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Abstract

Historical text presents numerous chal-
lenges for contemporary natural language
processing techniques. In particular, the
absence of consistent orthographic con-
ventions in historical text presents difficul-
ties for any system requiring reference to
a static lexicon accessed by orthographic
form. In this paper, we present three
methods for associating unknown histori-
cal word forms with synchronically active
canonical cognates and evaluate their per-
formance on an information retrieval task
over a manually annotated corpus of his-
torical German verse.

1 Introduction

Historical text presents numerous challenges for
contemporary natural language processing tech-
niques. In particular, the absence of consistent or-
thographic conventions in historical text presents
difficulties for any system requiring reference to a
fixed lexicon accessed by orthographic form, such
as document indexing systems (Sokirko, 2003;
Cafarella and Cutting, 2004), part-of-speech tag-
gers (DeRose, 1988; Brill, 1992; Schmid, 1994),
simple word stemmers (Lovins, 1968; Porter,
1980), or more sophisticated morphological ana-
lyzers (Geyken and Hanneforth, 2006; Clematide,
2008).

When adopting historical text into such a sys-
tem, one of the most crucial tasks is the associa-
tion of one or moreextant equivalentswith each
word of the input text: synchronically active types
which best represent the relevant features of the
input word. Which features are considered “rel-
evant” here depends on the application in ques-
tion: for a lemmatization task only the root lex-
eme is relevant, whereas syntactic parsing may
require additional morphosyntactic features. For

current purposes, extant equivalents are to be un-
derstood ascanonical cognates, preserving both
the root(s) and morphosyntactic features of the as-
sociated historical form(s), which should suffice
(modulo major grammatical and/or lexical seman-
tic shifts) for most natural language processing
tasks.

In this paper, we present three methods for au-
tomatic discovery of extant canonical cognates
for historical German text, and evaluate their per-
formance on an information retrieval task over a
small gold-standard corpus.

2 Canonicalization Methods

In this section, we present three methods for au-
tomatic discovery of extant canonical cognates
for historical German input:phonetic conflation
(Pho), Levenshtein edit distance(Lev), and a
heuristic rewrite transducer(rw). The various
methods are presented individually below, and
characterized in terms of the linguistic resources
required for their application. Formally, each
canonicalization methodR is defined by a char-
acteristicconflation relation∼R, a binary rela-
tion on the setA∗ of all strings over the finite
grapheme alphabetA. Prototypically,∼R will be
a true equivalence relation, inducing a partitioning
of A∗ into equivalence classes or “conflation sets”
[w]R = {v ∈ A∗ : v ∼R w}.

2.1 Phonetic Conflation

If we assume despite the lack of consistent or-
thographic conventions that historical graphemic
forms were constructed to reflect phonetic forms,
and if the phonetic system of the target language
is diachronically more stable than the graphematic
system, then the phonetic form of a word should
provide a better clue to its extant cognates (if any)
than a historical graphemic form alone. Taken to-
gether, these assumptions lead to the canonicaliza-
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tion technique referred to here asphonetic confla-
tion.

In order to map graphemic forms to phonetic
forms, we may avail ourselves of previous work
in the realm of text-to-speech synthesis, a domain
in which the discovery of phonetic forms for ar-
bitrary text is an often-studied problem (Allen et
al., 1987; Dutoit, 1997), the so-called “letter-to-
sound” (LTS) conversion problem. The phonetic
conversion module used here was adapted from
the LTS rule-set distributed with the IMS German
Festival package (M̈ohler et al., 2001), and com-
piled as a finite-state transducer (Jurish, 2008).

In general, the phonetic conflation strategy
maps each (historical or extant) input wordw ∈
A∗ to a unique phonetic formpho(w) by means of
a computable functionpho : A∗ → P∗,1 conflat-
ing those strings which share a common phonetic
form:

w ∼Pho v :⇔ pho(w) = pho(v) (1)

2.2 Levenshtein Edit Distance

Although the phonetic conflation technique de-
scribed in the previous section is capable of suc-
cessfully identifying a number of common histor-
ical graphematic variation patterns such asey/ei,
œ/̈o, th/t, and tz/z, it fails to conflate historical
forms with any extant equivalent whenever the
graphematic variation leads to non-identity of the
respective phonetic forms, as determined by the
LTS rule-set employed. In particular, whenever
a historical variation would effect a pronuncia-
tion difference in synchronic forms, that varia-
tion will remain uncaptured by a phonetic con-
flation technique. Examples of such phonetically
salient variations with respect to the simplified
IMS German Festival rule-set includeguot/gut
“good”, liecht/licht “light”, tiuvel/teufel“devil”,
andwolln/wollen“want”.

