
Proceedings of the 2010 Named Entities Workshop, ACL 2010, pages 102–109,
Uppsala, Sweden, 16 July 2010. c©2010 Association for Computational Linguistics

Using Deep Belief Nets for Chinese Named Entity Categorization

Yu Chen
1
, You Ouyang

2
, Wenjie Li

2
, Dequan Zheng

1
, Tiejun Zhao

1

1
School of Computer Science and Technology, Harbin Institute of Technology, China

{chenyu, dqzheng, tjzhao}@mtlab.hit.edu.cn
2
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

{csyouyang, cswjli}@comp.polyu.edu.hk

Abstract

Identifying named entities is essential in

understanding plain texts. Moreover, the

categories of the named entities are indicative

of their roles in the texts. In this paper, we

propose a novel approach, Deep Belief Nets

(DBN), for the Chinese entity mention

categorization problem. DBN has very strong

representation power and it is able to

elaborately self-train for discovering

complicated feature combinations. The

experiments conducted on the Automatic

Context Extraction (ACE) 2004 data set

demonstrate the effectiveness of DBN. It

outperforms the state-of-the-art learning

models such as SVM or BP neural network.

1 Introduction

Named entities (NE) are defined as the names of

existing objects, such as persons, organizations

and etc. Identifying NEs in plain texts provides

structured information for semantic analysis.

Hence the named entity recognition (NER) task

is a fundamental task for a wide variety of

natural language processing applications, such as

question answering, information retrieval and etc.

In a text, an entity may either be referred to by a

common noun, a noun phrase, or a pronoun.

Each reference of the entity is called a mention.

NER indeed requires the systems to identify

these entity mentions from plain texts. The task

can be decomposed into two sub-tasks, i.e., the

identification of the entities in the text and the

classification of the entities into a set of pre-

defined categories. In the study of this paper, we

focus on the second sub-task and assume that the

boundaries of all the entity mentions to be

categorized are already correctly identified.

In early times, NER systems are mainly based

on handcrafted rule-based approaches. Although

rule-based approaches achieved reasonably good

results, they have some obvious flaws. First, they

require exhausted handcraft work to construct a

proper and complete rule set, which partially

expressing the meaning of entity. Moreover,

once the interest of task is transferred to a

different domain or language, rules have to be

revised or even rewritten. The discovered rules

are indeed heavily dependent on the task

interests and the particular corpus. Finally, the

manually-formatted rules are usually incomplete

and their qualities are not guaranteed.

Recently, more attentions are switched to the

applications of machine learning models with

statistic information. In this camp, entity

categorization is typically cast as a multi-class

classification process, where the named entities

are represented by feature vectors. Usually, the

vectors are abstracted by some lexical and

syntactic features instead of semantic feature.

Many learning models, such as Support Vector

Machine (SVM) and Neural Network (NN), are

then used to classify the entities by their feature

vectors.

Entity categorization in Chinese attracted less

attention when compared to English or other

western languages. This is mainly because the

unique characteristics of Chinese. One of the

most common problems is the lack of boundary

information in Chinese texts. For this problem,

character-based methods are reported to be a

possible substitution of word-based methods. As

to character-based methods, it is important to

study the implicit combination of characters.

In our study, we explore the use of Deep

Belief Net (DBN) in character-based entity

categorization. DBN is a neural network model

which is developed under the deep learning

architecture. It is claimed to be able to

automatically learn a deep hierarchy of the input

features with increasing levels of abstraction for

the complex problem. In our problem, DBN is

used to automatically discover the complicated

composite effects of the characters to the NE

categories from the input data. With DBN, we

need not to manually construct the character

combination features for expressing the semantic

relationship among characters in entities.

Moreover, the deep structure of DBN enables the

possibility of discovering very sophisticated

102

combinations of the characters, which may even

be hard to discover by human.

The rest of this paper is organized as follow.

Section 2 reviews the related work on name

entity categorization. Section 3 introduces the

methodology of the proposed approach. Section

4 provides the experimental results. Finally,

section 5 concludes the whole paper.

2 Related work

Over the past decades, NER has evolved from

simple rule-based approaches to adapted self-

training machine learning approaches.

