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Abstract 

Identifying named entities is essential in 

understanding plain texts. Moreover, the 

categories of the named entities are indicative 

of their roles in the texts. In this paper, we 

propose a novel approach, Deep Belief Nets 

(DBN), for the Chinese entity mention 

categorization problem. DBN has very strong 

representation power and it is able to 

elaborately self-train for discovering 

complicated feature combinations. The 

experiments conducted on the Automatic 

Context Extraction (ACE) 2004 data set 

demonstrate the effectiveness of DBN. It 

outperforms the state-of-the-art learning 

models such as SVM or BP neural network. 

1 Introduction 

Named entities (NE) are defined as the names of 

existing objects, such as persons, organizations 

and etc. Identifying NEs in plain texts provides 

structured information for semantic analysis. 

Hence the named entity recognition (NER) task 

is a fundamental task for a wide variety of 

natural language processing applications, such as 

question answering, information retrieval and etc. 

In a text, an entity may either be referred to by a 

common noun, a noun phrase, or a pronoun. 

Each reference of the entity is called a mention. 

NER indeed requires the systems to identify 

these entity mentions from plain texts. The task 

can be decomposed into two sub-tasks, i.e., the 

identification of the entities in the text and the 

classification of the entities into a set of pre-

defined categories. In the study of this paper, we 

focus on the second sub-task and assume that the 

boundaries of all the entity mentions to be 

categorized are already correctly identified. 

In early times, NER systems are mainly based 

on handcrafted rule-based approaches. Although 

rule-based approaches achieved reasonably good 

results, they have some obvious flaws. First, they 

require exhausted handcraft work to construct a 

proper and complete rule set, which partially 

expressing the meaning of entity. Moreover, 

once the interest of task is transferred to a 

different domain or language, rules have to be 

revised or even rewritten. The discovered rules 

are indeed heavily dependent on the task 

interests and the particular corpus. Finally, the 

manually-formatted rules are usually incomplete 

and their qualities are not guaranteed. 

Recently, more attentions are switched to the 

applications of machine learning models with 

statistic information. In this camp, entity 

categorization is typically cast as a multi-class 

classification process, where the named entities 

are represented by feature vectors. Usually, the 

vectors are abstracted by some lexical and 

syntactic features instead of semantic feature. 

Many learning models, such as Support Vector 

Machine (SVM) and Neural Network (NN), are 

then used to classify the entities by their feature 

vectors. 

Entity categorization in Chinese attracted less 

attention when compared to English or other 

western languages. This is mainly because the 

unique characteristics of Chinese. One of the 

most common problems is the lack of boundary 

information in Chinese texts. For this problem, 

character-based methods are reported to be a 

possible substitution of word-based methods. As 

to character-based methods, it is important to 

study the implicit combination of characters.  

In our study, we explore the use of Deep 

Belief Net (DBN) in character-based entity 

categorization. DBN is a neural network model 

which is developed under the deep learning 

architecture. It is claimed to be able to 

automatically learn a deep hierarchy of the input 

features with increasing levels of abstraction for 

the complex problem. In our problem, DBN is 

used to automatically discover the complicated 

composite effects of the characters to the NE 

categories from the input data. With DBN, we 

need not to manually construct the character 

combination features for expressing the semantic 

relationship among characters in entities. 

Moreover, the deep structure of DBN enables the 

possibility of discovering very sophisticated 
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combinations of the characters, which may even 

be hard to discover by human. 

The rest of this paper is organized as follow. 

Section 2 reviews the related work on name 

entity categorization. Section 3 introduces the 

methodology of the proposed approach. Section 

4 provides the experimental results. Finally, 

section 5 concludes the whole paper. 

2 Related work 

Over the past decades, NER has evolved from 

simple rule-based approaches to adapted self-

training machine learning approaches. 