In order to accommodate graphematic variation
phenomena beyond those for which strict pho-
netic identity of the variant forms obtains, we may
employ an approximate search strategy based on
the simpleLevenshtein edit distance(Levenshtein,
1966; Navarro, 2001). Formally, letLex ⊆ A∗

be the lexicon of all extant forms, and letdLev :
A∗ ×A∗ → N represent the Levenshtein distance
over grapheme strings, then define for every input
word w ∈ A∗ the “best” synchronic equivalent

1P is a finite phonetic alphabet.

bestLev(w) as the unique extant wordv ∈ Lex
with minimal edit-distance to the input word:2

bestLev(w) = arg min
v∈Lex

dLev(w, v) (2)

Ideally, the image of a wordw underbestLev will
itself be the canonical cognate sought,3 leading to
conflation of all strings which share a common im-
age underbestLev:

w ∼Lev v :⇔ bestLev(w) = bestLev(v) (3)

The functionbestLev(w) : A∗ → Lex can be
computed using a variant of the Dijkstra algorithm
(Dijkstra, 1959) even when the lexicon is infinite
(as in the case of productive nominal composition
in German) whenever the setLex can be repre-
sented by a finite-state acceptor (Mohri, 2002; Al-
lauzen and Mohri, 2009; Jurish, 2010). For current
purposes, we used the (infinite) input language
of the TAGH morphology transducer (Geyken and
Hanneforth, 2006) stripped of proper names, ab-
breviations, and foreign-language material to ap-
proximateLex.

2.3 Rewrite Transducer

While the simple edit distance conflation tech-
nique from the previous section is quite powerful
and requires for its implementation only a lexicon
of extant forms, the Levenshtein distance itself ap-
pears in many cases too coarse to function as a
reliable predictor of etymological relations, since
each edit operation (deletion, insertion, or substi-
tution) is assigned a cost independent of the char-
acters operated on and of the immediate context
in the strings under consideration. This operand-
independence of the traditional Levenshtein dis-
tance results in a number of spurious conflations
such as those given in Table 1.

In order to achieve a finer-grained and thus
more precise mapping from historical forms to ex-
tant canonical cognates while preserving some de-
gree of the robustness provided by the relaxation
of the strict identity criterion implicit in the edit-
distance conflation technique, a non-deterministic
weighted finite-state “rewrite” transducer was de-
veloped to replace the simple Levenshtein met-
ric. The rewrite transducer was compiled from a

2We assume that whenever multiple extant minimal-
distance candidate forms exist, one is chosen randomly.

3Note here that every extant form is its own “best”
equivalent: w ∈ Lex implies bestLev(w) = w, since
dLev(w, w) = 0 < dLev(w, v) for all v 6= w.
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w bestLev(w) Extant Equivalent

aug aus “out” auge “eye”
faszt fast “almost” fasst “grabs”
ouch buch “book” auch “also”
ram rat “advice” rahm “cream”
vol volk “people” voll “full”

Table 1: Example spurious Levenshtein distance
conflations

heuristic two-level rule-set (Karttunen et al., 1987;
Kaplan and Kay, 1994; Laporte, 1997) whose 306
rules were manually constructed to reflect linguis-
tically plausible patterns of diachronic variation
as observed in the lemma-instance pairs automat-
ically extracted from the full 5.5 million word
DWB verse corpus (Jurish, 2008). In particu-
lar, phonetic phenomena such asschwa deletion,
vowel shift, voicing alternation, andarticulatory
location shiftare easily captured by such rules.

Of the 306 heuristic rewrite rules, 131 manipu-
late consonant-like strings, 115 deal with vowel-
like strings, and 14 operate directly on syllable-
like units. The remaining 46 rules define expan-
sions for explicitly marked elisions and unrecog-
nized input. Some examples of rules used by the
rewrite transducer are given in Table 2.

