. Recog-
nizable formal power series on trees.Theoret. Com-
put. Sci., 18(2):115–148.

Matthias Büchse, Jonathan May, and Heiko Vogler.
2009. Determinization of weighted tree automata
using factorizations. Talk presented at FSMNLP 09
in Pretoria, South Africa.

Zoltán Ésik and Werner Kuich. 2003. Formal tree se-
ries. J. Autom. Lang. Comb., 8(2):219–285.

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors,Handbook
of Weighted Automata, chapter 9. Springer.

Joshua Goodman. 1999. Semiring parsing.Comp.
Ling., 25(4):573–605.

Liang Huang and David Chiang. 2005. Better k-
best parsing. InParsing ’05: Proceedings of the
Ninth International Workshop on Parsing Technol-
ogy, pages 53–64. ACL.

Dan Klein and Christopher D. Manning. 2001. Parsing
and hypergraphs. InProceedings of IWPT, pages
123–134.

Donald E. Knuth. 1977. A Generalization of Dijkstra’s
Algorithm. Inform. Process. Lett., 6(1):1–5, Febru-
ary.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009.
Variational decoding for statistical machine transla-
tion. In Proc. ACL-IJCNLP ’09, pages 593–601.
ACL.

Andreas Maletti and Giorgio Satta. 2009. Parsing al-
gorithms based on tree automata. InProc. 11th Int.
Conf. Parsing Technologies, pages 1–12. ACL.

Jonathan May and Kevin Knight. 2006. A better n-best
list: practical determinization of weighted finite tree
automata. InProc. HLT, pages 351–358. ACL.

Mark-Jan Nederhof. 2003. Weighted deductive pars-
ing and Knuth’s algorithm.Comp. Ling., 29(1):135–
143.

Lars Relund Nielsen, Kim Allan Andersen, and
Daniele Pretolani. 2005. Finding the k shortest hy-
perpaths.Comput. Oper. Res., 32(6):1477–1497.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. InACL, pages 295–302.

Adam Pauls and Dan Klein. 2009. k-best a* parsing.
In Proc. ACL-IJCNLP ’09, pages 958–966, Morris-
town, NJ, USA. ACL.

J. W. Thatcher. 1967. Characterizing derivation trees
of context-free grammars through a generalization
of finite automata theory. J. Comput. Syst. Sci.,
1(4):317–322.

54

Author Index

Bensch, Suna, 28
Büchse, Matthias, 46

DeNeefe, Steve, 10
Drewes, Frank, 28

Fülöp, Zoltán, 1

Geisler, Daniel, 46

Knight, Kevin, 10

Maletti, Andreas, 1, 19

Nederhof, Mark-Jan, 37

Satta, Giorgio, 19
Stüber, Torsten, 46

Vogler, Heiko, 1, 10, 46

55

	Program
	Preservation of Recognizability for Synchronous Tree Substitution Grammars
	A Decoder for Probabilistic Synchronous Tree Insertion Grammars
	Parsing and Translation Algorithms Based on Weighted Extended Tree Transducers
	Millstream Systems -- a Formal Model for Linking Language Modules by Interfaces
	Transforming Lexica as Trees
	n-Best Parsing Revisited