As early rule-based approaches, MacDonald 

(1993) utilized local context, which implicate 

internal and external evidence, to aid on 

categorization. Wacholder (1997) employed an 

aggregation of classification method to capture 

internal rules. Both used hand-written rules and 

knowledge bases. Later, Collins (1999) adopted 

the AdaBoost algorithm to find a weighted 

combination of simple classifiers. They reported 

that the combination of simple classifiers can 

yield some powerful systems with much better 

performances. As a matter of fact, these methods 

all need manual studies on the construction of the 

rule set or the simple classifiers. 

Machine learning models attract more 

attentions recently. Usually, they train 

classification models based on context features. 

Various lexical and syntactic features are 

considered, such as N-grams, Part-Of-Speech 

(POS), and etc. Zhou and Su (2002) integrated 

four different kinds of features, which convey 

different semantic information, for a 

classification model based on the Hidden 

Markov Model (HMM). Koen (2006) built a 

classifier with the Conditional Random Field 

(CRF) model to classify noun phrases in a text 

with the WordNet SynSet. Isozaki and Kazawa 

(2002) studied the use of SVM instead. 

There were fewer studies in Chinese entity 

categorization. Guo and Jiang (2005) applied 

Robust Risk Minimization to classify the named 

entities. The features include seven traditional 

lexical features and two external-NE-hints based 

features. An important result they reported is that 

character-based features can be as good as word-

based features since they avoid the Chinese word 

segmentation errors. In (Jing et al., 2003), it was 

further reported that pure character-based models 

can even outperform word-based models with 

character combination features.  

Deep Belief Net is introduced in (Hinton et al., 

2006). According to their definition, DBN is a 

deep neural network that consists of one or more 

Restricted Boltzmann Machine (RBM) layers 

and a Back Propagation (BP) layer. This multi-

layer structure leads to a strong representation 

power of DBN. Moreover, DBN is quite efficient 

by using RBM to implement the middle layers, 

since RBM can be learned very quickly by the 

Contrastive Divergence (CD) approach. 

Therefore, we believe that DBN is very suitable 

for the character-level Chinese entity mention 

categorization approach. It can be used to solve 

the multi-class categorization problem with just 

simple binary features as the input. 

3 Deep Belief Network for Chinese 

Entity Categorization 

3.1 Problem Formalization 

An Entity mention categorization is a process of 

classifying the entity mentions into different 

categories. In this paper, we assume that the 

entity mentions are already correctly detected 

from the texts. Moreover, an entity mention 

should belong to one and only one predefined 

category. Formally, the categorization function 

of the name entities is 

( ( ))if V e C            (1) 

where ie  is an entity mention from all the 

mention set E, ( )iV e  is the binary feature 

vector of ie , C={C1, C2, …, CM} is the pre-

defined categories. Now the question is to find a 

classification function :
D

f R C  which maps 

the feature vector V(ei) of an entity mention to its 

category. Generally, this classification function 

is learned from training data consisting of entity 

mentions with labeled categories. The learned 

function is then used to predict the category of 

new entity mentions by their feature vectors. 

3.2 Character-based Features 

As mentioned in the introduction, we intend to 

use character-level features for the purpose of 

avoiding the impact of the Chinese word 

segmentation errors. Denote the character 

dictionary as D={d1, d2, …, dN}. To an e, it‟s 

feature vector is V(e)={ v1, v2, …, vN }. Each unit 

vi can be valued as Equation 2. 
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For example, there is an entity mention 克林

顿 „Clinton‟. So its feature vector is a vector 

with the same length as the character dictionary, 

in which all the dimensions are 0 except the three 

dimensions standing for 克, 林, and 顿. The 

representation is clearly illustrated in Figure 1 

below. Since our objective is to test the 

effectiveness of DBN for this task. Therefore, we 

do not involve any other feature. 

 

Fig. 1. Generating the character-level features 

Characters compose the named entity and 

express its meaning. As a matter of fact, the 

composite effect of the characters to the 

mention category is quite complicated. For 

example, 老李 „Mr. Li‟ and 老挝 „Laos‟ both 

have character 老, but 老李 „Mr. Li‟ indicates 

a person but 老挝 „Laos‟ indicates a country. 