Formally, the rewrite transducer∆rw defines
a pseudo-metricJ∆rwK : A∗ × A∗ → R∞ on
all string pairs (Mohri, 2009). Assuming the
non-negative tropical semiring (Simon, 1987) is
used to represent transducer weights, analagous to
the transducer representation of the Levenshtein
metric (Allauzen and Mohri, 2009), the rewrite
pseudo-metric can be used as a drop-in replace-
ment for the Levenshtein distance in Equations (2)
and (3), yielding Equations (4) and (5):

bestrw(w) = arg min
v∈Lex

J∆rwK(w, v) (4)

w ∼rw v :⇔ bestrw(w) = bestrw(v) (5)

3 Evaluation

3.1 Test Corpus

The conflation techniques described above were
tested on a corpus of historical German verse
extracted from the quotation evidence in a sin-
gle volume of the digital first edition of the dic-
tionary Deutsches Ẅorterbuch “DWB” (Bartz et
al., 2004). The test corpus contained 11,242 to-
kens of 4157 distinct word types, discounting non-

alphabetic types such as punctuation. Each cor-
pus type was manually assigned one or more ex-
tant equivalents based on inspection of its occur-
rences in the whole 5.5 million word DWB verse
corpus in addition to secondary sources. Only ex-
tinct roots, proper names, foreign and other non-
lexical material were not explicitly assigned any
extant equivalent at all; such types were flagged
and treated as their own canonical cognates,i.e.
identical to their respective “extant” equivalents.
In all other cases, equivalence was determined by
direct etymological relation of the root in addition
to matching morphosyntactic features. Problem-
atic types were marked as such and subjected to
expert review. 296 test corpus types represent-
ing 585 tokens were ambiguously associated with
more than one canonical cognate. In a second an-
notation pass, these remaining ambiguities were
resolved on a per-token basis.

3.2 Evaluation Measures

The three conflation strategies from Section 2
were evaluated using the gold-standard test corpus
to simulate a document indexing and query sce-
nario. Formally, letG ⊂ A∗ × A∗ represent the
finite set of all gold-standard pairs(w, w̃) with w̃
the manually determined canonical cognate for the
corpus typew, and letQ = {w̃ : ∃(w, w̃) ∈ G}
be the set of all canonical cognates represented in
the corpus. Then define for a binary conflation re-
lation∼R onA∗ and a query stringq ∈ Q the sets
relevant(q), retrievedR(q) ⊆ G of relevantand
retrievedgold-standard pairs as:

relevant(q) = {(w, w̃) ∈ G : w̃ = q}
retrievedR(q) = {(w, w̃) ∈ G : w ∼R q}

Type-wise precision and recall can then be de-
fined directly as:

prG =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedR(q)

∣∣∣
rcG =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣
If tpR(q) = retrievedR(q) ∩ relevant(q) rep-

resents the set oftrue positivesfor a query q,
then token-wise precision and recall are defined
in terms of the gold-standard frequency function
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From → To / Left Right 〈Cost〉 Example(s)

ε → e / (A\{e}) # 〈 5 〉 aug; auge “eye”
z → s / s 〈 1 〉 faszt; fasst “grabs”
o → a / u 〈 1 〉 ouch; auch “also”
ε → h / V C 〈 5 〉 ram; rahm “cream”
l → ll / 〈 8 〉 vol ; voll “full”

Table 2: Some example heuristics used by the rewrite transducer. Here,ε represents the empty string,
# represents a word boundary, andV, C ⊂ A are sets of vowel-like and consonant-like characters,
respectively.

fG : G → N as:

prfG
=

∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈retrievedR(q) fG(g)

rcfG
=

∑
q∈Q,g∈tpR(q) fG(g)∑

q∈Q,g∈relevant(q) fG(g)

We use the unweighted harmonic precision-
recall averageF (van Rijsbergen, 1979) as a com-
posite measure for both type- and token-wise eval-
uation modes:

F(pr, rc) =
2 · pr · rc
pr + rc

3.3 Results

The elementary canonicalization function for each
of the conflation techniques4 was applied to the
entire test corpus to simulate a corpus indexing
run. Running times for the various methods on
a 1.8GHz Linux workstation using thegfsmxl
C library are given in Table 3. The Levenshtein
edit-distance technique is at a clear disadvantage
here, roughly 150 times slower than the phonetic
technique and 40 times slower than the special-
ized heuristic rewrite transducer. This effect is
assumedly due to the density of the search space
(which is maximal for an unrestricted Levenshtein
editor), since thegfsmxl greedyk-best search
of a Levenshtein transducer cascade generates at
least|A| configurations per character, and a sin-
gle backtracking step requires an additional3|A|
heap extractions (Jurish, 2010). Use of specialized
lookup algorithms (Oflazer, 1996) might amelio-
rate such problems.