As early rule-based approaches, MacDonald

(1993) utilized local context, which implicate

internal and external evidence, to aid on

categorization. Wacholder (1997) employed an

aggregation of classification method to capture

internal rules. Both used hand-written rules and

knowledge bases. Later, Collins (1999) adopted

the AdaBoost algorithm to find a weighted

combination of simple classifiers. They reported

that the combination of simple classifiers can

yield some powerful systems with much better

performances. As a matter of fact, these methods

all need manual studies on the construction of the

rule set or the simple classifiers.

Machine learning models attract more

attentions recently. Usually, they train

classification models based on context features.

Various lexical and syntactic features are

considered, such as N-grams, Part-Of-Speech

(POS), and etc. Zhou and Su (2002) integrated

four different kinds of features, which convey

different semantic information, for a

classification model based on the Hidden

Markov Model (HMM). Koen (2006) built a

classifier with the Conditional Random Field

(CRF) model to classify noun phrases in a text

with the WordNet SynSet. Isozaki and Kazawa

(2002) studied the use of SVM instead.

There were fewer studies in Chinese entity

categorization. Guo and Jiang (2005) applied

Robust Risk Minimization to classify the named

entities. The features include seven traditional

lexical features and two external-NE-hints based

features. An important result they reported is that

character-based features can be as good as word-

based features since they avoid the Chinese word

segmentation errors. In (Jing et al., 2003), it was

further reported that pure character-based models

can even outperform word-based models with

character combination features.

Deep Belief Net is introduced in (Hinton et al.,

2006). According to their definition, DBN is a

deep neural network that consists of one or more

Restricted Boltzmann Machine (RBM) layers

and a Back Propagation (BP) layer. This multi-

layer structure leads to a strong representation

power of DBN. Moreover, DBN is quite efficient

by using RBM to implement the middle layers,

since RBM can be learned very quickly by the

Contrastive Divergence (CD) approach.

Therefore, we believe that DBN is very suitable

for the character-level Chinese entity mention

categorization approach. It can be used to solve

the multi-class categorization problem with just

simple binary features as the input.

3 Deep Belief Network for Chinese

Entity Categorization

3.1 Problem Formalization

An Entity mention categorization is a process of

classifying the entity mentions into different

categories. In this paper, we assume that the

entity mentions are already correctly detected

from the texts. Moreover, an entity mention

should belong to one and only one predefined

category. Formally, the categorization function

of the name entities is

(())if V e C (1)

where ie is an entity mention from all the

mention set E, ()iV e is the binary feature

vector of ie , C={C1, C2, …, CM} is the pre-

defined categories. Now the question is to find a

classification function :
D

f R C which maps

the feature vector V(ei) of an entity mention to its

category. Generally, this classification function

is learned from training data consisting of entity

mentions with labeled categories. The learned

function is then used to predict the category of

new entity mentions by their feature vectors.

3.2 Character-based Features

As mentioned in the introduction, we intend to

use character-level features for the purpose of

avoiding the impact of the Chinese word

segmentation errors. Denote the character

dictionary as D={d1, d2, …, dN}. To an e, it‟s

feature vector is V(e)={ v1, v2, …, vN }. Each unit

vi can be valued as Equation 2.












 0

 1

ed

ed
v

i

i

i (2)

103

For example, there is an entity mention 克林

顿 „Clinton‟. So its feature vector is a vector

with the same length as the character dictionary,

in which all the dimensions are 0 except the three

dimensions standing for 克, 林, and 顿. The

representation is clearly illustrated in Figure 1

below. Since our objective is to test the

effectiveness of DBN for this task. Therefore, we

do not involve any other feature.

Fig. 1. Generating the character-level features

Characters compose the named entity and

express its meaning. As a matter of fact, the

composite effect of the characters to the

mention category is quite complicated. For

example, 老李 „Mr. Li‟ and 老挝 „Laos‟ both

have character 老, but 老李 „Mr. Li‟ indicates

a person but 老挝 „Laos‟ indicates a country.

These are totally different NEs. Another

example is 巴拉圭首都 „Capital of Paraguay‟

and 雅松森 „Asuncion‟. They are two entity

mentions point to the same entity despite that

the two entities do not have any common

characters. In such case, independent character

features are not sufficient to determine the

categories of the entity mentions. So we should

also introduce some features which are able to

represent the combinational effects of the

characters. However, such kind of features is

very hard to discover. Meanwhile, a complete

set of combinations is nearly impossible to be

found manually due to the exponential number

of all the possible combinations. As in our

study, we adopt DBN to automatically find the

character combinations.