These are totally different NEs. Another 

example is 巴拉圭首都 „Capital of Paraguay‟ 

and 雅松森 „Asuncion‟. They are two entity 

mentions point to the same entity despite that 

the two entities do not have any common 

characters. In such case, independent character 

features are not sufficient to determine the 

categories of the entity mentions. So we should 

also introduce some features which are able to 

represent the combinational effects of the 

characters. However, such kind of features is 

very hard to discover. Meanwhile, a complete 

set of combinations is nearly impossible to be 

found manually due to the exponential number 

of all the possible combinations. As in our 

study, we adopt DBN to automatically find the 

character combinations.  

3.3 Deep Belief Nets 

Deep Belief Network (DBN) is a complicated 

model which combines a set of simple models 

that are sequentially connected (Ackley, 1985). 

This deep architecture can be viewed as multiple 

layers. In DBN, upper layers are supposed to 

represent more “abstract” concepts that explain 

the input data whereas lower layers extract “low-

level features” from the data. DBN often consists 

of many layers, including multiple Restricted 

Boltzmann Machine (RBM) layers and a Back 

Propagation (BP) layer.  

 

Fig. 2.  The structure of a DBN. 

As illustrated in Figure 2, when DBN receives 

a feature vector, the feature vector is processed 

from the bottom to the top through several RBM 

layers in order to get the weights in each RBM 

layer, maintaining as many features as possible 

when they are transferred to the next layer. RBM 

deals with feature vectors only and omits the la-

bel information. It is unsupervised. In addition, 

each RBM layer learns its parameters indepen-

dently. This makes the parameters optimal for 

the relevant RBM layer but not optimal for the 

whole model. To solve this problem, there is a 

supervised BP layer on top of the model which 

fine-tunes the whole model in the learning 

process and generates the output in the inference 

process. After the processing of all these layers, 

the final feature vector consists of some sophisti-

cated features, which reflect the structured in-

formation among the original features. With this 

new feature vector, the classification perfor-

mance is better than directly using the original 

feature vector. 

None of the RBM is capable of guaranteeing 

that all the information conveyed to the output is 

accurate or important enough. However the 

learned information produced by preceding RBM 

layer will be continuously refined through the 

next RBM layer to weaken the wrong or insigni-

ficant information in the input. Each layer can 

detect feature in the relevant spaces. Multiple 

layers help to detect more features in different 

spaces. Lower layers could support object detec-

tion by spotting low-level features indicative of 

object parts. Conversely, information about ob-

jects in the higher layers could resolve lower-

level ambiguities. The units in the final layer 

share more information from the data. This in-

creases the representation power of the whole 

model. It is certain that more layers mean more 

computation time. 
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DBN has some attractive features which make 

it very suitable for our problem. 

1) The unsupervised process can detect the 

structures in the input and automatically ob-

tain better feature vectors for classification. 

2) The supervised BP layer can modify the 

whole network by back-propagation to im-

prove both the feature vectors and the classi-

fication results. 

3) The generative model makes it easy to in-

terpret the distributed representations in the 

deep hidden layers. 

4) This is a fast learning algorithm that can 

find a fairly good set of parameters quickly 

and can ensure the efficiency of DBN. 

3.3.1 Restricted Boltzmann Machine (RBM) 

In this section, we will introduce RBM, which is 

the core component of DBN. RBM is Boltzmann 

Machine with no connection within the same 

layer. An RBM is constructed with one visible 

layer and one hidden layer. Each visible unit in 

the visible layer V  is an observed variable 
iv  

while each hidden unit in the hidden layer H  is 

a hidden variable 
jh . Its joint distribution is 

( , ) exp( ( , ))
T T Th Wv b x c hp v h E v h e      (3) 

In RBM, the parameters that need to be esti-

mated are ( , , )W b c   and 2( , ) {0,1}v h  . 

To learn RBM, the optimum parameters are 

obtained by maximizing the above probability on 

the training data (Hinton, 1999). However, the 

probability is indeed very difficult in practical 

calculation. A traditional way is to find the gra-

dient between the initial parameters and the re-

spect parameters. By modifying the previous pa-

rameters with the gradient, the expected parame-

ters can gradually approximate the target para-

meters as 
0

( 1) ( ) ( )

W

P v
W W

W 

   
 


 (4) 

where   is a parameter controlling the leaning 

rate. It determines the speed of W converging to 

the target. 