Qualitative results for several conflation tech-
niques with respect to the DWB verse test corpus
are given in Table 4. An additional conflation rela-
tion “Id” using strict identity of grapheme strings

4pho, bestLev andbestrw for the phonetic, Levenshtein,
and heuristic rewrite transducer methods respectively

Method Time Throughput

Pho 1.82 sec 7322 tok/sec
Lev 278.03 sec 48 tok/sec
rw 7.02 sec 1898 tok/sec

Table 3: Processing time for elementary canoni-
calization functions

(w ∼Id v :⇔ w = v) was tested to provide a
baseline for the methods described in Section 2.

As expected, the strict identity baseline relation
was the most precise of all methods tested, achiev-
ing 99.9% type-wise and 99.1% token-wise pre-
cision. This is unsurprising, since theId method
yields false positives only when a historical form
is indistinguishable from a non-equivalent extant
form, as in the case of the mappingwider ;

wieder (“again”) and the non-equivalent extant
form wider (“against”). Despite its excellent pre-
cision, the baseline method’s recall was the low-
est of any tested method, which supports the claim
that a synchronically-oriented lexicon cannot ad-
equately account for a corpus of historical text.
Type-wise recall was particularly low (70.8%), in-
dicating that diachronic variation was more com-
mon in low-frequency types.

Surprisingly, the phonetic and Levenshtein
edit-distance methods performed similarly for
all measures except token-wise precision, in
which Lev incurred 61.6% fewer errors than
Pho. Given their near-identical type-wise
precision, this difference can be attributed
to a small number of phonetic misconfla-
tions involving high-frequency types, such as
wider∼wieder (“against”∼“again”), statt∼stadt,
(“instead”∼“city”), and in∼ihn (“in”∼“him”).
Contrary to expectations,Lev did not yield
any recall improvements overPho, although the
union of the two underlying conflation relations
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Type-wise % Token-wise %
R prG rcG FG prfG

rcfG FfG

Id 99.9 70.8 82.9 99.1 83.7 90.7
Pho 96.7 80.1 87.6 92.7 89.6 91.1
Lev 96.6 78.9 86.9 97.2 87.8 92.2
rw 98.5 88.4 93.2 98.2 93.4 95.8

Pho |Lev 94.1 84.3 88.9 91.3 91.6 91.5
Pho | rw 96.1 89.8 92.8 92.5 94.5 93.5

Table 4: Qualitative evaluation of various conflation techniques

(∼Pho |Lev = ∼Pho ∪ ∼Lev) achieved a type-wise
recall of 84.3% (token-wise recall 91.6%), which
suggests that these two methods complement one
another when both an LTS module and a high-
coverage lexicon of extant types are available.

Of the methods described in Section 2, the
heuristic rewrite transducer∆rw performed best
overall, with a type-wise harmonic mean F of
93.2% and a token-wise F of 95.8%. While∆rw

incurred some additional precision errors com-
pared to the näıve graphemic identity methodId,
these were not as devastating as those incurred
by the phonetic or Levenshtein distance meth-
ods, which supports the claim from Section 2.3
that a fine-grained context-sensitive pseudo-metric
incorporating linguistic knowledge can more ac-
curately model diachronic processes than an all-
purpose metric like the Levenshtein distance.

Recall was highest for the composite phonetic-
rewrite relation∼Pho | rw=∼Pho ∪ ∼rw, although
the precision errors induced by the phonetic com-
ponent outweighed the comparatively small gain
in recall. The best overall performance is achieved
by the heuristic rewrite transducer∆rw on its own,
yielding a reduction of 60.3% in type-wise recall
errors and of 59.5% in token-wise recall errors,
while minimizing the number of newly introduced
precision errors.

4 Conclusion & Outlook

We have presented three different methods for
associating unknown historical word forms with
synchronically active canonical cognates. The
heuristic mapping of unknown forms to extant
equivalents by means of linguistically motivated
context-sensitive rewrite rules yielded the best re-
sults in an information retrieval task on a corpus
of historical German verse, reducing type-wise
recall errors by over 60% compared to a naı̈ve
text-matching strategy. Depending on the avail-

ability of linguistic resources (e.g. phonetization
rule-sets, lexica), use of phonetic canonicalization
and/or Levenshtein edit distance may provide a
more immediately accessible route to improved re-
call for other languages or applications, at the ex-
pense of some additional loss of precision.

We are interested in verifying our results us-
ing larger corpora than the small test corpus used
here, as well as extending the techniques described
here to other languages and domains. In par-
ticular, we are interested in comparing the per-
formance of the domain-specific rewrite trans-
ducer used here to other linguistically motivated
language-independent metrics such as (Covington,
1996; Kondrak, 2000).
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