3.3 Deep Belief Nets

Deep Belief Network (DBN) is a complicated

model which combines a set of simple models

that are sequentially connected (Ackley, 1985).

This deep architecture can be viewed as multiple

layers. In DBN, upper layers are supposed to

represent more “abstract” concepts that explain

the input data whereas lower layers extract “low-

level features” from the data. DBN often consists

of many layers, including multiple Restricted

Boltzmann Machine (RBM) layers and a Back

Propagation (BP) layer.

Fig. 2. The structure of a DBN.

As illustrated in Figure 2, when DBN receives

a feature vector, the feature vector is processed

from the bottom to the top through several RBM

layers in order to get the weights in each RBM

layer, maintaining as many features as possible

when they are transferred to the next layer. RBM

deals with feature vectors only and omits the la-

bel information. It is unsupervised. In addition,

each RBM layer learns its parameters indepen-

dently. This makes the parameters optimal for

the relevant RBM layer but not optimal for the

whole model. To solve this problem, there is a

supervised BP layer on top of the model which

fine-tunes the whole model in the learning

process and generates the output in the inference

process. After the processing of all these layers,

the final feature vector consists of some sophisti-

cated features, which reflect the structured in-

formation among the original features. With this

new feature vector, the classification perfor-

mance is better than directly using the original

feature vector.

None of the RBM is capable of guaranteeing

that all the information conveyed to the output is

accurate or important enough. However the

learned information produced by preceding RBM

layer will be continuously refined through the

next RBM layer to weaken the wrong or insigni-

ficant information in the input. Each layer can

detect feature in the relevant spaces. Multiple

layers help to detect more features in different

spaces. Lower layers could support object detec-

tion by spotting low-level features indicative of

object parts. Conversely, information about ob-

jects in the higher layers could resolve lower-

level ambiguities. The units in the final layer

share more information from the data. This in-

creases the representation power of the whole

model. It is certain that more layers mean more

computation time.

104

DBN has some attractive features which make

it very suitable for our problem.

1) The unsupervised process can detect the

structures in the input and automatically ob-

tain better feature vectors for classification.

2) The supervised BP layer can modify the

whole network by back-propagation to im-

prove both the feature vectors and the classi-

fication results.

3) The generative model makes it easy to in-

terpret the distributed representations in the

deep hidden layers.

4) This is a fast learning algorithm that can

find a fairly good set of parameters quickly

and can ensure the efficiency of DBN.

3.3.1 Restricted Boltzmann Machine (RBM)

In this section, we will introduce RBM, which is

the core component of DBN. RBM is Boltzmann

Machine with no connection within the same

layer. An RBM is constructed with one visible

layer and one hidden layer. Each visible unit in

the visible layer V is an observed variable
iv

while each hidden unit in the hidden layer H is

a hidden variable
jh . Its joint distribution is

(,) exp((,))
T T Th Wv b x c hp v h E v h e     (3)

In RBM, the parameters that need to be esti-

mated are (, ,)W b c  and 2(,) {0,1}v h  .

To learn RBM, the optimum parameters are

obtained by maximizing the above probability on

the training data (Hinton, 1999). However, the

probability is indeed very difficult in practical

calculation. A traditional way is to find the gra-

dient between the initial parameters and the re-

spect parameters. By modifying the previous pa-

rameters with the gradient, the expected parame-

ters can gradually approximate the target para-

meters as
0

(1) () ()

W

P v
W W

W 

   
 


 (4)

where  is a parameter controlling the leaning

rate. It determines the speed of W converging to

the target.

Traditionally, the Markov chain Monte Carlo

method (MCMC) is used to calculate this kind of

gradient.

0 0log (,)p v h
h v h v

w

 
 



(5)

where log (,)p v h is the log probability of the

data. 0 0h v denotes the multiplication of the av-

erage over the data states and its relevant sample

in hidden unit. h v  denotes the multiplication

of the average over the model states in visible

unit and its relevant sample in hidden unit.

