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Abstract

MuLLinG is a model for knowledge extrac-
tion  (especially  lexical  extraction  from cor-
pora), based on multilevel graphs. Its aim is 
to allow large-scale data acquisition, by mak-
ing  it  easy  to  realize  automatically,  and 
simple to configure by linguists with limited 
knowledge  in  computer  programming.  In 
MuLLinG, each new level represents the in-
formation  in  a  different  manner  (more  and 
more abstract). We also introduce several as-
sociated operators, written to be as generic as 
possible. They are independent of what nodes 
and  edges  represent,  and  of  the  task  to 
achieve.  Consequently,  they  allow  the  de-
scription of a complex extraction process as a 
succession of simple graph manipulations. Fi-
nally,  we present  an experiment of colloca-
tion extraction using MuLLinG model.

1 Introduction

Natural language processing systems often pro-
duce low-quality results, because of ambiguities 
and particular linguistic phenomena. One major 
reason is the lack of linguistic data needed to de-
tect these phenomena or to solve ambiguities. To 
fill this lack, new linguistic resources should be 
produced. It could be done quickly with automat-
ic processes, but quality would be unsatisfactory; 
on the contrary, manual work by linguists allows 
precise results, but takes lot of time. To get both 
rapidity  and  precision, we  must  combine  ma-
chine and human abilities,  by giving automatic 
processing tools to linguists, and allowing them 
to guide the process. Existing tools are often too 
centered on a task, and require too much know-
ledge in computer programming: they are not ap-
propriate  for  linguists  with  few  knowledge  in 
coding. We should thus develop generic tools.

In this article, we first focus on how to make 
the resource gathering easier. Then, we introduce 

MuLLinG,  our  multilevel  graph  model  for  lin-
guistic extraction, with several associated opera-
tions. Finally,  we present an application of that 
model on collocation extraction.

2 Knowledge extraction

There  are  several  manners  to  collect  resources 
with automatic processes (machine learning, col-
laborative interfaces, etc.). We focus here on (lin-
guistic  and  statistic)  extraction  of  candidates. 
More precisely, our goal is to facilitate the large-
scale production of candidates by extraction.

2.1 Simplify programming

Making a particular extraction task is not easy, as 
there is often no dedicated tool. It forces to write 
ad  hoc  tools  (most  of  the  time  not  unveiled). 
Moreover, ad hoc tools are not written to be uni-
versal. They generally depend on the data model, 
it is therefore difficult or impossible to use a new 
resource with a different format (such as an ana-
lysis from an other parser). To be really useful, 
an  extraction  tool  should  be  generic (able  to 
handle different data models) and easy to under-
stand and to use. The data model on which the 
tool  rely  must  be  simple,  expressive  (complex 
structure should be represented easily), and uni-
versal (for monolingual or multilingual corpora, 
dictionaries, etc.). It should also provide simple 
generic,  task-independent,  high-level  operations 
that can be combined to describe a complex task.

We choose to introduce a graph-based model. 
Graphs  are  understandable  quickly by humans, 
easy to use in automatic processes, and flexible 
enough  to  represent  various  data  types.  Using 
graphs for knowledge extraction is quite classic. 
They can represent relations between words (pro-
duced by dependency analysers  from corpora), 
and be used to produce semantically close terms 
(Widdows & Dorrow, 2002) or to group similar 
n-tuples (Hassan et al., 2006). Graphs also can be 
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generated from dictionaries, and used to produce 
knowledge  bases  (Richardson  et  al.,  1998)  or 
proximity information (Gaume et al., 2006).

2.2 Existing graph models

Influenced by “existential graphs” (Peirce, 1931-
1935) where relations between elements are rep-
resented by nodes,  “conceptual  graphs” (Sowa, 
1976) are bipartite graphs with two node types: 
concepts and conceptual relations (edges only as-
sociate relations and concepts). That relation ma-
terialization is useful, as it allows to handle eas-
ily n-ary relations, without hypergraphs.

Another  interesting  network  is  the  “lexical 
system”  one  (Polguère,  2006),  defined  as  ori-
ented,  weighted,  unhierarchical  and,  above  all, 
heterogeneous: there is no constraint on what is 
modelized (it could be terms, meanings, colloca-
tions, etc.). It avoids the separation between dic-
tionary-like  and network-like  lexical  databases, 
and shows the same representation can be used 
for each kind of data and relation.

Finally, graphs can be multilevel, to represent 
different kinds of information. Links are gener-
ally allowed only in a same level or between two 
adjacent levels, like in “hypertexts” (Agosti and 
Crestani,  1993)  made  of  three  specified  levels 
(documents, terms, concepts), or in Multi-Level 
Association  Graphs  (Witschel,  2007)  in  which 
there is  no constraint  on the number  of levels. 
We believe that the use of several levels to rep-
resent various content types is pertinent in an ex-
traction process, as it allows to handle both the 
occurrences of terms, and the terms themselves.