Traditionally, the Markov chain Monte Carlo 

method (MCMC) is used to calculate this kind of 

gradient. 

0 0log ( , )p v h
h v h v

w

 
 

       

(5) 

where log ( , )p v h  is the log probability of the 

data. 0 0h v  denotes the multiplication of the av-

erage over the data states and its relevant sample 

in hidden unit. h v   denotes the multiplication 

of the average over the model states in visible 

unit and its relevant sample in hidden unit. 

However, MCMC requires estimating an ex-

ponential number of terms. Therefore, it typically 

takes a long time to converge to h v  . Hinton 

(2002) introduced an alternative algorithm, i.e., 

the contrastive divergence (CD) algorithm, as a 

substitution. It is reported that CD can train the 

model much more efficiently than MCMC. To 

estimate the distribution ( )p x , CD considers a 

series of distributions { ( )np x } which indicate the 

distributions in n steps. It approximates the gap 

of two different Kullback-Leiler divergences 

(Kullback, 1987) as 

0( || ) ( || )n nCD KL p p KL p p        (6) 

Maximizing the log probability of the data is 

exactly the same as minimizing the Kullback–

Leibler divergence between the distribution of 

the data 
0p  and the equilibrium distribution p

 

defined by the model. In each step, the gap is 

approximately minimized so that we can obtain 

the final distribution which has the smallest 

Kullback-Leiler divergence with the fantasy dis-

tribution.  

After n steps, the gradient can be estimated 

and used in Equation 4 to adjust the weights of 

RBM. In our experiments, we set n to be 1. It 

means that in each step of gradient calculation, 

the estimate of the gradient is used to adjust the 

weight of RBM. In this case, the estimate of the 

gradient is just the gap between the products of 

the visual layer and the hidden layer, i.e., 

0 0 1 1log ( , )p v h
h v h v

W


 


 (7) 

Figure 3 below illustrates the process of learning 

RBM with CD-based gradient estimation. 
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Fig. 3.  Learning RBM with CD-based gradient 

estimation 

3.3.2 Back-propagation (BP) 

The RBM layers provide an unsupervised analy-

sis on the structures of data set. They automati-

cally detect sophisticated feature vectors. The 

last layer in DBN is the BP layer. It takes the 

output from the last RBM layer and applies it in 

the final supervised learning process. In DBN, 

not only is the supervised BP layer used to gen-

erate the final categories, but it is also used to 

fine-tune the whole network. Specifically speak-

ing, when the parameters in BP layer are 

changed during its iterating process, the changes 

are passed to the other RBM layers in a top-to-

bottom sequence. 

The BP algorithm has a feed-forward step and 

a back-propagation step. In the feed-forward step, 

the input values are propagated to obtain the out-

put values. In the back-propagation step, the out-

put values are compared to the real category la-

bels and used them to modify the parameters of 

the model. We consider the weight ijw
 
which 

indicates the edge pointing from the i-th node in 

one RBM layer to the j-th node in its upper layer. 

The computation in feed-forward is i ijo w , 

where io  is the stored output for the unit i. In 

the back-propagation step, we compute the error 

E in the upper layers and also the gradient with 

respect to this error, i.e., 
i ijE o w  . Then the 

weight ijw
 
will be adjusted by the gradient des-

cent. 

ij i i j

i ij

E
w o o

o w
  


    


 (8) 

where   is used to control the length of the 

moving step. 

3.3.3 DBN-based Entity Mention Categori-

zation 

For each entity mention, it is represented by the 

character feature vector as introduced in section 

3.2 and then fed to DBN. The training procedure 

can be divided into two phases. The first phase is 

the parameter estimation process of the RBMs on 

all the inputted feature vectors. When a feature 

vector is fed to DBN, the first RBM layer is 

adjusted automatically according to this vector. 