However, MCMC requires estimating an ex-

ponential number of terms. Therefore, it typically

takes a long time to converge to h v  . Hinton

(2002) introduced an alternative algorithm, i.e.,

the contrastive divergence (CD) algorithm, as a

substitution. It is reported that CD can train the

model much more efficiently than MCMC. To

estimate the distribution ()p x , CD considers a

series of distributions { ()np x } which indicate the

distributions in n steps. It approximates the gap

of two different Kullback-Leiler divergences

(Kullback, 1987) as

0(||) (||)n nCD KL p p KL p p   (6)

Maximizing the log probability of the data is

exactly the same as minimizing the Kullback–

Leibler divergence between the distribution of

the data
0p and the equilibrium distribution p

defined by the model. In each step, the gap is

approximately minimized so that we can obtain

the final distribution which has the smallest

Kullback-Leiler divergence with the fantasy dis-

tribution.

After n steps, the gradient can be estimated

and used in Equation 4 to adjust the weights of

RBM. In our experiments, we set n to be 1. It

means that in each step of gradient calculation,

the estimate of the gradient is used to adjust the

weight of RBM. In this case, the estimate of the

gradient is just the gap between the products of

the visual layer and the hidden layer, i.e.,

0 0 1 1log (,)p v h
h v h v

W


 


 (7)

Figure 3 below illustrates the process of learning

RBM with CD-based gradient estimation.

105

Fig. 3. Learning RBM with CD-based gradient

estimation

3.3.2 Back-propagation (BP)

The RBM layers provide an unsupervised analy-

sis on the structures of data set. They automati-

cally detect sophisticated feature vectors. The

last layer in DBN is the BP layer. It takes the

output from the last RBM layer and applies it in

the final supervised learning process. In DBN,

not only is the supervised BP layer used to gen-

erate the final categories, but it is also used to

fine-tune the whole network. Specifically speak-

ing, when the parameters in BP layer are

changed during its iterating process, the changes

are passed to the other RBM layers in a top-to-

bottom sequence.

The BP algorithm has a feed-forward step and

a back-propagation step. In the feed-forward step,

the input values are propagated to obtain the out-

put values. In the back-propagation step, the out-

put values are compared to the real category la-

bels and used them to modify the parameters of

the model. We consider the weight ijw

which

indicates the edge pointing from the i-th node in

one RBM layer to the j-th node in its upper layer.

The computation in feed-forward is i ijo w ,

where io is the stored output for the unit i. In

the back-propagation step, we compute the error

E in the upper layers and also the gradient with

respect to this error, i.e.,
i ijE o w  . Then the

weight ijw

will be adjusted by the gradient des-

cent.

ij i i j

i ij

E
w o o

o w
  


    


 (8)

where  is used to control the length of the

moving step.

3.3.3 DBN-based Entity Mention Categori-

zation

For each entity mention, it is represented by the

character feature vector as introduced in section

3.2 and then fed to DBN. The training procedure

can be divided into two phases. The first phase is

the parameter estimation process of the RBMs on

all the inputted feature vectors. When a feature

vector is fed to DBN, the first RBM layer is

adjusted automatically according to this vector.

After the first RBM layer is ready, its output

becomes the input of the second RBM layer. The

weights of the second RBM layer are also

adjusted. The similar procedure is carried out on

all the RBM layers. Then DBN will operates in

the second phase, the back-propagation

algorithm. The labeled categories of the entity

mention are used to tune the parameters of the

BP layer. Moreover, the changes of the BP layer

are also fed back to the RBM layers. The

procedure will iterate until the terminating

condition is met. It can be a fixed number of

iterations or a pre-given precision threshold.

Once the weights of all the layers in DBN are

obtained, the estimated model could be used to

prediction.

Fig. 4. The mention categorization process

of DBN

Figure 4 illustrates the classification process of

DBN. In prediction, for an entity mention e, we

first calculate its feature vector V(e) and used as

the input of DBN. V(e) is passed through all the

layers to get the outputs for all RBM layers and

last back-propagation layer. In the ith RBM layer,

the dimensions in the input vector Vinput_i(e) are

combined to yield the dimensions of the next

feature vector Voutput_i(e) as input of the next layer.

After the feature vector V(e) goes through all the

RBM layers, it is indeed transformed to another

feature vector V’(e) which consists of

complicated combinations of the original

character features and contains rich structured

information between the characters. This feature

vector is then fed into the BP layer to get the

final category c(e).

4 Experiments

4.1 Experiment Setup

In our experiment, we use the ACE 2004 corpus

to evaluate our approach. The objective of this

study is that the correctly detected Chinese entity

mentions categorization using DBN from the text

and figure out the suitability of DBN on this task.