3 MuLLinG model

We introduce  MuLLinG (Multi-Level Linguistic 
Graph), our own graph model. Divided in several 
ordered and distinct levels, it contains two kinds 
of edges:  intra-level ones (between nodes from 
same level) and inter-level ones (from a node on 
level i to a node on level i+1). Intra-level edges 
are  not  unique  (several  edges  are  allowed 
between two nodes): every level is a multigraph. 
On the contrary, a node can be the source of only 
one inter-level edge; this association means that 
the target node (on the superior level) is a more 
global  representation  of  the  source  node  (it 
defines a hierarchy of precision). 

Finally, in order to allow the heterogeneity of 
represented data, nodes and intra-level edges can 
carry any attribute (with no limit on kind or num-
ber). Figure 1 shows an example of a MuLLinG 
graph, in which 1st level contains occurrences of 

words,  2nd level  contains lemmas,  and 3rd level 
contains synonymy classes.

3.1 Definition

More precisely, a MuLLinG graph is an oriented 
multigraph  ( )EV

n a,aΦ,A,F,E,V,=G  (for  n 
levels) where:

• V: set of  nodes, made of  n disjoint sub-
sets nVV ,,1 …  (for the n levels);

• E: set of intra-level edges, made of n dis-
joint subsets nEE ,,1 … ; A: set of functions 

{ }niVVE iiii ,,1: ∈×→α  associating 
an edge and its two extremities;

• F: set of inter-level edges, in n-1 disjoint 
sets  11 ,, −… nFF  defined  as

( ){ }x=y|VVyx,=F +iii ϕ1×∈ ;  Φ :  set 
of functions { }niVV +iii ,,1: 1 ∈→ϕ , as-
sociating a node (on a given level) and a 
node on the superior level);

• { }VV ΣVf=a →: ,  { }EE ΣEf=a →:
( EV Σ,Σ  are  alphabets  for  attributes  of 
objects from E and V) model attributes. 

3.2 Associated operators

To manipulate  MuLLinG graphs,  we  introduce 
several  operations,  designed for their  particular 
structure.  Some  of  them allow elementary ma-
nipulations:  add  or  delete  a  node  or  an  edge, 
clean a node (delete all  edges of which it  is  a 
source or a target),  delete a node and its “des-
cendants” (the nodes linked  to it  by inter-level 
edges,  and  their  own  descendants).  There  are 

Figure 1. Example of 3-level MuLLinG graph
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also operations to compute measures, to realize a 
conditional  manipulation on nodes or edges (it 
can be use to  filter the graph, by deleting nodes 
depending on the value of a given attribute). All 
these  basic  operations  should  not  be  directly 
used, but rather be called by more elaborate ones. 

These operations (modifying the graph struc-
ture) take parameters fixed by the user: the level, 
the filtering function (which graph elements are 
concerned by the operation?),  and computation 
functions (to produce attribute values for newly 
created  elements).  Graph  coherence  is  guaran-
teed if the user provides correct parameters.

Emergence is  the  essential  operation  associ-
ated with MuLLinG. Its aim is to generate a su-
perior level, by grouping elements (from the ini-
tial  level)  in  equivalence classes.  In  the  newly 
created level, each node (resp. edge) represent a 
equivalence class of nodes (resp. edges) from the 
initial  level.  The  identification  of  equivalence 
classes is a parameter of the emergence (the user 
provides it). The operation goes in two steps:

• node  emergence:  for  each  equivalence 
class of nodes, it creates a node on the su-
perior  level  to  represent  this  class  (and 
each  node  in  the  class  is  linked  to  the 
newly created node);  figure  2 shows the 
emergence of nodes representing equival-
ence classes containing all occurrences of 
a same word;

• edge emergence: each edge added on the 
superior level between nodes A and B de-
pict a set of equivalent edges between an 
element  of  A class  and an element  of  B 
class; in figure 2, equivalent  u and  u' are 
grouped in a sole edge U, whereas s and t 
(not  equivalent)  are  represented  by  two 
distinct edges S and T.

Finally,  some  other  operations  have  been 
defined to mix information from two graphs in a 

third  one.  The  intersection contain  elements 
(nodes, edges) present in both graphs, with uni-
fication of identical elements. The union contain 
all elements from the two graphs, with unifica-
tion of identical elements. The difference contain 
all  elements  from  the  first  graph  that  are  not 
identical to an element from the second one. 

It is essential to recognize the identity between 
two nodes  or  two edges:  identity  functions are 
parameters  for  these  “mix”  operations,  and 
should be provided by the user. Among paramet-
ers, there are also, depending on the case, func-
tions for fusion (production of attributes for uni-
fied nodes or edges) or  copy (production of at-
tributes for elements present in only one graph).

To handle n-ary relations, we also provide a 
complex version  of  MuLLinG,  where  relations 
can  be  materialized.  In  that  case,  a  relation  is 
represented  by  a  standard  node  and  numbered 
argument  edges linking  that  node  to  the  argu-
ments of the relation. It also allows the represent-
ation of relations between relations themselves.