After the first RBM layer is ready, its output 

becomes the input of the second RBM layer. The 

weights of the second RBM layer are also 

adjusted. The similar procedure is carried out on 

all the RBM layers. Then DBN will operates in 

the second phase, the back-propagation 

algorithm. The labeled categories of the entity 

mention are used to tune the parameters of the 

BP layer. Moreover, the changes of the BP layer 

are also fed back to the RBM layers. The 

procedure will iterate until the terminating 

condition is met. It can be a fixed number of 

iterations or a pre-given precision threshold. 

Once the weights of all the layers in DBN are 

obtained, the estimated model could be used to 

prediction. 

 

Fig. 4.  The mention categorization process 

of DBN 

Figure 4 illustrates the classification process of 

DBN. In prediction, for an entity mention e, we 

first calculate its feature vector V(e) and used as 

the input of DBN. V(e) is passed through all the 

layers to get the outputs for all RBM layers and 

last back-propagation layer. In the ith RBM layer, 

the dimensions in the input vector Vinput_i(e) are 

combined to yield the dimensions of the next 

feature vector Voutput_i(e) as input of the next layer. 

After the feature vector V(e) goes through all the 

RBM layers, it is indeed transformed to another 

feature vector V’(e) which consists of 

complicated combinations of the original 

character features and contains rich structured 

information between the characters. This feature 

vector is then fed into the BP layer to get the 

final category c(e). 

4 Experiments 

4.1 Experiment Setup 

In our experiment, we use the ACE 2004 corpus 

to evaluate our approach. The objective of this 

study is that the correctly detected Chinese entity 

mentions categorization using DBN from the text 

and figure out the suitability of DBN on this task. 

Moreover, an entity mention should belong to 

one and only one category. 
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According to the guideline of the ACE04 task, 

there are five categories for consideration in total, 

i.e., Person, Organization, Geo-political entity, 

Location, and Facility. Moreover, each entity 

mention is expressed in two forms, i.e., the head 

and the extent. For example, 美国总统克林顿 

„President Clinton of USA‟ is the extent of an 

entity mention and 克林顿  „Clinton‟ is the 

corresponding head. The two phrases both point 

to a named entity whose name is Clinton and he 

is the president of USA.  Here we make the 

“breakdown” strategy mentioned in Li et al. 

(2007) that only the entity head is considered to 

generate the feature vector, considering that the 

information from the entity head refines the 

name entity. Although the entity extent includes 

more information, it also brings many noises 

which may make the learning process much 

more difficult. 

   In our experiments, we test the machine 

learning models under a 4-flod cross-validation. 

All entity mentions are divided into four parts 

randomly where three parts are used for training 

and one for test. In total, 7746 mentions are used 

for training and 2482 mentions are used for 

testing at each round. Precision is chosen as the 

evaluation criterion, calculated by the proportion 

of the number of correctly categorized instances 

and the number of total instances. Since all the 

instances should be classified, the recall value is 

equal to the precision value. 

4.2 Evaluation on Named Entity categoriza-

tion 

First of all, we provide some statistics of the data 

set. The distribution of entity mentions in each 

category is given in table 1. The size of the 

character dictionary in the corpus is 1185, so 

does the dimension of each feature vector. 

Type Quantity 

Person 4197 

Organization 1783 

Geo-political entity 287 

Location 3263 

Facility 399 

Table 1.  Number of entity mentions in each 

category 

In the first experiment, we compare the 

performance of DBN with some popular 

classification algorithms, including Support 

Vector Machine (labeled by SVM) and a 

traditional BP neutral network (labeled by NN 

(BP)). To implement the models, we use the 

LibSVM toolkit
1
 for SVM and the neural neutral 

network toolbox in Matlab
2
 for BP. The DBN in 

this experiment includes two RBM layers and 

one BP layer. Results of the first experiment are 

given in Table 2.  

Learning Model Precision 

DBN 91.45% 

SVM 90.29% 

NN(BP) 87.23% 

Table 2.  Performances of the systems with 

different classification models 

In this experiment, the DBN has three RBM 

layers and one BP layer. And the numbers of 

units in each RBM layer are 900, 600 and 300 

respectively. NN (BP) has the same structure as 

DBN. As for SVM, we choose the linear kernel 

with the penalty parameter C=1 and set the other 

parameters as default after comparing different 

kernels and parameters. 