Moreover, an entity mention should belong to

one and only one category.

106

According to the guideline of the ACE04 task,

there are five categories for consideration in total,

i.e., Person, Organization, Geo-political entity,

Location, and Facility. Moreover, each entity

mention is expressed in two forms, i.e., the head

and the extent. For example, 美国总统克林顿

„President Clinton of USA‟ is the extent of an

entity mention and 克林顿 „Clinton‟ is the

corresponding head. The two phrases both point

to a named entity whose name is Clinton and he

is the president of USA. Here we make the

“breakdown” strategy mentioned in Li et al.

(2007) that only the entity head is considered to

generate the feature vector, considering that the

information from the entity head refines the

name entity. Although the entity extent includes

more information, it also brings many noises

which may make the learning process much

more difficult.

 In our experiments, we test the machine

learning models under a 4-flod cross-validation.

All entity mentions are divided into four parts

randomly where three parts are used for training

and one for test. In total, 7746 mentions are used

for training and 2482 mentions are used for

testing at each round. Precision is chosen as the

evaluation criterion, calculated by the proportion

of the number of correctly categorized instances

and the number of total instances. Since all the

instances should be classified, the recall value is

equal to the precision value.

4.2 Evaluation on Named Entity categoriza-

tion

First of all, we provide some statistics of the data

set. The distribution of entity mentions in each

category is given in table 1. The size of the

character dictionary in the corpus is 1185, so

does the dimension of each feature vector.

Type Quantity

Person 4197

Organization 1783

Geo-political entity 287

Location 3263

Facility 399

Table 1. Number of entity mentions in each

category

In the first experiment, we compare the

performance of DBN with some popular

classification algorithms, including Support

Vector Machine (labeled by SVM) and a

traditional BP neutral network (labeled by NN

(BP)). To implement the models, we use the

LibSVM toolkit
1
 for SVM and the neural neutral

network toolbox in Matlab
2
 for BP. The DBN in

this experiment includes two RBM layers and

one BP layer. Results of the first experiment are

given in Table 2.

Learning Model Precision

DBN 91.45%

SVM 90.29%

NN(BP) 87.23%

Table 2. Performances of the systems with

different classification models

In this experiment, the DBN has three RBM

layers and one BP layer. And the numbers of

units in each RBM layer are 900, 600 and 300

respectively. NN (BP) has the same structure as

DBN. As for SVM, we choose the linear kernel

with the penalty parameter C=1 and set the other

parameters as default after comparing different

kernels and parameters.

In the results, DBN achieved better

performance than both SVM and BP neural

network. This clearly proved the advantages of

DBN. The deep architecture of DBN yields

stronger representation power which makes it

able to detect more complicated and efficient

features, thus better performance is achieved.

In the second experiment, we intend to

examine the performance of DBN with different

number of RBM layers, from one RBM layer

plus one BP layer to three RBM layers plus one

BP layer. The amount of the units in the first

RBM layer is set 900 and the amount in the

second RBM layer is 600, if the second layer

exists. As for the third RBM layers, the amount

of units is set to 300.

Construction of Neural Network Precision

Three RBMs and One BP 91.45%

Two RBMs and One BP 91.42%

One RBM and one BP 91.05%

Table 3. Performance of DBNs with different

number s of RBM layers

Results in Table 3 show that the performance

tends to be better when more RBM layers are

incorporated. More RBM layers do enhance the

representation power of DBN. However, it is

also noted that the improvement is not significant

from two layers to three layers. The reason may

1 available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2 available at

http://www.mathworks.com/access/helpdesk/help/toolbox

/nnet/backprop.html

107

be that two-RBM DBN already has enough

representation power for modeling this data set

and thus one more RBM layer brings

insignificant improvement. It is also mentioned

in Hinton (2006) that more than three RBM

layers are indeed not necessary. Another

important result in Table 3 is that the DBN with

One RBM and one BP performs much better than

the neutral network with only BP in Table 1.

This clearly showed the effectiveness of feature

combination by the RBM layer again.

As to the amount of units in each RBM layer,

it is manually fixed in upper experiments. This

number certainly affects the representation

power of an RBM layer, consequently the

representation power of the whole DBN. In this

set of experiment, we intend to study the

effectiveness of the unit size to the performance

of DBN. A series of DBNs with only one RBM

layer and different unit numbers for this RBM

layer is evaluated. The results are provided in

Table 4 below.