We made an implementation of MuLLinG as a 
C++ library1, based on  Boost (open-source C++ 
libraries),  especially for graph access and itera-
tions. It can read and write MuLLinG graphs in 
GraphML format (Brandes et al., 2001).

4 Application to collocation extraction

4.1 Extraction process

We realized several  experiments  using our lib-
rary. We remind the reader that our goal was not 
to obtain the more efficient method for extrac-
tion, but rather to introduce tools for simplifying 
the programming of extraction tasks. We present 
here  experiments  about  collocation  extraction. 
Collocations are particular expressions where a 
term is chosen arbitrarily, depending on the other 

1 Available at http://mulling.ligforge.imag.fr/ (under 
CeCILL free software license)

Figure 2. Two-steps emergence (nodes, then edges)
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term,  to  express  a  particular  meaning  (like  in 
“driving rain”, where “driving” is used to express 
intensity).  As  the  choice  differs  between  lan-
guages2, it causes big issues to machine transla-
tion  systems  (which  lack  resources  to  handle 
them  correctly).  In  our  experiment,  the  initial 
graph is made of relations produced by a depend-
ency analyzer, on 1st level. 

Firstly,  we use the  filtering operator to keep 
only pertinent relations (nouns modified by ad-
jectives,  like in figure 3,  or  verbs modified by 
adverbs), according to the analyzer. There are re-
lations between term occurrences on 1st level, but 
we want relations between terms themselves: we 
generate them on 2nd level using emergence. So 
we proceed node emergence by considering that 
nodes with same attribute “lemma” are equival-
ent,  then  edge  emergence by  considering  that 
edges expressing a modification are equivalent.

The “collocation” candidates are all  2nd-level 
edges  created  during  the  emergence.  To  rank 
them,  we  use  the  computation operation  (with 
occurrence and co-occurrence frequencies) to fix 
an association measure on those nodes. Figure 3 
shows  an  example  of  a  MuLLinG graph  after 
emergence and computation operations. 

To facilitate the description, our library con-
tains  lots  of  pre-defined  generic  functions.  By 
example, a filter (used as a parameter of emer-
gence)  can  be  based  on  an  excepted  value,  a 
threshold, etc. We also described numerous asso-
ciation measures; for now, new ones should be 
written in the C++ program.

We used our library to carry out the extraction 
as described previously, with LeMonde95 corpus 
(news articles) analyzed by Xerox's XIP parser. 
Thanks to MuLLinG structure, it is very easy to 
get all potential collocations (heavy/driving rain): 
these are the relations of which it is the source.
2By example, a “heavy smoker” is big in French (“gros 
fumeur”) and strong in German (“starker Raucher”).

Experiments verb-adverb noun-adjective

Level 1 nodes 1 155 824 1 319 474
edges 1 780 759 2 009 051

Level 2 nodes 6 813 33 132
edges 144 586 273 655

Table  1. Nodes and edges produced during ex-
periments on collocation extraction

4.2 Advantages and drawbacks

With MuLLinG library,  we  reproduced  exactly 
some experiments  on collocation extraction we 
made before (with ad hoc programs): results are 
obviously coherent.  The production is currently 
slightly  slower  (around  20%  more  time)  but 
speed  is  not  crucial,  and  could  be  optimized. 
MuLLinG has  a  great  advantage while  writing 
the program: it only calls functions (and declare 
parameters). Consequently, task description with 
our library is much faster (source lines of code 
are divided by 5), it also avoids errors. It requires 
less knowledge in programming, so it is far more 
accessible. Nevertheless, usability should still be 
improved:  we  must  describe  a  high-level  lan-
guage (we believe it  should be a request  one). 
Furthermore, there is no constraint on input re-
sources,  so  programs  could  easily  be  re-used 
with other relations (from other parsers). Finally, 
as  graphs  with  millions  of  elements  can  reach 
RAM limits, we plan to allow database storage.

We also made bilingual  experiments  on col-
locations,  taking  advantage  of  MuLLinG com-
plex version to materialize monolingual “colloc-
ation” nodes, and to describe bilingual relations 
between collocations as edges between them.

5 Conclusion

Facing the lack of tools for extraction of lexical 
knowledge, we looked for a new one, simple and 
generic.  We  specified  MuLLinG,  multilevel 
graph model (with no constraint on the data), as-
sociated with several simple manipulation opera-
tions (which could be combined to realize com-
plex tasks). The ensuing tool allows to program 
linguistic tasks in a resource-independent  man-
ner, simpler and more efficient. One major pro-
spect of this work concerns its implementation. 
As  explained  before,  we  must  provide  a  high-
level  language.  It  is also necessary to facilitate 
the import and to optimize memory management. 
In order to provide a less NLP-centered tool, we 
should extend it  with new operations, and with 
algorithms related to classic problems of graph 
theory.  It  would  also  be  interesting  to  interact 
with semantic web tools (RDF/SPARQL).

Figure 3. Collocations extraction with emergence 
(on 2nd level) and computation operations
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