In the results, DBN achieved better 

performance than both SVM and BP neural 

network. This clearly proved the advantages of 

DBN. The deep architecture of DBN yields 

stronger representation power which makes it 

able to detect more complicated and efficient 

features, thus better performance is achieved.  

In the second experiment, we intend to 

examine the performance of DBN with different 

number of RBM layers, from one RBM layer 

plus one BP layer to three RBM layers plus one 

BP layer. The amount of the units in the first 

RBM layer is set 900 and the amount in the 

second RBM layer is 600, if the second layer 

exists. As for the third RBM layers, the amount 

of units is set to 300. 

Construction of Neural Network Precision 

Three RBMs and One BP 91.45% 

Two RBMs and One BP 91.42% 

One RBM and one BP 91.05% 

Table 3.  Performance of DBNs with different 

number s of RBM layers 

Results in Table 3 show that the performance 

tends to be better when more RBM layers are 

incorporated. More RBM layers do enhance the 

representation power of DBN. However, it is 

also noted that the improvement is not significant 

from two layers to three layers. The reason may 

                                                 
1 available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2 available at 

http://www.mathworks.com/access/helpdesk/help/toolbox

/nnet/backprop.html 
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be that two-RBM DBN already has enough 

representation power for modeling this data set 

and thus one more RBM layer brings 

insignificant improvement. It is also mentioned 

in Hinton (2006) that more than three RBM 

layers are indeed not necessary. Another 

important result in Table 3 is that the DBN with 

One RBM and one BP performs much better than 

the neutral network with only BP in Table 1. 

This clearly showed the effectiveness of feature 

combination by the RBM layer again. 

As to the amount of units in each RBM layer, 

it is manually fixed in upper experiments. This 

number certainly affects the representation 

power of an RBM layer, consequently the 

representation power of the whole DBN. In this 

set of experiment, we intend to study the 

effectiveness of the unit size to the performance 

of DBN. A series of DBNs with only one RBM 

layer and different unit numbers for this RBM 

layer is evaluated. The results are provided in 

Table 4 below. 

Construction of Neural Network Precision 

one RBM(300 units) + one BP 90.61% 

one RBM(600 units) + one BP 90.69% 

one RBM(900 units) + one BP 91.05% 

one RBM(1200 units) + one BP 90.98% 

one RBM(1500 units) + one BP 90.61% 

one RBM(1800 units) + one BP 90.57% 

Table 4.  Performance of One-RBM DBNs 

with different number of units 

Based on the results, we can see that the 

performance is quite stable with different unit 

numbers. But the numbers that are closer to the 

original feature size seem to be some better. This 

could suggest that we should not decrease or 

increase the dimension of the vector feature too 

much when casting the vector transformation by 

RBM layers. 

Finally, we show the results of the individual 

categories. For each category, the Precision-

Recall-F values are provided in table 5, in which 

the F-measure is calculated by 

2*Precision*Recall
-measure=

Precision+Recall
F     (9) 

Type P R F 

Person 91.26% 96.26% 93.70% 

Organization 89.86% 89.04% 89.45% 

Location 77.58% 59.21% 76.17% 

Geo-political 

entity 

93.60% 91.89% 92.74% 

Facility 77.43% 63.72% 69.91% 

Table 5.  Performances of the system on each 

category 

5 Conclusions 

In this paper we presented our recent work on 

applying a novel machine learning model, the 

Deep Belief Nets, on Chinese entity mention 

categorization. It is demonstrated that DBN is 

very suitable for character-level mention 

categorization approaches due to its strong 

representation power and the ability on 

discovering complicated feature combinations. 

We conducted a series of experiments to prove 

the benefits of DBN. Experimental results 

clearly showed the advantages of DBN that it 

obtained better performance than existing 

approaches such as SVM and traditional BP 

neutral network. 
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