Construction of Neural Network Precision

one RBM(300 units) + one BP 90.61%

one RBM(600 units) + one BP 90.69%

one RBM(900 units) + one BP 91.05%

one RBM(1200 units) + one BP 90.98%

one RBM(1500 units) + one BP 90.61%

one RBM(1800 units) + one BP 90.57%

Table 4. Performance of One-RBM DBNs

with different number of units

Based on the results, we can see that the

performance is quite stable with different unit

numbers. But the numbers that are closer to the

original feature size seem to be some better. This

could suggest that we should not decrease or

increase the dimension of the vector feature too

much when casting the vector transformation by

RBM layers.

Finally, we show the results of the individual

categories. For each category, the Precision-

Recall-F values are provided in table 5, in which

the F-measure is calculated by

2*Precision*Recall
-measure=

Precision+Recall
F (9)

Type P R F

Person 91.26% 96.26% 93.70%

Organization 89.86% 89.04% 89.45%

Location 77.58% 59.21% 76.17%

Geo-political

entity

93.60% 91.89% 92.74%

Facility 77.43% 63.72% 69.91%

Table 5. Performances of the system on each

category

5 Conclusions

In this paper we presented our recent work on

applying a novel machine learning model, the

Deep Belief Nets, on Chinese entity mention

categorization. It is demonstrated that DBN is

very suitable for character-level mention

categorization approaches due to its strong

representation power and the ability on

discovering complicated feature combinations.

We conducted a series of experiments to prove

the benefits of DBN. Experimental results

clearly showed the advantages of DBN that it

obtained better performance than existing

approaches such as SVM and traditional BP

neutral network.

References

David Ackley, Geoffrey Hinton, and Terrence

Sejnowski. 1985. A learning algorithm for

Boltzmann machines. Cognitive Science. 9.

David MacDonald. 1993. Internal and external

evidence in the identification and semantic

categorization of proper names. Corpus

Processing for Lexical Acquisition, MIT Press, 61-

76.

Geoffrey Hinton. 1999. Products of experts. In

Proceedings of the Ninth International.

Conference on Artificial Neural Networks

(ICANN). Vol. 1, 1–6.

Geoffrey Hinton. 2002. Training products of experts

by minimizing contrastive divergence. Neural

Computation, 14, 1771–1800.

Geoffrey Hinton, Simon Osindero, and Yee-Whey

Teh. 2006. A fast learning algorithm for deep

belief nets. Neural Computation. 18, 1527–1554 .

GuoDong Zhou and Jian Su. 2002. Named entity

recognition using an hmm-based chunk tagger. In

proceedings of ACL. 473-480.

Hideki Isozaki and Hideto Kazawa. 2002. Efficient

support vector classifiers for named entity

recognition. In proceedings of IJCNLP. 1-7.

Honglei Guo, Jianmin Jiang, Guang Hu and Tong

Zhang. 2005. Chinese named entity recognition

based on multilevel linguistics features. In

proceedings of IJCNLP. 90-99.

Jing, Hongyan, Radu Florian, Xiaoqiang Luo, Tong

Zhang and Abraham Ittycheriah. 2003. How to get

a Chinese name (entity): Segmentation and

combination issues. In proceedings of EMNLP.

200-207.

Koen Deschacht and Marie-Francine Moens. 2006,

Efficient Hierarchical Entity Classifier Using

Conditional Random Field. In Proceedings of the

108

2nd Workshop on Ontology Learning and

Population. 33-40.

Michael Collins and Yoram Singer. 1999.

Unsupervised models for named entity

classification. In Proceedings of EMNLP'99.

Nina Wacholder, Yael Ravin and Misook Choi. 1997.

Disambiguation of Proper Names in Text. In

Proceedings of the Fifth Conference on Applied

Natural Language Processing.

Solomon Kullback. 1987. Letter to the Editor: The

Kullback-Leibler distance. The American

Statistician 41 (4): 340–341.

Wenjie Li and Donglei Qian. 2007. Detecting,

Categorizing and Clustering Entity Mentions in

Chinese Text, in Proceedings of the 30th Annual

International ACM SIGIR Conference (SIGIR’07).

647-654.

Yoshua Bengio and Yann LeCun. 2007. Scaling

learning algorithms towards ai. Large-Scale Ker-

nel Machines. MIT Press.

109

